forked from cory/tildefriends
Add all the files I think I need to the .apk, and add zlib, so I can attempt to access them using minizip.
git-svn-id: https://www.unprompted.com/svn/projects/tildefriends/trunk@4205 ed5197a5-7fde-0310-b194-c3ffbd925b24
This commit is contained in:
54
deps/zlib/examples/README.examples
vendored
Normal file
54
deps/zlib/examples/README.examples
vendored
Normal file
@ -0,0 +1,54 @@
|
||||
This directory contains examples of the use of zlib and other relevant
|
||||
programs and documentation.
|
||||
|
||||
enough.c
|
||||
calculation and justification of ENOUGH parameter in inftrees.h
|
||||
- calculates the maximum table space used in inflate tree
|
||||
construction over all possible Huffman codes
|
||||
|
||||
fitblk.c
|
||||
compress just enough input to nearly fill a requested output size
|
||||
- zlib isn't designed to do this, but fitblk does it anyway
|
||||
|
||||
gun.c
|
||||
uncompress a gzip file
|
||||
- illustrates the use of inflateBack() for high speed file-to-file
|
||||
decompression using call-back functions
|
||||
- is approximately twice as fast as gzip -d
|
||||
- also provides Unix uncompress functionality, again twice as fast
|
||||
|
||||
gzappend.c
|
||||
append to a gzip file
|
||||
- illustrates the use of the Z_BLOCK flush parameter for inflate()
|
||||
- illustrates the use of deflatePrime() to start at any bit
|
||||
|
||||
gzjoin.c
|
||||
join gzip files without recalculating the crc or recompressing
|
||||
- illustrates the use of the Z_BLOCK flush parameter for inflate()
|
||||
- illustrates the use of crc32_combine()
|
||||
|
||||
gzlog.c
|
||||
gzlog.h
|
||||
efficiently and robustly maintain a message log file in gzip format
|
||||
- illustrates use of raw deflate, Z_PARTIAL_FLUSH, deflatePrime(),
|
||||
and deflateSetDictionary()
|
||||
- illustrates use of a gzip header extra field
|
||||
|
||||
gznorm.c
|
||||
normalize a gzip file by combining members into a single member
|
||||
- demonstrates how to concatenate deflate streams using Z_BLOCK
|
||||
|
||||
zlib_how.html
|
||||
painfully comprehensive description of zpipe.c (see below)
|
||||
- describes in excruciating detail the use of deflate() and inflate()
|
||||
|
||||
zpipe.c
|
||||
reads and writes zlib streams from stdin to stdout
|
||||
- illustrates the proper use of deflate() and inflate()
|
||||
- deeply commented in zlib_how.html (see above)
|
||||
|
||||
zran.c
|
||||
zran.h
|
||||
index a zlib or gzip stream and randomly access it
|
||||
- illustrates the use of Z_BLOCK, inflatePrime(), and
|
||||
inflateSetDictionary() to provide random access
|
597
deps/zlib/examples/enough.c
vendored
Normal file
597
deps/zlib/examples/enough.c
vendored
Normal file
@ -0,0 +1,597 @@
|
||||
/* enough.c -- determine the maximum size of inflate's Huffman code tables over
|
||||
* all possible valid and complete prefix codes, subject to a length limit.
|
||||
* Copyright (C) 2007, 2008, 2012, 2018 Mark Adler
|
||||
* Version 1.5 5 August 2018 Mark Adler
|
||||
*/
|
||||
|
||||
/* Version history:
|
||||
1.0 3 Jan 2007 First version (derived from codecount.c version 1.4)
|
||||
1.1 4 Jan 2007 Use faster incremental table usage computation
|
||||
Prune examine() search on previously visited states
|
||||
1.2 5 Jan 2007 Comments clean up
|
||||
As inflate does, decrease root for short codes
|
||||
Refuse cases where inflate would increase root
|
||||
1.3 17 Feb 2008 Add argument for initial root table size
|
||||
Fix bug for initial root table size == max - 1
|
||||
Use a macro to compute the history index
|
||||
1.4 18 Aug 2012 Avoid shifts more than bits in type (caused endless loop!)
|
||||
Clean up comparisons of different types
|
||||
Clean up code indentation
|
||||
1.5 5 Aug 2018 Clean up code style, formatting, and comments
|
||||
Show all the codes for the maximum, and only the maximum
|
||||
*/
|
||||
|
||||
/*
|
||||
Examine all possible prefix codes for a given number of symbols and a
|
||||
maximum code length in bits to determine the maximum table size for zlib's
|
||||
inflate. Only complete prefix codes are counted.
|
||||
|
||||
Two codes are considered distinct if the vectors of the number of codes per
|
||||
length are not identical. So permutations of the symbol assignments result
|
||||
in the same code for the counting, as do permutations of the assignments of
|
||||
the bit values to the codes (i.e. only canonical codes are counted).
|
||||
|
||||
We build a code from shorter to longer lengths, determining how many symbols
|
||||
are coded at each length. At each step, we have how many symbols remain to
|
||||
be coded, what the last code length used was, and how many bit patterns of
|
||||
that length remain unused. Then we add one to the code length and double the
|
||||
number of unused patterns to graduate to the next code length. We then
|
||||
assign all portions of the remaining symbols to that code length that
|
||||
preserve the properties of a correct and eventually complete code. Those
|
||||
properties are: we cannot use more bit patterns than are available; and when
|
||||
all the symbols are used, there are exactly zero possible bit patterns left
|
||||
unused.
|
||||
|
||||
The inflate Huffman decoding algorithm uses two-level lookup tables for
|
||||
speed. There is a single first-level table to decode codes up to root bits
|
||||
in length (root == 9 for literal/length codes and root == 6 for distance
|
||||
codes, in the current inflate implementation). The base table has 1 << root
|
||||
entries and is indexed by the next root bits of input. Codes shorter than
|
||||
root bits have replicated table entries, so that the correct entry is
|
||||
pointed to regardless of the bits that follow the short code. If the code is
|
||||
longer than root bits, then the table entry points to a second-level table.
|
||||
The size of that table is determined by the longest code with that root-bit
|
||||
prefix. If that longest code has length len, then the table has size 1 <<
|
||||
(len - root), to index the remaining bits in that set of codes. Each
|
||||
subsequent root-bit prefix then has its own sub-table. The total number of
|
||||
table entries required by the code is calculated incrementally as the number
|
||||
of codes at each bit length is populated. When all of the codes are shorter
|
||||
than root bits, then root is reduced to the longest code length, resulting
|
||||
in a single, smaller, one-level table.
|
||||
|
||||
The inflate algorithm also provides for small values of root (relative to
|
||||
the log2 of the number of symbols), where the shortest code has more bits
|
||||
than root. In that case, root is increased to the length of the shortest
|
||||
code. This program, by design, does not handle that case, so it is verified
|
||||
that the number of symbols is less than 1 << (root + 1).
|
||||
|
||||
In order to speed up the examination (by about ten orders of magnitude for
|
||||
the default arguments), the intermediate states in the build-up of a code
|
||||
are remembered and previously visited branches are pruned. The memory
|
||||
required for this will increase rapidly with the total number of symbols and
|
||||
the maximum code length in bits. However this is a very small price to pay
|
||||
for the vast speedup.
|
||||
|
||||
First, all of the possible prefix codes are counted, and reachable
|
||||
intermediate states are noted by a non-zero count in a saved-results array.
|
||||
Second, the intermediate states that lead to (root + 1) bit or longer codes
|
||||
are used to look at all sub-codes from those junctures for their inflate
|
||||
memory usage. (The amount of memory used is not affected by the number of
|
||||
codes of root bits or less in length.) Third, the visited states in the
|
||||
construction of those sub-codes and the associated calculation of the table
|
||||
size is recalled in order to avoid recalculating from the same juncture.
|
||||
Beginning the code examination at (root + 1) bit codes, which is enabled by
|
||||
identifying the reachable nodes, accounts for about six of the orders of
|
||||
magnitude of improvement for the default arguments. About another four
|
||||
orders of magnitude come from not revisiting previous states. Out of
|
||||
approximately 2x10^16 possible prefix codes, only about 2x10^6 sub-codes
|
||||
need to be examined to cover all of the possible table memory usage cases
|
||||
for the default arguments of 286 symbols limited to 15-bit codes.
|
||||
|
||||
Note that the uintmax_t type is used for counting. It is quite easy to
|
||||
exceed the capacity of an eight-byte integer with a large number of symbols
|
||||
and a large maximum code length, so multiple-precision arithmetic would need
|
||||
to replace the integer arithmetic in that case. This program will abort if
|
||||
an overflow occurs. The big_t type identifies where the counting takes
|
||||
place.
|
||||
|
||||
The uintmax_t type is also used for calculating the number of possible codes
|
||||
remaining at the maximum length. This limits the maximum code length to the
|
||||
number of bits in a long long minus the number of bits needed to represent
|
||||
the symbols in a flat code. The code_t type identifies where the bit-pattern
|
||||
counting takes place.
|
||||
*/
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
#include <stdarg.h>
|
||||
#include <stdint.h>
|
||||
#include <assert.h>
|
||||
|
||||
#define local static
|
||||
|
||||
// Special data types.
|
||||
typedef uintmax_t big_t; // type for code counting
|
||||
#define PRIbig "ju" // printf format for big_t
|
||||
typedef uintmax_t code_t; // type for bit pattern counting
|
||||
struct tab { // type for been-here check
|
||||
size_t len; // allocated length of bit vector in octets
|
||||
char *vec; // allocated bit vector
|
||||
};
|
||||
|
||||
/* The array for saving results, num[], is indexed with this triplet:
|
||||
|
||||
syms: number of symbols remaining to code
|
||||
left: number of available bit patterns at length len
|
||||
len: number of bits in the codes currently being assigned
|
||||
|
||||
Those indices are constrained thusly when saving results:
|
||||
|
||||
syms: 3..totsym (totsym == total symbols to code)
|
||||
left: 2..syms - 1, but only the evens (so syms == 8 -> 2, 4, 6)
|
||||
len: 1..max - 1 (max == maximum code length in bits)
|
||||
|
||||
syms == 2 is not saved since that immediately leads to a single code. left
|
||||
must be even, since it represents the number of available bit patterns at
|
||||
the current length, which is double the number at the previous length. left
|
||||
ends at syms-1 since left == syms immediately results in a single code.
|
||||
(left > sym is not allowed since that would result in an incomplete code.)
|
||||
len is less than max, since the code completes immediately when len == max.
|
||||
|
||||
The offset into the array is calculated for the three indices with the first
|
||||
one (syms) being outermost, and the last one (len) being innermost. We build
|
||||
the array with length max-1 lists for the len index, with syms-3 of those
|
||||
for each symbol. There are totsym-2 of those, with each one varying in
|
||||
length as a function of sym. See the calculation of index in map() for the
|
||||
index, and the calculation of size in main() for the size of the array.
|
||||
|
||||
For the deflate example of 286 symbols limited to 15-bit codes, the array
|
||||
has 284,284 entries, taking up 2.17 MB for an 8-byte big_t. More than half
|
||||
of the space allocated for saved results is actually used -- not all
|
||||
possible triplets are reached in the generation of valid prefix codes.
|
||||
*/
|
||||
|
||||
/* The array for tracking visited states, done[], is itself indexed identically
|
||||
to the num[] array as described above for the (syms, left, len) triplet.
|
||||
Each element in the array is further indexed by the (mem, rem) doublet,
|
||||
where mem is the amount of inflate table space used so far, and rem is the
|
||||
remaining unused entries in the current inflate sub-table. Each indexed
|
||||
element is simply one bit indicating whether the state has been visited or
|
||||
not. Since the ranges for mem and rem are not known a priori, each bit
|
||||
vector is of a variable size, and grows as needed to accommodate the visited
|
||||
states. mem and rem are used to calculate a single index in a triangular
|
||||
array. Since the range of mem is expected in the default case to be about
|
||||
ten times larger than the range of rem, the array is skewed to reduce the
|
||||
memory usage, with eight times the range for mem than for rem. See the
|
||||
calculations for offset and bit in been_here() for the details.
|
||||
|
||||
For the deflate example of 286 symbols limited to 15-bit codes, the bit
|
||||
vectors grow to total 5.5 MB, in addition to the 4.3 MB done array itself.
|
||||
*/
|
||||
|
||||
// Type for a variable-length, allocated string.
|
||||
typedef struct {
|
||||
char *str; // pointer to allocated string
|
||||
size_t size; // size of allocation
|
||||
size_t len; // length of string, not including terminating zero
|
||||
} string_t;
|
||||
|
||||
// Clear a string_t.
|
||||
local void string_clear(string_t *s) {
|
||||
s->str[0] = 0;
|
||||
s->len = 0;
|
||||
}
|
||||
|
||||
// Initialize a string_t.
|
||||
local void string_init(string_t *s) {
|
||||
s->size = 16;
|
||||
s->str = malloc(s->size);
|
||||
assert(s->str != NULL && "out of memory");
|
||||
string_clear(s);
|
||||
}
|
||||
|
||||
// Release the allocation of a string_t.
|
||||
local void string_free(string_t *s) {
|
||||
free(s->str);
|
||||
s->str = NULL;
|
||||
s->size = 0;
|
||||
s->len = 0;
|
||||
}
|
||||
|
||||
// Save the results of printf with fmt and the subsequent argument list to s.
|
||||
// Each call appends to s. The allocated space for s is increased as needed.
|
||||
local void string_printf(string_t *s, char *fmt, ...) {
|
||||
va_list ap;
|
||||
va_start(ap, fmt);
|
||||
size_t len = s->len;
|
||||
int ret = vsnprintf(s->str + len, s->size - len, fmt, ap);
|
||||
assert(ret >= 0 && "out of memory");
|
||||
s->len += ret;
|
||||
if (s->size < s->len + 1) {
|
||||
do {
|
||||
s->size <<= 1;
|
||||
assert(s->size != 0 && "overflow");
|
||||
} while (s->size < s->len + 1);
|
||||
s->str = realloc(s->str, s->size);
|
||||
assert(s->str != NULL && "out of memory");
|
||||
vsnprintf(s->str + len, s->size - len, fmt, ap);
|
||||
}
|
||||
va_end(ap);
|
||||
}
|
||||
|
||||
// Globals to avoid propagating constants or constant pointers recursively.
|
||||
struct {
|
||||
int max; // maximum allowed bit length for the codes
|
||||
int root; // size of base code table in bits
|
||||
int large; // largest code table so far
|
||||
size_t size; // number of elements in num and done
|
||||
big_t tot; // total number of codes with maximum tables size
|
||||
string_t out; // display of subcodes for maximum tables size
|
||||
int *code; // number of symbols assigned to each bit length
|
||||
big_t *num; // saved results array for code counting
|
||||
struct tab *done; // states already evaluated array
|
||||
} g;
|
||||
|
||||
// Index function for num[] and done[].
|
||||
local inline size_t map(int syms, int left, int len) {
|
||||
return ((size_t)((syms - 1) >> 1) * ((syms - 2) >> 1) +
|
||||
(left >> 1) - 1) * (g.max - 1) +
|
||||
len - 1;
|
||||
}
|
||||
|
||||
// Free allocated space in globals.
|
||||
local void cleanup(void) {
|
||||
if (g.done != NULL) {
|
||||
for (size_t n = 0; n < g.size; n++)
|
||||
if (g.done[n].len)
|
||||
free(g.done[n].vec);
|
||||
g.size = 0;
|
||||
free(g.done); g.done = NULL;
|
||||
}
|
||||
free(g.num); g.num = NULL;
|
||||
free(g.code); g.code = NULL;
|
||||
string_free(&g.out);
|
||||
}
|
||||
|
||||
// Return the number of possible prefix codes using bit patterns of lengths len
|
||||
// through max inclusive, coding syms symbols, with left bit patterns of length
|
||||
// len unused -- return -1 if there is an overflow in the counting. Keep a
|
||||
// record of previous results in num to prevent repeating the same calculation.
|
||||
local big_t count(int syms, int left, int len) {
|
||||
// see if only one possible code
|
||||
if (syms == left)
|
||||
return 1;
|
||||
|
||||
// note and verify the expected state
|
||||
assert(syms > left && left > 0 && len < g.max);
|
||||
|
||||
// see if we've done this one already
|
||||
size_t index = map(syms, left, len);
|
||||
big_t got = g.num[index];
|
||||
if (got)
|
||||
return got; // we have -- return the saved result
|
||||
|
||||
// we need to use at least this many bit patterns so that the code won't be
|
||||
// incomplete at the next length (more bit patterns than symbols)
|
||||
int least = (left << 1) - syms;
|
||||
if (least < 0)
|
||||
least = 0;
|
||||
|
||||
// we can use at most this many bit patterns, lest there not be enough
|
||||
// available for the remaining symbols at the maximum length (if there were
|
||||
// no limit to the code length, this would become: most = left - 1)
|
||||
int most = (((code_t)left << (g.max - len)) - syms) /
|
||||
(((code_t)1 << (g.max - len)) - 1);
|
||||
|
||||
// count all possible codes from this juncture and add them up
|
||||
big_t sum = 0;
|
||||
for (int use = least; use <= most; use++) {
|
||||
got = count(syms - use, (left - use) << 1, len + 1);
|
||||
sum += got;
|
||||
if (got == (big_t)-1 || sum < got) // overflow
|
||||
return (big_t)-1;
|
||||
}
|
||||
|
||||
// verify that all recursive calls are productive
|
||||
assert(sum != 0);
|
||||
|
||||
// save the result and return it
|
||||
g.num[index] = sum;
|
||||
return sum;
|
||||
}
|
||||
|
||||
// Return true if we've been here before, set to true if not. Set a bit in a
|
||||
// bit vector to indicate visiting this state. Each (syms,len,left) state has a
|
||||
// variable size bit vector indexed by (mem,rem). The bit vector is lengthened
|
||||
// as needed to allow setting the (mem,rem) bit.
|
||||
local int been_here(int syms, int left, int len, int mem, int rem) {
|
||||
// point to vector for (syms,left,len), bit in vector for (mem,rem)
|
||||
size_t index = map(syms, left, len);
|
||||
mem -= 1 << g.root; // mem always includes the root table
|
||||
mem >>= 1; // mem and rem are always even
|
||||
rem >>= 1;
|
||||
size_t offset = (mem >> 3) + rem;
|
||||
offset = ((offset * (offset + 1)) >> 1) + rem;
|
||||
int bit = 1 << (mem & 7);
|
||||
|
||||
// see if we've been here
|
||||
size_t length = g.done[index].len;
|
||||
if (offset < length && (g.done[index].vec[offset] & bit) != 0)
|
||||
return 1; // done this!
|
||||
|
||||
// we haven't been here before -- set the bit to show we have now
|
||||
|
||||
// see if we need to lengthen the vector in order to set the bit
|
||||
if (length <= offset) {
|
||||
// if we have one already, enlarge it, zero out the appended space
|
||||
char *vector;
|
||||
if (length) {
|
||||
do {
|
||||
length <<= 1;
|
||||
} while (length <= offset);
|
||||
vector = realloc(g.done[index].vec, length);
|
||||
assert(vector != NULL && "out of memory");
|
||||
memset(vector + g.done[index].len, 0, length - g.done[index].len);
|
||||
}
|
||||
|
||||
// otherwise we need to make a new vector and zero it out
|
||||
else {
|
||||
length = 16;
|
||||
while (length <= offset)
|
||||
length <<= 1;
|
||||
vector = calloc(length, 1);
|
||||
assert(vector != NULL && "out of memory");
|
||||
}
|
||||
|
||||
// install the new vector
|
||||
g.done[index].len = length;
|
||||
g.done[index].vec = vector;
|
||||
}
|
||||
|
||||
// set the bit
|
||||
g.done[index].vec[offset] |= bit;
|
||||
return 0;
|
||||
}
|
||||
|
||||
// Examine all possible codes from the given node (syms, len, left). Compute
|
||||
// the amount of memory required to build inflate's decoding tables, where the
|
||||
// number of code structures used so far is mem, and the number remaining in
|
||||
// the current sub-table is rem.
|
||||
local void examine(int syms, int left, int len, int mem, int rem) {
|
||||
// see if we have a complete code
|
||||
if (syms == left) {
|
||||
// set the last code entry
|
||||
g.code[len] = left;
|
||||
|
||||
// complete computation of memory used by this code
|
||||
while (rem < left) {
|
||||
left -= rem;
|
||||
rem = 1 << (len - g.root);
|
||||
mem += rem;
|
||||
}
|
||||
assert(rem == left);
|
||||
|
||||
// if this is at the maximum, show the sub-code
|
||||
if (mem >= g.large) {
|
||||
// if this is a new maximum, update the maximum and clear out the
|
||||
// printed sub-codes from the previous maximum
|
||||
if (mem > g.large) {
|
||||
g.large = mem;
|
||||
string_clear(&g.out);
|
||||
}
|
||||
|
||||
// compute the starting state for this sub-code
|
||||
syms = 0;
|
||||
left = 1 << g.max;
|
||||
for (int bits = g.max; bits > g.root; bits--) {
|
||||
syms += g.code[bits];
|
||||
left -= g.code[bits];
|
||||
assert((left & 1) == 0);
|
||||
left >>= 1;
|
||||
}
|
||||
|
||||
// print the starting state and the resulting sub-code to g.out
|
||||
string_printf(&g.out, "<%u, %u, %u>:",
|
||||
syms, g.root + 1, ((1 << g.root) - left) << 1);
|
||||
for (int bits = g.root + 1; bits <= g.max; bits++)
|
||||
if (g.code[bits])
|
||||
string_printf(&g.out, " %d[%d]", g.code[bits], bits);
|
||||
string_printf(&g.out, "\n");
|
||||
}
|
||||
|
||||
// remove entries as we drop back down in the recursion
|
||||
g.code[len] = 0;
|
||||
return;
|
||||
}
|
||||
|
||||
// prune the tree if we can
|
||||
if (been_here(syms, left, len, mem, rem))
|
||||
return;
|
||||
|
||||
// we need to use at least this many bit patterns so that the code won't be
|
||||
// incomplete at the next length (more bit patterns than symbols)
|
||||
int least = (left << 1) - syms;
|
||||
if (least < 0)
|
||||
least = 0;
|
||||
|
||||
// we can use at most this many bit patterns, lest there not be enough
|
||||
// available for the remaining symbols at the maximum length (if there were
|
||||
// no limit to the code length, this would become: most = left - 1)
|
||||
int most = (((code_t)left << (g.max - len)) - syms) /
|
||||
(((code_t)1 << (g.max - len)) - 1);
|
||||
|
||||
// occupy least table spaces, creating new sub-tables as needed
|
||||
int use = least;
|
||||
while (rem < use) {
|
||||
use -= rem;
|
||||
rem = 1 << (len - g.root);
|
||||
mem += rem;
|
||||
}
|
||||
rem -= use;
|
||||
|
||||
// examine codes from here, updating table space as we go
|
||||
for (use = least; use <= most; use++) {
|
||||
g.code[len] = use;
|
||||
examine(syms - use, (left - use) << 1, len + 1,
|
||||
mem + (rem ? 1 << (len - g.root) : 0), rem << 1);
|
||||
if (rem == 0) {
|
||||
rem = 1 << (len - g.root);
|
||||
mem += rem;
|
||||
}
|
||||
rem--;
|
||||
}
|
||||
|
||||
// remove entries as we drop back down in the recursion
|
||||
g.code[len] = 0;
|
||||
}
|
||||
|
||||
// Look at all sub-codes starting with root + 1 bits. Look at only the valid
|
||||
// intermediate code states (syms, left, len). For each completed code,
|
||||
// calculate the amount of memory required by inflate to build the decoding
|
||||
// tables. Find the maximum amount of memory required and show the codes that
|
||||
// require that maximum.
|
||||
local void enough(int syms) {
|
||||
// clear code
|
||||
for (int n = 0; n <= g.max; n++)
|
||||
g.code[n] = 0;
|
||||
|
||||
// look at all (root + 1) bit and longer codes
|
||||
string_clear(&g.out); // empty saved results
|
||||
g.large = 1 << g.root; // base table
|
||||
if (g.root < g.max) // otherwise, there's only a base table
|
||||
for (int n = 3; n <= syms; n++)
|
||||
for (int left = 2; left < n; left += 2) {
|
||||
// look at all reachable (root + 1) bit nodes, and the
|
||||
// resulting codes (complete at root + 2 or more)
|
||||
size_t index = map(n, left, g.root + 1);
|
||||
if (g.root + 1 < g.max && g.num[index]) // reachable node
|
||||
examine(n, left, g.root + 1, 1 << g.root, 0);
|
||||
|
||||
// also look at root bit codes with completions at root + 1
|
||||
// bits (not saved in num, since complete), just in case
|
||||
if (g.num[index - 1] && n <= left << 1)
|
||||
examine((n - left) << 1, (n - left) << 1, g.root + 1,
|
||||
1 << g.root, 0);
|
||||
}
|
||||
|
||||
// done
|
||||
printf("maximum of %d table entries for root = %d\n", g.large, g.root);
|
||||
fputs(g.out.str, stdout);
|
||||
}
|
||||
|
||||
// Examine and show the total number of possible prefix codes for a given
|
||||
// maximum number of symbols, initial root table size, and maximum code length
|
||||
// in bits -- those are the command arguments in that order. The default values
|
||||
// are 286, 9, and 15 respectively, for the deflate literal/length code. The
|
||||
// possible codes are counted for each number of coded symbols from two to the
|
||||
// maximum. The counts for each of those and the total number of codes are
|
||||
// shown. The maximum number of inflate table entries is then calculated across
|
||||
// all possible codes. Each new maximum number of table entries and the
|
||||
// associated sub-code (starting at root + 1 == 10 bits) is shown.
