Add prebuild OpenSSL, and remove SCHANNEL code and whatever it was on MacOS. Build mingw for 64-bit.

git-svn-id: https://www.unprompted.com/svn/projects/tildefriends/trunk@4088 ed5197a5-7fde-0310-b194-c3ffbd925b24
This commit is contained in:
2022-12-29 23:55:49 +00:00
parent d9aee6d05f
commit 09ddfffa6b
2374 changed files with 477787 additions and 1109 deletions

View File

@ -0,0 +1,600 @@
.\" Automatically generated by Pod::Man 4.14 (Pod::Simple 3.42)
.\"
.\" Standard preamble:
.\" ========================================================================
.de Sp \" Vertical space (when we can't use .PP)
.if t .sp .5v
.if n .sp
..
.de Vb \" Begin verbatim text
.ft CW
.nf
.ne \\$1
..
.de Ve \" End verbatim text
.ft R
.fi
..
.\" Set up some character translations and predefined strings. \*(-- will
.\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left
.\" double quote, and \*(R" will give a right double quote. \*(C+ will
.\" give a nicer C++. Capital omega is used to do unbreakable dashes and
.\" therefore won't be available. \*(C` and \*(C' expand to `' in nroff,
.\" nothing in troff, for use with C<>.
.tr \(*W-
.ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p'
.ie n \{\
. ds -- \(*W-
. ds PI pi
. if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch
. if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch
. ds L" ""
. ds R" ""
. ds C` ""
. ds C' ""
'br\}
.el\{\
. ds -- \|\(em\|
. ds PI \(*p
. ds L" ``
. ds R" ''
. ds C`
. ds C'
'br\}
.\"
.\" Escape single quotes in literal strings from groff's Unicode transform.
.ie \n(.g .ds Aq \(aq
.el .ds Aq '
.\"
.\" If the F register is >0, we'll generate index entries on stderr for
.\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index
.\" entries marked with X<> in POD. Of course, you'll have to process the
.\" output yourself in some meaningful fashion.
.\"
.\" Avoid warning from groff about undefined register 'F'.
.de IX
..
.nr rF 0
.if \n(.g .if rF .nr rF 1
.if (\n(rF:(\n(.g==0)) \{\
. if \nF \{\
. de IX
. tm Index:\\$1\t\\n%\t"\\$2"
..
. if !\nF==2 \{\
. nr % 0
. nr F 2
. \}
. \}
.\}
.rr rF
.\"
.\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2).
.\" Fear. Run. Save yourself. No user-serviceable parts.
. \" fudge factors for nroff and troff
.if n \{\
. ds #H 0
. ds #V .8m
. ds #F .3m
. ds #[ \f1
. ds #] \fP
.\}
.if t \{\
. ds #H ((1u-(\\\\n(.fu%2u))*.13m)
. ds #V .6m
. ds #F 0
. ds #[ \&
. ds #] \&
.\}
. \" simple accents for nroff and troff
.if n \{\
. ds ' \&
. ds ` \&
. ds ^ \&
. ds , \&
. ds ~ ~
. ds /
.\}
.if t \{\
. ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u"
. ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u'
. ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u'
. ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u'
. ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u'
. ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u'
.\}
. \" troff and (daisy-wheel) nroff accents
.ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V'
.ds 8 \h'\*(#H'\(*b\h'-\*(#H'
.ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#]
.ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H'
.ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u'
.ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#]
.ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#]
.ds ae a\h'-(\w'a'u*4/10)'e
.ds Ae A\h'-(\w'A'u*4/10)'E
. \" corrections for vroff
.if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u'
.if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u'
. \" for low resolution devices (crt and lpr)
.if \n(.H>23 .if \n(.V>19 \
\{\
. ds : e
. ds 8 ss
. ds o a
. ds d- d\h'-1'\(ga
. ds D- D\h'-1'\(hy
. ds th \o'bp'
. ds Th \o'LP'
. ds ae ae
. ds Ae AE
.\}
.rm #[ #] #H #V #F C
.\" ========================================================================
.\"
.IX Title "CONFIG 5"
.TH CONFIG 5 "2020-04-21" "1.1.1g" "OpenSSL"
.\" For nroff, turn off justification. Always turn off hyphenation; it makes
.\" way too many mistakes in technical documents.
