2021-07-27 22:08:18 +00:00

559 lines
15 KiB
C

/* Copyright Joyent, Inc. and other Node contributors. All rights reserved.
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "uv.h"
#include "internal.h"
#include <assert.h>
#include <errno.h>
#include <signal.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#ifndef SA_RESTART
# define SA_RESTART 0
#endif
typedef struct {
uv_signal_t* handle;
int signum;
} uv__signal_msg_t;
RB_HEAD(uv__signal_tree_s, uv_signal_s);
static int uv__signal_unlock(void);
static int uv__signal_start(uv_signal_t* handle,
uv_signal_cb signal_cb,
int signum,
int oneshot);
static void uv__signal_event(uv_loop_t* loop, uv__io_t* w, unsigned int events);
static int uv__signal_compare(uv_signal_t* w1, uv_signal_t* w2);
static void uv__signal_stop(uv_signal_t* handle);
static void uv__signal_unregister_handler(int signum);
static uv_once_t uv__signal_global_init_guard = UV_ONCE_INIT;
static struct uv__signal_tree_s uv__signal_tree =
RB_INITIALIZER(uv__signal_tree);
static int uv__signal_lock_pipefd[2] = { -1, -1 };
RB_GENERATE_STATIC(uv__signal_tree_s,
uv_signal_s, tree_entry,
uv__signal_compare)
static void uv__signal_global_reinit(void);
static void uv__signal_global_init(void) {
if (uv__signal_lock_pipefd[0] == -1)
/* pthread_atfork can register before and after handlers, one
* for each child. This only registers one for the child. That
* state is both persistent and cumulative, so if we keep doing
* it the handler functions will be called multiple times. Thus
* we only want to do it once.
*/
if (pthread_atfork(NULL, NULL, &uv__signal_global_reinit))
abort();
uv__signal_global_reinit();
}
void uv__signal_cleanup(void) {
/* We can only use signal-safe functions here.
* That includes read/write and close, fortunately.
* We do all of this directly here instead of resetting
* uv__signal_global_init_guard because
* uv__signal_global_once_init is only called from uv_loop_init
* and this needs to function in existing loops.
*/
if (uv__signal_lock_pipefd[0] != -1) {
uv__close(uv__signal_lock_pipefd[0]);
uv__signal_lock_pipefd[0] = -1;
}
if (uv__signal_lock_pipefd[1] != -1) {
uv__close(uv__signal_lock_pipefd[1]);
uv__signal_lock_pipefd[1] = -1;
}
}
static void uv__signal_global_reinit(void) {
uv__signal_cleanup();
if (uv__make_pipe(uv__signal_lock_pipefd, 0))
abort();
if (uv__signal_unlock())
abort();
}
void uv__signal_global_once_init(void) {
uv_once(&uv__signal_global_init_guard, uv__signal_global_init);
}
static int uv__signal_lock(void) {
int r;
char data;
do {
r = read(uv__signal_lock_pipefd[0], &data, sizeof data);
} while (r < 0 && errno == EINTR);
return (r < 0) ? -1 : 0;
}
static int uv__signal_unlock(void) {
int r;
char data = 42;
do {
r = write(uv__signal_lock_pipefd[1], &data, sizeof data);
} while (r < 0 && errno == EINTR);
return (r < 0) ? -1 : 0;
}
static void uv__signal_block_and_lock(sigset_t* saved_sigmask) {
sigset_t new_mask;
if (sigfillset(&new_mask))
abort();
/* to shut up valgrind */
sigemptyset(saved_sigmask);
if (pthread_sigmask(SIG_SETMASK, &new_mask, saved_sigmask))
abort();
if (uv__signal_lock())
abort();
}
static void uv__signal_unlock_and_unblock(sigset_t* saved_sigmask) {
if (uv__signal_unlock())
abort();
if (pthread_sigmask(SIG_SETMASK, saved_sigmask, NULL))
abort();
}
static uv_signal_t* uv__signal_first_handle(int signum) {
/* This function must be called with the signal lock held. */
uv_signal_t lookup;
uv_signal_t* handle;
lookup.signum = signum;
lookup.flags = 0;
lookup.loop = NULL;
handle = RB_NFIND(uv__signal_tree_s, &uv__signal_tree, &lookup);
if (handle != NULL && handle->signum == signum)
return handle;
return NULL;
}
static void uv__signal_handler(int signum) {
uv__signal_msg_t msg;
uv_signal_t* handle;
int saved_errno;
saved_errno = errno;
memset(&msg, 0, sizeof msg);
if (uv__signal_lock()) {
errno = saved_errno;
return;
}
for (handle = uv__signal_first_handle(signum);
handle != NULL && handle->signum == signum;
handle = RB_NEXT(uv__signal_tree_s, &uv__signal_tree, handle)) {
int r;
msg.signum = signum;
msg.handle = handle;
/* write() should be atomic for small data chunks, so the entire message
* should be written at once. In theory the pipe could become full, in
* which case the user is out of luck.
