/* Copyright Joyent, Inc. and other Node contributors. All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include "uv-common.h" #if !defined(_WIN32) # include "unix/internal.h" #endif #include #define MAX_THREADPOOL_SIZE 1024 static uv_once_t once = UV_ONCE_INIT; static uv_cond_t cond; static uv_mutex_t mutex; static unsigned int idle_threads; static unsigned int slow_io_work_running; static unsigned int nthreads; static uv_thread_t* threads; static uv_thread_t default_threads[4]; static QUEUE exit_message; static QUEUE wq; static QUEUE run_slow_work_message; static QUEUE slow_io_pending_wq; static unsigned int slow_work_thread_threshold(void) { return (nthreads + 1) / 2; } static void uv__cancelled(struct uv__work* w) { abort(); } /* To avoid deadlock with uv_cancel() it's crucial that the worker * never holds the global mutex and the loop-local mutex at the same time. */ static void worker(void* arg) { struct uv__work* w; QUEUE* q; int is_slow_work; uv_sem_post((uv_sem_t*) arg); arg = NULL; uv_mutex_lock(&mutex); for (;;) { /* `mutex` should always be locked at this point. */ /* Keep waiting while either no work is present or only slow I/O and we're at the threshold for that. */ while (QUEUE_EMPTY(&wq) || (QUEUE_HEAD(&wq) == &run_slow_work_message && QUEUE_NEXT(&run_slow_work_message) == &wq && slow_io_work_running >= slow_work_thread_threshold())) { idle_threads += 1; uv_cond_wait(&cond, &mutex); idle_threads -= 1; } q = QUEUE_HEAD(&wq); if (q == &exit_message) { uv_cond_signal(&cond); uv_mutex_unlock(&mutex); break; } QUEUE_REMOVE(q); QUEUE_INIT(q); /* Signal uv_cancel() that the work req is executing. */ is_slow_work = 0; if (q == &run_slow_work_message) { /* If we're at the slow I/O threshold, re-schedule until after all other work in the queue is done. */ if (slow_io_work_running >= slow_work_thread_threshold()) { QUEUE_INSERT_TAIL(&wq, q); continue; } /* If we encountered a request to run slow I/O work but there is none to run, that means it's cancelled => Start over. */ if (QUEUE_EMPTY(&slow_io_pending_wq)) continue; is_slow_work = 1; slow_io_work_running++; q = QUEUE_HEAD(&slow_io_pending_wq); QUEUE_REMOVE(q); QUEUE_INIT(q); /* If there is more slow I/O work, schedule it to be run as well. */ if (!QUEUE_EMPTY(&slow_io_pending_wq)) { QUEUE_INSERT_TAIL(&wq, &run_slow_work_message); if (idle_threads > 0) uv_cond_signal(&cond); } } uv_mutex_unlock(&mutex); w = QUEUE_DATA(q, struct uv__work, wq); w->work(w); uv_mutex_lock(&w->loop->wq_mutex); w->work = NULL; /* Signal uv_cancel() that the work req is done executing. */ QUEUE_INSERT_TAIL(&w->loop->wq, &w->wq); uv_async_send(&w->loop->wq_async); uv_mutex_unlock(&w->loop->wq_mutex); /* Lock `mutex` since that is expected at the start of the next * iteration. */ uv_mutex_lock(&mutex); if (is_slow_work) { /* `slow_io_work_running` is protected by `mutex`. */ slow_io_work_running--; } } } static void post(QUEUE* q, enum uv__work_kind kind) { uv_mutex_lock(&mutex); if (kind == UV__WORK_SLOW_IO) { /* Insert into a separate queue. */ QUEUE_INSERT_TAIL(&slow_io_pending_wq, q); if (!QUEUE_EMPTY(&run_slow_work_message)) { /* Running slow I/O tasks is already scheduled => Nothing to do here. The worker that runs said other task will schedule this one as well. */ uv_mutex_unlock(&mutex); return; } q = &run_slow_work_message; } QUEUE_INSERT_TAIL(&wq, q); if (idle_threads > 0) uv_cond_signal(&cond); uv_mutex_unlock(&mutex); } #ifdef __MVS__ /* TODO(itodorov) - zos: revisit when Woz compiler is available. */ __attribute__((destructor)) #endif void uv__threadpool_cleanup(void) { unsigned int i; if (nthreads == 0) return; #ifndef __MVS__ /* TODO(gabylb) - zos: revisit when Woz compiler is available. */ post(&exit_message, UV__WORK_CPU); #endif for (i = 0; i < nthreads; i++) if (uv_thread_join(threads + i)) abort(); if (threads != default_threads) uv__free(threads); uv_mutex_destroy(&mutex); uv_cond_destroy(&cond); threads = NULL; nthreads = 0; } static void init_threads(void) { uv_thread_options_t config; unsigned int i; const char* val; uv_sem_t sem; nthreads = ARRAY_SIZE(default_threads); val = getenv("UV_THREADPOOL_SIZE"); if (val != NULL) nthreads = atoi(val); if (nthreads == 0) nthreads = 1; if (nthreads > MAX_THREADPOOL_SIZE) nthreads = MAX_THREADPOOL_SIZE; threads = default_threads; if (nthreads > ARRAY_SIZE(default_threads)) { threads = uv__malloc(nthreads * sizeof(threads[0])); if (threads == NULL) { nthreads = ARRAY_SIZE(default_threads); threads = default_threads; } } if (uv_cond_init(&cond)) abort(); if (uv_mutex_init(&mutex)) abort(); QUEUE_INIT(&wq); QUEUE_INIT(&slow_io_pending_wq); QUEUE_INIT(&run_slow_work_message); if (uv_sem_init(&sem, 0)) abort(); config.flags = UV_THREAD_HAS_STACK_SIZE; config.stack_size = 8u << 20; /* 8 MB */ for (i = 0; i < nthreads; i++) if (uv_thread_create_ex(threads + i, &config, worker, &sem)) abort(); for (i = 0; i < nthreads; i++) uv_sem_wait(&sem); uv_sem_destroy(&sem); } #ifndef _WIN32 static void reset_once(void) { uv_once_t child_once = UV_ONCE_INIT; memcpy(&once, &child_once, sizeof(child_once)); } #endif static void init_once(void) { #ifndef _WIN32 /* Re-initialize the threadpool after fork. * Note that this discards the global mutex and condition as well * as the work queue. */ if (pthread_atfork(NULL, NULL, &reset_once)) abort(); #endif init_threads(); } void uv__work_submit(uv_loop_t* loop, struct uv__work* w, enum uv__work_kind kind, void (*work)(struct uv__work* w), void (*done)(struct uv__work* w, int status)) { uv_once(&once, init_once); w->loop = loop; w->work = work; w->done = done; post(&w->wq, kind); } /* TODO(bnoordhuis) teach libuv how to cancel file operations * that go through io_uring instead of the thread pool. */ static int uv__work_cancel(uv_loop_t* loop, uv_req_t* req, struct uv__work* w) { int cancelled; uv_once(&once, init_once); /* Ensure |mutex| is initialized. */ uv_mutex_lock(&mutex); uv_mutex_lock(&w->loop->wq_mutex); cancelled = !QUEUE_EMPTY(&w->wq) && w->work != NULL; if (cancelled) QUEUE_REMOVE(&w->wq); uv_mutex_unlock(&w->loop->wq_mutex); uv_mutex_unlock(&mutex); if (!cancelled) return UV_EBUSY; w->work = uv__cancelled; uv_mutex_lock(&loop->wq_mutex); QUEUE_INSERT_TAIL(&loop->wq, &w->wq); uv_async_send(&loop->wq_async); uv_mutex_unlock(&loop->wq_mutex); return 0; } void uv__work_done(uv_async_t* handle) { struct uv__work* w; uv_loop_t* loop; QUEUE* q; QUEUE wq; int err; int nevents; loop = container_of(handle, uv_loop_t, wq_async); uv_mutex_lock(&loop->wq_mutex); QUEUE_MOVE(&loop->wq, &wq); uv_mutex_unlock(&loop->wq_mutex); nevents = 0; while (!QUEUE_EMPTY(&wq)) { q = QUEUE_HEAD(&wq); QUEUE_REMOVE(q); w = container_of(q, struct uv__work, wq); err = (w->work == uv__cancelled) ? UV_ECANCELED : 0; w->done(w, err); nevents++; } /* This check accomplishes 2 things: * 1. Even if the queue was empty, the call to uv__work_done() should count * as an event. Which will have been added by the event loop when * calling this callback. * 2. Prevents accidental wrap around in case nevents == 0 events == 0. */ if (nevents > 1) { /* Subtract 1 to counter the call to uv__work_done(). */ uv__metrics_inc_events(loop, nevents - 1); if (uv__get_internal_fields(loop)->current_timeout == 0) uv__metrics_inc_events_waiting(loop, nevents - 1); } } static void uv__queue_work(struct uv__work* w) { uv_work_t* req = container_of(w, uv_work_t, work_req); req->work_cb(req); } static void uv__queue_done(struct uv__work* w, int err) { uv_work_t* req; req = container_of(w, uv_work_t, work_req); uv__req_unregister(req->loop, req); if (req->after_work_cb == NULL) return; req->after_work_cb(req, err); } int uv_queue_work(uv_loop_t* loop, uv_work_t* req, uv_work_cb work_cb, uv_after_work_cb after_work_cb) { if (work_cb == NULL) return UV_EINVAL; uv__req_init(loop, req, UV_WORK); req->loop = loop; req->work_cb = work_cb; req->after_work_cb = after_work_cb; uv__work_submit(loop, &req->work_req, UV__WORK_CPU, uv__queue_work, uv__queue_done); return 0; } int uv_cancel(uv_req_t* req) { struct uv__work* wreq; uv_loop_t* loop; switch (req->type) { case UV_FS: loop = ((uv_fs_t*) req)->loop; wreq = &((uv_fs_t*) req)->work_req; break; case UV_GETADDRINFO: loop = ((uv_getaddrinfo_t*) req)->loop; wreq = &((uv_getaddrinfo_t*) req)->work_req; break; case UV_GETNAMEINFO: loop = ((uv_getnameinfo_t*) req)->loop; wreq = &((uv_getnameinfo_t*) req)->work_req; break; case UV_RANDOM: loop = ((uv_random_t*) req)->loop; wreq = &((uv_random_t*) req)->work_req; break; case UV_WORK: loop = ((uv_work_t*) req)->loop; wreq = &((uv_work_t*) req)->work_req; break; default: return UV_EINVAL; } return uv__work_cancel(loop, req, wreq); }