forked from cory/tildefriends
Cory McWilliams
09ddfffa6b
git-svn-id: https://www.unprompted.com/svn/projects/tildefriends/trunk@4088 ed5197a5-7fde-0310-b194-c3ffbd925b24
346 lines
16 KiB
Groff
346 lines
16 KiB
Groff
.\" Automatically generated by Pod::Man 4.14 (Pod::Simple 3.42)
|
|
.\"
|
|
.\" Standard preamble:
|
|
.\" ========================================================================
|
|
.de Sp \" Vertical space (when we can't use .PP)
|
|
.if t .sp .5v
|
|
.if n .sp
|
|
..
|
|
.de Vb \" Begin verbatim text
|
|
.ft CW
|
|
.nf
|
|
.ne \\$1
|
|
..
|
|
.de Ve \" End verbatim text
|
|
.ft R
|
|
.fi
|
|
..
|
|
.\" Set up some character translations and predefined strings. \*(-- will
|
|
.\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left
|
|
.\" double quote, and \*(R" will give a right double quote. \*(C+ will
|
|
.\" give a nicer C++. Capital omega is used to do unbreakable dashes and
|
|
.\" therefore won't be available. \*(C` and \*(C' expand to `' in nroff,
|
|
.\" nothing in troff, for use with C<>.
|
|
.tr \(*W-
|
|
.ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p'
|
|
.ie n \{\
|
|
. ds -- \(*W-
|
|
. ds PI pi
|
|
. if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch
|
|
. if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch
|
|
. ds L" ""
|
|
. ds R" ""
|
|
. ds C` ""
|
|
. ds C' ""
|
|
'br\}
|
|
.el\{\
|
|
. ds -- \|\(em\|
|
|
. ds PI \(*p
|
|
. ds L" ``
|
|
. ds R" ''
|
|
. ds C`
|
|
. ds C'
|
|
'br\}
|
|
.\"
|
|
.\" Escape single quotes in literal strings from groff's Unicode transform.
|
|
.ie \n(.g .ds Aq \(aq
|
|
.el .ds Aq '
|
|
.\"
|
|
.\" If the F register is >0, we'll generate index entries on stderr for
|
|
.\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index
|
|
.\" entries marked with X<> in POD. Of course, you'll have to process the
|
|
.\" output yourself in some meaningful fashion.
|
|
.\"
|
|
.\" Avoid warning from groff about undefined register 'F'.
|
|
.de IX
|
|
..
|
|
.nr rF 0
|
|
.if \n(.g .if rF .nr rF 1
|
|
.if (\n(rF:(\n(.g==0)) \{\
|
|
. if \nF \{\
|
|
. de IX
|
|
. tm Index:\\$1\t\\n%\t"\\$2"
|
|
..
|
|
. if !\nF==2 \{\
|
|
. nr % 0
|
|
. nr F 2
|
|
. \}
|
|
. \}
|
|
.\}
|
|
.rr rF
|
|
.\"
|
|
.\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2).
|
|
.\" Fear. Run. Save yourself. No user-serviceable parts.