|
||||
//
|
||||
// To count and examine prefix codes that are not length-limited, provide a
|
||||
// maximum length equal to the number of symbols minus one.
|
||||
//
|
||||
// For the deflate literal/length code, use "enough". For the deflate distance
|
||||
// code, use "enough 30 6".
|
||||
int main(int argc, char **argv) {
|
||||
// set up globals for cleanup()
|
||||
g.code = NULL;
|
||||
g.num = NULL;
|
||||
g.done = NULL;
|
||||
string_init(&g.out);
|
||||
|
||||
// get arguments -- default to the deflate literal/length code
|
||||
int syms = 286;
|
||||
g.root = 9;
|
||||
g.max = 15;
|
||||
if (argc > 1) {
|
||||
syms = atoi(argv[1]);
|
||||
if (argc > 2) {
|
||||
g.root = atoi(argv[2]);
|
||||
if (argc > 3)
|
||||
g.max = atoi(argv[3]);
|
||||
}
|
||||
}
|
||||
if (argc > 4 || syms < 2 || g.root < 1 || g.max < 1) {
|
||||
fputs("invalid arguments, need: [sym >= 2 [root >= 1 [max >= 1]]]\n",
|
||||
stderr);
|
||||
return 1;
|
||||
}
|
||||
|
||||
// if not restricting the code length, the longest is syms - 1
|
||||
if (g.max > syms - 1)
|
||||
g.max = syms - 1;
|
||||
|
||||
// determine the number of bits in a code_t
|
||||
int bits = 0;
|
||||
for (code_t word = 1; word; word <<= 1)
|
||||
bits++;
|
||||
|
||||
// make sure that the calculation of most will not overflow
|
||||
if (g.max > bits || (code_t)(syms - 2) >= ((code_t)-1 >> (g.max - 1))) {
|
||||
fputs("abort: code length too long for internal types\n", stderr);
|
||||
return 1;
|
||||
}
|
||||
|
||||
// reject impossible code requests
|
||||
if ((code_t)(syms - 1) > ((code_t)1 << g.max) - 1) {
|
||||
fprintf(stderr, "%d symbols cannot be coded in %d bits\n",
|
||||
syms, g.max);
|
||||
return 1;
|
||||
}
|
||||
|
||||
// allocate code vector
|
||||
g.code = calloc(g.max + 1, sizeof(int));
|
||||
assert(g.code != NULL && "out of memory");
|
||||
|
||||
// determine size of saved results array, checking for overflows,
|
||||
// allocate and clear the array (set all to zero with calloc())
|
||||
if (syms == 2) // iff max == 1
|
||||
g.num = NULL; // won't be saving any results
|
||||
else {
|
||||
g.size = syms >> 1;
|
||||
int n = (syms - 1) >> 1;
|
||||
assert(g.size <= (size_t)-1 / n && "overflow");
|
||||
g.size *= n;
|
||||
n = g.max - 1;
|
||||
assert(g.size <= (size_t)-1 / n && "overflow");
|
||||
g.size *= n;
|
||||
g.num = calloc(g.size, sizeof(big_t));
|
||||
assert(g.num != NULL && "out of memory");
|
||||
}
|
||||
|
||||
// count possible codes for all numbers of symbols, add up counts
|
||||
big_t sum = 0;
|
||||
for (int n = 2; n <= syms; n++) {
|
||||
big_t got = count(n, 2, 1);
|
||||
sum += got;
|
||||
assert(got != (big_t)-1 && sum >= got && "overflow");
|
||||
}
|
||||
printf("%"PRIbig" total codes for 2 to %d symbols", sum, syms);
|
||||
if (g.max < syms - 1)
|
||||
printf(" (%d-bit length limit)\n", g.max);
|
||||
else
|
||||
puts(" (no length limit)");
|
||||
|
||||
// allocate and clear done array for been_here()
|
||||
if (syms == 2)
|
||||
g.done = NULL;
|
||||
else {
|
||||
g.done = calloc(g.size, sizeof(struct tab));
|
||||
assert(g.done != NULL && "out of memory");
|
||||
}
|
||||
|
||||
// find and show maximum inflate table usage
|
||||
if (g.root > g.max) // reduce root to max length
|
||||
g.root = g.max;
|
||||
if ((code_t)syms < ((code_t)1 << (g.root + 1)))
|
||||
enough(syms);
|
||||
else
|
||||
fputs("cannot handle minimum code lengths > root", stderr);
|
||||
|
||||
// done
|
||||
cleanup();
|
||||
return 0;
|
||||
}
|
233
deps/zlib/examples/fitblk.c
vendored
Normal file
233
deps/zlib/examples/fitblk.c
vendored
Normal file
@ -0,0 +1,233 @@
|
||||
/* fitblk.c: example of fitting compressed output to a specified size
|
||||
Not copyrighted -- provided to the public domain
|
||||
Version 1.1 25 November 2004 Mark Adler */
|
||||
|
||||
/* Version history:
|
||||
1.0 24 Nov 2004 First version
|
||||
1.1 25 Nov 2004 Change deflateInit2() to deflateInit()
|
||||
Use fixed-size, stack-allocated raw buffers
|
||||
Simplify code moving compression to subroutines
|
||||
Use assert() for internal errors
|
||||
Add detailed description of approach
|
||||
*/
|
||||
|
||||
/* Approach to just fitting a requested compressed size:
|
||||
|
||||
fitblk performs three compression passes on a portion of the input
|
||||
data in order to determine how much of that input will compress to
|
||||
nearly the requested output block size. The first pass generates
|
||||
enough deflate blocks to produce output to fill the requested
|
||||
output size plus a specified excess amount (see the EXCESS define
|
||||
below). The last deflate block may go quite a bit past that, but
|
||||
is discarded. The second pass decompresses and recompresses just
|
||||
the compressed data that fit in the requested plus excess sized
|
||||
buffer. The deflate process is terminated after that amount of
|
||||
input, which is less than the amount consumed on the first pass.
|
||||
The last deflate block of the result will be of a comparable size
|
||||
to the final product, so that the header for that deflate block and
|
||||
the compression ratio for that block will be about the same as in
|
||||
the final product. The third compression pass decompresses the
|
||||
result of the second step, but only the compressed data up to the
|
||||
requested size minus an amount to allow the compressed stream to
|
||||
complete (see the MARGIN define below). That will result in a
|
||||
final compressed stream whose length is less than or equal to the
|
||||
requested size. Assuming sufficient input and a requested size
|
||||
greater than a few hundred bytes, the shortfall will typically be
|
||||
less than ten bytes.
|
||||
|
||||
If the input is short enough that the first compression completes
|
||||
before filling the requested output size, then that compressed
|
||||
stream is return with no recompression.
|
||||
|
||||
EXCESS is chosen to be just greater than the shortfall seen in a
|
||||
two pass approach similar to the above. That shortfall is due to
|
||||
the last deflate block compressing more efficiently with a smaller
|
||||
header on the second pass. EXCESS is set to be large enough so
|
||||
that there is enough uncompressed data for the second pass to fill
|
||||
out the requested size, and small enough so that the final deflate
|
||||
block of the second pass will be close in size to the final deflate
|
||||
block of the third and final pass. MARGIN is chosen to be just
|
||||
large enough to assure that the final compression has enough room
|
||||
to complete in all cases.
|
||||
*/
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <assert.h>
|
||||
#include "zlib.h"
|
||||
|
||||
#define local static
|
||||
|
||||
/* print nastygram and leave */
|
||||
local void quit(char *why)
|
||||
{
|
||||
fprintf(stderr, "fitblk abort: %s\n", why);
|
||||
exit(1);
|
||||
}
|
||||
|
||||
#define RAWLEN 4096 /* intermediate uncompressed buffer size */
|
||||
|
||||
/* compress from file to def until provided buffer is full or end of
|
||||
input reached; return last deflate() return value, or Z_ERRNO if
|
||||
there was read error on the file */
|
||||
local int partcompress(FILE *in, z_streamp def)
|
||||
{
|
||||
int ret, flush;
|
||||
unsigned char raw[RAWLEN];
|
||||
|
||||
flush = Z_NO_FLUSH;
|
||||
do {
|
||||
def->avail_in = fread(raw, 1, RAWLEN, in);
|
||||
if (ferror(in))
|
||||
return Z_ERRNO;
|
||||
def->next_in = raw;
|
||||
if (feof(in))
|
||||
flush = Z_FINISH;
|
||||
ret = deflate(def, flush);
|
||||
assert(ret != Z_STREAM_ERROR);
|
||||
} while (def->avail_out != 0 && flush == Z_NO_FLUSH);
|
||||
return ret;
|
||||
}
|
||||
|
||||
/* recompress from inf's input to def's output; the input for inf and
|
||||
the output for def are set in those structures before calling;
|
||||
return last deflate() return value, or Z_MEM_ERROR if inflate()
|
||||
was not able to allocate enough memory when it needed to */
|
||||
local int recompress(z_streamp inf, z_streamp def)
|
||||
{
|
||||
int ret, flush;
|
||||
unsigned char raw[RAWLEN];
|
||||
|
||||
flush = Z_NO_FLUSH;
|
||||
do {
|
||||
/* decompress */
|
||||
inf->avail_out = RAWLEN;
|
||||
inf->next_out = raw;
|
||||
ret = inflate(inf, Z_NO_FLUSH);
|
||||
assert(ret != Z_STREAM_ERROR && ret != Z_DATA_ERROR &&
|
||||
ret != Z_NEED_DICT);
|
||||
if (ret == Z_MEM_ERROR)
|
||||
return ret;
|
||||
|
||||
/* compress what was decompressed until done or no room */
|
||||
def->avail_in = RAWLEN - inf->avail_out;
|
||||
def->next_in = raw;
|
||||
if (inf->avail_out != 0)
|
||||
flush = Z_FINISH;
|
||||
ret = deflate(def, flush);
|
||||
assert(ret != Z_STREAM_ERROR);
|
||||
} while (ret != Z_STREAM_END && def->avail_out != 0);
|
||||
return ret;
|
||||
}
|
||||
|
||||
#define EXCESS 256 /* empirically determined stream overage */
|
||||
#define MARGIN 8 /* amount to back off for completion */
|
||||
|
||||
/* compress from stdin to fixed-size block on stdout */
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
int ret; /* return code */
|
||||
unsigned size; /* requested fixed output block size */
|
||||
unsigned have; /* bytes written by deflate() call */
|
||||
unsigned char *blk; /* intermediate and final stream */
|
||||
unsigned char *tmp; /* close to desired size stream */
|
||||
z_stream def, inf; /* zlib deflate and inflate states */
|
||||
|
||||
/* get requested output size */
|
||||
if (argc != 2)
|
||||
quit("need one argument: size of output block");
|
||||
ret = strtol(argv[1], argv + 1, 10);
|
||||
if (argv[1][0] != 0)
|
||||
quit("argument must be a number");
|
||||
if (ret < 8) /* 8 is minimum zlib stream size */
|
||||
quit("need positive size of 8 or greater");
|
||||
size = (unsigned)ret;
|
||||
|
||||
/* allocate memory for buffers and compression engine */
|
||||
blk = malloc(size + EXCESS);
|
||||
def.zalloc = Z_NULL;
|
||||
def.zfree = Z_NULL;
|
||||
def.opaque = Z_NULL;
|
||||
ret = deflateInit(&def, Z_DEFAULT_COMPRESSION);
|
||||
if (ret != Z_OK || blk == NULL)
|
||||
quit("out of memory");
|
||||
|
||||
/* compress from stdin until output full, or no more input */
|
||||
def.avail_out = size + EXCESS;
|
||||
def.next_out = blk;
|
||||
ret = partcompress(stdin, &def);
|
||||
if (ret == Z_ERRNO)
|
||||
quit("error reading input");
|
||||
|
||||
/* if it all fit, then size was undersubscribed -- done! */
|
||||
if (ret == Z_STREAM_END && def.avail_out >= EXCESS) {
|
||||
/* write block to stdout */
|
||||
have = size + EXCESS - def.avail_out;
|
||||
if (fwrite(blk, 1, have, stdout) != have || ferror(stdout))
|
||||
quit("error writing output");
|
||||
|
||||
/* clean up and print results to stderr */
|
||||
ret = deflateEnd(&def);
|
||||
assert(ret != Z_STREAM_ERROR);
|
||||
free(blk);
|
||||
fprintf(stderr,
|
||||
"%u bytes unused out of %u requested (all input)\n",
|
||||
size - have, size);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* it didn't all fit -- set up for recompression */
|
||||
inf.zalloc = Z_NULL;
|
||||
inf.zfree = Z_NULL;
|
||||
inf.opaque = Z_NULL;
|
||||
inf.avail_in = 0;
|
||||
inf.next_in = Z_NULL;
|
||||
ret = inflateInit(&inf);
|
||||
tmp = malloc(size + EXCESS);
|
||||
if (ret != Z_OK || tmp == NULL)
|
||||
quit("out of memory");
|
||||
ret = deflateReset(&def);
|
||||
assert(ret != Z_STREAM_ERROR);
|
||||
|
||||
/* do first recompression close to the right amount */
|
||||
inf.avail_in = size + EXCESS;
|
||||
inf.next_in = blk;
|
||||
def.avail_out = size + EXCESS;
|
||||
def.next_out = tmp;
|
||||
ret = recompress(&inf, &def);
|
||||
if (ret == Z_MEM_ERROR)
|
||||
quit("out of memory");
|
||||
|
||||
/* set up for next reocmpression */
|
||||
ret = inflateReset(&inf);
|
||||
assert(ret != Z_STREAM_ERROR);
|
||||
ret = deflateReset(&def);
|
||||
assert(ret != Z_STREAM_ERROR);
|
||||
|
||||
/* do second and final recompression (third compression) */
|
||||
inf.avail_in = size - MARGIN; /* assure stream will complete */
|
||||
inf.next_in = tmp;
|
||||
def.avail_out = size;
|
||||
def.next_out = blk;
|
||||
ret = recompress(&inf, &def);
|
||||
if (ret == Z_MEM_ERROR)
|
||||
quit("out of memory");
|
||||
assert(ret == Z_STREAM_END); /* otherwise MARGIN too small */
|
||||
|
||||
/* done -- write block to stdout */
|
||||
have = size - def.avail_out;
|
||||
if (fwrite(blk, 1, have, stdout) != have || ferror(stdout))
|
||||
quit("error writing output");
|
||||
|
||||
/* clean up and print results to stderr */
|
||||
free(tmp);
|
||||
ret = inflateEnd(&inf);
|
||||
assert(ret != Z_STREAM_ERROR);
|
||||
ret = deflateEnd(&def);
|
||||
assert(ret != Z_STREAM_ERROR);
|
||||
free(blk);
|
||||
fprintf(stderr,
|
||||
"%u bytes unused out of %u requested (%lu input)\n",
|
||||
size - have, size, def.total_in);
|
||||
return 0;
|
||||
}
|
702
deps/zlib/examples/gun.c
vendored
Normal file
702
deps/zlib/examples/gun.c
vendored
Normal file
@ -0,0 +1,702 @@
|
||||
/* gun.c -- simple gunzip to give an example of the use of inflateBack()
|
||||
* Copyright (C) 2003, 2005, 2008, 2010, 2012 Mark Adler
|
||||
* For conditions of distribution and use, see copyright notice in zlib.h
|
||||
Version 1.7 12 August 2012 Mark Adler */
|
||||
|
||||
/* Version history:
|
||||
1.0 16 Feb 2003 First version for testing of inflateBack()
|
||||
1.1 21 Feb 2005 Decompress concatenated gzip streams
|
||||
Remove use of "this" variable (C++ keyword)
|
||||
Fix return value for in()
|
||||
Improve allocation failure checking
|
||||
Add typecasting for void * structures
|
||||
Add -h option for command version and usage
|
||||
Add a bunch of comments
|
||||
1.2 20 Mar 2005 Add Unix compress (LZW) decompression
|
||||
Copy file attributes from input file to output file
|
||||
1.3 12 Jun 2005 Add casts for error messages [Oberhumer]
|
||||
1.4 8 Dec 2006 LZW decompression speed improvements
|
||||
1.5 9 Feb 2008 Avoid warning in latest version of gcc
|
||||
1.6 17 Jan 2010 Avoid signed/unsigned comparison warnings
|
||||
1.7 12 Aug 2012 Update for z_const usage in zlib 1.2.8
|
||||
*/
|
||||
|
||||
/*
|
||||
gun [ -t ] [ name ... ]
|
||||
|
||||
decompresses the data in the named gzip files. If no arguments are given,
|
||||
gun will decompress from stdin to stdout. The names must end in .gz, -gz,
|
||||
.z, -z, _z, or .Z. The uncompressed data will be written to a file name
|
||||
with the suffix stripped. On success, the original file is deleted. On
|
||||
failure, the output file is deleted. For most failures, the command will
|
||||
continue to process the remaining names on the command line. A memory
|
||||
allocation failure will abort the command. If -t is specified, then the
|
||||
listed files or stdin will be tested as gzip files for integrity (without
|
||||
checking for a proper suffix), no output will be written, and no files
|
||||
will be deleted.
|
||||
|
||||
Like gzip, gun allows concatenated gzip streams and will decompress them,
|
||||
writing all of the uncompressed data to the output. Unlike gzip, gun allows
|
||||
an empty file on input, and will produce no error writing an empty output
|
||||
file.
|
||||
|
||||
gun will also decompress files made by Unix compress, which uses LZW
|
||||
compression. These files are automatically detected by virtue of their
|
||||
magic header bytes. Since the end of Unix compress stream is marked by the
|
||||
end-of-file, they cannot be concatenated. If a Unix compress stream is
|
||||
encountered in an input file, it is the last stream in that file.
|
||||
|
||||
Like gunzip and uncompress, the file attributes of the original compressed
|
||||
file are maintained in the final uncompressed file, to the extent that the
|
||||
user permissions allow it.
|
||||
|
||||
On my Mac OS X PowerPC G4, gun is almost twice as fast as gunzip (version
|
||||
1.2.4) is on the same file, when gun is linked with zlib 1.2.2. Also the
|
||||
LZW decompression provided by gun is about twice as fast as the standard
|
||||
Unix uncompress command.
|
||||
*/
|
||||
|
||||
/* external functions and related types and constants */
|
||||
#include <stdio.h> /* fprintf() */
|
||||
#include <stdlib.h> /* malloc(), free() */
|
||||
#include <string.h> /* strerror(), strcmp(), strlen(), memcpy() */
|
||||
#include <errno.h> /* errno */
|
||||
#include <fcntl.h> /* open() */
|
||||
#include <unistd.h> /* read(), write(), close(), chown(), unlink() */
|
||||
#include <sys/types.h>
|
||||
#include <sys/stat.h> /* stat(), chmod() */
|
||||
#include <utime.h> /* utime() */
|
||||
#include "zlib.h" /* inflateBackInit(), inflateBack(), */
|
||||
/* inflateBackEnd(), crc32() */
|
||||
|
||||
/* function declaration */
|
||||
#define local static
|
||||
|
||||
/* buffer constants */
|
||||
#define SIZE 32768U /* input and output buffer sizes */
|
||||
#define PIECE 16384 /* limits i/o chunks for 16-bit int case */
|
||||
|
||||
/* structure for infback() to pass to input function in() -- it maintains the
|
||||
input file and a buffer of size SIZE */
|
||||
struct ind {
|
||||
int infile;
|
||||
unsigned char *inbuf;
|
||||
};
|
||||
|
||||
/* Load input buffer, assumed to be empty, and return bytes loaded and a
|
||||
pointer to them. read() is called until the buffer is full, or until it
|
||||
returns end-of-file or error. Return 0 on error. */
|
||||
local unsigned in(void *in_desc, z_const unsigned char **buf)
|
||||
{
|
||||
int ret;
|
||||
unsigned len;
|
||||
unsigned char *next;
|
||||
struct ind *me = (struct ind *)in_desc;
|
||||
|
||||
next = me->inbuf;
|
||||
*buf = next;
|
||||
len = 0;
|
||||
do {
|
||||
ret = PIECE;
|
||||
if ((unsigned)ret > SIZE - len)
|
||||
ret = (int)(SIZE - len);
|
||||
ret = (int)read(me->infile, next, ret);
|
||||
if (ret == -1) {
|
||||
len = 0;
|
||||
break;
|
||||
}
|
||||
next += ret;
|
||||
len += ret;
|
||||
} while (ret != 0 && len < SIZE);
|
||||
return len;
|
||||
}
|
||||
|
||||
/* structure for infback() to pass to output function out() -- it maintains the
|
||||
output file, a running CRC-32 check on the output and the total number of
|
||||
bytes output, both for checking against the gzip trailer. (The length in
|
||||
the gzip trailer is stored modulo 2^32, so it's ok if a long is 32 bits and
|
||||
the output is greater than 4 GB.) */
|
||||
struct outd {
|
||||
int outfile;
|
||||
int check; /* true if checking crc and total */
|
||||
unsigned long crc;
|
||||
unsigned long total;
|
||||
};
|
||||
|
||||
/* Write output buffer and update the CRC-32 and total bytes written. write()
|
||||
is called until all of the output is written or an error is encountered.
|
||||
On success out() returns 0. For a write failure, out() returns 1. If the
|
||||
output file descriptor is -1, then nothing is written.
|
||||
*/
|
||||
local int out(void *out_desc, unsigned char *buf, unsigned len)
|
||||
{
|
||||
int ret;
|
||||
struct outd *me = (struct outd *)out_desc;
|
||||
|
||||
if (me->check) {
|
||||
me->crc = crc32(me->crc, buf, len);
|
||||
me->total += len;
|
||||
}
|
||||
if (me->outfile != -1)
|
||||
do {
|
||||
ret = PIECE;
|
||||
if ((unsigned)ret > len)
|
||||
ret = (int)len;
|
||||
ret = (int)write(me->outfile, buf, ret);
|
||||
if (ret == -1)
|
||||
return 1;
|
||||
buf += ret;
|
||||
len -= ret;
|
||||
} while (len != 0);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* next input byte macro for use inside lunpipe() and gunpipe() */
|
||||
#define NEXT() (have ? 0 : (have = in(indp, &next)), \
|
||||
last = have ? (have--, (int)(*next++)) : -1)
|
||||
|
||||
/* memory for gunpipe() and lunpipe() --
|
||||
the first 256 entries of prefix[] and suffix[] are never used, could
|
||||
have offset the index, but it's faster to waste the memory */
|
||||
unsigned char inbuf[SIZE]; /* input buffer */
|
||||
unsigned char outbuf[SIZE]; /* output buffer */
|
||||
unsigned short prefix[65536]; /* index to LZW prefix string */
|
||||
unsigned char suffix[65536]; /* one-character LZW suffix */
|
||||
unsigned char match[65280 + 2]; /* buffer for reversed match or gzip
|
||||
32K sliding window */
|
||||
|
||||
/* throw out what's left in the current bits byte buffer (this is a vestigial
|
||||
aspect of the compressed data format derived from an implementation that
|
||||
made use of a special VAX machine instruction!) */
|
||||
#define FLUSHCODE() \
|
||||
do { \
|
||||
left = 0; \
|
||||
rem = 0; \
|
||||
if (chunk > have) { \
|
||||
chunk -= have; \
|
||||
have = 0; \
|
||||
if (NEXT() == -1) \
|
||||
break; \
|
||||
chunk--; \
|
||||
if (chunk > have) { \
|
||||
chunk = have = 0; \
|
||||
break; \
|
||||
} \
|
||||
} \
|
||||
have -= chunk; \
|
||||
next += chunk; \
|
||||
chunk = 0; \
|
||||
} while (0)
|
||||
|
||||
/* Decompress a compress (LZW) file from indp to outfile. The compress magic
|
||||
header (two bytes) has already been read and verified. There are have bytes
|
||||
of buffered input at next. strm is used for passing error information back
|
||||
to gunpipe().
|
||||
|
||||
lunpipe() will return Z_OK on success, Z_BUF_ERROR for an unexpected end of
|
||||
file, read error, or write error (a write error indicated by strm->next_in
|
||||
not equal to Z_NULL), or Z_DATA_ERROR for invalid input.