*/
do {
r = write(handle->loop->signal_pipefd[1], &msg, sizeof msg);
} while (r == -1 && errno == EINTR);
assert(r == sizeof msg ||
(r == -1 && (errno == EAGAIN || errno == EWOULDBLOCK)));
if (r != -1)
handle->caught_signals++;
}
uv__signal_unlock();
errno = saved_errno;
}
static int uv__signal_register_handler(int signum, int oneshot) {
/* When this function is called, the signal lock must be held. */
struct sigaction sa;
/* XXX use a separate signal stack? */
memset(&sa, 0, sizeof(sa));
if (sigfillset(&sa.sa_mask))
abort();
sa.sa_handler = uv__signal_handler;
sa.sa_flags = SA_RESTART;
if (oneshot)
sa.sa_flags |= SA_RESETHAND;
/* XXX save old action so we can restore it later on? */
if (sigaction(signum, &sa, NULL))
return UV__ERR(errno);
return 0;
}
static void uv__signal_unregister_handler(int signum) {
/* When this function is called, the signal lock must be held. */
struct sigaction sa;
memset(&sa, 0, sizeof(sa));
sa.sa_handler = SIG_DFL;
/* sigaction can only fail with EINVAL or EFAULT; an attempt to deregister a
* signal implies that it was successfully registered earlier, so EINVAL
* should never happen.
*/
if (sigaction(signum, &sa, NULL))
abort();
}
static int uv__signal_loop_once_init(uv_loop_t* loop) {
int err;
/* Return if already initialized. */
if (loop->signal_pipefd[0] != -1)
return 0;
err = uv__make_pipe(loop->signal_pipefd, UV_NONBLOCK_PIPE);
if (err)
return err;
uv__io_init(&loop->signal_io_watcher,
uv__signal_event,
loop->signal_pipefd[0]);
uv__io_start(loop, &loop->signal_io_watcher, POLLIN);
return 0;
}
int uv__signal_loop_fork(uv_loop_t* loop) {
uv__io_stop(loop, &loop->signal_io_watcher, POLLIN);
uv__close(loop->signal_pipefd[0]);
uv__close(loop->signal_pipefd[1]);
loop->signal_pipefd[0] = -1;
loop->signal_pipefd[1] = -1;
return uv__signal_loop_once_init(loop);
}
void uv__signal_loop_cleanup(uv_loop_t* loop) {
QUEUE* q;
/* Stop all the signal watchers that are still attached to this loop. This
* ensures that the (shared) signal tree doesn't contain any invalid entries
* entries, and that signal handlers are removed when appropriate.
* It's safe to use QUEUE_FOREACH here because the handles and the handle
* queue are not modified by uv__signal_stop().
*/
QUEUE_FOREACH(q, &loop->handle_queue) {
uv_handle_t* handle = QUEUE_DATA(q, uv_handle_t, handle_queue);
if (handle->type == UV_SIGNAL)
uv__signal_stop((uv_signal_t*) handle);
}
if (loop->signal_pipefd[0] != -1) {
uv__close(loop->signal_pipefd[0]);
loop->signal_pipefd[0] = -1;
}
if (loop->signal_pipefd[1] != -1) {
uv__close(loop->signal_pipefd[1]);
loop->signal_pipefd[1] = -1;
}
}
int uv_signal_init(uv_loop_t* loop, uv_signal_t* handle) {
int err;
err = uv__signal_loop_once_init(loop);
if (err)
return err;
uv__handle_init(loop, (uv_handle_t*) handle, UV_SIGNAL);
handle->signum = 0;
handle->caught_signals = 0;
handle->dispatched_signals = 0;
return 0;
}
void uv__signal_close(uv_signal_t* handle) {
uv__signal_stop(handle);
}
int uv_signal_start(uv_signal_t* handle, uv_signal_cb signal_cb, int signum) {
return uv__signal_start(handle, signal_cb, signum, 0);
}
int uv_signal_start_oneshot(uv_signal_t* handle,
uv_signal_cb signal_cb,
int signum) {
return uv__signal_start(handle, signal_cb, signum, 1);
}
static int uv__signal_start(uv_signal_t* handle,
uv_signal_cb signal_cb,
int signum,
int oneshot) {
sigset_t saved_sigmask;
int err;
uv_signal_t* first_handle;
assert(!uv__is_closing(handle));
/* If the user supplies signum == 0, then return an error already. If the
* signum is otherwise invalid then uv__signal_register will find out
* eventually.
*/
if (signum == 0)
return UV_EINVAL;
/* Short circuit: if the signal watcher is already watching {signum} don't
* go through the process of deregistering and registering the handler.
* Additionally, this avoids pending signals getting lost in the small
* time frame that handle->signum == 0.
*/
if (signum == handle->signum) {
handle->signal_cb = signal_cb;
return 0;
}
/* If the signal handler was already active, stop it first. */
if (handle->signum != 0) {
uv__signal_stop(handle);
}
uv__signal_block_and_lock(&saved_sigmask);
/* If at this point there are no active signal watchers for this signum (in
* any of the loops), it's time to try and register a handler for it here.