|
|
. \" fudge factors for nroff and troff
|
|
.if n \{\
|
|
. ds #H 0
|
|
. ds #V .8m
|
|
. ds #F .3m
|
|
. ds #[ \f1
|
|
. ds #] \fP
|
|
.\}
|
|
.if t \{\
|
|
. ds #H ((1u-(\\\\n(.fu%2u))*.13m)
|
|
. ds #V .6m
|
|
. ds #F 0
|
|
. ds #[ \&
|
|
. ds #] \&
|
|
.\}
|
|
. \" simple accents for nroff and troff
|
|
.if n \{\
|
|
. ds ' \&
|
|
. ds ` \&
|
|
. ds ^ \&
|
|
. ds , \&
|
|
. ds ~ ~
|
|
. ds /
|
|
.\}
|
|
.if t \{\
|
|
. ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u"
|
|
. ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u'
|
|
. ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u'
|
|
. ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u'
|
|
. ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u'
|
|
. ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u'
|
|
.\}
|
|
. \" troff and (daisy-wheel) nroff accents
|
|
.ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V'
|
|
.ds 8 \h'\*(#H'\(*b\h'-\*(#H'
|
|
.ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#]
|
|
.ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H'
|
|
.ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u'
|
|
.ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#]
|
|
.ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#]
|
|
.ds ae a\h'-(\w'a'u*4/10)'e
|
|
.ds Ae A\h'-(\w'A'u*4/10)'E
|
|
. \" corrections for vroff
|
|
.if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u'
|
|
.if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u'
|
|
. \" for low resolution devices (crt and lpr)
|
|
.if \n(.H>23 .if \n(.V>19 \
|
|
\{\
|
|
. ds : e
|
|
. ds 8 ss
|
|
. ds o a
|
|
. ds d- d\h'-1'\(ga
|
|
. ds D- D\h'-1'\(hy
|
|
. ds th \o'bp'
|
|
. ds Th \o'LP'
|
|
. ds ae ae
|
|
. ds Ae AE
|
|
.\}
|
|
.rm #[ #] #H #V #F C
|
|
.\" ========================================================================
|
|
.\"
|
|
.IX Title "EC_GROUP_COPY 3"
|
|
.TH EC_GROUP_COPY 3 "2020-04-21" "1.1.1g" "OpenSSL"
|
|
.\" For nroff, turn off justification. Always turn off hyphenation; it makes
|
|
.\" way too many mistakes in technical documents.
|
|
.if n .ad l
|
|
.nh
|
|
.SH "NAME"
|
|
EC_GROUP_get0_order, EC_GROUP_order_bits, EC_GROUP_get0_cofactor, EC_GROUP_copy, EC_GROUP_dup, EC_GROUP_method_of, EC_GROUP_set_generator, EC_GROUP_get0_generator, EC_GROUP_get_order, EC_GROUP_get_cofactor, EC_GROUP_set_curve_name, EC_GROUP_get_curve_name, EC_GROUP_set_asn1_flag, EC_GROUP_get_asn1_flag, EC_GROUP_set_point_conversion_form, EC_GROUP_get_point_conversion_form, EC_GROUP_get0_seed, EC_GROUP_get_seed_len, EC_GROUP_set_seed, EC_GROUP_get_degree, EC_GROUP_check, EC_GROUP_check_discriminant, EC_GROUP_cmp, EC_GROUP_get_basis_type, EC_GROUP_get_trinomial_basis, EC_GROUP_get_pentanomial_basis \&\- Functions for manipulating EC_GROUP objects
|
|
.SH "SYNOPSIS"
|
|
.IX Header "SYNOPSIS"
|
|
.Vb 1
|
|
\& #include <openssl/ec.h>
|
|
\&
|
|
\& int EC_GROUP_copy(EC_GROUP *dst, const EC_GROUP *src);
|
|
\& EC_GROUP *EC_GROUP_dup(const EC_GROUP *src);
|
|
\&
|
|
\& const EC_METHOD *EC_GROUP_method_of(const EC_GROUP *group);
|
|
\&
|
|
\& int EC_GROUP_set_generator(EC_GROUP *group, const EC_POINT *generator,
|
|
\& const BIGNUM *order, const BIGNUM *cofactor);