|
||||
*/
|
||||
local int lunpipe(unsigned have, z_const unsigned char *next, struct ind *indp,
|
||||
int outfile, z_stream *strm)
|
||||
{
|
||||
int last; /* last byte read by NEXT(), or -1 if EOF */
|
||||
unsigned chunk; /* bytes left in current chunk */
|
||||
int left; /* bits left in rem */
|
||||
unsigned rem; /* unused bits from input */
|
||||
int bits; /* current bits per code */
|
||||
unsigned code; /* code, table traversal index */
|
||||
unsigned mask; /* mask for current bits codes */
|
||||
int max; /* maximum bits per code for this stream */
|
||||
unsigned flags; /* compress flags, then block compress flag */
|
||||
unsigned end; /* last valid entry in prefix/suffix tables */
|
||||
unsigned temp; /* current code */
|
||||
unsigned prev; /* previous code */
|
||||
unsigned final; /* last character written for previous code */
|
||||
unsigned stack; /* next position for reversed string */
|
||||
unsigned outcnt; /* bytes in output buffer */
|
||||
struct outd outd; /* output structure */
|
||||
unsigned char *p;
|
||||
|
||||
/* set up output */
|
||||
outd.outfile = outfile;
|
||||
outd.check = 0;
|
||||
|
||||
/* process remainder of compress header -- a flags byte */
|
||||
flags = NEXT();
|
||||
if (last == -1)
|
||||
return Z_BUF_ERROR;
|
||||
if (flags & 0x60) {
|
||||
strm->msg = (char *)"unknown lzw flags set";
|
||||
return Z_DATA_ERROR;
|
||||
}
|
||||
max = flags & 0x1f;
|
||||
if (max < 9 || max > 16) {
|
||||
strm->msg = (char *)"lzw bits out of range";
|
||||
return Z_DATA_ERROR;
|
||||
}
|
||||
if (max == 9) /* 9 doesn't really mean 9 */
|
||||
max = 10;
|
||||
flags &= 0x80; /* true if block compress */
|
||||
|
||||
/* clear table */
|
||||
bits = 9;
|
||||
mask = 0x1ff;
|
||||
end = flags ? 256 : 255;
|
||||
|
||||
/* set up: get first 9-bit code, which is the first decompressed byte, but
|
||||
don't create a table entry until the next code */
|
||||
if (NEXT() == -1) /* no compressed data is ok */
|
||||
return Z_OK;
|
||||
final = prev = (unsigned)last; /* low 8 bits of code */
|
||||
if (NEXT() == -1) /* missing a bit */
|
||||
return Z_BUF_ERROR;
|
||||
if (last & 1) { /* code must be < 256 */
|
||||
strm->msg = (char *)"invalid lzw code";
|
||||
return Z_DATA_ERROR;
|
||||
}
|
||||
rem = (unsigned)last >> 1; /* remaining 7 bits */
|
||||
left = 7;
|
||||
chunk = bits - 2; /* 7 bytes left in this chunk */
|
||||
outbuf[0] = (unsigned char)final; /* write first decompressed byte */
|
||||
outcnt = 1;
|
||||
|
||||
/* decode codes */
|
||||
stack = 0;
|
||||
for (;;) {
|
||||
/* if the table will be full after this, increment the code size */
|
||||
if (end >= mask && bits < max) {
|
||||
FLUSHCODE();
|
||||
bits++;
|
||||
mask <<= 1;
|
||||
mask++;
|
||||
}
|
||||
|
||||
/* get a code of length bits */
|
||||
if (chunk == 0) /* decrement chunk modulo bits */
|
||||
chunk = bits;
|
||||
code = rem; /* low bits of code */
|
||||
if (NEXT() == -1) { /* EOF is end of compressed data */
|
||||
/* write remaining buffered output */
|
||||
if (outcnt && out(&outd, outbuf, outcnt)) {
|
||||
strm->next_in = outbuf; /* signal write error */
|
||||
return Z_BUF_ERROR;
|
||||
}
|
||||
return Z_OK;
|
||||
}
|
||||
code += (unsigned)last << left; /* middle (or high) bits of code */
|
||||
left += 8;
|
||||
chunk--;
|
||||
if (bits > left) { /* need more bits */
|
||||
if (NEXT() == -1) /* can't end in middle of code */
|
||||
return Z_BUF_ERROR;
|
||||
code += (unsigned)last << left; /* high bits of code */
|
||||
left += 8;
|
||||
chunk--;
|
||||
}
|
||||
code &= mask; /* mask to current code length */
|
||||
left -= bits; /* number of unused bits */
|
||||
rem = (unsigned)last >> (8 - left); /* unused bits from last byte */
|
||||
|
||||
/* process clear code (256) */
|
||||
if (code == 256 && flags) {
|
||||
FLUSHCODE();
|
||||
bits = 9; /* initialize bits and mask */
|
||||
mask = 0x1ff;
|
||||
end = 255; /* empty table */
|
||||
continue; /* get next code */
|
||||
}
|
||||
|
||||
/* special code to reuse last match */
|
||||
temp = code; /* save the current code */
|
||||
if (code > end) {
|
||||
/* Be picky on the allowed code here, and make sure that the code
|
||||
we drop through (prev) will be a valid index so that random
|
||||
input does not cause an exception. The code != end + 1 check is
|
||||
empirically derived, and not checked in the original uncompress
|
||||
code. If this ever causes a problem, that check could be safely
|
||||
removed. Leaving this check in greatly improves gun's ability
|
||||
to detect random or corrupted input after a compress header.
|
||||
In any case, the prev > end check must be retained. */
|
||||
if (code != end + 1 || prev > end) {
|
||||
strm->msg = (char *)"invalid lzw code";
|
||||
return Z_DATA_ERROR;
|
||||
}
|
||||
match[stack++] = (unsigned char)final;
|
||||
code = prev;
|
||||
}
|
||||
|
||||
/* walk through linked list to generate output in reverse order */
|
||||
p = match + stack;
|
||||
while (code >= 256) {
|
||||
*p++ = suffix[code];
|
||||
code = prefix[code];
|
||||
}
|
||||
stack = p - match;
|
||||
match[stack++] = (unsigned char)code;
|
||||
final = code;
|
||||
|
||||
/* link new table entry */
|
||||
if (end < mask) {
|
||||
end++;
|
||||
prefix[end] = (unsigned short)prev;
|
||||
suffix[end] = (unsigned char)final;
|
||||
}
|
||||
|
||||
/* set previous code for next iteration */
|
||||
prev = temp;
|
||||
|
||||
/* write output in forward order */
|
||||
while (stack > SIZE - outcnt) {
|
||||
while (outcnt < SIZE)
|
||||
outbuf[outcnt++] = match[--stack];
|
||||
if (out(&outd, outbuf, outcnt)) {
|
||||
strm->next_in = outbuf; /* signal write error */
|
||||
return Z_BUF_ERROR;
|
||||
}
|
||||
outcnt = 0;
|
||||
}
|
||||
p = match + stack;
|
||||
do {
|
||||
outbuf[outcnt++] = *--p;
|
||||
} while (p > match);
|
||||
stack = 0;
|
||||
|
||||
/* loop for next code with final and prev as the last match, rem and
|
||||
left provide the first 0..7 bits of the next code, end is the last
|
||||
valid table entry */
|
||||
}
|
||||
}
|
||||
|
||||
/* Decompress a gzip file from infile to outfile. strm is assumed to have been
|
||||
successfully initialized with inflateBackInit(). The input file may consist
|
||||
of a series of gzip streams, in which case all of them will be decompressed
|
||||
to the output file. If outfile is -1, then the gzip stream(s) integrity is
|
||||
checked and nothing is written.
|
||||
|
||||
The return value is a zlib error code: Z_MEM_ERROR if out of memory,
|
||||
Z_DATA_ERROR if the header or the compressed data is invalid, or if the
|
||||
trailer CRC-32 check or length doesn't match, Z_BUF_ERROR if the input ends
|
||||
prematurely or a write error occurs, or Z_ERRNO if junk (not a another gzip
|
||||
stream) follows a valid gzip stream.
|
||||
*/
|
||||
local int gunpipe(z_stream *strm, int infile, int outfile)
|
||||
{
|
||||
int ret, first, last;
|
||||
unsigned have, flags, len;
|
||||
z_const unsigned char *next = NULL;
|
||||
struct ind ind, *indp;
|
||||
struct outd outd;
|
||||
|
||||
/* setup input buffer */
|
||||
ind.infile = infile;
|
||||
ind.inbuf = inbuf;
|
||||
indp = &ind;
|
||||
|
||||
/* decompress concatenated gzip streams */
|
||||
have = 0; /* no input data read in yet */
|
||||
first = 1; /* looking for first gzip header */
|
||||
strm->next_in = Z_NULL; /* so Z_BUF_ERROR means EOF */
|
||||
for (;;) {
|
||||
/* look for the two magic header bytes for a gzip stream */
|
||||
if (NEXT() == -1) {
|
||||
ret = Z_OK;
|
||||
break; /* empty gzip stream is ok */
|
||||
}
|
||||
if (last != 31 || (NEXT() != 139 && last != 157)) {
|
||||
strm->msg = (char *)"incorrect header check";
|
||||
ret = first ? Z_DATA_ERROR : Z_ERRNO;
|
||||
break; /* not a gzip or compress header */
|
||||
}
|
||||
first = 0; /* next non-header is junk */
|
||||
|
||||
/* process a compress (LZW) file -- can't be concatenated after this */
|
||||
if (last == 157) {
|
||||
ret = lunpipe(have, next, indp, outfile, strm);
|
||||
break;
|
||||
}
|
||||
|
||||
/* process remainder of gzip header */
|
||||
ret = Z_BUF_ERROR;
|
||||
if (NEXT() != 8) { /* only deflate method allowed */
|
||||
if (last == -1) break;
|
||||
strm->msg = (char *)"unknown compression method";
|
||||
ret = Z_DATA_ERROR;
|
||||
break;
|
||||
}
|
||||
flags = NEXT(); /* header flags */
|
||||
NEXT(); /* discard mod time, xflgs, os */
|
||||
NEXT();
|
||||
NEXT();
|
||||
NEXT();
|
||||
NEXT();
|
||||
NEXT();
|
||||
if (last == -1) break;
|
||||
if (flags & 0xe0) {
|
||||
strm->msg = (char *)"unknown header flags set";
|
||||
ret = Z_DATA_ERROR;
|
||||
break;
|
||||
}
|
||||
if (flags & 4) { /* extra field */
|
||||
len = NEXT();
|
||||
len += (unsigned)(NEXT()) << 8;
|
||||
if (last == -1) break;
|
||||
while (len > have) {
|
||||
len -= have;
|
||||
have = 0;
|
||||
if (NEXT() == -1) break;
|
||||
len--;
|
||||
}
|
||||
if (last == -1) break;
|
||||
have -= len;
|
||||
next += len;
|
||||
}
|
||||
if (flags & 8) /* file name */
|
||||
while (NEXT() != 0 && last != -1)
|
||||
;
|
||||
if (flags & 16) /* comment */
|
||||
while (NEXT() != 0 && last != -1)
|
||||
;
|
||||
if (flags & 2) { /* header crc */
|
||||
NEXT();
|
||||
NEXT();
|
||||
}
|
||||
if (last == -1) break;
|
||||
|
||||
/* set up output */
|
||||
outd.outfile = outfile;
|
||||
outd.check = 1;
|
||||
outd.crc = crc32(0L, Z_NULL, 0);
|
||||
outd.total = 0;
|
||||
|
||||
/* decompress data to output */
|
||||
strm->next_in = next;
|
||||
strm->avail_in = have;
|
||||
ret = inflateBack(strm, in, indp, out, &outd);
|
||||
if (ret != Z_STREAM_END) break;
|
||||
next = strm->next_in;
|
||||
have = strm->avail_in;
|
||||
strm->next_in = Z_NULL; /* so Z_BUF_ERROR means EOF */
|
||||
|
||||
/* check trailer */
|
||||
ret = Z_BUF_ERROR;
|
||||
if (NEXT() != (int)(outd.crc & 0xff) ||
|
||||
NEXT() != (int)((outd.crc >> 8) & 0xff) ||
|
||||
NEXT() != (int)((outd.crc >> 16) & 0xff) ||
|
||||
NEXT() != (int)((outd.crc >> 24) & 0xff)) {
|
||||
/* crc error */
|
||||
if (last != -1) {
|
||||
strm->msg = (char *)"incorrect data check";
|
||||
ret = Z_DATA_ERROR;
|
||||
}
|
||||
break;
|
||||
}
|
||||
if (NEXT() != (int)(outd.total & 0xff) ||
|
||||
NEXT() != (int)((outd.total >> 8) & 0xff) ||
|
||||
NEXT() != (int)((outd.total >> 16) & 0xff) ||
|
||||
NEXT() != (int)((outd.total >> 24) & 0xff)) {
|
||||
/* length error */
|
||||
if (last != -1) {
|
||||
strm->msg = (char *)"incorrect length check";
|
||||
ret = Z_DATA_ERROR;
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
/* go back and look for another gzip stream */
|
||||
}
|
||||
|
||||
/* clean up and return */
|
||||
return ret;
|
||||
}
|
||||
|
||||
/* Copy file attributes, from -> to, as best we can. This is best effort, so
|
||||
no errors are reported. The mode bits, including suid, sgid, and the sticky
|
||||
bit are copied (if allowed), the owner's user id and group id are copied
|
||||
(again if allowed), and the access and modify times are copied. */
|
||||
local void copymeta(char *from, char *to)
|
||||
{
|
||||
struct stat was;
|
||||
struct utimbuf when;
|
||||
|
||||
/* get all of from's Unix meta data, return if not a regular file */
|
||||
if (stat(from, &was) != 0 || (was.st_mode & S_IFMT) != S_IFREG)
|
||||
return;
|
||||
|
||||
/* set to's mode bits, ignore errors */
|
||||
(void)chmod(to, was.st_mode & 07777);
|
||||
|
||||
/* copy owner's user and group, ignore errors */
|
||||
(void)chown(to, was.st_uid, was.st_gid);
|
||||
|
||||
/* copy access and modify times, ignore errors */
|
||||
when.actime = was.st_atime;
|
||||
when.modtime = was.st_mtime;
|
||||
(void)utime(to, &when);
|
||||
}
|
||||
|
||||
/* Decompress the file inname to the file outnname, of if test is true, just
|
||||
decompress without writing and check the gzip trailer for integrity. If
|
||||
inname is NULL or an empty string, read from stdin. If outname is NULL or
|
||||
an empty string, write to stdout. strm is a pre-initialized inflateBack
|
||||
structure. When appropriate, copy the file attributes from inname to
|
||||
outname.
|
||||
|
||||
gunzip() returns 1 if there is an out-of-memory error or an unexpected
|
||||
return code from gunpipe(). Otherwise it returns 0.
|
||||
*/
|
||||
local int gunzip(z_stream *strm, char *inname, char *outname, int test)
|
||||
{
|
||||
int ret;
|
||||
int infile, outfile;
|
||||
|
||||
/* open files */
|
||||
if (inname == NULL || *inname == 0) {
|
||||
inname = "-";
|
||||
infile = 0; /* stdin */
|
||||
}
|
||||
else {
|
||||
infile = open(inname, O_RDONLY, 0);
|
||||
if (infile == -1) {
|
||||
fprintf(stderr, "gun cannot open %s\n", inname);
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
if (test)
|
||||
outfile = -1;
|
||||
else if (outname == NULL || *outname == 0) {
|
||||
outname = "-";
|
||||
outfile = 1; /* stdout */
|
||||
}
|
||||
else {
|
||||
outfile = open(outname, O_CREAT | O_TRUNC | O_WRONLY, 0666);
|
||||
if (outfile == -1) {
|
||||
close(infile);
|
||||
fprintf(stderr, "gun cannot create %s\n", outname);
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
errno = 0;
|
||||
|
||||
/* decompress */
|
||||
ret = gunpipe(strm, infile, outfile);
|
||||
if (outfile > 2) close(outfile);
|
||||
if (infile > 2) close(infile);
|
||||
|
||||
/* interpret result */
|
||||
switch (ret) {
|
||||
case Z_OK:
|
||||
case Z_ERRNO:
|
||||
if (infile > 2 && outfile > 2) {
|
||||
copymeta(inname, outname); /* copy attributes */
|
||||
unlink(inname);
|
||||
}
|
||||
if (ret == Z_ERRNO)
|
||||
fprintf(stderr, "gun warning: trailing garbage ignored in %s\n",
|
||||
inname);
|
||||
break;
|
||||
case Z_DATA_ERROR:
|
||||
if (outfile > 2) unlink(outname);
|
||||
fprintf(stderr, "gun data error on %s: %s\n", inname, strm->msg);
|
||||
break;
|
||||
case Z_MEM_ERROR:
|
||||
if (outfile > 2) unlink(outname);
|
||||
fprintf(stderr, "gun out of memory error--aborting\n");
|
||||
return 1;
|
||||
case Z_BUF_ERROR:
|
||||
if (outfile > 2) unlink(outname);
|
||||
if (strm->next_in != Z_NULL) {
|
||||
fprintf(stderr, "gun write error on %s: %s\n",
|
||||
outname, strerror(errno));
|
||||
}
|
||||
else if (errno) {
|
||||
fprintf(stderr, "gun read error on %s: %s\n",
|
||||
inname, strerror(errno));
|
||||
}
|
||||
else {
|
||||
fprintf(stderr, "gun unexpected end of file on %s\n",
|
||||
inname);
|
||||
}
|
||||
break;
|
||||
default:
|
||||
if (outfile > 2) unlink(outname);
|
||||
fprintf(stderr, "gun internal error--aborting\n");
|
||||
return 1;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Process the gun command line arguments. See the command syntax near the
|
||||
beginning of this source file. */
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
int ret, len, test;
|
||||
char *outname;
|
||||
unsigned char *window;
|
||||
z_stream strm;
|
||||
|
||||
/* initialize inflateBack state for repeated use */
|
||||
window = match; /* reuse LZW match buffer */
|
||||
strm.zalloc = Z_NULL;
|
||||
strm.zfree = Z_NULL;
|
||||
strm.opaque = Z_NULL;
|
||||
ret = inflateBackInit(&strm, 15, window);
|
||||
if (ret != Z_OK) {
|
||||
fprintf(stderr, "gun out of memory error--aborting\n");
|
||||
return 1;
|
||||
}
|
||||
|
||||
/* decompress each file to the same name with the suffix removed */
|
||||
argc--;
|
||||
argv++;
|
||||
test = 0;
|
||||
if (argc && strcmp(*argv, "-h") == 0) {
|
||||
fprintf(stderr, "gun 1.6 (17 Jan 2010)\n");
|
||||
fprintf(stderr, "Copyright (C) 2003-2010 Mark Adler\n");
|
||||
fprintf(stderr, "usage: gun [-t] [file1.gz [file2.Z ...]]\n");
|
||||
return 0;
|
||||
}
|
||||
if (argc && strcmp(*argv, "-t") == 0) {
|
||||
test = 1;
|
||||
argc--;
|
||||
argv++;
|
||||
}
|
||||
if (argc)
|
||||
do {
|
||||
if (test)
|
||||
outname = NULL;
|
||||
else {
|
||||
len = (int)strlen(*argv);
|
||||
if (strcmp(*argv + len - 3, ".gz") == 0 ||
|
||||
strcmp(*argv + len - 3, "-gz") == 0)
|
||||
len -= 3;
|
||||
else if (strcmp(*argv + len - 2, ".z") == 0 ||
|
||||
strcmp(*argv + len - 2, "-z") == 0 ||
|
||||
strcmp(*argv + len - 2, "_z") == 0 ||
|
||||
strcmp(*argv + len - 2, ".Z") == 0)
|
||||
len -= 2;
|
||||
else {
|
||||
fprintf(stderr, "gun error: no gz type on %s--skipping\n",
|
||||
*argv);
|
||||
continue;
|
||||
}
|
||||
outname = malloc(len + 1);
|
||||
if (outname == NULL) {
|
||||
fprintf(stderr, "gun out of memory error--aborting\n");
|
||||
ret = 1;
|
||||
break;
|
||||
}
|
||||
memcpy(outname, *argv, len);
|
||||
outname[len] = 0;
|
||||
}
|
||||
ret = gunzip(&strm, *argv, outname, test);
|
||||
if (outname != NULL) free(outname);
|
||||
if (ret) break;
|
||||
} while (argv++, --argc);
|
||||
else
|
||||
ret = gunzip(&strm, NULL, NULL, test);
|
||||
|
||||
/* clean up */
|
||||
inflateBackEnd(&strm);
|
||||
return ret;
|
||||
}
|
504
deps/zlib/examples/gzappend.c
vendored
Normal file
504
deps/zlib/examples/gzappend.c
vendored
Normal file
@ -0,0 +1,504 @@
|
||||
/* gzappend -- command to append to a gzip file
|
||||
|
||||
Copyright (C) 2003, 2012 Mark Adler, all rights reserved
|
||||
version 1.2, 11 Oct 2012
|
||||
|
||||
This software is provided 'as-is', without any express or implied
|
||||
warranty. In no event will the author be held liable for any damages
|
||||
arising from the use of this software.
|
||||
|
||||
Permission is granted to anyone to use this software for any purpose,
|
||||
including commercial applications, and to alter it and redistribute it
|
||||
freely, subject to the following restrictions:
|
||||
|
||||
1. The origin of this software must not be misrepresented; you must not
|
||||
claim that you wrote the original software. If you use this software
|
||||
in a product, an acknowledgment in the product documentation would be
|
||||
appreciated but is not required.
|
||||
2. Altered source versions must be plainly marked as such, and must not be
|
||||
misrepresented as being the original software.
|
||||
3. This notice may not be removed or altered from any source distribution.
|
||||
|
||||
Mark Adler madler@alumni.caltech.edu
|
||||
*/
|
||||
|
||||
/*
|
||||
* Change history:
|
||||
*
|
||||
* 1.0 19 Oct 2003 - First version
|
||||
* 1.1 4 Nov 2003 - Expand and clarify some comments and notes
|
||||
* - Add version and copyright to help
|
||||
* - Send help to stdout instead of stderr
|
||||
* - Add some preemptive typecasts
|
||||
* - Add L to constants in lseek() calls
|
||||
* - Remove some debugging information in error messages
|
||||
* - Use new data_type definition for zlib 1.2.1
|
||||
* - Simplify and unify file operations
|
||||
* - Finish off gzip file in gztack()
|
||||
* - Use deflatePrime() instead of adding empty blocks
|
||||
* - Keep gzip file clean on appended file read errors
|
||||
* - Use in-place rotate instead of auxiliary buffer
|
||||
* (Why you ask? Because it was fun to write!)
|
||||
* 1.2 11 Oct 2012 - Fix for proper z_const usage
|
||||
* - Check for input buffer malloc failure
|
||||
*/
|
||||
|
||||
/*
|
||||
gzappend takes a gzip file and appends to it, compressing files from the
|
||||
command line or data from stdin. The gzip file is written to directly, to
|
||||
avoid copying that file, in case it's large. Note that this results in the
|
||||
unfriendly behavior that if gzappend fails, the gzip file is corrupted.
|
||||
|
||||
This program was written to illustrate the use of the new Z_BLOCK option of
|
||||
zlib 1.2.x's inflate() function. This option returns from inflate() at each
|
||||
block boundary to facilitate locating and modifying the last block bit at
|
||||
the start of the final deflate block. Also whether using Z_BLOCK or not,
|
||||
another required feature of zlib 1.2.x is that inflate() now provides the
|
||||
number of unused bits in the last input byte used. gzappend will not work
|
||||
with versions of zlib earlier than 1.2.1.
|
||||
|
||||
gzappend first decompresses the gzip file internally, discarding all but
|
||||
the last 32K of uncompressed data, and noting the location of the last block
|
||||
bit and the number of unused bits in the last byte of the compressed data.
|
||||
The gzip trailer containing the CRC-32 and length of the uncompressed data
|
||||
is verified. This trailer will be later overwritten.
|
||||
|
||||
Then the last block bit is cleared by seeking back in the file and rewriting
|
||||
the byte that contains it. Seeking forward, the last byte of the compressed
|
||||
data is saved along with the number of unused bits to initialize deflate.
|
||||
|
||||
A deflate process is initialized, using the last 32K of the uncompressed
|
||||
data from the gzip file to initialize the dictionary. If the total
|
||||
uncompressed data was less than 32K, then all of it is used to initialize
|
||||
the dictionary. The deflate output bit buffer is also initialized with the
|
||||
last bits from the original deflate stream. From here on, the data to
|
||||
append is simply compressed using deflate, and written to the gzip file.
|
||||
When that is complete, the new CRC-32 and uncompressed length are written
|
||||
as the trailer of the gzip file.