.if n .ad l
.nh
.SH "NAME"
config \- OpenSSL CONF library configuration files
.SH "DESCRIPTION"
.IX Header "DESCRIPTION"
The OpenSSL \s-1CONF\s0 library can be used to read configuration files.
It is used for the OpenSSL master configuration file \fBopenssl.cnf\fR
and in a few other places like \fB\s-1SPKAC\s0\fR files and certificate extension
files for the \fBx509\fR utility. OpenSSL applications can also use the
\&\s-1CONF\s0 library for their own purposes.
.PP
A configuration file is divided into a number of sections. Each section
starts with a line \fB[ section_name ]\fR and ends when a new section is
started or end of file is reached. A section name can consist of
alphanumeric characters and underscores.
.PP
The first section of a configuration file is special and is referred
to as the \fBdefault\fR section. This section is usually unnamed and spans from the
start of file until the first named section. When a name is being looked up
it is first looked up in a named section (if any) and then the
default section.
.PP
The environment is mapped onto a section called \fB\s-1ENV\s0\fR.
.PP
Comments can be included by preceding them with the \fB#\fR character
.PP
Other files can be included using the \fB.include\fR directive followed
by a path. If the path points to a directory all files with
names ending with \fB.cnf\fR or \fB.conf\fR are included from the directory.
Recursive inclusion of directories from files in such directory is not
supported. That means the files in the included directory can also contain
\&\fB.include\fR directives but only inclusion of regular files is supported
there. The inclusion of directories is not supported on systems without
\&\s-1POSIX IO\s0 support.
.PP
It is strongly recommended to use absolute paths with the \fB.include\fR
directive. Relative paths are evaluated based on the application current
working directory so unless the configuration file containing the
\&\fB.include\fR directive is application specific the inclusion will not
work as expected.
.PP
There can be optional \fB=\fR character and whitespace characters between
\&\fB.include\fR directive and the path which can be useful in cases the
configuration file needs to be loaded by old OpenSSL versions which do
not support the \fB.include\fR syntax. They would bail out with error
if the \fB=\fR character is not present but with it they just ignore
the include.
.PP
Each section in a configuration file consists of a number of name and
value pairs of the form \fBname=value\fR
.PP
The \fBname\fR string can contain any alphanumeric characters as well as
a few punctuation symbols such as \fB.\fR \fB,\fR \fB;\fR and \fB_\fR.
.PP
The \fBvalue\fR string consists of the string following the \fB=\fR character
until end of line with any leading and trailing white space removed.
.PP
The value string undergoes variable expansion. This can be done by
including the form \fB\f(CB$var\fB\fR or \fB${var}\fR: this will substitute the value
of the named variable in the current section. It is also possible to
substitute a value from another section using the syntax \fB\f(CB$section::name\fB\fR
or \fB${section::name}\fR. By using the form \fB\f(CB$ENV::name\fB\fR environment
variables can be substituted. It is also possible to assign values to
environment variables by using the name \fBENV::name\fR, this will work
if the program looks up environment variables using the \fB\s-1CONF\s0\fR library
instead of calling \fBgetenv()\fR directly. The value string must not exceed 64k in
length after variable expansion. Otherwise an error will occur.
.PP
It is possible to escape certain characters by using any kind of quote
or the \fB\e\fR character. By making the last character of a line a \fB\e\fR
a \fBvalue\fR string can be spread across multiple lines. In addition
the sequences \fB\en\fR, \fB\er\fR, \fB\eb\fR and \fB\et\fR are recognized.
.PP
All expansion and escape rules as described above that apply to \fBvalue\fR
also apply to the path of the \fB.include\fR directive.