|
|
\& const EC_POINT *EC_GROUP_get0_generator(const EC_GROUP *group);
|
|
\&
|
|
\& int EC_GROUP_get_order(const EC_GROUP *group, BIGNUM *order, BN_CTX *ctx);
|
|
\& const BIGNUM *EC_GROUP_get0_order(const EC_GROUP *group);
|
|
\& int EC_GROUP_order_bits(const EC_GROUP *group);
|
|
\& int EC_GROUP_get_cofactor(const EC_GROUP *group, BIGNUM *cofactor, BN_CTX *ctx);
|
|
\& const BIGNUM *EC_GROUP_get0_cofactor(const EC_GROUP *group);
|
|
\&
|
|
\& void EC_GROUP_set_curve_name(EC_GROUP *group, int nid);
|
|
\& int EC_GROUP_get_curve_name(const EC_GROUP *group);
|
|
\&
|
|
\& void EC_GROUP_set_asn1_flag(EC_GROUP *group, int flag);
|
|
\& int EC_GROUP_get_asn1_flag(const EC_GROUP *group);
|
|
\&
|
|
\& void EC_GROUP_set_point_conversion_form(EC_GROUP *group, point_conversion_form_t form);
|
|
\& point_conversion_form_t EC_GROUP_get_point_conversion_form(const EC_GROUP *group);
|
|
\&
|
|
\& unsigned char *EC_GROUP_get0_seed(const EC_GROUP *x);
|
|
\& size_t EC_GROUP_get_seed_len(const EC_GROUP *);
|
|
\& size_t EC_GROUP_set_seed(EC_GROUP *, const unsigned char *, size_t len);
|
|
\&
|
|
\& int EC_GROUP_get_degree(const EC_GROUP *group);
|
|
\&
|
|
\& int EC_GROUP_check(const EC_GROUP *group, BN_CTX *ctx);
|
|
\&
|
|
\& int EC_GROUP_check_discriminant(const EC_GROUP *group, BN_CTX *ctx);
|
|
\&
|
|
\& int EC_GROUP_cmp(const EC_GROUP *a, const EC_GROUP *b, BN_CTX *ctx);
|
|
\&
|
|
\& int EC_GROUP_get_basis_type(const EC_GROUP *);
|
|
\& int EC_GROUP_get_trinomial_basis(const EC_GROUP *, unsigned int *k);
|
|
\& int EC_GROUP_get_pentanomial_basis(const EC_GROUP *, unsigned int *k1,
|
|
\& unsigned int *k2, unsigned int *k3);
|
|
.Ve
|
|
.SH "DESCRIPTION"
|
|
.IX Header "DESCRIPTION"
|
|
\&\fBEC_GROUP_copy()\fR copies the curve \fBsrc\fR into \fBdst\fR. Both \fBsrc\fR and \fBdst\fR must use the same \s-1EC_METHOD.\s0
|
|
.PP
|
|
\&\fBEC_GROUP_dup()\fR creates a new \s-1EC_GROUP\s0 object and copies the content from \fBsrc\fR to the newly created
|
|
\&\s-1EC_GROUP\s0 object.
|
|
.PP
|
|
\&\fBEC_GROUP_method_of()\fR obtains the \s-1EC_METHOD\s0 of \fBgroup\fR.
|
|
.PP
|
|
\&\fBEC_GROUP_set_generator()\fR sets curve parameters that must be agreed by all participants using the curve. These
|
|
parameters include the \fBgenerator\fR, the \fBorder\fR and the \fBcofactor\fR. The \fBgenerator\fR is a well defined point on the
|
|
curve chosen for cryptographic operations. Integers used for point multiplications will be between 0 and
|
|
n\-1 where n is the \fBorder\fR. The \fBorder\fR multiplied by the \fBcofactor\fR gives the number of points on the curve.
|
|
.PP
|
|
\&\fBEC_GROUP_get0_generator()\fR returns the generator for the identified \fBgroup\fR.
|
|
.PP
|
|
\&\fBEC_GROUP_get_order()\fR retrieves the order of \fBgroup\fR and copies its value into
|
|
\&\fBorder\fR. It fails in case \fBgroup\fR is not fully initialized (i.e., its order
|
|
is not set or set to zero).
|
|
.PP
|
|
\&\fBEC_GROUP_get_cofactor()\fR retrieves the cofactor of \fBgroup\fR and copies its value
|
|
into \fBcofactor\fR. It fails in case \fBgroup\fR is not fully initialized or if the
|
|
cofactor is not set (or set to zero).