|
||||
*/
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
#include <fcntl.h>
|
||||
#include <unistd.h>
|
||||
#include "zlib.h"
|
||||
|
||||
#define local static
|
||||
#define LGCHUNK 14
|
||||
#define CHUNK (1U << LGCHUNK)
|
||||
#define DSIZE 32768U
|
||||
|
||||
/* print an error message and terminate with extreme prejudice */
|
||||
local void bye(char *msg1, char *msg2)
|
||||
{
|
||||
fprintf(stderr, "gzappend error: %s%s\n", msg1, msg2);
|
||||
exit(1);
|
||||
}
|
||||
|
||||
/* return the greatest common divisor of a and b using Euclid's algorithm,
|
||||
modified to be fast when one argument much greater than the other, and
|
||||
coded to avoid unnecessary swapping */
|
||||
local unsigned gcd(unsigned a, unsigned b)
|
||||
{
|
||||
unsigned c;
|
||||
|
||||
while (a && b)
|
||||
if (a > b) {
|
||||
c = b;
|
||||
while (a - c >= c)
|
||||
c <<= 1;
|
||||
a -= c;
|
||||
}
|
||||
else {
|
||||
c = a;
|
||||
while (b - c >= c)
|
||||
c <<= 1;
|
||||
b -= c;
|
||||
}
|
||||
return a + b;
|
||||
}
|
||||
|
||||
/* rotate list[0..len-1] left by rot positions, in place */
|
||||
local void rotate(unsigned char *list, unsigned len, unsigned rot)
|
||||
{
|
||||
unsigned char tmp;
|
||||
unsigned cycles;
|
||||
unsigned char *start, *last, *to, *from;
|
||||
|
||||
/* normalize rot and handle degenerate cases */
|
||||
if (len < 2) return;
|
||||
if (rot >= len) rot %= len;
|
||||
if (rot == 0) return;
|
||||
|
||||
/* pointer to last entry in list */
|
||||
last = list + (len - 1);
|
||||
|
||||
/* do simple left shift by one */
|
||||
if (rot == 1) {
|
||||
tmp = *list;
|
||||
memmove(list, list + 1, len - 1);
|
||||
*last = tmp;
|
||||
return;
|
||||
}
|
||||
|
||||
/* do simple right shift by one */
|
||||
if (rot == len - 1) {
|
||||
tmp = *last;
|
||||
memmove(list + 1, list, len - 1);
|
||||
*list = tmp;
|
||||
return;
|
||||
}
|
||||
|
||||
/* otherwise do rotate as a set of cycles in place */
|
||||
cycles = gcd(len, rot); /* number of cycles */
|
||||
do {
|
||||
start = from = list + cycles; /* start index is arbitrary */
|
||||
tmp = *from; /* save entry to be overwritten */
|
||||
for (;;) {
|
||||
to = from; /* next step in cycle */
|
||||
from += rot; /* go right rot positions */
|
||||
if (from > last) from -= len; /* (pointer better not wrap) */
|
||||
if (from == start) break; /* all but one shifted */
|
||||
*to = *from; /* shift left */
|
||||
}
|
||||
*to = tmp; /* complete the circle */
|
||||
} while (--cycles);
|
||||
}
|
||||
|
||||
/* structure for gzip file read operations */
|
||||
typedef struct {
|
||||
int fd; /* file descriptor */
|
||||
int size; /* 1 << size is bytes in buf */
|
||||
unsigned left; /* bytes available at next */
|
||||
unsigned char *buf; /* buffer */
|
||||
z_const unsigned char *next; /* next byte in buffer */
|
||||
char *name; /* file name for error messages */
|
||||
} file;
|
||||
|
||||
/* reload buffer */
|
||||
local int readin(file *in)
|
||||
{
|
||||
int len;
|
||||
|
||||
len = read(in->fd, in->buf, 1 << in->size);
|
||||
if (len == -1) bye("error reading ", in->name);
|
||||
in->left = (unsigned)len;
|
||||
in->next = in->buf;
|
||||
return len;
|
||||
}
|
||||
|
||||
/* read from file in, exit if end-of-file */
|
||||
local int readmore(file *in)
|
||||
{
|
||||
if (readin(in) == 0) bye("unexpected end of ", in->name);
|
||||
return 0;
|
||||
}
|
||||
|
||||
#define read1(in) (in->left == 0 ? readmore(in) : 0, \
|
||||
in->left--, *(in->next)++)
|
||||
|
||||
/* skip over n bytes of in */
|
||||
local void skip(file *in, unsigned n)
|
||||
{
|
||||
unsigned bypass;
|
||||
|
||||
if (n > in->left) {
|
||||
n -= in->left;
|
||||
bypass = n & ~((1U << in->size) - 1);
|
||||
if (bypass) {
|
||||
if (lseek(in->fd, (off_t)bypass, SEEK_CUR) == -1)
|
||||
bye("seeking ", in->name);
|
||||
n -= bypass;
|
||||
}
|
||||
readmore(in);
|
||||
if (n > in->left)
|
||||
bye("unexpected end of ", in->name);
|
||||
}
|
||||
in->left -= n;
|
||||
in->next += n;
|
||||
}
|
||||
|
||||
/* read a four-byte unsigned integer, little-endian, from in */
|
||||
unsigned long read4(file *in)
|
||||
{
|
||||
unsigned long val;
|
||||
|
||||
val = read1(in);
|
||||
val += (unsigned)read1(in) << 8;
|
||||
val += (unsigned long)read1(in) << 16;
|
||||
val += (unsigned long)read1(in) << 24;
|
||||
return val;
|
||||
}
|
||||
|
||||
/* skip over gzip header */
|
||||
local void gzheader(file *in)
|
||||
{
|
||||
int flags;
|
||||
unsigned n;
|
||||
|
||||
if (read1(in) != 31 || read1(in) != 139) bye(in->name, " not a gzip file");
|
||||
if (read1(in) != 8) bye("unknown compression method in", in->name);
|
||||
flags = read1(in);
|
||||
if (flags & 0xe0) bye("unknown header flags set in", in->name);
|
||||
skip(in, 6);
|
||||
if (flags & 4) {
|
||||
n = read1(in);
|
||||
n += (unsigned)(read1(in)) << 8;
|
||||
skip(in, n);
|
||||
}
|
||||
if (flags & 8) while (read1(in) != 0) ;
|
||||
if (flags & 16) while (read1(in) != 0) ;
|
||||
if (flags & 2) skip(in, 2);
|
||||
}
|
||||
|
||||
/* decompress gzip file "name", return strm with a deflate stream ready to
|
||||
continue compression of the data in the gzip file, and return a file
|
||||
descriptor pointing to where to write the compressed data -- the deflate
|
||||
stream is initialized to compress using level "level" */
|
||||
local int gzscan(char *name, z_stream *strm, int level)
|
||||
{
|
||||
int ret, lastbit, left, full;
|
||||
unsigned have;
|
||||
unsigned long crc, tot;
|
||||
unsigned char *window;
|
||||
off_t lastoff, end;
|
||||
file gz;
|
||||
|
||||
/* open gzip file */
|
||||
gz.name = name;
|
||||
gz.fd = open(name, O_RDWR, 0);
|
||||
if (gz.fd == -1) bye("cannot open ", name);
|
||||
gz.buf = malloc(CHUNK);
|
||||
if (gz.buf == NULL) bye("out of memory", "");
|
||||
gz.size = LGCHUNK;
|
||||
gz.left = 0;
|
||||
|
||||
/* skip gzip header */
|
||||
gzheader(&gz);
|
||||
|
||||
/* prepare to decompress */
|
||||
window = malloc(DSIZE);
|
||||
if (window == NULL) bye("out of memory", "");
|
||||
strm->zalloc = Z_NULL;
|
||||
strm->zfree = Z_NULL;
|
||||
strm->opaque = Z_NULL;
|
||||
ret = inflateInit2(strm, -15);
|
||||
if (ret != Z_OK) bye("out of memory", " or library mismatch");
|
||||
|
||||
/* decompress the deflate stream, saving append information */
|
||||
lastbit = 0;
|
||||
lastoff = lseek(gz.fd, 0L, SEEK_CUR) - gz.left;
|
||||
left = 0;
|
||||
strm->avail_in = gz.left;
|
||||
strm->next_in = gz.next;
|
||||
crc = crc32(0L, Z_NULL, 0);
|
||||
have = full = 0;
|
||||
do {
|
||||
/* if needed, get more input */
|
||||
if (strm->avail_in == 0) {
|
||||
readmore(&gz);
|
||||
strm->avail_in = gz.left;
|
||||
strm->next_in = gz.next;
|
||||
}
|
||||
|
||||
/* set up output to next available section of sliding window */
|
||||
strm->avail_out = DSIZE - have;
|
||||
strm->next_out = window + have;
|
||||
|
||||
/* inflate and check for errors */
|
||||
ret = inflate(strm, Z_BLOCK);
|
||||
if (ret == Z_STREAM_ERROR) bye("internal stream error!", "");
|
||||
if (ret == Z_MEM_ERROR) bye("out of memory", "");
|
||||
if (ret == Z_DATA_ERROR)
|
||||
bye("invalid compressed data--format violated in", name);
|
||||
|
||||
/* update crc and sliding window pointer */
|
||||
crc = crc32(crc, window + have, DSIZE - have - strm->avail_out);
|
||||
if (strm->avail_out)
|
||||
have = DSIZE - strm->avail_out;
|
||||
else {
|
||||
have = 0;
|
||||
full = 1;
|
||||
}
|
||||
|
||||
/* process end of block */
|
||||
if (strm->data_type & 128) {
|
||||
if (strm->data_type & 64)
|
||||
left = strm->data_type & 0x1f;
|
||||
else {
|
||||
lastbit = strm->data_type & 0x1f;
|
||||
lastoff = lseek(gz.fd, 0L, SEEK_CUR) - strm->avail_in;
|
||||
}
|
||||
}
|
||||
} while (ret != Z_STREAM_END);
|
||||
inflateEnd(strm);
|
||||
gz.left = strm->avail_in;
|
||||
gz.next = strm->next_in;
|
||||
|
||||
/* save the location of the end of the compressed data */
|
||||
end = lseek(gz.fd, 0L, SEEK_CUR) - gz.left;
|
||||
|
||||
/* check gzip trailer and save total for deflate */
|
||||
if (crc != read4(&gz))
|
||||
bye("invalid compressed data--crc mismatch in ", name);
|
||||
tot = strm->total_out;
|
||||
if ((tot & 0xffffffffUL) != read4(&gz))
|
||||
bye("invalid compressed data--length mismatch in", name);
|
||||
|
||||
/* if not at end of file, warn */
|
||||
if (gz.left || readin(&gz))
|
||||
fprintf(stderr,
|
||||
"gzappend warning: junk at end of gzip file overwritten\n");
|
||||
|
||||
/* clear last block bit */
|
||||
lseek(gz.fd, lastoff - (lastbit != 0), SEEK_SET);
|
||||
if (read(gz.fd, gz.buf, 1) != 1) bye("reading after seek on ", name);
|
||||
*gz.buf = (unsigned char)(*gz.buf ^ (1 << ((8 - lastbit) & 7)));
|
||||
lseek(gz.fd, -1L, SEEK_CUR);
|
||||
if (write(gz.fd, gz.buf, 1) != 1) bye("writing after seek to ", name);
|
||||
|
||||
/* if window wrapped, build dictionary from window by rotating */
|
||||
if (full) {
|
||||
rotate(window, DSIZE, have);
|
||||
have = DSIZE;
|
||||
}
|
||||
|
||||
/* set up deflate stream with window, crc, total_in, and leftover bits */
|
||||
ret = deflateInit2(strm, level, Z_DEFLATED, -15, 8, Z_DEFAULT_STRATEGY);
|
||||
if (ret != Z_OK) bye("out of memory", "");
|
||||
deflateSetDictionary(strm, window, have);
|
||||
strm->adler = crc;
|
||||
strm->total_in = tot;
|
||||
if (left) {
|
||||
lseek(gz.fd, --end, SEEK_SET);
|
||||
if (read(gz.fd, gz.buf, 1) != 1) bye("reading after seek on ", name);
|
||||
deflatePrime(strm, 8 - left, *gz.buf);
|
||||
}
|
||||
lseek(gz.fd, end, SEEK_SET);
|
||||
|
||||
/* clean up and return */
|
||||
free(window);
|
||||
free(gz.buf);
|
||||
return gz.fd;
|
||||
}
|
||||
|
||||
/* append file "name" to gzip file gd using deflate stream strm -- if last
|
||||
is true, then finish off the deflate stream at the end */
|
||||
local void gztack(char *name, int gd, z_stream *strm, int last)
|
||||
{
|
||||
int fd, len, ret;
|
||||
unsigned left;
|
||||
unsigned char *in, *out;
|
||||
|
||||
/* open file to compress and append */
|
||||
fd = 0;
|
||||
if (name != NULL) {
|
||||
fd = open(name, O_RDONLY, 0);
|
||||
if (fd == -1)
|
||||
fprintf(stderr, "gzappend warning: %s not found, skipping ...\n",
|
||||
name);
|
||||
}
|
||||
|
||||
/* allocate buffers */
|
||||
in = malloc(CHUNK);
|
||||
out = malloc(CHUNK);
|
||||
if (in == NULL || out == NULL) bye("out of memory", "");
|
||||
|
||||
/* compress input file and append to gzip file */
|
||||
do {
|
||||
/* get more input */
|
||||
len = read(fd, in, CHUNK);
|
||||
if (len == -1) {
|
||||
fprintf(stderr,
|
||||
"gzappend warning: error reading %s, skipping rest ...\n",
|
||||
name);
|
||||
len = 0;
|
||||
}
|
||||
strm->avail_in = (unsigned)len;
|
||||
strm->next_in = in;
|
||||
if (len) strm->adler = crc32(strm->adler, in, (unsigned)len);
|
||||
|
||||
/* compress and write all available output */
|
||||
do {
|
||||
strm->avail_out = CHUNK;
|
||||
strm->next_out = out;
|
||||
ret = deflate(strm, last && len == 0 ? Z_FINISH : Z_NO_FLUSH);
|
||||
left = CHUNK - strm->avail_out;
|
||||
while (left) {
|
||||
len = write(gd, out + CHUNK - strm->avail_out - left, left);
|
||||
if (len == -1) bye("writing gzip file", "");
|
||||
left -= (unsigned)len;
|
||||
}
|
||||
} while (strm->avail_out == 0 && ret != Z_STREAM_END);
|
||||
} while (len != 0);
|
||||
|
||||
/* write trailer after last entry */
|
||||
if (last) {
|
||||
deflateEnd(strm);
|
||||
out[0] = (unsigned char)(strm->adler);
|
||||
out[1] = (unsigned char)(strm->adler >> 8);
|
||||
out[2] = (unsigned char)(strm->adler >> 16);
|
||||
out[3] = (unsigned char)(strm->adler >> 24);
|
||||
out[4] = (unsigned char)(strm->total_in);
|
||||
out[5] = (unsigned char)(strm->total_in >> 8);
|
||||
out[6] = (unsigned char)(strm->total_in >> 16);
|
||||
out[7] = (unsigned char)(strm->total_in >> 24);
|
||||
len = 8;
|
||||
do {
|
||||
ret = write(gd, out + 8 - len, len);
|
||||
if (ret == -1) bye("writing gzip file", "");
|
||||
len -= ret;
|
||||
} while (len);
|
||||
close(gd);
|
||||
}
|
||||
|
||||
/* clean up and return */
|
||||
free(out);
|
||||
free(in);
|
||||
if (fd > 0) close(fd);
|
||||
}
|
||||
|
||||
/* process the compression level option if present, scan the gzip file, and
|
||||
append the specified files, or append the data from stdin if no other file
|
||||
names are provided on the command line -- the gzip file must be writable
|
||||
and seekable */
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
int gd, level;
|
||||
z_stream strm;
|
||||
|
||||
/* ignore command name */
|
||||
argc--; argv++;
|
||||
|
||||
/* provide usage if no arguments */
|
||||
if (*argv == NULL) {
|
||||
printf(
|
||||
"gzappend 1.2 (11 Oct 2012) Copyright (C) 2003, 2012 Mark Adler\n"
|
||||
);
|
||||
printf(
|
||||
"usage: gzappend [-level] file.gz [ addthis [ andthis ... ]]\n");
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* set compression level */
|
||||
level = Z_DEFAULT_COMPRESSION;
|
||||
if (argv[0][0] == '-') {
|
||||
if (argv[0][1] < '0' || argv[0][1] > '9' || argv[0][2] != 0)
|
||||
bye("invalid compression level", "");
|
||||
level = argv[0][1] - '0';
|
||||
if (*++argv == NULL) bye("no gzip file name after options", "");
|
||||
}
|
||||
|
||||
/* prepare to append to gzip file */
|
||||
gd = gzscan(*argv++, &strm, level);
|
||||
|
||||
/* append files on command line, or from stdin if none */
|
||||
if (*argv == NULL)
|
||||
gztack(NULL, gd, &strm, 1);
|
||||
else
|
||||
do {
|
||||
gztack(*argv, gd, &strm, argv[1] == NULL);
|
||||
} while (*++argv != NULL);
|
||||
return 0;
|
||||
}
|
449
deps/zlib/examples/gzjoin.c
vendored
Normal file
449
deps/zlib/examples/gzjoin.c
vendored
Normal file
@ -0,0 +1,449 @@
|
||||
/* gzjoin -- command to join gzip files into one gzip file
|
||||
|
||||
Copyright (C) 2004, 2005, 2012 Mark Adler, all rights reserved
|
||||
version 1.2, 14 Aug 2012
|
||||
|
||||
This software is provided 'as-is', without any express or implied
|
||||
warranty. In no event will the author be held liable for any damages
|
||||
arising from the use of this software.
|
||||
|
||||
Permission is granted to anyone to use this software for any purpose,
|
||||
including commercial applications, and to alter it and redistribute it
|
||||
freely, subject to the following restrictions:
|
||||
|
||||
1. The origin of this software must not be misrepresented; you must not
|
||||
claim that you wrote the original software. If you use this software
|
||||
in a product, an acknowledgment in the product documentation would be
|
||||
appreciated but is not required.
|
||||
2. Altered source versions must be plainly marked as such, and must not be
|
||||
misrepresented as being the original software.
|
||||
3. This notice may not be removed or altered from any source distribution.
|
||||
|
||||
Mark Adler madler@alumni.caltech.edu
|
||||
*/
|
||||
|
||||
/*
|
||||
* Change history:
|
||||
*
|
||||
* 1.0 11 Dec 2004 - First version
|
||||
* 1.1 12 Jun 2005 - Changed ssize_t to long for portability
|
||||
* 1.2 14 Aug 2012 - Clean up for z_const usage
|
||||
*/
|
||||
|
||||
/*
|
||||
gzjoin takes one or more gzip files on the command line and writes out a
|
||||
single gzip file that will uncompress to the concatenation of the
|
||||
uncompressed data from the individual gzip files. gzjoin does this without
|
||||
having to recompress any of the data and without having to calculate a new
|
||||
crc32 for the concatenated uncompressed data. gzjoin does however have to
|
||||
decompress all of the input data in order to find the bits in the compressed
|
||||
data that need to be modified to concatenate the streams.
|
||||
|
||||
gzjoin does not do an integrity check on the input gzip files other than
|
||||
checking the gzip header and decompressing the compressed data. They are
|
||||
otherwise assumed to be complete and correct.
|
||||
|
||||
Each joint between gzip files removes at least 18 bytes of previous trailer
|
||||
and subsequent header, and inserts an average of about three bytes to the
|
||||
compressed data in order to connect the streams. The output gzip file
|
||||
has a minimal ten-byte gzip header with no file name or modification time.
|
||||
|
||||
This program was written to illustrate the use of the Z_BLOCK option of
|
||||
inflate() and the crc32_combine() function. gzjoin will not compile with
|
||||
versions of zlib earlier than 1.2.3.