* Also in case there's only one-shot handlers and a regular handler comes in.
*/
first_handle = uv__signal_first_handle(signum);
if (first_handle == NULL ||
(!oneshot && (first_handle->flags & UV_SIGNAL_ONE_SHOT))) {
err = uv__signal_register_handler(signum, oneshot);
if (err) {
/* Registering the signal handler failed. Must be an invalid signal. */
uv__signal_unlock_and_unblock(&saved_sigmask);
return err;
}
}
handle->signum = signum;
if (oneshot)
handle->flags |= UV_SIGNAL_ONE_SHOT;
RB_INSERT(uv__signal_tree_s, &uv__signal_tree, handle);
uv__signal_unlock_and_unblock(&saved_sigmask);
handle->signal_cb = signal_cb;
uv__handle_start(handle);
return 0;
}
static void uv__signal_event(uv_loop_t* loop,
uv__io_t* w,
unsigned int events) {
uv__signal_msg_t* msg;
uv_signal_t* handle;
char buf[sizeof(uv__signal_msg_t) * 32];
size_t bytes, end, i;
int r;
bytes = 0;
end = 0;
do {
r = read(loop->signal_pipefd[0], buf + bytes, sizeof(buf) - bytes);
if (r == -1 && errno == EINTR)
continue;
if (r == -1 && (errno == EAGAIN || errno == EWOULDBLOCK)) {
/* If there are bytes in the buffer already (which really is extremely
* unlikely if possible at all) we can't exit the function here. We'll
* spin until more bytes are read instead.
*/
if (bytes > 0)
continue;
/* Otherwise, there was nothing there. */
return;
}
/* Other errors really should never happen. */
if (r == -1)
abort();
bytes += r;
/* `end` is rounded down to a multiple of sizeof(uv__signal_msg_t). */
end = (bytes / sizeof(uv__signal_msg_t)) * sizeof(uv__signal_msg_t);
for (i = 0; i < end; i += sizeof(uv__signal_msg_t)) {
msg = (uv__signal_msg_t*) (buf + i);
handle = msg->handle;
if (msg->signum == handle->signum) {
assert(!(handle->flags & UV_HANDLE_CLOSING));
handle->signal_cb(handle, handle->signum);
}
handle->dispatched_signals++;
if (handle->flags & UV_SIGNAL_ONE_SHOT)
uv__signal_stop(handle);
}
bytes -= end;
/* If there are any "partial" messages left, move them to the start of the
* the buffer, and spin. This should not happen.
*/
if (bytes) {
memmove(buf, buf + end, bytes);
continue;
}
} while (end == sizeof buf);
}
static int uv__signal_compare(uv_signal_t* w1, uv_signal_t* w2) {
int f1;
int f2;
/* Compare signums first so all watchers with the same signnum end up
* adjacent.
*/
if (w1->signum < w2->signum) return -1;
if (w1->signum > w2->signum) return 1;
/* Handlers without UV_SIGNAL_ONE_SHOT set will come first, so if the first
* handler returned is a one-shot handler, the rest will be too.
*/
f1 = w1->flags & UV_SIGNAL_ONE_SHOT;
f2 = w2->flags & UV_SIGNAL_ONE_SHOT;
if (f1 < f2) return -1;
if (f1 > f2) return 1;
/* Sort by loop pointer, so we can easily look up the first item after
* { .signum = x, .loop = NULL }.
*/
if (w1->loop < w2->loop) return -1;
if (w1->loop > w2->loop) return 1;
if (w1 < w2) return -1;
if (w1 > w2) return 1;
return 0;
}
int uv_signal_stop(uv_signal_t* handle) {
assert(!uv__is_closing(handle));
uv__signal_stop(handle);
return 0;
}
static void uv__signal_stop(uv_signal_t* handle) {
uv_signal_t* removed_handle;
sigset_t saved_sigmask;
uv_signal_t* first_handle;
int rem_oneshot;
int first_oneshot;
int ret;
/* If the watcher wasn't started, this is a no-op. */
if (handle->signum == 0)
return;
uv__signal_block_and_lock(&saved_sigmask);
removed_handle = RB_REMOVE(uv__signal_tree_s, &uv__signal_tree, handle);
assert(removed_handle == handle);
(void) removed_handle;
/* Check if there are other active signal watchers observing this signal. If
* not, unregister the signal handler.
*/
first_handle = uv__signal_first_handle(handle->signum);
if (first_handle == NULL) {
uv__signal_unregister_handler(handle->signum);
} else {
rem_oneshot = handle->flags & UV_SIGNAL_ONE_SHOT;
first_oneshot = first_handle->flags & UV_SIGNAL_ONE_SHOT;
if (first_oneshot && !rem_oneshot) {
ret = uv__signal_register_handler(handle->signum, 1);
assert(ret == 0);
(void)ret;
}
}
uv__signal_unlock_and_unblock(&saved_sigmask);
handle->signum = 0;
uv__handle_stop(handle);
}