|
|
.PP
|
|
The functions \fBEC_GROUP_set_curve_name()\fR and \fBEC_GROUP_get_curve_name()\fR, set and get the \s-1NID\s0 for the curve respectively
|
|
(see \fBEC_GROUP_new\fR\|(3)). If a curve does not have a \s-1NID\s0 associated with it, then EC_GROUP_get_curve_name
|
|
will return NID_undef.
|
|
.PP
|
|
The asn1_flag value is used to determine whether the curve encoding uses
|
|
explicit parameters or a named curve using an \s-1ASN1 OID:\s0 many applications only
|
|
support the latter form. If asn1_flag is \fB\s-1OPENSSL_EC_NAMED_CURVE\s0\fR then the
|
|
named curve form is used and the parameters must have a corresponding
|
|
named curve \s-1NID\s0 set. If asn1_flags is \fB\s-1OPENSSL_EC_EXPLICIT_CURVE\s0\fR the
|
|
parameters are explicitly encoded. The functions \fBEC_GROUP_get_asn1_flag()\fR and
|
|
\&\fBEC_GROUP_set_asn1_flag()\fR get and set the status of the asn1_flag for the curve.
|
|
Note: \fB\s-1OPENSSL_EC_EXPLICIT_CURVE\s0\fR was added in OpenSSL 1.1.0, for
|
|
previous versions of OpenSSL the value 0 must be used instead. Before OpenSSL
|
|
1.1.0 the default form was to use explicit parameters (meaning that
|
|
applications would have to explicitly set the named curve form) in OpenSSL
|
|
1.1.0 and later the named curve form is the default.
|
|
.PP
|
|
The point_conversion_form for a curve controls how \s-1EC_POINT\s0 data is encoded as \s-1ASN1\s0 as defined in X9.62 (\s-1ECDSA\s0).
|
|
point_conversion_form_t is an enum defined as follows:
|
|
.PP
|
|
.Vb 10
|
|
\& typedef enum {
|
|
\& /** the point is encoded as z||x, where the octet z specifies
|
|
\& * which solution of the quadratic equation y is */
|
|
\& POINT_CONVERSION_COMPRESSED = 2,
|
|
\& /** the point is encoded as z||x||y, where z is the octet 0x04 */
|
|
\& POINT_CONVERSION_UNCOMPRESSED = 4,
|
|
\& /** the point is encoded as z||x||y, where the octet z specifies
|
|
\& * which solution of the quadratic equation y is */
|
|
\& POINT_CONVERSION_HYBRID = 6
|
|
\& } point_conversion_form_t;
|
|
.Ve
|
|
.PP
|
|
For \s-1POINT_CONVERSION_UNCOMPRESSED\s0 the point is encoded as an octet signifying the \s-1UNCOMPRESSED\s0 form has been used followed by
|
|
the octets for x, followed by the octets for y.
|
|
.PP
|
|
For any given x co-ordinate for a point on a curve it is possible to derive two possible y values. For
|
|
\&\s-1POINT_CONVERSION_COMPRESSED\s0 the point is encoded as an octet signifying that the \s-1COMPRESSED\s0 form has been used \s-1AND\s0 which of
|
|
the two possible solutions for y has been used, followed by the octets for x.
|
|
.PP
|
|
For \s-1POINT_CONVERSION_HYBRID\s0 the point is encoded as an octet signifying the \s-1HYBRID\s0 form has been used \s-1AND\s0 which of the two
|
|
possible solutions for y has been used, followed by the octets for x, followed by the octets for y.
|
|
.PP
|
|
The functions \fBEC_GROUP_set_point_conversion_form()\fR and \fBEC_GROUP_get_point_conversion_form()\fR, set and get the point_conversion_form
|
|
for the curve respectively.