|
||||
*/
|
||||
|
||||
#include <stdio.h> /* fputs(), fprintf(), fwrite(), putc() */
|
||||
#include <stdlib.h> /* exit(), malloc(), free() */
|
||||
#include <fcntl.h> /* open() */
|
||||
#include <unistd.h> /* close(), read(), lseek() */
|
||||
#include "zlib.h"
|
||||
/* crc32(), crc32_combine(), inflateInit2(), inflate(), inflateEnd() */
|
||||
|
||||
#define local static
|
||||
|
||||
/* exit with an error (return a value to allow use in an expression) */
|
||||
local int bail(char *why1, char *why2)
|
||||
{
|
||||
fprintf(stderr, "gzjoin error: %s%s, output incomplete\n", why1, why2);
|
||||
exit(1);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* -- simple buffered file input with access to the buffer -- */
|
||||
|
||||
#define CHUNK 32768 /* must be a power of two and fit in unsigned */
|
||||
|
||||
/* bin buffered input file type */
|
||||
typedef struct {
|
||||
char *name; /* name of file for error messages */
|
||||
int fd; /* file descriptor */
|
||||
unsigned left; /* bytes remaining at next */
|
||||
unsigned char *next; /* next byte to read */
|
||||
unsigned char *buf; /* allocated buffer of length CHUNK */
|
||||
} bin;
|
||||
|
||||
/* close a buffered file and free allocated memory */
|
||||
local void bclose(bin *in)
|
||||
{
|
||||
if (in != NULL) {
|
||||
if (in->fd != -1)
|
||||
close(in->fd);
|
||||
if (in->buf != NULL)
|
||||
free(in->buf);
|
||||
free(in);
|
||||
}
|
||||
}
|
||||
|
||||
/* open a buffered file for input, return a pointer to type bin, or NULL on
|
||||
failure */
|
||||
local bin *bopen(char *name)
|
||||
{
|
||||
bin *in;
|
||||
|
||||
in = malloc(sizeof(bin));
|
||||
if (in == NULL)
|
||||
return NULL;
|
||||
in->buf = malloc(CHUNK);
|
||||
in->fd = open(name, O_RDONLY, 0);
|
||||
if (in->buf == NULL || in->fd == -1) {
|
||||
bclose(in);
|
||||
return NULL;
|
||||
}
|
||||
in->left = 0;
|
||||
in->next = in->buf;
|
||||
in->name = name;
|
||||
return in;
|
||||
}
|
||||
|
||||
/* load buffer from file, return -1 on read error, 0 or 1 on success, with
|
||||
1 indicating that end-of-file was reached */
|
||||
local int bload(bin *in)
|
||||
{
|
||||
long len;
|
||||
|
||||
if (in == NULL)
|
||||
return -1;
|
||||
if (in->left != 0)
|
||||
return 0;
|
||||
in->next = in->buf;
|
||||
do {
|
||||
len = (long)read(in->fd, in->buf + in->left, CHUNK - in->left);
|
||||
if (len < 0)
|
||||
return -1;
|
||||
in->left += (unsigned)len;
|
||||
} while (len != 0 && in->left < CHUNK);
|
||||
return len == 0 ? 1 : 0;
|
||||
}
|
||||
|
||||
/* get a byte from the file, bail if end of file */
|
||||
#define bget(in) (in->left ? 0 : bload(in), \
|
||||
in->left ? (in->left--, *(in->next)++) : \
|
||||
bail("unexpected end of file on ", in->name))
|
||||
|
||||
/* get a four-byte little-endian unsigned integer from file */
|
||||
local unsigned long bget4(bin *in)
|
||||
{
|
||||
unsigned long val;
|
||||
|
||||
val = bget(in);
|
||||
val += (unsigned long)(bget(in)) << 8;
|
||||
val += (unsigned long)(bget(in)) << 16;
|
||||
val += (unsigned long)(bget(in)) << 24;
|
||||
return val;
|
||||
}
|
||||
|
||||
/* skip bytes in file */
|
||||
local void bskip(bin *in, unsigned skip)
|
||||
{
|
||||
/* check pointer */
|
||||
if (in == NULL)
|
||||
return;
|
||||
|
||||
/* easy case -- skip bytes in buffer */
|
||||
if (skip <= in->left) {
|
||||
in->left -= skip;
|
||||
in->next += skip;
|
||||
return;
|
||||
}
|
||||
|
||||
/* skip what's in buffer, discard buffer contents */
|
||||
skip -= in->left;
|
||||
in->left = 0;
|
||||
|
||||
/* seek past multiples of CHUNK bytes */
|
||||
if (skip > CHUNK) {
|
||||
unsigned left;
|
||||
|
||||
left = skip & (CHUNK - 1);
|
||||
if (left == 0) {
|
||||
/* exact number of chunks: seek all the way minus one byte to check
|
||||
for end-of-file with a read */
|
||||
lseek(in->fd, skip - 1, SEEK_CUR);
|
||||
if (read(in->fd, in->buf, 1) != 1)
|
||||
bail("unexpected end of file on ", in->name);
|
||||
return;
|
||||
}
|
||||
|
||||
/* skip the integral chunks, update skip with remainder */
|
||||
lseek(in->fd, skip - left, SEEK_CUR);
|
||||
skip = left;
|
||||
}
|
||||
|
||||
/* read more input and skip remainder */
|
||||
bload(in);
|
||||
if (skip > in->left)
|
||||
bail("unexpected end of file on ", in->name);
|
||||
in->left -= skip;
|
||||
in->next += skip;
|
||||
}
|
||||
|
||||
/* -- end of buffered input functions -- */
|
||||
|
||||
/* skip the gzip header from file in */
|
||||
local void gzhead(bin *in)
|
||||
{
|
||||
int flags;
|
||||
|
||||
/* verify gzip magic header and compression method */
|
||||
if (bget(in) != 0x1f || bget(in) != 0x8b || bget(in) != 8)
|
||||
bail(in->name, " is not a valid gzip file");
|
||||
|
||||
/* get and verify flags */
|
||||
flags = bget(in);
|
||||
if ((flags & 0xe0) != 0)
|
||||
bail("unknown reserved bits set in ", in->name);
|
||||
|
||||
/* skip modification time, extra flags, and os */
|
||||
bskip(in, 6);
|
||||
|
||||
/* skip extra field if present */
|
||||
if (flags & 4) {
|
||||
unsigned len;
|
||||
|
||||
len = bget(in);
|
||||
len += (unsigned)(bget(in)) << 8;
|
||||
bskip(in, len);
|
||||
}
|
||||
|
||||
/* skip file name if present */
|
||||
if (flags & 8)
|
||||
while (bget(in) != 0)
|
||||
;
|
||||
|
||||
/* skip comment if present */
|
||||
if (flags & 16)
|
||||
while (bget(in) != 0)
|
||||
;
|
||||
|
||||
/* skip header crc if present */
|
||||
if (flags & 2)
|
||||
bskip(in, 2);
|
||||
}
|
||||
|
||||
/* write a four-byte little-endian unsigned integer to out */
|
||||
local void put4(unsigned long val, FILE *out)
|
||||
{
|
||||
putc(val & 0xff, out);
|
||||
putc((val >> 8) & 0xff, out);
|
||||
putc((val >> 16) & 0xff, out);
|
||||
putc((val >> 24) & 0xff, out);
|
||||
}
|
||||
|
||||
/* Load up zlib stream from buffered input, bail if end of file */
|
||||
local void zpull(z_streamp strm, bin *in)
|
||||
{
|
||||
if (in->left == 0)
|
||||
bload(in);
|
||||
if (in->left == 0)
|
||||
bail("unexpected end of file on ", in->name);
|
||||
strm->avail_in = in->left;
|
||||
strm->next_in = in->next;
|
||||
}
|
||||
|
||||
/* Write header for gzip file to out and initialize trailer. */
|
||||
local void gzinit(unsigned long *crc, unsigned long *tot, FILE *out)
|
||||
{
|
||||
fwrite("\x1f\x8b\x08\0\0\0\0\0\0\xff", 1, 10, out);
|
||||
*crc = crc32(0L, Z_NULL, 0);
|
||||
*tot = 0;
|
||||
}
|
||||
|
||||
/* Copy the compressed data from name, zeroing the last block bit of the last
|
||||
block if clr is true, and adding empty blocks as needed to get to a byte
|
||||
boundary. If clr is false, then the last block becomes the last block of
|
||||
the output, and the gzip trailer is written. crc and tot maintains the
|
||||
crc and length (modulo 2^32) of the output for the trailer. The resulting
|
||||
gzip file is written to out. gzinit() must be called before the first call
|
||||
of gzcopy() to write the gzip header and to initialize crc and tot. */
|
||||
local void gzcopy(char *name, int clr, unsigned long *crc, unsigned long *tot,
|
||||
FILE *out)
|
||||
{
|
||||
int ret; /* return value from zlib functions */
|
||||
int pos; /* where the "last block" bit is in byte */
|
||||
int last; /* true if processing the last block */
|
||||
bin *in; /* buffered input file */
|
||||
unsigned char *start; /* start of compressed data in buffer */
|
||||
unsigned char *junk; /* buffer for uncompressed data -- discarded */
|
||||
z_off_t len; /* length of uncompressed data (support > 4 GB) */
|
||||
z_stream strm; /* zlib inflate stream */
|
||||
|
||||
/* open gzip file and skip header */
|
||||
in = bopen(name);
|
||||
if (in == NULL)
|
||||
bail("could not open ", name);
|
||||
gzhead(in);
|
||||
|
||||
/* allocate buffer for uncompressed data and initialize raw inflate
|
||||
stream */
|
||||
junk = malloc(CHUNK);
|
||||
strm.zalloc = Z_NULL;
|
||||
strm.zfree = Z_NULL;
|
||||
strm.opaque = Z_NULL;
|
||||
strm.avail_in = 0;
|
||||
strm.next_in = Z_NULL;
|
||||
ret = inflateInit2(&strm, -15);
|
||||
if (junk == NULL || ret != Z_OK)
|
||||
bail("out of memory", "");
|
||||
|
||||
/* inflate and copy compressed data, clear last-block bit if requested */
|
||||
len = 0;
|
||||
zpull(&strm, in);
|
||||
start = in->next;
|
||||
last = start[0] & 1;
|
||||
if (last && clr)
|
||||
start[0] &= ~1;
|
||||
strm.avail_out = 0;
|
||||
for (;;) {
|
||||
/* if input used and output done, write used input and get more */
|
||||
if (strm.avail_in == 0 && strm.avail_out != 0) {
|
||||
fwrite(start, 1, strm.next_in - start, out);
|
||||
start = in->buf;
|
||||
in->left = 0;
|
||||
zpull(&strm, in);
|
||||
}
|
||||
|
||||
/* decompress -- return early when end-of-block reached */
|
||||
strm.avail_out = CHUNK;
|
||||
strm.next_out = junk;
|
||||
ret = inflate(&strm, Z_BLOCK);
|
||||
switch (ret) {
|
||||
case Z_MEM_ERROR:
|
||||
bail("out of memory", "");
|
||||
case Z_DATA_ERROR:
|
||||
bail("invalid compressed data in ", in->name);
|
||||
}
|
||||
|
||||
/* update length of uncompressed data */
|
||||
len += CHUNK - strm.avail_out;
|
||||
|
||||
/* check for block boundary (only get this when block copied out) */
|
||||
if (strm.data_type & 128) {
|
||||
/* if that was the last block, then done */
|
||||
if (last)
|
||||
break;
|
||||
|
||||
/* number of unused bits in last byte */
|
||||
pos = strm.data_type & 7;
|
||||
|
||||
/* find the next last-block bit */
|
||||
if (pos != 0) {
|
||||
/* next last-block bit is in last used byte */
|
||||
pos = 0x100 >> pos;
|
||||
last = strm.next_in[-1] & pos;
|
||||
if (last && clr)
|
||||
in->buf[strm.next_in - in->buf - 1] &= ~pos;
|
||||
}
|
||||
else {
|
||||
/* next last-block bit is in next unused byte */
|
||||
if (strm.avail_in == 0) {
|
||||
/* don't have that byte yet -- get it */
|
||||
fwrite(start, 1, strm.next_in - start, out);
|
||||
start = in->buf;
|
||||
in->left = 0;
|
||||
zpull(&strm, in);
|
||||
}
|
||||
last = strm.next_in[0] & 1;
|
||||
if (last && clr)
|
||||
in->buf[strm.next_in - in->buf] &= ~1;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* update buffer with unused input */
|
||||
in->left = strm.avail_in;
|
||||
in->next = in->buf + (strm.next_in - in->buf);
|
||||
|
||||
/* copy used input, write empty blocks to get to byte boundary */
|
||||
pos = strm.data_type & 7;
|
||||
fwrite(start, 1, in->next - start - 1, out);
|
||||
last = in->next[-1];
|
||||
if (pos == 0 || !clr)
|
||||
/* already at byte boundary, or last file: write last byte */
|
||||
putc(last, out);
|
||||
else {
|
||||
/* append empty blocks to last byte */
|
||||
last &= ((0x100 >> pos) - 1); /* assure unused bits are zero */
|
||||
if (pos & 1) {
|
||||
/* odd -- append an empty stored block */
|
||||
putc(last, out);
|
||||
if (pos == 1)
|
||||
putc(0, out); /* two more bits in block header */
|
||||
fwrite("\0\0\xff\xff", 1, 4, out);
|
||||
}
|
||||
else {
|
||||
/* even -- append 1, 2, or 3 empty fixed blocks */
|
||||
switch (pos) {
|
||||
case 6:
|
||||
putc(last | 8, out);
|
||||
last = 0;
|
||||
case 4:
|
||||
putc(last | 0x20, out);
|
||||
last = 0;
|
||||
case 2:
|
||||
putc(last | 0x80, out);
|
||||
putc(0, out);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* update crc and tot */
|
||||
*crc = crc32_combine(*crc, bget4(in), len);
|
||||
*tot += (unsigned long)len;
|
||||
|
||||
/* clean up */
|
||||
inflateEnd(&strm);
|
||||
free(junk);
|
||||
bclose(in);
|
||||
|
||||
/* write trailer if this is the last gzip file */
|
||||
if (!clr) {
|
||||
put4(*crc, out);
|
||||
put4(*tot, out);
|
||||
}
|
||||
}
|
||||
|
||||
/* join the gzip files on the command line, write result to stdout */
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
unsigned long crc, tot; /* running crc and total uncompressed length */
|
||||
|
||||
/* skip command name */
|
||||
argc--;
|
||||
argv++;
|
||||
|
||||
/* show usage if no arguments */
|
||||
if (argc == 0) {
|
||||
fputs("gzjoin usage: gzjoin f1.gz [f2.gz [f3.gz ...]] > fjoin.gz\n",
|
||||
stderr);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* join gzip files on command line and write to stdout */
|
||||
gzinit(&crc, &tot, stdout);
|
||||
while (argc--)
|
||||
gzcopy(*argv++, argc, &crc, &tot, stdout);
|
||||
|
||||
/* done */
|
||||
return 0;
|
||||
}
|
1061
deps/zlib/examples/gzlog.c
vendored
Normal file
1061
deps/zlib/examples/gzlog.c
vendored
Normal file
File diff suppressed because it is too large
Load Diff
91
deps/zlib/examples/gzlog.h
vendored
Normal file
91
deps/zlib/examples/gzlog.h
vendored
Normal file
@ -0,0 +1,91 @@
|
||||
/* gzlog.h
|
||||
Copyright (C) 2004, 2008, 2012 Mark Adler, all rights reserved
|
||||
version 2.2, 14 Aug 2012
|
||||
|
||||
This software is provided 'as-is', without any express or implied
|
||||
warranty. In no event will the author be held liable for any damages
|
||||
arising from the use of this software.
|
||||
|
||||
Permission is granted to anyone to use this software for any purpose,
|
||||
including commercial applications, and to alter it and redistribute it
|
||||
freely, subject to the following restrictions:
|
||||
|
||||
1. The origin of this software must not be misrepresented; you must not
|
||||
claim that you wrote the original software. If you use this software
|
||||
in a product, an acknowledgment in the product documentation would be
|
||||
appreciated but is not required.
|
||||
2. Altered source versions must be plainly marked as such, and must not be
|
||||
misrepresented as being the original software.
|
||||
3. This notice may not be removed or altered from any source distribution.
|
||||
|
||||
Mark Adler madler@alumni.caltech.edu
|
||||
*/
|
||||
|
||||
/* Version History:
|
||||
1.0 26 Nov 2004 First version
|
||||
2.0 25 Apr 2008 Complete redesign for recovery of interrupted operations
|
||||
Interface changed slightly in that now path is a prefix
|
||||
Compression now occurs as needed during gzlog_write()
|
||||
gzlog_write() now always leaves the log file as valid gzip
|
||||
2.1 8 Jul 2012 Fix argument checks in gzlog_compress() and gzlog_write()
|
||||
2.2 14 Aug 2012 Clean up signed comparisons
|
||||
*/
|
||||
|
||||
/*
|
||||
The gzlog object allows writing short messages to a gzipped log file,
|
||||
opening the log file locked for small bursts, and then closing it. The log
|
||||
object works by appending stored (uncompressed) data to the gzip file until
|
||||
1 MB has been accumulated. At that time, the stored data is compressed, and
|
||||
replaces the uncompressed data in the file. The log file is truncated to
|
||||
its new size at that time. After each write operation, the log file is a
|
||||
valid gzip file that can decompressed to recover what was written.
|
||||
|
||||
The gzlog operations can be interrupted at any point due to an application or
|
||||
system crash, and the log file will be recovered the next time the log is
|
||||
opened with gzlog_open().
|
||||
*/
|
||||
|
||||
#ifndef GZLOG_H
|
||||
#define GZLOG_H
|
||||
|
||||
/* gzlog object type */
|
||||
typedef void gzlog;
|
||||
|
||||
/* Open a gzlog object, creating the log file if it does not exist. Return
|
||||
NULL on error. Note that gzlog_open() could take a while to complete if it
|
||||
has to wait to verify that a lock is stale (possibly for five minutes), or
|
||||
if there is significant contention with other instantiations of this object
|
||||
when locking the resource. path is the prefix of the file names created by
|
||||
this object. If path is "foo", then the log file will be "foo.gz", and
|
||||
other auxiliary files will be created and destroyed during the process:
|
||||
"foo.dict" for a compression dictionary, "foo.temp" for a temporary (next)
|
||||
dictionary, "foo.add" for data being added or compressed, "foo.lock" for the
|
||||
lock file, and "foo.repairs" to log recovery operations performed due to
|
||||
interrupted gzlog operations. A gzlog_open() followed by a gzlog_close()
|
||||
will recover a previously interrupted operation, if any. */
|
||||
gzlog *gzlog_open(char *path);
|
||||
|
||||
/* Write to a gzlog object. Return zero on success, -1 if there is a file i/o
|
||||
error on any of the gzlog files (this should not happen if gzlog_open()
|
||||
succeeded, unless the device has run out of space or leftover auxiliary
|
||||
files have permissions or ownership that prevent their use), -2 if there is
|
||||
a memory allocation failure, or -3 if the log argument is invalid (e.g. if
|
||||
it was not created by gzlog_open()). This function will write data to the
|
||||
file uncompressed, until 1 MB has been accumulated, at which time that data
|
||||
will be compressed. The log file will be a valid gzip file upon successful
|
||||
return. */
|
||||
int gzlog_write(gzlog *log, void *data, size_t len);
|
||||
|
||||
/* Force compression of any uncompressed data in the log. This should be used
|
||||
sparingly, if at all. The main application would be when a log file will
|
||||
not be appended to again. If this is used to compress frequently while
|
||||
appending, it will both significantly increase the execution time and
|
||||
reduce the compression ratio. The return codes are the same as for
|
||||
gzlog_write(). */
|
||||
int gzlog_compress(gzlog *log);
|
||||
|
||||
/* Close a gzlog object. Return zero on success, -3 if the log argument is
|
||||
invalid. The log object is freed, and so cannot be referenced again. */
|
||||
int gzlog_close(gzlog *log);
|
||||
|
||||
#endif
|
470
deps/zlib/examples/gznorm.c
vendored
Normal file
470
deps/zlib/examples/gznorm.c
vendored
Normal file
@ -0,0 +1,470 @@
|
||||
/* gznorm.c -- normalize a gzip stream
|
||||
* Copyright (C) 2018 Mark Adler
|
||||
* For conditions of distribution and use, see copyright notice in zlib.h
|
||||
* Version 1.0 7 Oct 2018 Mark Adler */
|
||||
|
||||
// gznorm takes a gzip stream, potentially containing multiple members, and
|
||||
// converts it to a gzip stream with a single member. In addition the gzip
|
||||
// header is normalized, removing the file name and time stamp, and setting the
|
||||
// other header contents (XFL, OS) to fixed values. gznorm does not recompress
|
||||
// the data, so it is fast, but no advantage is gained from the history that
|
||||
// could be available across member boundaries.
|
||||
|
||||
#include <stdio.h> // fread, fwrite, putc, fflush, ferror, fprintf,
|
||||
// vsnprintf, stdout, stderr, NULL, FILE
|
||||
#include <stdlib.h> // malloc, free
|
||||
#include <string.h> // strerror
|
||||
#include <errno.h> // errno
|
||||
#include <stdarg.h> // va_list, va_start, va_end
|
||||
#include "zlib.h" // inflateInit2, inflate, inflateReset, inflateEnd,
|
||||
// z_stream, z_off_t, crc32_combine, Z_NULL, Z_BLOCK,
|
||||
// Z_OK, Z_STREAM_END, Z_BUF_ERROR, Z_DATA_ERROR,
|
||||
// Z_MEM_ERROR
|
||||
|
||||
#if defined(MSDOS) || defined(OS2) || defined(WIN32) || defined(__CYGWIN__)
|
||||
# include <fcntl.h>
|
||||
# include <io.h>
|
||||
# define SET_BINARY_MODE(file) setmode(fileno(file), O_BINARY)
|
||||
#else
|
||||
# define SET_BINARY_MODE(file)
|
||||
#endif
|
||||
|
||||
#define local static
|
||||
|
||||
// printf to an allocated string. Return the string, or NULL if the printf or
|
||||
// allocation fails.
|
||||
local char *aprintf(char *fmt, ...) {
|
||||
// Get the length of the result of the printf.
|
||||
va_list args;
|
||||
va_start(args, fmt);
|
||||
int len = vsnprintf(NULL, 0, fmt, args);
|
||||
va_end(args);
|
||||
if (len < 0)
|
||||
return NULL;
|
||||
|
||||
// Allocate the required space and printf to it.
|
||||
char *str = malloc(len + 1);
|
||||
if (str == NULL)
|
||||
return NULL;
|
||||
va_start(args, fmt);
|
||||
vsnprintf(str, len + 1, fmt, args);
|
||||
va_end(args);
|
||||
return str;
|
||||
}
|
||||
|
||||
// Return with an error, putting an allocated error message in *err. Doing an
|
||||
// inflateEnd() on an already ended state, or one with state set to Z_NULL, is
|
||||
// permitted.
|
||||
#define BYE(...) \
|
||||
do { \
|
||||
inflateEnd(&strm); \
|
||||
*err = aprintf(__VA_ARGS__); \
|
||||
return 1; \
|
||||
} while (0)
|
||||
|
||||
// Chunk size for buffered reads and for decompression. Twice this many bytes
|
||||
// will be allocated on the stack by gzip_normalize(). Must fit in an unsigned.
|
||||
#define CHUNK 16384
|
||||
|
||||
// Read a gzip stream from in and write an equivalent normalized gzip stream to
|
||||
// out. If given no input, an empty gzip stream will be written. If successful,
|
||||
// 0 is returned, and *err is set to NULL. On error, 1 is returned, where the
|
||||
// details of the error are returned in *err, a pointer to an allocated string.
|
||||
//
|
||||
// The input may be a stream with multiple gzip members, which is converted to
|
||||
// a single gzip member on the output. Each gzip member is decompressed at the
|
||||
// level of deflate blocks. This enables clearing the last-block bit, shifting
|
||||
// the compressed data to concatenate to the previous member's compressed data,
|
||||
// which can end at an arbitrary bit boundary, and identifying stored blocks in
|
||||
// order to resynchronize those to byte boundaries. The deflate compressed data
|
||||
// is terminated with a 10-bit empty fixed block. If any members on the input
|
||||
// end with a 10-bit empty fixed block, then that block is excised from the
|
||||
// stream. This avoids appending empty fixed blocks for every normalization,
|
||||
// and assures that gzip_normalize applied a second time will not change the
|
||||
// input. The pad bits after stored block headers and after the final deflate
|
||||
// block are all forced to zeros.
|
||||
local int gzip_normalize(FILE *in, FILE *out, char **err) {
|
||||
// initialize the inflate engine to process a gzip member
|
||||
z_stream strm;
|
||||
strm.zalloc = Z_NULL;
|
||||
strm.zfree = Z_NULL;
|
||||
strm.opaque = Z_NULL;
|
||||
strm.avail_in = 0;
|
||||
strm.next_in = Z_NULL;
|
||||
if (inflateInit2(&strm, 15 + 16) != Z_OK)
|
||||
BYE("out of memory");
|
||||
|
||||
// State while processing the input gzip stream.
|
||||
enum { // BETWEEN -> HEAD -> BLOCK -> TAIL -> BETWEEN -> ...
|
||||
BETWEEN, // between gzip members (must end in this state)
|
||||
HEAD, // reading a gzip header
|
||||
BLOCK, // reading deflate blocks
|
||||
TAIL // reading a gzip trailer
|
||||
} state = BETWEEN; // current component being processed
|
||||
unsigned long crc = 0; // accumulated CRC of uncompressed data
|
||||
unsigned long len = 0; // accumulated length of uncompressed data
|
||||
unsigned long buf = 0; // deflate stream bit buffer of num bits
|
||||
int num = 0; // number of bits in buf (at bottom)
|
||||
|
||||
// Write a canonical gzip header (no mod time, file name, comment, extra
|
||||
// block, or extra flags, and OS is marked as unknown).
|
||||
fwrite("\x1f\x8b\x08\0\0\0\0\0\0\xff", 1, 10, out);
|
||||
|
||||
// Process the gzip stream from in until reaching the end of the input,
|
||||
// encountering invalid input, or experiencing an i/o error.
|
||||
int more; // true if not at the end of the input
|
||||
do {
|
||||
// State inside this loop.
|
||||
unsigned char *put; // next input buffer location to process
|
||||
int prev; // number of bits from previous block in
|
||||
// the bit buffer, or -1 if not at the
|
||||
// start of a block
|
||||
unsigned long long memb; // uncompressed length of member
|
||||
size_t tail; // number of trailer bytes read (0..8)
|
||||
unsigned long part; // accumulated trailer component
|
||||
|
||||
// Get the next chunk of input from in.
|
||||
unsigned char dat[CHUNK];
|
||||
strm.avail_in = fread(dat, 1, CHUNK, in);
|
||||
if (strm.avail_in == 0)
|
||||
break;
|
||||
more = strm.avail_in == CHUNK;
|
||||
strm.next_in = put = dat;
|
||||
|
||||
// Run that chunk of input through the inflate engine to exhaustion.
|
||||
do {
|
||||
// At this point it is assured that strm.avail_in > 0.
|
||||
|
||||
// Inflate until the end of a gzip component (header, deflate
|
||||
// block, trailer) is reached, or until all of the chunk is
|
||||
// consumed. The resulting decompressed data is discarded, though
|
||||
// the total size of the decompressed data in each member is
|
||||
// tracked, for the calculation of the total CRC.
|
||||
do {
|
||||
// inflate and handle any errors
|
||||
unsigned char scrap[CHUNK];
|
||||
strm.avail_out = CHUNK;
|
||||
strm.next_out = scrap;
|
||||
int ret = inflate(&strm, Z_BLOCK);
|
||||
if (ret == Z_MEM_ERROR)
|
||||
BYE("out of memory");
|
||||
if (ret == Z_DATA_ERROR)
|
||||
BYE("input invalid: %s", strm.msg);
|
||||
if (ret != Z_OK && ret != Z_BUF_ERROR && ret != Z_STREAM_END)
|
||||
BYE("internal error");
|
||||
|
||||
// Update the number of uncompressed bytes generated in this
|
||||
// member. The actual count (not modulo 2^32) is required to
|
||||
// correctly compute the total CRC.
|
||||
unsigned got = CHUNK - strm.avail_out;
|
||||
memb += got;
|
||||
if (memb < got)
|
||||
BYE("overflow error");
|
||||
|
||||
// Continue to process this chunk until it is consumed, or
|
||||
// until the end of a component (header, deflate block, or
|
||||
// trailer) is reached.
|
||||
} while (strm.avail_out == 0 && (strm.data_type & 0x80) == 0);
|
||||
|
||||
// Since strm.avail_in was > 0 for the inflate call, some input was
|
||||
// just consumed. It is therefore assured that put < strm.next_in.
|
||||
|
||||
// Disposition the consumed component or part of a component.
|
||||
switch (state) {
|
||||
case BETWEEN:
|
||||
state = HEAD;
|
||||
// Fall through to HEAD when some or all of the header is
|
||||
// processed.
|
||||
|
||||
case HEAD:
|
||||
// Discard the header.
|
||||
if (strm.data_type & 0x80) {
|
||||
// End of header reached -- deflate blocks follow.
|
||||
put = strm.next_in;
|
||||
prev = num;
|
||||
memb = 0;
|
||||
state = BLOCK;
|
||||
}
|
||||
break;
|
||||
|
||||
case BLOCK:
|
||||
// Copy the deflate stream to the output, but with the
|
||||
// last-block-bit cleared. Re-synchronize stored block
|
||||
// headers to the output byte boundaries. The bytes at
|
||||
// put..strm.next_in-1 is the compressed data that has been
|
||||
// processed and is ready to be copied to the output.
|
||||
|
||||
// At this point, it is assured that new compressed data is
|
||||
// available, i.e., put < strm.next_in. If prev is -1, then
|
||||
// that compressed data starts in the middle of a deflate
|
||||
// block. If prev is not -1, then the bits in the bit
|
||||
// buffer, possibly combined with the bits in *put, contain
|
||||
// the three-bit header of the new deflate block. In that
|
||||
// case, prev is the number of bits from the previous block
|
||||
// that remain in the bit buffer. Since num is the number
|
||||
// of bits in the bit buffer, we have that num - prev is
|
||||
// the number of bits from the new block currently in the
|
||||
// bit buffer.
|
||||
|
||||
// If strm.data_type & 0xc0 is 0x80, then the last byte of
|
||||
// the available compressed data includes the last bits of
|
||||
// the end of a deflate block. In that case, that last byte
|
||||
// also has strm.data_type & 0x1f bits of the next deflate
|
||||
// block, in the range 0..7. If strm.data_type & 0xc0 is
|
||||
// 0xc0, then the last byte of the compressed data is the
|
||||
// end of the deflate stream, followed by strm.data_type &
|
||||
// 0x1f pad bits, also in the range 0..7.
|
||||
|
||||
// Set bits to the number of bits not yet consumed from the
|
||||
// last byte. If we are at the end of the block, bits is
|
||||
// either the number of bits in the last byte belonging to
|
||||
// the next block, or the number of pad bits after the
|
||||
// final block. In either of those cases, bits is in the
|
||||
// range 0..7.
|
||||
; // (required due to C syntax oddity)
|
||||
int bits = strm.data_type & 0x1f;
|
||||
|
||||
if (prev != -1) {
|
||||
// We are at the start of a new block. Clear the last
|
||||
// block bit, and check for special cases. If it is a
|
||||
// stored block, then emit the header and pad to the
|
||||
// next byte boundary. If it is a final, empty fixed
|
||||
// block, then excise it.