|
|
.PP
|
|
\&\s-1ANSI X9.62\s0 (\s-1ECDSA\s0 standard) defines a method of generating the curve parameter b from a random number. This provides advantages
|
|
in that a parameter obtained in this way is highly unlikely to be susceptible to special purpose attacks, or have any trapdoors in it.
|
|
If the seed is present for a curve then the b parameter was generated in a verifiable fashion using that seed. The OpenSSL \s-1EC\s0 library
|
|
does not use this seed value but does enable you to inspect it using \fBEC_GROUP_get0_seed()\fR. This returns a pointer to a memory block
|
|
containing the seed that was used. The length of the memory block can be obtained using \fBEC_GROUP_get_seed_len()\fR. A number of the
|
|
built-in curves within the library provide seed values that can be obtained. It is also possible to set a custom seed using
|
|
\&\fBEC_GROUP_set_seed()\fR and passing a pointer to a memory block, along with the length of the seed. Again, the \s-1EC\s0 library will not use
|
|
this seed value, although it will be preserved in any \s-1ASN1\s0 based communications.
|
|
.PP
|
|
\&\fBEC_GROUP_get_degree()\fR gets the degree of the field. For Fp fields this will be the number of bits in p. For F2^m fields this will be
|
|
the value m.
|
|
.PP
|
|
The function \fBEC_GROUP_check_discriminant()\fR calculates the discriminant for the curve and verifies that it is valid.
|
|
For a curve defined over Fp the discriminant is given by the formula 4*a^3 + 27*b^2 whilst for F2^m curves the discriminant is
|
|
simply b. In either case for the curve to be valid the discriminant must be non zero.
|
|
.PP
|
|
The function \fBEC_GROUP_check()\fR performs a number of checks on a curve to verify that it is valid. Checks performed include
|
|
verifying that the discriminant is non zero; that a generator has been defined; that the generator is on the curve and has
|
|
the correct order.
|
|
.PP
|
|
\&\fBEC_GROUP_cmp()\fR compares \fBa\fR and \fBb\fR to determine whether they represent the same curve or not.
|
|
.PP
|
|
The functions \fBEC_GROUP_get_basis_type()\fR, \fBEC_GROUP_get_trinomial_basis()\fR and \fBEC_GROUP_get_pentanomial_basis()\fR should only be called for curves
|
|
defined over an F2^m field. Addition and multiplication operations within an F2^m field are performed using an irreducible polynomial
|
|
function f(x). This function is either a trinomial of the form:
|
|
.PP
|
|
f(x) = x^m + x^k + 1 with m > k >= 1
|
|
.PP
|
|
or a pentanomial of the form:
|
|
.PP
|
|
f(x) = x^m + x^k3 + x^k2 + x^k1 + 1 with m > k3 > k2 > k1 >= 1
|
|
.PP
|
|
The function \fBEC_GROUP_get_basis_type()\fR returns a \s-1NID\s0 identifying whether a trinomial or pentanomial is in use for the field. The
|
|
function \fBEC_GROUP_get_trinomial_basis()\fR must only be called where f(x) is of the trinomial form, and returns the value of \fBk\fR. Similarly
|
|
the function \fBEC_GROUP_get_pentanomial_basis()\fR must only be called where f(x) is of the pentanomial form, and returns the values of \fBk1\fR,
|
|
\&\fBk2\fR and \fBk3\fR respectively.
|
|
.SH "RETURN VALUES"
|
|
.IX Header "RETURN VALUES"
|
|
The following functions return 1 on success or 0 on error: \fBEC_GROUP_copy()\fR, \fBEC_GROUP_set_generator()\fR, \fBEC_GROUP_check()\fR,
|
|
\&\fBEC_GROUP_check_discriminant()\fR, \fBEC_GROUP_get_trinomial_basis()\fR and \fBEC_GROUP_get_pentanomial_basis()\fR.
|
|
.PP
|
|
\&\fBEC_GROUP_dup()\fR returns a pointer to the duplicated curve, or \s-1NULL\s0 on error.