|
||||
|
||||
// Some or all of the three header bits for this block
|
||||
// may already be in the bit buffer. Load any remaining
|
||||
// header bits into the bit buffer.
|
||||
if (num - prev < 3) {
|
||||
buf += (unsigned long)*put++ << num;
|
||||
num += 8;
|
||||
}
|
||||
|
||||
// Set last to have a 1 in the position of the last
|
||||
// block bit in the bit buffer.
|
||||
unsigned long last = (unsigned long)1 << prev;
|
||||
|
||||
if (((buf >> prev) & 7) == 3) {
|
||||
// This is a final fixed block. Load at least ten
|
||||
// bits from this block, including the header, into
|
||||
// the bit buffer. We already have at least three,
|
||||
// so at most one more byte needs to be loaded.
|
||||
if (num - prev < 10) {
|
||||
if (put == strm.next_in)
|
||||
// Need to go get and process more input.
|
||||
// We'll end up back here to finish this.
|
||||
break;
|
||||
buf += (unsigned long)*put++ << num;
|
||||
num += 8;
|
||||
}
|
||||
if (((buf >> prev) & 0x3ff) == 3) {
|
||||
// That final fixed block is empty. Delete it
|
||||
// to avoid adding an empty block every time a
|
||||
// gzip stream is normalized.
|
||||
num = prev;
|
||||
buf &= last - 1; // zero the pad bits
|
||||
}
|
||||
}
|
||||
else if (((buf >> prev) & 6) == 0) {
|
||||
// This is a stored block. Flush to the next
|
||||
// byte boundary after the three-bit header.
|
||||
num = (prev + 10) & ~7;
|
||||
buf &= last - 1; // zero the pad bits
|
||||
}
|
||||
|
||||
// Clear the last block bit.
|
||||
buf &= ~last;
|
||||
|
||||
// Write out complete bytes in the bit buffer.
|
||||
while (num >= 8) {
|
||||
putc(buf, out);
|
||||
buf >>= 8;
|
||||
num -= 8;
|
||||
}
|
||||
|
||||
// If no more bytes left to process, then we have
|
||||
// consumed the byte that had bits from the next block.
|
||||
if (put == strm.next_in)
|
||||
bits = 0;
|
||||
}
|
||||
|
||||
// We are done handling the deflate block header. Now copy
|
||||
// all or almost all of the remaining compressed data that
|
||||
// has been processed so far. Don't copy one byte at the
|
||||
// end if it contains bits from the next deflate block or
|
||||
// pad bits at the end of a deflate block.
|
||||
|
||||
// mix is 1 if we are at the end of a deflate block, and if
|
||||
// some of the bits in the last byte follow this block. mix
|
||||
// is 0 if we are in the middle of a deflate block, if the
|
||||
// deflate block ended on a byte boundary, or if all of the
|
||||
// compressed data processed so far has been consumed.
|
||||
int mix = (strm.data_type & 0x80) && bits;
|
||||
|
||||
// Copy all of the processed compressed data to the output,
|
||||
// except for the last byte if it contains bits from the
|
||||
// next deflate block or pad bits at the end of the deflate
|
||||
// stream. Copy the data after shifting in num bits from
|
||||
// buf in front of it, leaving num bits from the end of the
|
||||
// compressed data in buf when done.
|
||||
unsigned char *end = strm.next_in - mix;
|
||||
if (put < end) {
|
||||
if (num)
|
||||
// Insert num bits from buf before the data being
|
||||
// copied.
|
||||
do {
|
||||
buf += (unsigned)(*put++) << num;
|
||||
putc(buf, out);
|
||||
buf >>= 8;
|
||||
} while (put < end);
|
||||
else {
|
||||
// No shifting needed -- write directly.
|
||||
fwrite(put, 1, end - put, out);
|
||||
put = end;
|
||||
}
|
||||
}
|
||||
|
||||
// Process the last processed byte if it wasn't written.
|
||||
if (mix) {
|
||||
// Load the last byte into the bit buffer.
|
||||
buf += (unsigned)(*put++) << num;
|
||||
num += 8;
|
||||
|
||||
if (strm.data_type & 0x40) {
|
||||
// We are at the end of the deflate stream and
|
||||
// there are bits pad bits. Discard the pad bits
|
||||
// and write a byte to the output, if available.
|
||||
// Leave the num bits left over in buf to prepend
|
||||
// to the next deflate stream.
|
||||
num -= bits;
|
||||
if (num >= 8) {
|
||||
putc(buf, out);
|
||||
num -= 8;
|
||||
buf >>= 8;
|
||||
}
|
||||
|
||||
// Force the pad bits in the bit buffer to zeros.
|
||||
buf &= ((unsigned long)1 << num) - 1;
|
||||
|
||||
// Don't need to set prev here since going to TAIL.
|
||||
}
|
||||
else
|
||||
// At the end of an internal deflate block. Leave
|
||||
// the last byte in the bit buffer to examine on
|
||||
// the next entry to BLOCK, when more bits from the
|
||||
// next block will be available.
|
||||
prev = num - bits; // number of bits in buffer
|
||||
// from current block
|
||||
}
|
||||
|
||||
// Don't have a byte left over, so we are in the middle of
|
||||
// a deflate block, or the deflate block ended on a byte
|
||||
// boundary. Set prev appropriately for the next entry into
|
||||
// BLOCK.
|
||||
else if (strm.data_type & 0x80)
|
||||
// The block ended on a byte boundary, so no header
|
||||
// bits are in the bit buffer.
|
||||
prev = num;
|
||||
else
|
||||
// In the middle of a deflate block, so no header here.
|
||||
prev = -1;
|
||||
|
||||
// Check for the end of the deflate stream.
|
||||
if ((strm.data_type & 0xc0) == 0xc0) {
|
||||
// That ends the deflate stream on the input side, the
|
||||
// pad bits were discarded, and any remaining bits from
|
||||
// the last block in the stream are saved in the bit
|
||||
// buffer to prepend to the next stream. Process the
|
||||
// gzip trailer next.
|
||||
tail = 0;
|
||||
part = 0;
|
||||
state = TAIL;
|
||||
}
|
||||
break;
|
||||
|
||||
case TAIL:
|
||||
// Accumulate available trailer bytes to update the total
|
||||
// CRC and the total uncompressed length.
|
||||
do {
|
||||
part = (part >> 8) + ((unsigned long)(*put++) << 24);
|
||||
tail++;
|
||||
if (tail == 4) {
|
||||
// Update the total CRC.
|
||||
z_off_t len2 = memb;
|
||||
if (len2 < 0 || (unsigned long long)len2 != memb)
|
||||
BYE("overflow error");
|
||||
crc = crc ? crc32_combine(crc, part, len2) : part;
|
||||
part = 0;
|
||||
}
|
||||
else if (tail == 8) {
|
||||
// Update the total uncompressed length. (It's ok
|
||||
// if this sum is done modulo 2^32.)
|
||||
len += part;
|
||||
|
||||
// At the end of a member. Set up to inflate an
|
||||
// immediately following gzip member. (If we made
|
||||
// it this far, then the trailer was valid.)
|
||||
if (inflateReset(&strm) != Z_OK)
|
||||
BYE("internal error");
|
||||
state = BETWEEN;
|
||||
break;
|
||||
}
|
||||
} while (put < strm.next_in);
|
||||
break;
|
||||
}
|
||||
|
||||
// Process the input buffer until completely consumed.
|
||||
} while (strm.avail_in > 0);
|
||||
|
||||
// Process input until end of file, invalid input, or i/o error.
|
||||
} while (more);
|
||||
|
||||
// Done with the inflate engine.
|
||||
inflateEnd(&strm);
|
||||
|
||||
// Verify the validity of the input.
|
||||
if (state != BETWEEN)
|
||||
BYE("input invalid: incomplete gzip stream");
|
||||
|
||||
// Write the remaining deflate stream bits, followed by a terminating
|
||||
// deflate fixed block.
|
||||
buf += (unsigned long)3 << num;
|
||||
putc(buf, out);
|
||||
putc(buf >> 8, out);
|
||||
if (num > 6)
|
||||
putc(0, out);
|
||||
|
||||
// Write the gzip trailer, which is the CRC and the uncompressed length
|
||||
// modulo 2^32, both in little-endian order.
|
||||
putc(crc, out);
|
||||
putc(crc >> 8, out);
|
||||
putc(crc >> 16, out);
|
||||
putc(crc >> 24, out);
|
||||
putc(len, out);
|
||||
putc(len >> 8, out);
|
||||
putc(len >> 16, out);
|
||||
putc(len >> 24, out);
|
||||
fflush(out);
|
||||
|
||||
// Check for any i/o errors.
|
||||
if (ferror(in) || ferror(out))
|
||||
BYE("i/o error: %s", strerror(errno));
|
||||
|
||||
// All good!
|
||||
*err = NULL;
|
||||
return 0;
|
||||
}
|
||||
|
||||
// Normalize the gzip stream on stdin, writing the result to stdout.
|
||||
int main(void) {
|
||||
// Avoid end-of-line conversions on evil operating systems.
|
||||
SET_BINARY_MODE(stdin);
|
||||
SET_BINARY_MODE(stdout);
|
||||
|
||||
// Normalize from stdin to stdout, returning 1 on error, 0 if ok.
|
||||
char *err;
|
||||
int ret = gzip_normalize(stdin, stdout, &err);
|
||||
if (ret)
|
||||
fprintf(stderr, "gznorm error: %s\n", err);
|
||||
free(err);
|
||||
return ret;
|
||||
}
|
545
deps/zlib/examples/zlib_how.html
vendored
Normal file
545
deps/zlib/examples/zlib_how.html
vendored
Normal file
@ -0,0 +1,545 @@
|
||||
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN"
|
||||
"http://www.w3.org/TR/REC-html40/loose.dtd">
|
||||
<html>
|
||||
<head>
|
||||
<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
|
||||
<title>zlib Usage Example</title>
|
||||
<!-- Copyright (c) 2004, 2005 Mark Adler. -->
|
||||
</head>
|
||||
<body bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#00A000">
|
||||
<h2 align="center"> zlib Usage Example </h2>
|
||||
We often get questions about how the <tt>deflate()</tt> and <tt>inflate()</tt> functions should be used.
|
||||
Users wonder when they should provide more input, when they should use more output,
|
||||
what to do with a <tt>Z_BUF_ERROR</tt>, how to make sure the process terminates properly, and
|
||||
so on. So for those who have read <tt>zlib.h</tt> (a few times), and
|
||||
would like further edification, below is an annotated example in C of simple routines to compress and decompress
|
||||
from an input file to an output file using <tt>deflate()</tt> and <tt>inflate()</tt> respectively. The
|
||||
annotations are interspersed between lines of the code. So please read between the lines.
|
||||
We hope this helps explain some of the intricacies of <em>zlib</em>.
|
||||
<p>
|
||||
Without further adieu, here is the program <a href="zpipe.c"><tt>zpipe.c</tt></a>:
|
||||
<pre><b>
|
||||
/* zpipe.c: example of proper use of zlib's inflate() and deflate()
|
||||
Not copyrighted -- provided to the public domain
|
||||
Version 1.4 11 December 2005 Mark Adler */
|
||||
|
||||
/* Version history:
|
||||
1.0 30 Oct 2004 First version
|
||||
1.1 8 Nov 2004 Add void casting for unused return values
|
||||
Use switch statement for inflate() return values
|
||||
1.2 9 Nov 2004 Add assertions to document zlib guarantees
|
||||
1.3 6 Apr 2005 Remove incorrect assertion in inf()
|
||||
1.4 11 Dec 2005 Add hack to avoid MSDOS end-of-line conversions
|
||||
Avoid some compiler warnings for input and output buffers
|
||||
*/
|
||||
</b></pre><!-- -->
|
||||
We now include the header files for the required definitions. From
|
||||
<tt>stdio.h</tt> we use <tt>fopen()</tt>, <tt>fread()</tt>, <tt>fwrite()</tt>,
|
||||
<tt>feof()</tt>, <tt>ferror()</tt>, and <tt>fclose()</tt> for file i/o, and
|
||||
<tt>fputs()</tt> for error messages. From <tt>string.h</tt> we use
|
||||
<tt>strcmp()</tt> for command line argument processing.
|
||||
From <tt>assert.h</tt> we use the <tt>assert()</tt> macro.
|
||||
From <tt>zlib.h</tt>
|
||||
we use the basic compression functions <tt>deflateInit()</tt>,
|
||||
<tt>deflate()</tt>, and <tt>deflateEnd()</tt>, and the basic decompression
|
||||
functions <tt>inflateInit()</tt>, <tt>inflate()</tt>, and
|
||||
<tt>inflateEnd()</tt>.
|
||||
<pre><b>
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
#include <assert.h>
|
||||
#include "zlib.h"
|
||||
</b></pre><!-- -->
|
||||
This is an ugly hack required to avoid corruption of the input and output data on
|
||||
Windows/MS-DOS systems. Without this, those systems would assume that the input and output
|
||||
files are text, and try to convert the end-of-line characters from one standard to
|
||||
another. That would corrupt binary data, and in particular would render the compressed data unusable.
|
||||
This sets the input and output to binary which suppresses the end-of-line conversions.
|
||||
<tt>SET_BINARY_MODE()</tt> will be used later on <tt>stdin</tt> and <tt>stdout</tt>, at the beginning of <tt>main()</tt>.
|
||||
<pre><b>
|
||||
#if defined(MSDOS) || defined(OS2) || defined(WIN32) || defined(__CYGWIN__)
|
||||
# include <fcntl.h>
|
||||
# include <io.h>
|
||||
# define SET_BINARY_MODE(file) setmode(fileno(file), O_BINARY)
|
||||
#else
|
||||
# define SET_BINARY_MODE(file)
|
||||
#endif
|
||||
</b></pre><!-- -->
|
||||
<tt>CHUNK</tt> is simply the buffer size for feeding data to and pulling data
|
||||
from the <em>zlib</em> routines. Larger buffer sizes would be more efficient,
|
||||
especially for <tt>inflate()</tt>. If the memory is available, buffers sizes
|
||||
on the order of 128K or 256K bytes should be used.
|
||||
<pre><b>
|
||||
#define CHUNK 16384
|
||||
</b></pre><!-- -->
|
||||
The <tt>def()</tt> routine compresses data from an input file to an output file. The output data
|
||||
will be in the <em>zlib</em> format, which is different from the <em>gzip</em> or <em>zip</em>
|
||||
formats. The <em>zlib</em> format has a very small header of only two bytes to identify it as
|
||||
a <em>zlib</em> stream and to provide decoding information, and a four-byte trailer with a fast
|
||||
check value to verify the integrity of the uncompressed data after decoding.
|
||||
<pre><b>
|
||||
/* Compress from file source to file dest until EOF on source.
|
||||
def() returns Z_OK on success, Z_MEM_ERROR if memory could not be
|
||||
allocated for processing, Z_STREAM_ERROR if an invalid compression
|
||||
level is supplied, Z_VERSION_ERROR if the version of zlib.h and the
|
||||
version of the library linked do not match, or Z_ERRNO if there is
|
||||
an error reading or writing the files. */
|
||||
int def(FILE *source, FILE *dest, int level)
|
||||
{
|
||||
</b></pre>
|
||||
Here are the local variables for <tt>def()</tt>. <tt>ret</tt> will be used for <em>zlib</em>
|
||||
return codes. <tt>flush</tt> will keep track of the current flushing state for <tt>deflate()</tt>,
|
||||
which is either no flushing, or flush to completion after the end of the input file is reached.
|
||||
<tt>have</tt> is the amount of data returned from <tt>deflate()</tt>. The <tt>strm</tt> structure
|
||||
is used to pass information to and from the <em>zlib</em> routines, and to maintain the
|
||||
<tt>deflate()</tt> state. <tt>in</tt> and <tt>out</tt> are the input and output buffers for
|
||||
<tt>deflate()</tt>.
|
||||
<pre><b>
|
||||
int ret, flush;
|
||||
unsigned have;
|
||||
z_stream strm;
|
||||
unsigned char in[CHUNK];
|
||||
unsigned char out[CHUNK];
|
||||
</b></pre><!-- -->
|
||||
The first thing we do is to initialize the <em>zlib</em> state for compression using
|
||||
<tt>deflateInit()</tt>. This must be done before the first use of <tt>deflate()</tt>.
|
||||
The <tt>zalloc</tt>, <tt>zfree</tt>, and <tt>opaque</tt> fields in the <tt>strm</tt>
|
||||
structure must be initialized before calling <tt>deflateInit()</tt>. Here they are
|
||||
set to the <em>zlib</em> constant <tt>Z_NULL</tt> to request that <em>zlib</em> use
|
||||
the default memory allocation routines. An application may also choose to provide
|
||||
custom memory allocation routines here. <tt>deflateInit()</tt> will allocate on the
|
||||
order of 256K bytes for the internal state.
|
||||
(See <a href="zlib_tech.html"><em>zlib Technical Details</em></a>.)
|
||||
<p>
|
||||
<tt>deflateInit()</tt> is called with a pointer to the structure to be initialized and
|
||||
the compression level, which is an integer in the range of -1 to 9. Lower compression
|
||||
levels result in faster execution, but less compression. Higher levels result in
|
||||
greater compression, but slower execution. The <em>zlib</em> constant Z_DEFAULT_COMPRESSION,
|
||||
equal to -1,
|
||||
provides a good compromise between compression and speed and is equivalent to level 6.
|
||||
Level 0 actually does no compression at all, and in fact expands the data slightly to produce
|
||||
the <em>zlib</em> format (it is not a byte-for-byte copy of the input).
|
||||
More advanced applications of <em>zlib</em>
|
||||
may use <tt>deflateInit2()</tt> here instead. Such an application may want to reduce how
|
||||
much memory will be used, at some price in compression. Or it may need to request a
|
||||
<em>gzip</em> header and trailer instead of a <em>zlib</em> header and trailer, or raw
|
||||
encoding with no header or trailer at all.
|
||||
<p>
|
||||
We must check the return value of <tt>deflateInit()</tt> against the <em>zlib</em> constant
|
||||
<tt>Z_OK</tt> to make sure that it was able to
|
||||
allocate memory for the internal state, and that the provided arguments were valid.
|
||||
<tt>deflateInit()</tt> will also check that the version of <em>zlib</em> that the <tt>zlib.h</tt>
|
||||
file came from matches the version of <em>zlib</em> actually linked with the program. This
|
||||
is especially important for environments in which <em>zlib</em> is a shared library.
|
||||
<p>
|
||||
Note that an application can initialize multiple, independent <em>zlib</em> streams, which can
|
||||
operate in parallel. The state information maintained in the structure allows the <em>zlib</em>
|
||||
routines to be reentrant.
|
||||
<pre><b>
|
||||
/* allocate deflate state */
|
||||
strm.zalloc = Z_NULL;
|
||||
strm.zfree = Z_NULL;
|
||||
strm.opaque = Z_NULL;
|
||||
ret = deflateInit(&strm, level);
|
||||
if (ret != Z_OK)
|
||||
return ret;
|
||||
</b></pre><!-- -->
|
||||
With the pleasantries out of the way, now we can get down to business. The outer <tt>do</tt>-loop
|
||||
reads all of the input file and exits at the bottom of the loop once end-of-file is reached.
|
||||
This loop contains the only call of <tt>deflate()</tt>. So we must make sure that all of the
|
||||
input data has been processed and that all of the output data has been generated and consumed
|
||||
before we fall out of the loop at the bottom.
|
||||
<pre><b>
|
||||
/* compress until end of file */
|
||||
do {
|
||||
</b></pre>
|
||||
We start off by reading data from the input file. The number of bytes read is put directly
|
||||
into <tt>avail_in</tt>, and a pointer to those bytes is put into <tt>next_in</tt>. We also
|
||||
check to see if end-of-file on the input has been reached. If we are at the end of file, then <tt>flush</tt> is set to the
|
||||
<em>zlib</em> constant <tt>Z_FINISH</tt>, which is later passed to <tt>deflate()</tt> to
|
||||
indicate that this is the last chunk of input data to compress. We need to use <tt>feof()</tt>
|
||||
to check for end-of-file as opposed to seeing if fewer than <tt>CHUNK</tt> bytes have been read. The
|
||||
reason is that if the input file length is an exact multiple of <tt>CHUNK</tt>, we will miss
|
||||
the fact that we got to the end-of-file, and not know to tell <tt>deflate()</tt> to finish
|
||||
up the compressed stream. If we are not yet at the end of the input, then the <em>zlib</em>
|
||||
constant <tt>Z_NO_FLUSH</tt> will be passed to <tt>deflate</tt> to indicate that we are still
|
||||
in the middle of the uncompressed data.
|
||||
<p>
|
||||
If there is an error in reading from the input file, the process is aborted with
|
||||
<tt>deflateEnd()</tt> being called to free the allocated <em>zlib</em> state before returning
|
||||
the error. We wouldn't want a memory leak, now would we? <tt>deflateEnd()</tt> can be called
|
||||
at any time after the state has been initialized. Once that's done, <tt>deflateInit()</tt> (or
|
||||
<tt>deflateInit2()</tt>) would have to be called to start a new compression process. There is
|
||||
no point here in checking the <tt>deflateEnd()</tt> return code. The deallocation can't fail.
|
||||
<pre><b>
|
||||
strm.avail_in = fread(in, 1, CHUNK, source);
|
||||
if (ferror(source)) {
|
||||
(void)deflateEnd(&strm);
|
||||
return Z_ERRNO;
|
||||
}
|
||||
flush = feof(source) ? Z_FINISH : Z_NO_FLUSH;
|
||||
strm.next_in = in;
|
||||
</b></pre><!-- -->
|
||||
The inner <tt>do</tt>-loop passes our chunk of input data to <tt>deflate()</tt>, and then
|
||||
keeps calling <tt>deflate()</tt> until it is done producing output. Once there is no more
|
||||
new output, <tt>deflate()</tt> is guaranteed to have consumed all of the input, i.e.,
|
||||
<tt>avail_in</tt> will be zero.
|
||||
<pre><b>
|
||||
/* run deflate() on input until output buffer not full, finish
|
||||
compression if all of source has been read in */
|
||||
do {
|
||||
</b></pre>
|
||||
Output space is provided to <tt>deflate()</tt> by setting <tt>avail_out</tt> to the number
|
||||
of available output bytes and <tt>next_out</tt> to a pointer to that space.
|
||||
<pre><b>
|
||||
strm.avail_out = CHUNK;
|
||||
strm.next_out = out;
|
||||
</b></pre>
|
||||
Now we call the compression engine itself, <tt>deflate()</tt>. It takes as many of the
|
||||
<tt>avail_in</tt> bytes at <tt>next_in</tt> as it can process, and writes as many as
|
||||
<tt>avail_out</tt> bytes to <tt>next_out</tt>. Those counters and pointers are then
|
||||
updated past the input data consumed and the output data written. It is the amount of
|
||||
output space available that may limit how much input is consumed.
|
||||
Hence the inner loop to make sure that
|
||||
all of the input is consumed by providing more output space each time. Since <tt>avail_in</tt>
|
||||
and <tt>next_in</tt> are updated by <tt>deflate()</tt>, we don't have to mess with those
|
||||
between <tt>deflate()</tt> calls until it's all used up.
|
||||
<p>
|
||||
The parameters to <tt>deflate()</tt> are a pointer to the <tt>strm</tt> structure containing
|
||||
the input and output information and the internal compression engine state, and a parameter
|
||||
indicating whether and how to flush data to the output. Normally <tt>deflate</tt> will consume
|
||||
several K bytes of input data before producing any output (except for the header), in order
|
||||
to accumulate statistics on the data for optimum compression. It will then put out a burst of
|
||||
compressed data, and proceed to consume more input before the next burst. Eventually,
|
||||
<tt>deflate()</tt>
|
||||
must be told to terminate the stream, complete the compression with provided input data, and
|
||||
write out the trailer check value. <tt>deflate()</tt> will continue to compress normally as long
|
||||
as the flush parameter is <tt>Z_NO_FLUSH</tt>. Once the <tt>Z_FINISH</tt> parameter is provided,
|
||||
<tt>deflate()</tt> will begin to complete the compressed output stream. However depending on how
|
||||
much output space is provided, <tt>deflate()</tt> may have to be called several times until it
|
||||
has provided the complete compressed stream, even after it has consumed all of the input. The flush
|
||||
parameter must continue to be <tt>Z_FINISH</tt> for those subsequent calls.
|
||||
<p>
|
||||
There are other values of the flush parameter that are used in more advanced applications. You can
|
||||
force <tt>deflate()</tt> to produce a burst of output that encodes all of the input data provided
|
||||
so far, even if it wouldn't have otherwise, for example to control data latency on a link with
|
||||
compressed data. You can also ask that <tt>deflate()</tt> do that as well as erase any history up to
|
||||
that point so that what follows can be decompressed independently, for example for random access
|
||||
applications. Both requests will degrade compression by an amount depending on how often such
|
||||
requests are made.
|
||||
<p>
|
||||
<tt>deflate()</tt> has a return value that can indicate errors, yet we do not check it here. Why
|
||||
not? Well, it turns out that <tt>deflate()</tt> can do no wrong here. Let's go through
|
||||
<tt>deflate()</tt>'s return values and dispense with them one by one. The possible values are
|
||||
<tt>Z_OK</tt>, <tt>Z_STREAM_END</tt>, <tt>Z_STREAM_ERROR</tt>, or <tt>Z_BUF_ERROR</tt>. <tt>Z_OK</tt>
|
||||
is, well, ok. <tt>Z_STREAM_END</tt> is also ok and will be returned for the last call of
|
||||
<tt>deflate()</tt>. This is already guaranteed by calling <tt>deflate()</tt> with <tt>Z_FINISH</tt>
|
||||
until it has no more output. <tt>Z_STREAM_ERROR</tt> is only possible if the stream is not
|
||||
initialized properly, but we did initialize it properly. There is no harm in checking for
|
||||
<tt>Z_STREAM_ERROR</tt> here, for example to check for the possibility that some
|
||||
other part of the application inadvertently clobbered the memory containing the <em>zlib</em> state.
|
||||
<tt>Z_BUF_ERROR</tt> will be explained further below, but
|
||||
suffice it to say that this is simply an indication that <tt>deflate()</tt> could not consume
|
||||
more input or produce more output. <tt>deflate()</tt> can be called again with more output space
|
||||
or more available input, which it will be in this code.
|
||||
<pre><b>
|
||||
ret = deflate(&strm, flush); /* no bad return value */
|
||||
assert(ret != Z_STREAM_ERROR); /* state not clobbered */
|
||||
</b></pre>
|
||||
Now we compute how much output <tt>deflate()</tt> provided on the last call, which is the
|
||||
difference between how much space was provided before the call, and how much output space
|
||||
is still available after the call. Then that data, if any, is written to the output file.
|
||||
We can then reuse the output buffer for the next call of <tt>deflate()</tt>. Again if there
|
||||
is a file i/o error, we call <tt>deflateEnd()</tt> before returning to avoid a memory leak.
|
||||
<pre><b>
|
||||
have = CHUNK - strm.avail_out;
|
||||
if (fwrite(out, 1, have, dest) != have || ferror(dest)) {
|
||||
(void)deflateEnd(&strm);
|
||||
return Z_ERRNO;
|
||||
}
|
||||
</b></pre>
|
||||
The inner <tt>do</tt>-loop is repeated until the last <tt>deflate()</tt> call fails to fill the
|
||||
provided output buffer. Then we know that <tt>deflate()</tt> has done as much as it can with
|
||||
the provided input, and that all of that input has been consumed. We can then fall out of this
|
||||
loop and reuse the input buffer.
|
||||
<p>
|
||||
The way we tell that <tt>deflate()</tt> has no more output is by seeing that it did not fill
|
||||
the output buffer, leaving <tt>avail_out</tt> greater than zero. However suppose that
|
||||
<tt>deflate()</tt> has no more output, but just so happened to exactly fill the output buffer!
|
||||
<tt>avail_out</tt> is zero, and we can't tell that <tt>deflate()</tt> has done all it can.
|
||||
As far as we know, <tt>deflate()</tt>
|
||||
has more output for us. So we call it again. But now <tt>deflate()</tt> produces no output
|
||||
at all, and <tt>avail_out</tt> remains unchanged as <tt>CHUNK</tt>. That <tt>deflate()</tt> call
|
||||
wasn't able to do anything, either consume input or produce output, and so it returns
|
||||
<tt>Z_BUF_ERROR</tt>. (See, I told you I'd cover this later.) However this is not a problem at
|
||||
all. Now we finally have the desired indication that <tt>deflate()</tt> is really done,
|
||||
and so we drop out of the inner loop to provide more input to <tt>deflate()</tt>.
|
||||
<p>
|
||||
With <tt>flush</tt> set to <tt>Z_FINISH</tt>, this final set of <tt>deflate()</tt> calls will
|
||||
complete the output stream. Once that is done, subsequent calls of <tt>deflate()</tt> would return
|
||||
<tt>Z_STREAM_ERROR</tt> if the flush parameter is not <tt>Z_FINISH</tt>, and do no more processing
|
||||
until the state is reinitialized.
|
||||
<p>
|
||||
Some applications of <em>zlib</em> have two loops that call <tt>deflate()</tt>
|
||||
instead of the single inner loop we have here. The first loop would call
|
||||
without flushing and feed all of the data to <tt>deflate()</tt>. The second loop would call
|
||||
<tt>deflate()</tt> with no more
|
||||
data and the <tt>Z_FINISH</tt> parameter to complete the process. As you can see from this
|
||||
example, that can be avoided by simply keeping track of the current flush state.
|
||||
<pre><b>
|
||||
} while (strm.avail_out == 0);
|
||||
assert(strm.avail_in == 0); /* all input will be used */
|
||||
</b></pre><!-- -->
|
||||
Now we check to see if we have already processed all of the input file. That information was
|
||||
saved in the <tt>flush</tt> variable, so we see if that was set to <tt>Z_FINISH</tt>. If so,
|
||||
then we're done and we fall out of the outer loop. We're guaranteed to get <tt>Z_STREAM_END</tt>
|
||||
from the last <tt>deflate()</tt> call, since we ran it until the last chunk of input was
|
||||
consumed and all of the output was generated.
|
||||
<pre><b>
|
||||
/* done when last data in file processed */
|
||||
} while (flush != Z_FINISH);
|
||||
assert(ret == Z_STREAM_END); /* stream will be complete */
|
||||
</b></pre><!-- -->
|
||||
The process is complete, but we still need to deallocate the state to avoid a memory leak
|
||||
(or rather more like a memory hemorrhage if you didn't do this). Then
|
||||
finally we can return with a happy return value.
|
||||
<pre><b>
|
||||
/* clean up and return */
|
||||
(void)deflateEnd(&strm);
|
||||
return Z_OK;
|
||||
}
|
||||
</b></pre><!-- -->
|
||||
Now we do the same thing for decompression in the <tt>inf()</tt> routine. <tt>inf()</tt>
|
||||
decompresses what is hopefully a valid <em>zlib</em> stream from the input file and writes the
|
||||
uncompressed data to the output file. Much of the discussion above for <tt>def()</tt>
|
||||
applies to <tt>inf()</tt> as well, so the discussion here will focus on the differences between
|
||||
the two.
|
||||
<pre><b>
|
||||
/* Decompress from file source to file dest until stream ends or EOF.
|
||||
inf() returns Z_OK on success, Z_MEM_ERROR if memory could not be
|
||||
allocated for processing, Z_DATA_ERROR if the deflate data is
|
||||
invalid or incomplete, Z_VERSION_ERROR if the version of zlib.h and
|
||||
the version of the library linked do not match, or Z_ERRNO if there
|
||||
is an error reading or writing the files. */
|
||||
int inf(FILE *source, FILE *dest)
|
||||
{
|
||||
</b></pre>
|
||||
The local variables have the same functionality as they do for <tt>def()</tt>. The
|
||||
only difference is that there is no <tt>flush</tt> variable, since <tt>inflate()</tt>
|
||||
can tell from the <em>zlib</em> stream itself when the stream is complete.
|
||||
<pre><b>
|
||||
int ret;
|
||||
unsigned have;
|
||||
z_stream strm;
|
||||
unsigned char in[CHUNK];
|
||||
unsigned char out[CHUNK];
|
||||
</b></pre><!-- -->
|
||||
The initialization of the state is the same, except that there is no compression level,
|
||||
of course, and two more elements of the structure are initialized. <tt>avail_in</tt>
|
||||
and <tt>next_in</tt> must be initialized before calling <tt>inflateInit()</tt>. This
|
||||
is because the application has the option to provide the start of the zlib stream in
|
||||
order for <tt>inflateInit()</tt> to have access to information about the compression
|
||||
method to aid in memory allocation. In the current implementation of <em>zlib</em>
|
||||
(up through versions 1.2.x), the method-dependent memory allocations are deferred to the first call of
|
||||
<tt>inflate()</tt> anyway. However those fields must be initialized since later versions
|
||||
of <em>zlib</em> that provide more compression methods may take advantage of this interface.
|
||||
In any case, no decompression is performed by <tt>inflateInit()</tt>, so the
|
||||
<tt>avail_out</tt> and <tt>next_out</tt> fields do not need to be initialized before calling.
|
||||
<p>
|
||||
Here <tt>avail_in</tt> is set to zero and <tt>next_in</tt> is set to <tt>Z_NULL</tt> to
|
||||
indicate that no input data is being provided.
|
||||
<pre><b>
|
||||
/* allocate inflate state */
|
||||
strm.zalloc = Z_NULL;
|
||||
strm.zfree = Z_NULL;
|
||||
strm.opaque = Z_NULL;
|
||||
strm.avail_in = 0;
|
||||
strm.next_in = Z_NULL;
|
||||
ret = inflateInit(&strm);
|
||||
if (ret != Z_OK)
|
||||
return ret;
|
||||
</b></pre><!-- -->
|
||||
The outer <tt>do</tt>-loop decompresses input until <tt>inflate()</tt> indicates
|
||||
that it has reached the end of the compressed data and has produced all of the uncompressed
|
||||
output. This is in contrast to <tt>def()</tt> which processes all of the input file.
|
||||
If end-of-file is reached before the compressed data self-terminates, then the compressed
|
||||
data is incomplete and an error is returned.
|
||||
<pre><b>
|
||||
/* decompress until deflate stream ends or end of file */
|
||||
do {
|
||||
</b></pre>
|
||||
We read input data and set the <tt>strm</tt> structure accordingly. If we've reached the
|
||||
end of the input file, then we leave the outer loop and report an error, since the
|
||||
compressed data is incomplete. Note that we may read more data than is eventually consumed
|
||||
by <tt>inflate()</tt>, if the input file continues past the <em>zlib</em> stream.
|
||||
For applications where <em>zlib</em> streams are embedded in other data, this routine would
|
||||
need to be modified to return the unused data, or at least indicate how much of the input
|
||||
data was not used, so the application would know where to pick up after the <em>zlib</em> stream.
|
||||
<pre><b>
|
||||
strm.avail_in = fread(in, 1, CHUNK, source);
|
||||
if (ferror(source)) {
|
||||
(void)inflateEnd(&strm);
|
||||
return Z_ERRNO;
|
||||
}
|
||||
if (strm.avail_in == 0)
|
||||
break;
|
||||
strm.next_in = in;
|
||||
</b></pre><!-- -->
|
||||
The inner <tt>do</tt>-loop has the same function it did in <tt>def()</tt>, which is to
|
||||
keep calling <tt>inflate()</tt> until has generated all of the output it can with the
|
||||
provided input.
|
||||
<pre><b>
|
||||
/* run inflate() on input until output buffer not full */
|
||||
do {
|
||||
</b></pre>
|
||||
Just like in <tt>def()</tt>, the same output space is provided for each call of <tt>inflate()</tt>.
|
||||
<pre><b>
|
||||
strm.avail_out = CHUNK;
|
||||
strm.next_out = out;
|
||||
</b></pre>
|
||||
Now we run the decompression engine itself. There is no need to adjust the flush parameter, since
|
||||
the <em>zlib</em> format is self-terminating. The main difference here is that there are
|
||||
return values that we need to pay attention to. <tt>Z_DATA_ERROR</tt>
|
||||
indicates that <tt>inflate()</tt> detected an error in the <em>zlib</em> compressed data format,
|
||||
which means that either the data is not a <em>zlib</em> stream to begin with, or that the data was
|
||||
corrupted somewhere along the way since it was compressed. The other error to be processed is
|
||||
<tt>Z_MEM_ERROR</tt>, which can occur since memory allocation is deferred until <tt>inflate()</tt>
|
||||
needs it, unlike <tt>deflate()</tt>, whose memory is allocated at the start by <tt>deflateInit()</tt>.
|
||||
<p>
|
||||
Advanced applications may use
|
||||
<tt>deflateSetDictionary()</tt> to prime <tt>deflate()</tt> with a set of likely data to improve the
|
||||
first 32K or so of compression. This is noted in the <em>zlib</em> header, so <tt>inflate()</tt>
|
||||
requests that that dictionary be provided before it can start to decompress. Without the dictionary,
|
||||
correct decompression is not possible. For this routine, we have no idea what the dictionary is,
|
||||
so the <tt>Z_NEED_DICT</tt> indication is converted to a <tt>Z_DATA_ERROR</tt>.
|
||||
<p>
|
||||
<tt>inflate()</tt> can also return <tt>Z_STREAM_ERROR</tt>, which should not be possible here,
|
||||
but could be checked for as noted above for <tt>def()</tt>. <tt>Z_BUF_ERROR</tt> does not need to be
|
||||
checked for here, for the same reasons noted for <tt>def()</tt>. <tt>Z_STREAM_END</tt> will be
|
||||
checked for later.
|
||||
<pre><b>
|
||||
ret = inflate(&strm, Z_NO_FLUSH);
|
||||
assert(ret != Z_STREAM_ERROR); /* state not clobbered */
|
||||
switch (ret) {
|
||||
case Z_NEED_DICT:
|
||||
ret = Z_DATA_ERROR; /* and fall through */
|
||||
case Z_DATA_ERROR:
|
||||
case Z_MEM_ERROR:
|
||||
(void)inflateEnd(&strm);
|
||||
return ret;
|
||||
}
|
||||
</b></pre>
|
||||
The output of <tt>inflate()</tt> is handled identically to that of <tt>deflate()</tt>.
|
||||
<pre><b>
|
||||
have = CHUNK - strm.avail_out;
|
||||
if (fwrite(out, 1, have, dest) != have || ferror(dest)) {
|
||||
(void)inflateEnd(&strm);
|
||||
return Z_ERRNO;
|
||||
}
|
||||
</b></pre>
|
||||
The inner <tt>do</tt>-loop ends when <tt>inflate()</tt> has no more output as indicated
|
||||
by not filling the output buffer, just as for <tt>deflate()</tt>. In this case, we cannot
|
||||
assert that <tt>strm.avail_in</tt> will be zero, since the deflate stream may end before the file
|
||||
does.
|
||||
<pre><b>
|
||||
} while (strm.avail_out == 0);
|
||||
</b></pre><!-- -->
|
||||
The outer <tt>do</tt>-loop ends when <tt>inflate()</tt> reports that it has reached the
|
||||
end of the input <em>zlib</em> stream, has completed the decompression and integrity
|
||||
check, and has provided all of the output. This is indicated by the <tt>inflate()</tt>
|
||||
return value <tt>Z_STREAM_END</tt>. The inner loop is guaranteed to leave <tt>ret</tt>
|
||||
equal to <tt>Z_STREAM_END</tt> if the last chunk of the input file read contained the end
|
||||
of the <em>zlib</em> stream. So if the return value is not <tt>Z_STREAM_END</tt>, the
|
||||
loop continues to read more input.
|
||||
<pre><b>
|
||||
/* done when inflate() says it's done */
|
||||
} while (ret != Z_STREAM_END);
|
||||
</b></pre><!-- -->
|
||||
At this point, decompression successfully completed, or we broke out of the loop due to no
|
||||
more data being available from the input file. If the last <tt>inflate()</tt> return value
|
||||
is not <tt>Z_STREAM_END</tt>, then the <em>zlib</em> stream was incomplete and a data error
|
||||
is returned. Otherwise, we return with a happy return value. Of course, <tt>inflateEnd()</tt>
|
||||
is called first to avoid a memory leak.
|
||||
<pre><b>
|
||||
/* clean up and return */
|
||||
(void)inflateEnd(&strm);
|
||||
return ret == Z_STREAM_END ? Z_OK : Z_DATA_ERROR;
|
||||
}
|
||||
</b></pre><!-- -->
|
||||
That ends the routines that directly use <em>zlib</em>. The following routines make this
|
||||
a command-line program by running data through the above routines from <tt>stdin</tt> to
|
||||
<tt>stdout</tt>, and handling any errors reported by <tt>def()</tt> or <tt>inf()</tt>.
|
||||
<p>
|
||||
<tt>zerr()</tt> is used to interpret the possible error codes from <tt>def()</tt>
|
||||
and <tt>inf()</tt>, as detailed in their comments above, and print out an error message.
|
||||
Note that these are only a subset of the possible return values from <tt>deflate()</tt>
|
||||
and <tt>inflate()</tt>.
|
||||
<pre><b>
|
||||
/* report a zlib or i/o error */
|
||||
void zerr(int ret)
|
||||
{
|
||||
fputs("zpipe: ", stderr);
|
||||
switch (ret) {
|
||||
case Z_ERRNO:
|
||||
if (ferror(stdin))
|
||||
fputs("error reading stdin\n", stderr);
|
||||
if (ferror(stdout))
|
||||
fputs("error writing stdout\n", stderr);
|
||||
break;
|
||||
case Z_STREAM_ERROR:
|
||||
fputs("invalid compression level\n", stderr);
|
||||
break;
|
||||
case Z_DATA_ERROR:
|
||||
fputs("invalid or incomplete deflate data\n", stderr);
|
||||
break;
|
||||
case Z_MEM_ERROR:
|
||||
fputs("out of memory\n", stderr);
|
||||
break;
|
||||
case Z_VERSION_ERROR:
|
||||
fputs("zlib version mismatch!\n", stderr);
|
||||
}
|
||||
}
|
||||
</b></pre><!-- -->
|
||||
Here is the <tt>main()</tt> routine used to test <tt>def()</tt> and <tt>inf()</tt>. The
|
||||
<tt>zpipe</tt> command is simply a compression pipe from <tt>stdin</tt> to <tt>stdout</tt>, if
|
||||
no arguments are given, or it is a decompression pipe if <tt>zpipe -d</tt> is used. If any other
|
||||
arguments are provided, no compression or decompression is performed. Instead a usage
|
||||
message is displayed. Examples are <tt>zpipe < foo.txt > foo.txt.z</tt> to compress, and
|
||||
<tt>zpipe -d < foo.txt.z > foo.txt</tt> to decompress.
|
||||
<pre><b>
|
||||
/* compress or decompress from stdin to stdout */
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
int ret;
|
||||
|
||||
/* avoid end-of-line conversions */
|
||||
SET_BINARY_MODE(stdin);
|
||||
SET_BINARY_MODE(stdout);
|
||||
|
||||
/* do compression if no arguments */
|
||||
if (argc == 1) {
|
||||
ret = def(stdin, stdout, Z_DEFAULT_COMPRESSION);
|
||||
if (ret != Z_OK)
|
||||
zerr(ret);
|
||||
return ret;
|
||||
}
|
||||
|
||||
/* do decompression if -d specified */
|
||||
else if (argc == 2 && strcmp(argv[1], "-d") == 0) {
|
||||
ret = inf(stdin, stdout);
|
||||
if (ret != Z_OK)
|
||||
zerr(ret);
|
||||
return ret;
|
||||
}
|
||||
|
||||
/* otherwise, report usage */
|
||||
else {
|
||||
fputs("zpipe usage: zpipe [-d] < source > dest\n", stderr);
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
</b></pre>
|
||||
<hr>
|
||||
<i>Copyright (c) 2004, 2005 by Mark Adler<br>Last modified 11 December 2005</i>
|
||||
</body>
|
||||
</html>
|
205
deps/zlib/examples/zpipe.c
vendored
Normal file
205
deps/zlib/examples/zpipe.c
vendored
Normal file
@ -0,0 +1,205 @@
|
||||
/* zpipe.c: example of proper use of zlib's inflate() and deflate()
|
||||
Not copyrighted -- provided to the public domain
|
||||
Version 1.4 11 December 2005 Mark Adler */
|
||||
|
||||
/* Version history:
|
||||
1.0 30 Oct 2004 First version
|
||||
1.1 8 Nov 2004 Add void casting for unused return values
|
||||
Use switch statement for inflate() return values
|
||||
1.2 9 Nov 2004 Add assertions to document zlib guarantees
|
||||
1.3 6 Apr 2005 Remove incorrect assertion in inf()
|
||||
1.4 11 Dec 2005 Add hack to avoid MSDOS end-of-line conversions
|
||||
Avoid some compiler warnings for input and output buffers
|
||||
*/
|
||||
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
#include <assert.h>
|
||||
#include "zlib.h"
|
||||
|
||||
#if defined(MSDOS) || defined(OS2) || defined(WIN32) || defined(__CYGWIN__)
|
||||
# include <fcntl.h>
|
||||
# include <io.h>
|
||||
# define SET_BINARY_MODE(file) setmode(fileno(file), O_BINARY)
|
||||
#else
|
||||
# define SET_BINARY_MODE(file)
|
||||
#endif
|
||||
|
||||
#define CHUNK 16384
|
||||
|
||||
/* Compress from file source to file dest until EOF on source.
|
||||
def() returns Z_OK on success, Z_MEM_ERROR if memory could not be
|
||||
allocated for processing, Z_STREAM_ERROR if an invalid compression
|
||||
level is supplied, Z_VERSION_ERROR if the version of zlib.h and the
|
||||
version of the library linked do not match, or Z_ERRNO if there is
|
||||
an error reading or writing the files. */
|
||||
int def(FILE *source, FILE *dest, int level)
|
||||
{
|
||||
int ret, flush;
|
||||
unsigned have;
|
||||
z_stream strm;
|
||||
unsigned char in[CHUNK];
|
||||
unsigned char out[CHUNK];
|
||||
|
||||
/* allocate deflate state */
|
||||
strm.zalloc = Z_NULL;
|
||||
strm.zfree = Z_NULL;
|
||||
strm.opaque = Z_NULL;
|
||||
ret = deflateInit(&strm, level);
|
||||
if (ret != Z_OK)
|
||||
return ret;
|
||||
|
||||
/* compress until end of file */
|
||||
do {
|
||||
strm.avail_in = fread(in, 1, CHUNK, source);
|
||||
if (ferror(source)) {
|
||||
(void)deflateEnd(&strm);
|
||||
return Z_ERRNO;
|
||||
}
|
||||
flush = feof(source) ? Z_FINISH : Z_NO_FLUSH;
|
||||
strm.next_in = in;
|
||||
|
||||
/* run deflate() on input until output buffer not full, finish
|
||||
compression if all of source has been read in */
|
||||
do {
|
||||
strm.avail_out = CHUNK;
|
||||
strm.next_out = out;
|
||||
ret = deflate(&strm, flush); /* no bad return value */
|
||||
assert(ret != Z_STREAM_ERROR); /* state not clobbered */
|
||||
have = CHUNK - strm.avail_out;
|
||||
if (fwrite(out, 1, have, dest) != have || ferror(dest)) {
|
||||
(void)deflateEnd(&strm);
|
||||
return Z_ERRNO;
|
||||
}
|
||||
} while (strm.avail_out == 0);
|
||||
assert(strm.avail_in == 0); /* all input will be used */
|
||||
|
||||
/* done when last data in file processed */
|
||||
} while (flush != Z_FINISH);
|
||||
assert(ret == Z_STREAM_END); /* stream will be complete */
|
||||
|
||||
/* clean up and return */
|
||||
(void)deflateEnd(&strm);
|
||||
return Z_OK;
|
||||
}
|
||||
|
||||
/* Decompress from file source to file dest until stream ends or EOF.