|
|
.PP
|
|
\&\fBEC_GROUP_method_of()\fR returns the \s-1EC_METHOD\s0 implementation in use for the given curve or \s-1NULL\s0 on error.
|
|
.PP
|
|
\&\fBEC_GROUP_get0_generator()\fR returns the generator for the given curve or \s-1NULL\s0 on error.
|
|
.PP
|
|
\&\fBEC_GROUP_get_order()\fR returns 0 if the order is not set (or set to zero) for
|
|
\&\fBgroup\fR or if copying into \fBorder\fR fails, 1 otherwise.
|
|
.PP
|
|
\&\fBEC_GROUP_get_cofactor()\fR returns 0 if the cofactor is not set (or is set to zero) for \fBgroup\fR or if copying into \fBcofactor\fR fails, 1 otherwise.
|
|
.PP
|
|
\&\fBEC_GROUP_get_curve_name()\fR returns the curve name (\s-1NID\s0) for \fBgroup\fR or will return NID_undef if no curve name is associated.
|
|
.PP
|
|
\&\fBEC_GROUP_get_asn1_flag()\fR returns the \s-1ASN1\s0 flag for the specified \fBgroup\fR .
|
|
.PP
|
|
\&\fBEC_GROUP_get_point_conversion_form()\fR returns the point_conversion_form for \fBgroup\fR.
|
|
.PP
|
|
\&\fBEC_GROUP_get_degree()\fR returns the degree for \fBgroup\fR or 0 if the operation is not supported by the underlying group implementation.
|
|
.PP
|
|
\&\fBEC_GROUP_get0_order()\fR returns an internal pointer to the group order.
|
|
\&\fBEC_GROUP_order_bits()\fR returns the number of bits in the group order.
|
|
\&\fBEC_GROUP_get0_cofactor()\fR returns an internal pointer to the group cofactor.
|
|
.PP
|
|
\&\fBEC_GROUP_get0_seed()\fR returns a pointer to the seed that was used to generate the parameter b, or \s-1NULL\s0 if the seed is not
|
|
specified. \fBEC_GROUP_get_seed_len()\fR returns the length of the seed or 0 if the seed is not specified.
|
|
.PP
|
|
\&\fBEC_GROUP_set_seed()\fR returns the length of the seed that has been set. If the supplied seed is \s-1NULL,\s0 or the supplied seed length is
|
|
0, the return value will be 1. On error 0 is returned.
|
|
.PP
|
|
\&\fBEC_GROUP_cmp()\fR returns 0 if the curves are equal, 1 if they are not equal, or \-1 on error.
|
|
.PP
|
|
\&\fBEC_GROUP_get_basis_type()\fR returns the values NID_X9_62_tpBasis or NID_X9_62_ppBasis (as defined in <openssl/obj_mac.h>) for a
|
|
trinomial or pentanomial respectively. Alternatively in the event of an error a 0 is returned.
|
|
.SH "SEE ALSO"
|
|
.IX Header "SEE ALSO"
|
|
\&\fBcrypto\fR\|(7), \fBEC_GROUP_new\fR\|(3),
|
|
\&\fBEC_POINT_new\fR\|(3), \fBEC_POINT_add\fR\|(3), \fBEC_KEY_new\fR\|(3),
|
|
\&\fBEC_GFp_simple_method\fR\|(3), \fBd2i_ECPKParameters\fR\|(3)
|
|
.SH "COPYRIGHT"
|
|
.IX Header "COPYRIGHT"
|
|
Copyright 2013\-2017 The OpenSSL Project Authors. All Rights Reserved.
|
|
.PP
|
|
Licensed under the OpenSSL license (the \*(L"License\*(R"). You may not use
|
|
this file except in compliance with the License. You can obtain a copy
|
|
in the file \s-1LICENSE\s0 in the source distribution or at
|
|
<https://www.openssl.org/source/license.html>.
|