|
||||
inf() returns Z_OK on success, Z_MEM_ERROR if memory could not be
|
||||
allocated for processing, Z_DATA_ERROR if the deflate data is
|
||||
invalid or incomplete, Z_VERSION_ERROR if the version of zlib.h and
|
||||
the version of the library linked do not match, or Z_ERRNO if there
|
||||
is an error reading or writing the files. */
|
||||
int inf(FILE *source, FILE *dest)
|
||||
{
|
||||
int ret;
|
||||
unsigned have;
|
||||
z_stream strm;
|
||||
unsigned char in[CHUNK];
|
||||
unsigned char out[CHUNK];
|
||||
|
||||
/* allocate inflate state */
|
||||
strm.zalloc = Z_NULL;
|
||||
strm.zfree = Z_NULL;
|
||||
strm.opaque = Z_NULL;
|
||||
strm.avail_in = 0;
|
||||
strm.next_in = Z_NULL;
|
||||
ret = inflateInit(&strm);
|
||||
if (ret != Z_OK)
|
||||
return ret;
|
||||
|
||||
/* decompress until deflate stream ends or end of file */
|
||||
do {
|
||||
strm.avail_in = fread(in, 1, CHUNK, source);
|
||||
if (ferror(source)) {
|
||||
(void)inflateEnd(&strm);
|
||||
return Z_ERRNO;
|
||||
}
|
||||
if (strm.avail_in == 0)
|
||||
break;
|
||||
strm.next_in = in;
|
||||
|
||||
/* run inflate() on input until output buffer not full */
|
||||
do {
|
||||
strm.avail_out = CHUNK;
|
||||
strm.next_out = out;
|
||||
ret = inflate(&strm, Z_NO_FLUSH);
|
||||
assert(ret != Z_STREAM_ERROR); /* state not clobbered */
|
||||
switch (ret) {
|
||||
case Z_NEED_DICT:
|
||||
ret = Z_DATA_ERROR; /* and fall through */
|
||||
case Z_DATA_ERROR:
|
||||
case Z_MEM_ERROR:
|
||||
(void)inflateEnd(&strm);
|
||||
return ret;
|
||||
}
|
||||
have = CHUNK - strm.avail_out;
|
||||
if (fwrite(out, 1, have, dest) != have || ferror(dest)) {
|
||||
(void)inflateEnd(&strm);
|
||||
return Z_ERRNO;
|
||||
}
|
||||
} while (strm.avail_out == 0);
|
||||
|
||||
/* done when inflate() says it's done */
|
||||
} while (ret != Z_STREAM_END);
|
||||
|
||||
/* clean up and return */
|
||||
(void)inflateEnd(&strm);
|
||||
return ret == Z_STREAM_END ? Z_OK : Z_DATA_ERROR;
|
||||
}
|
||||
|
||||
/* report a zlib or i/o error */
|
||||
void zerr(int ret)
|
||||
{
|
||||
fputs("zpipe: ", stderr);
|
||||
switch (ret) {
|
||||
case Z_ERRNO:
|
||||
if (ferror(stdin))
|
||||
fputs("error reading stdin\n", stderr);
|
||||
if (ferror(stdout))
|
||||
fputs("error writing stdout\n", stderr);
|
||||
break;
|
||||
case Z_STREAM_ERROR:
|
||||
fputs("invalid compression level\n", stderr);
|
||||
break;
|
||||
case Z_DATA_ERROR:
|
||||
fputs("invalid or incomplete deflate data\n", stderr);
|
||||
break;
|
||||
case Z_MEM_ERROR:
|
||||
fputs("out of memory\n", stderr);
|
||||
break;
|
||||
case Z_VERSION_ERROR:
|
||||
fputs("zlib version mismatch!\n", stderr);
|
||||
}
|
||||
}
|
||||
|
||||
/* compress or decompress from stdin to stdout */
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
int ret;
|
||||
|
||||
/* avoid end-of-line conversions */
|
||||
SET_BINARY_MODE(stdin);
|
||||
SET_BINARY_MODE(stdout);
|
||||
|
||||
/* do compression if no arguments */
|
||||
if (argc == 1) {
|
||||
ret = def(stdin, stdout, Z_DEFAULT_COMPRESSION);
|
||||
if (ret != Z_OK)
|
||||
zerr(ret);
|
||||
return ret;
|
||||
}
|
||||
|
||||
/* do decompression if -d specified */
|
||||
else if (argc == 2 && strcmp(argv[1], "-d") == 0) {
|
||||
ret = inf(stdin, stdout);
|
||||
if (ret != Z_OK)
|
||||
zerr(ret);
|
||||
return ret;
|
||||
}
|
||||
|
||||
/* otherwise, report usage */
|
||||
else {
|
||||
fputs("zpipe usage: zpipe [-d] < source > dest\n", stderr);
|
||||
return 1;
|
||||
}
|
||||
}
|
479
deps/zlib/examples/zran.c
vendored
Normal file
479
deps/zlib/examples/zran.c
vendored
Normal file
@ -0,0 +1,479 @@
|
||||
/* zran.c -- example of zlib/gzip stream indexing and random access
|
||||
* Copyright (C) 2005, 2012, 2018 Mark Adler
|
||||
* For conditions of distribution and use, see copyright notice in zlib.h
|
||||
* Version 1.2 14 Oct 2018 Mark Adler */
|
||||
|
||||
/* Version History:
|
||||
1.0 29 May 2005 First version
|
||||
1.1 29 Sep 2012 Fix memory reallocation error
|
||||
1.2 14 Oct 2018 Handle gzip streams with multiple members
|
||||
Add a header file to facilitate usage in applications
|
||||
*/
|
||||
|
||||
/* Illustrate the use of Z_BLOCK, inflatePrime(), and inflateSetDictionary()
|
||||
for random access of a compressed file. A file containing a zlib or gzip
|
||||
stream is provided on the command line. The compressed stream is decoded in
|
||||
its entirety, and an index built with access points about every SPAN bytes
|
||||
in the uncompressed output. The compressed file is left open, and can then
|
||||
be read randomly, having to decompress on the average SPAN/2 uncompressed
|
||||
bytes before getting to the desired block of data.
|
||||
|
||||
An access point can be created at the start of any deflate block, by saving
|
||||
the starting file offset and bit of that block, and the 32K bytes of
|
||||
uncompressed data that precede that block. Also the uncompressed offset of
|
||||
that block is saved to provide a reference for locating a desired starting
|
||||
point in the uncompressed stream. deflate_index_build() works by
|
||||
decompressing the input zlib or gzip stream a block at a time, and at the
|
||||
end of each block deciding if enough uncompressed data has gone by to
|
||||
justify the creation of a new access point. If so, that point is saved in a
|
||||
data structure that grows as needed to accommodate the points.
|
||||
|
||||
To use the index, an offset in the uncompressed data is provided, for which
|
||||
the latest access point at or preceding that offset is located in the index.
|
||||
The input file is positioned to the specified location in the index, and if
|
||||
necessary the first few bits of the compressed data is read from the file.
|
||||
inflate is initialized with those bits and the 32K of uncompressed data, and
|
||||
the decompression then proceeds until the desired offset in the file is
|
||||
reached. Then the decompression continues to read the desired uncompressed
|
||||
data from the file.
|
||||
|
||||
Another approach would be to generate the index on demand. In that case,
|
||||
requests for random access reads from the compressed data would try to use
|
||||
the index, but if a read far enough past the end of the index is required,
|
||||
then further index entries would be generated and added.
|
||||
|
||||
There is some fair bit of overhead to starting inflation for the random
|
||||
access, mainly copying the 32K byte dictionary. So if small pieces of the
|
||||
file are being accessed, it would make sense to implement a cache to hold
|
||||
some lookahead and avoid many calls to deflate_index_extract() for small
|
||||
lengths.
|
||||
|
||||
Another way to build an index would be to use inflateCopy(). That would
|
||||
not be constrained to have access points at block boundaries, but requires
|
||||
more memory per access point, and also cannot be saved to file due to the
|
||||
use of pointers in the state. The approach here allows for storage of the
|
||||
index in a file.
|
||||
*/
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
#include "zlib.h"
|
||||
#include "zran.h"
|
||||
|
||||
#define WINSIZE 32768U /* sliding window size */
|
||||
#define CHUNK 16384 /* file input buffer size */
|
||||
|
||||
/* Access point entry. */
|
||||
struct point {
|
||||
off_t out; /* corresponding offset in uncompressed data */
|
||||
off_t in; /* offset in input file of first full byte */
|
||||
int bits; /* number of bits (1-7) from byte at in-1, or 0 */
|
||||
unsigned char window[WINSIZE]; /* preceding 32K of uncompressed data */
|
||||
};
|
||||
|
||||
/* See comments in zran.h. */
|
||||
void deflate_index_free(struct deflate_index *index)
|
||||
{
|
||||
if (index != NULL) {
|
||||
free(index->list);
|
||||
free(index);
|
||||
}
|
||||
}
|
||||
|
||||
/* Add an entry to the access point list. If out of memory, deallocate the
|
||||
existing list and return NULL. index->gzip is the allocated size of the
|
||||
index in point entries, until it is time for deflate_index_build() to
|
||||
return, at which point gzip is set to indicate a gzip file or not.
|
||||
*/
|
||||
static struct deflate_index *addpoint(struct deflate_index *index, int bits,
|
||||
off_t in, off_t out, unsigned left,
|
||||
unsigned char *window)
|
||||
{
|
||||
struct point *next;
|
||||
|
||||
/* if list is empty, create it (start with eight points) */
|
||||
if (index == NULL) {
|
||||
index = malloc(sizeof(struct deflate_index));
|
||||
if (index == NULL) return NULL;
|
||||
index->list = malloc(sizeof(struct point) << 3);
|
||||
if (index->list == NULL) {
|
||||
free(index);
|
||||
return NULL;
|
||||
}
|
||||
index->gzip = 8;
|
||||
index->have = 0;
|
||||
}
|
||||
|
||||
/* if list is full, make it bigger */
|
||||
else if (index->have == index->gzip) {
|
||||
index->gzip <<= 1;
|
||||
next = realloc(index->list, sizeof(struct point) * index->gzip);
|
||||
if (next == NULL) {
|
||||
deflate_index_free(index);
|
||||
return NULL;
|
||||
}
|
||||
index->list = next;
|
||||
}
|
||||
|
||||
/* fill in entry and increment how many we have */
|
||||
next = (struct point *)(index->list) + index->have;
|
||||
next->bits = bits;
|
||||
next->in = in;
|
||||
next->out = out;
|
||||
if (left)
|
||||
memcpy(next->window, window + WINSIZE - left, left);
|
||||
if (left < WINSIZE)
|
||||
memcpy(next->window + left, window, WINSIZE - left);
|
||||
index->have++;
|
||||
|
||||
/* return list, possibly reallocated */
|
||||
return index;
|
||||
}
|
||||
|
||||
/* See comments in zran.h. */
|
||||
int deflate_index_build(FILE *in, off_t span, struct deflate_index **built)
|
||||
{
|
||||
int ret;
|
||||
int gzip = 0; /* true if reading a gzip file */
|
||||
off_t totin, totout; /* our own total counters to avoid 4GB limit */
|
||||
off_t last; /* totout value of last access point */
|
||||
struct deflate_index *index; /* access points being generated */
|
||||
z_stream strm;
|
||||
unsigned char input[CHUNK];
|
||||
unsigned char window[WINSIZE];
|
||||
|
||||
/* initialize inflate */
|
||||
strm.zalloc = Z_NULL;
|
||||
strm.zfree = Z_NULL;
|
||||
strm.opaque = Z_NULL;
|
||||
strm.avail_in = 0;
|
||||
strm.next_in = Z_NULL;
|
||||
ret = inflateInit2(&strm, 47); /* automatic zlib or gzip decoding */
|
||||
if (ret != Z_OK)
|
||||
return ret;
|
||||
|
||||
/* inflate the input, maintain a sliding window, and build an index -- this
|
||||
also validates the integrity of the compressed data using the check
|
||||
information in the gzip or zlib stream */
|
||||
totin = totout = last = 0;
|
||||
index = NULL; /* will be allocated by first addpoint() */
|
||||
strm.avail_out = 0;
|
||||
do {
|
||||
/* get some compressed data from input file */
|
||||
strm.avail_in = fread(input, 1, CHUNK, in);
|
||||
if (ferror(in)) {
|
||||
ret = Z_ERRNO;
|
||||
goto deflate_index_build_error;
|
||||
}
|
||||
if (strm.avail_in == 0) {
|
||||
ret = Z_DATA_ERROR;
|
||||
goto deflate_index_build_error;
|
||||
}
|
||||
strm.next_in = input;
|
||||
|
||||
/* check for a gzip stream */
|
||||
if (totin == 0 && strm.avail_in >= 3 &&
|
||||
input[0] == 31 && input[1] == 139 && input[2] == 8)
|
||||
gzip = 1;
|
||||
|
||||
/* process all of that, or until end of stream */
|
||||
do {
|
||||
/* reset sliding window if necessary */
|
||||
if (strm.avail_out == 0) {
|
||||
strm.avail_out = WINSIZE;
|
||||
strm.next_out = window;
|
||||
}
|
||||
|
||||
/* inflate until out of input, output, or at end of block --
|
||||
update the total input and output counters */
|
||||
totin += strm.avail_in;
|
||||
totout += strm.avail_out;
|
||||
ret = inflate(&strm, Z_BLOCK); /* return at end of block */
|
||||
totin -= strm.avail_in;
|
||||
totout -= strm.avail_out;
|
||||
if (ret == Z_NEED_DICT)
|
||||
ret = Z_DATA_ERROR;
|
||||
if (ret == Z_MEM_ERROR || ret == Z_DATA_ERROR)
|
||||
goto deflate_index_build_error;
|
||||
if (ret == Z_STREAM_END) {
|
||||
if (gzip &&
|
||||
(strm.avail_in || ungetc(getc(in), in) != EOF)) {
|
||||
ret = inflateReset(&strm);
|
||||
if (ret != Z_OK)
|
||||
goto deflate_index_build_error;
|
||||
continue;
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
/* if at end of block, consider adding an index entry (note that if
|
||||
data_type indicates an end-of-block, then all of the
|
||||
uncompressed data from that block has been delivered, and none
|
||||
of the compressed data after that block has been consumed,
|
||||
except for up to seven bits) -- the totout == 0 provides an
|
||||
entry point after the zlib or gzip header, and assures that the
|
||||
index always has at least one access point; we avoid creating an
|
||||
access point after the last block by checking bit 6 of data_type
|
||||
*/
|
||||
if ((strm.data_type & 128) && !(strm.data_type & 64) &&
|
||||
(totout == 0 || totout - last > span)) {
|
||||
index = addpoint(index, strm.data_type & 7, totin,
|
||||
totout, strm.avail_out, window);
|
||||
if (index == NULL) {
|
||||
ret = Z_MEM_ERROR;
|
||||
goto deflate_index_build_error;
|
||||
}
|
||||
last = totout;
|
||||
}
|
||||
} while (strm.avail_in != 0);
|
||||
} while (ret != Z_STREAM_END);
|
||||
|
||||
/* clean up and return index (release unused entries in list) */
|
||||
(void)inflateEnd(&strm);
|
||||
index->list = realloc(index->list, sizeof(struct point) * index->have);
|
||||
index->gzip = gzip;
|
||||
index->length = totout;
|
||||
*built = index;
|
||||
return index->have;
|
||||
|
||||
/* return error */
|
||||
deflate_index_build_error:
|
||||
(void)inflateEnd(&strm);
|
||||
deflate_index_free(index);
|
||||
return ret;
|
||||
}
|
||||
|
||||
/* See comments in zran.h. */
|
||||
int deflate_index_extract(FILE *in, struct deflate_index *index, off_t offset,
|
||||
unsigned char *buf, int len)
|
||||
{
|
||||
int ret, skip;
|
||||
z_stream strm;
|
||||
struct point *here;
|
||||
unsigned char input[CHUNK];
|
||||
unsigned char discard[WINSIZE];
|
||||
|
||||
/* proceed only if something reasonable to do */
|
||||
if (len < 0)
|
||||
return 0;
|
||||
|
||||
/* find where in stream to start */
|
||||
here = index->list;
|
||||
ret = index->have;
|
||||
while (--ret && here[1].out <= offset)
|
||||
here++;
|
||||
|
||||
/* initialize file and inflate state to start there */
|
||||
strm.zalloc = Z_NULL;
|
||||
strm.zfree = Z_NULL;
|
||||
strm.opaque = Z_NULL;
|
||||
strm.avail_in = 0;
|
||||
strm.next_in = Z_NULL;
|
||||
ret = inflateInit2(&strm, -15); /* raw inflate */
|
||||
if (ret != Z_OK)
|
||||
return ret;
|
||||
ret = fseeko(in, here->in - (here->bits ? 1 : 0), SEEK_SET);
|
||||
if (ret == -1)
|
||||
goto deflate_index_extract_ret;
|
||||
if (here->bits) {
|
||||
ret = getc(in);
|
||||
if (ret == -1) {
|
||||
ret = ferror(in) ? Z_ERRNO : Z_DATA_ERROR;
|
||||
goto deflate_index_extract_ret;
|
||||
}
|
||||
(void)inflatePrime(&strm, here->bits, ret >> (8 - here->bits));
|
||||
}
|
||||
(void)inflateSetDictionary(&strm, here->window, WINSIZE);
|
||||
|
||||
/* skip uncompressed bytes until offset reached, then satisfy request */
|
||||
offset -= here->out;
|
||||
strm.avail_in = 0;
|
||||
skip = 1; /* while skipping to offset */
|
||||
do {
|
||||
/* define where to put uncompressed data, and how much */
|
||||
if (offset > WINSIZE) { /* skip WINSIZE bytes */
|
||||
strm.avail_out = WINSIZE;
|
||||
strm.next_out = discard;
|
||||
offset -= WINSIZE;
|
||||
}
|
||||
else if (offset > 0) { /* last skip */
|
||||
strm.avail_out = (unsigned)offset;
|
||||
strm.next_out = discard;
|
||||
offset = 0;
|
||||
}
|
||||
else if (skip) { /* at offset now */
|
||||
strm.avail_out = len;
|
||||
strm.next_out = buf;
|
||||
skip = 0; /* only do this once */
|
||||
}
|
||||
|
||||
/* uncompress until avail_out filled, or end of stream */
|
||||
do {
|
||||
if (strm.avail_in == 0) {
|
||||
strm.avail_in = fread(input, 1, CHUNK, in);
|
||||
if (ferror(in)) {
|
||||
ret = Z_ERRNO;
|
||||
goto deflate_index_extract_ret;
|
||||
}
|
||||
if (strm.avail_in == 0) {
|
||||
ret = Z_DATA_ERROR;
|
||||
goto deflate_index_extract_ret;
|
||||
}
|
||||
strm.next_in = input;
|
||||
}
|
||||
ret = inflate(&strm, Z_NO_FLUSH); /* normal inflate */
|
||||
if (ret == Z_NEED_DICT)
|
||||
ret = Z_DATA_ERROR;
|
||||
if (ret == Z_MEM_ERROR || ret == Z_DATA_ERROR)
|
||||
goto deflate_index_extract_ret;
|
||||
if (ret == Z_STREAM_END) {
|
||||
/* the raw deflate stream has ended */
|
||||
if (index->gzip == 0)
|
||||
/* this is a zlib stream that has ended -- done */
|
||||
break;
|
||||
|
||||
/* near the end of a gzip member, which might be followed by
|
||||
another gzip member -- skip the gzip trailer and see if
|
||||
there is more input after it */
|
||||
if (strm.avail_in < 8) {
|
||||
fseeko(in, 8 - strm.avail_in, SEEK_CUR);
|
||||
strm.avail_in = 0;
|
||||
}
|
||||
else {
|
||||
strm.avail_in -= 8;
|
||||
strm.next_in += 8;
|
||||
}
|
||||
if (strm.avail_in == 0 && ungetc(getc(in), in) == EOF)
|
||||
/* the input ended after the gzip trailer -- done */
|
||||
break;
|
||||
|
||||
/* there is more input, so another gzip member should follow --
|
||||
validate and skip the gzip header */
|
||||
ret = inflateReset2(&strm, 31);
|
||||
if (ret != Z_OK)
|
||||
goto deflate_index_extract_ret;
|
||||
do {
|
||||
if (strm.avail_in == 0) {
|
||||
strm.avail_in = fread(input, 1, CHUNK, in);
|
||||
if (ferror(in)) {
|
||||
ret = Z_ERRNO;
|
||||
goto deflate_index_extract_ret;
|
||||
}
|
||||
if (strm.avail_in == 0) {
|
||||
ret = Z_DATA_ERROR;
|
||||
goto deflate_index_extract_ret;
|
||||
}
|
||||
strm.next_in = input;
|
||||
}
|
||||
ret = inflate(&strm, Z_BLOCK);
|
||||
if (ret == Z_MEM_ERROR || ret == Z_DATA_ERROR)
|
||||
goto deflate_index_extract_ret;
|
||||
} while ((strm.data_type & 128) == 0);
|
||||
|
||||
/* set up to continue decompression of the raw deflate stream
|
||||
that follows the gzip header */
|
||||
ret = inflateReset2(&strm, -15);
|
||||
if (ret != Z_OK)
|
||||
goto deflate_index_extract_ret;
|
||||
}
|
||||
|
||||
/* continue to process the available input before reading more */
|
||||
} while (strm.avail_out != 0);
|
||||
|
||||
if (ret == Z_STREAM_END)
|
||||
/* reached the end of the compressed data -- return the data that
|
||||
was available, possibly less than requested */
|
||||
break;
|
||||
|
||||
/* do until offset reached and requested data read */
|
||||
} while (skip);
|
||||
|
||||
/* compute the number of uncompressed bytes read after the offset */
|
||||
ret = skip ? 0 : len - strm.avail_out;
|
||||
|
||||
/* clean up and return the bytes read, or the negative error */
|
||||
deflate_index_extract_ret:
|
||||
(void)inflateEnd(&strm);
|
||||
return ret;
|
||||
}
|
||||
|
||||
#ifdef TEST
|
||||
|
||||
#define SPAN 1048576L /* desired distance between access points */
|
||||
#define LEN 16384 /* number of bytes to extract */
|
||||
|
||||
/* Demonstrate the use of deflate_index_build() and deflate_index_extract() by
|
||||
processing the file provided on the command line, and extracting LEN bytes
|
||||
from 2/3rds of the way through the uncompressed output, writing that to
|
||||
stdout. An offset can be provided as the second argument, in which case the
|
||||
data is extracted from there instead. */
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
int len;
|
||||
off_t offset = -1;
|
||||
FILE *in;
|
||||
struct deflate_index *index = NULL;
|
||||
unsigned char buf[LEN];
|
||||
|
||||
/* open input file */
|
||||
if (argc < 2 || argc > 3) {
|
||||
fprintf(stderr, "usage: zran file.gz [offset]\n");
|
||||
return 1;
|
||||
}
|
||||
in = fopen(argv[1], "rb");
|
||||
if (in == NULL) {
|
||||
fprintf(stderr, "zran: could not open %s for reading\n", argv[1]);
|
||||
return 1;
|
||||
}
|
||||
|
||||
/* get optional offset */
|
||||
if (argc == 3) {
|
||||
char *end;
|
||||
offset = strtoll(argv[2], &end, 10);
|
||||
if (*end || offset < 0) {
|
||||
fprintf(stderr, "zran: %s is not a valid offset\n", argv[2]);
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
|
||||
/* build index */
|
||||
len = deflate_index_build(in, SPAN, &index);
|
||||
if (len < 0) {
|
||||
fclose(in);
|
||||
switch (len) {
|
||||
case Z_MEM_ERROR:
|
||||
fprintf(stderr, "zran: out of memory\n");
|
||||
break;
|
||||
case Z_DATA_ERROR:
|
||||
fprintf(stderr, "zran: compressed data error in %s\n", argv[1]);
|
||||
break;
|
||||
case Z_ERRNO:
|
||||
fprintf(stderr, "zran: read error on %s\n", argv[1]);
|
||||
break;
|
||||
default:
|
||||
fprintf(stderr, "zran: error %d while building index\n", len);
|
||||
}
|
||||
return 1;
|
||||
}
|
||||
fprintf(stderr, "zran: built index with %d access points\n", len);
|
||||
|
||||
/* use index by reading some bytes from an arbitrary offset */
|
||||
if (offset == -1)
|
||||
offset = (index->length << 1) / 3;
|
||||
len = deflate_index_extract(in, index, offset, buf, LEN);
|
||||
if (len < 0)
|
||||
fprintf(stderr, "zran: extraction failed: %s error\n",
|
||||
len == Z_MEM_ERROR ? "out of memory" : "input corrupted");
|
||||
else {
|
||||
fwrite(buf, 1, len, stdout);
|
||||
fprintf(stderr, "zran: extracted %d bytes at %llu\n", len, offset);
|
||||
}
|
||||
|
||||
/* clean up and exit */
|
||||
deflate_index_free(index);
|
||||
fclose(in);
|
||||
return 0;
|
||||
}
|
||||
|
||||
#endif
|
40
deps/zlib/examples/zran.h
vendored
Normal file
40
deps/zlib/examples/zran.h
vendored
Normal file
@ -0,0 +1,40 @@
|
||||
/* zran.h -- example of zlib/gzip stream indexing and random access
|
||||
* Copyright (C) 2005, 2012, 2018 Mark Adler
|
||||
* For conditions of distribution and use, see copyright notice in zlib.h
|
||||
* Version 1.2 14 Oct 2018 Mark Adler */
|
||||
|
||||
#include <stdio.h>
|
||||
#include "zlib.h"
|
||||
|
||||
/* Access point list. */
|
||||
struct deflate_index {
|
||||
int have; /* number of list entries */
|
||||
int gzip; /* 1 if the index is of a gzip file, 0 if it is of a
|
||||
zlib stream */
|
||||
off_t length; /* total length of uncompressed data */
|
||||
void *list; /* allocated list of entries */
|
||||
};
|
||||
|
||||
/* Make one entire pass through a zlib or gzip compressed stream and build an
|
||||
index, with access points about every span bytes of uncompressed output.
|
||||
gzip files with multiple members are indexed in their entirety. span should
|
||||
be chosen to balance the speed of random access against the memory
|
||||
requirements of the list, about 32K bytes per access point. The return value
|
||||
is the number of access points on success (>= 1), Z_MEM_ERROR for out of
|
||||
memory, Z_DATA_ERROR for an error in the input file, or Z_ERRNO for a file
|
||||
read error. On success, *built points to the resulting index. */
|
||||
int deflate_index_build(FILE *in, off_t span, struct deflate_index **built);
|
||||
|
||||
/* Deallocate an index built by deflate_index_build() */
|
||||
void deflate_index_free(struct deflate_index *index);
|
||||
|
||||
/* Use the index to read len bytes from offset into buf. Return bytes read or
|
||||
negative for error (Z_DATA_ERROR or Z_MEM_ERROR). If data is requested past
|
||||
the end of the uncompressed data, then deflate_index_extract() will return a
|
||||
value less than len, indicating how much was actually read into buf. This
|
||||
function should not return a data error unless the file was modified since
|
||||
the index was generated, since deflate_index_build() validated all of the
|
||||
input. deflate_index_extract() will return Z_ERRNO if there is an error on
|
||||
reading or seeking the input file. */
|
||||
int deflate_index_extract(FILE *in, struct deflate_index *index, off_t offset,
|
||||
unsigned char *buf, int len);
|
Reference in New Issue
Block a user