.SH "OPENSSL LIBRARY CONFIGURATION"
.IX Header "OPENSSL LIBRARY CONFIGURATION"
Applications can automatically configure certain
aspects of OpenSSL using the master OpenSSL configuration file, or optionally
an alternative configuration file. The \fBopenssl\fR utility includes this
functionality: any sub command uses the master OpenSSL configuration file
unless an option is used in the sub command to use an alternative configuration
file.
.PP
To enable library configuration the default section needs to contain an
appropriate line which points to the main configuration section. The default
name is \fBopenssl_conf\fR which is used by the \fBopenssl\fR utility. Other
applications may use an alternative name such as \fBmyapplication_conf\fR.
All library configuration lines appear in the default section at the start
of the configuration file.
.PP
The configuration section should consist of a set of name value pairs which
contain specific module configuration information. The \fBname\fR represents
the name of the \fIconfiguration module\fR. The meaning of the \fBvalue\fR is
module specific: it may, for example, represent a further configuration
section containing configuration module specific information. E.g.:
.PP
.Vb 2
\& # This must be in the default section
\& openssl_conf = openssl_init
\&
\& [openssl_init]
\&
\& oid_section = new_oids
\& engines = engine_section
\&
\& [new_oids]
\&
\& ... new oids here ...
\&
\& [engine_section]
\&
\& ... engine stuff here ...
.Ve
.PP
The features of each configuration module are described below.
.SS "\s-1ASN1\s0 Object Configuration Module"
.IX Subsection "ASN1 Object Configuration Module"
This module has the name \fBoid_section\fR. The value of this variable points
to a section containing name value pairs of OIDs: the name is the \s-1OID\s0 short
and long name, the value is the numerical form of the \s-1OID.\s0 Although some of
the \fBopenssl\fR utility sub commands already have their own \s-1ASN1 OBJECT\s0 section
functionality not all do. By using the \s-1ASN1 OBJECT\s0 configuration module
\&\fBall\fR the \fBopenssl\fR utility sub commands can see the new objects as well
as any compliant applications. For example:
.PP
.Vb 1
\& [new_oids]
\&
\& some_new_oid = 1.2.3.4
\& some_other_oid = 1.2.3.5
.Ve
.PP
It is also possible to set the value to the long name followed
by a comma and the numerical \s-1OID\s0 form. For example:
.PP
.Vb 1
\& shortName = some object long name, 1.2.3.4
.Ve
.SS "Engine Configuration Module"
.IX Subsection "Engine Configuration Module"
This \s-1ENGINE\s0 configuration module has the name \fBengines\fR. The value of this
variable points to a section containing further \s-1ENGINE\s0 configuration
information.
.PP
The section pointed to by \fBengines\fR is a table of engine names (though see
\&\fBengine_id\fR below) and further sections containing configuration information
specific to each \s-1ENGINE.\s0
.PP
Each \s-1ENGINE\s0 specific section is used to set default algorithms, load
dynamic, perform initialization and send ctrls. The actual operation performed
depends on the \fIcommand\fR name which is the name of the name value pair. The
currently supported commands are listed below.
.PP
For example:
.PP
.Vb 1
\& [engine_section]
\&
\& # Configure ENGINE named "foo"
\& foo = foo_section
\& # Configure ENGINE named "bar"
\& bar = bar_section
\&
\& [foo_section]
\& ... foo ENGINE specific commands ...
\&
\& [bar_section]
\& ... "bar" ENGINE specific commands ...
.Ve
.PP
The command \fBengine_id\fR is used to give the \s-1ENGINE\s0 name. If used this
command must be first. For example:
.PP
.Vb 3
\& [engine_section]
\& # This would normally handle an ENGINE named "foo"
\& foo = foo_section
\&
\& [foo_section]
\& # Override default name and use "myfoo" instead.
\& engine_id = myfoo
.Ve
.PP
The command \fBdynamic_path\fR loads and adds an \s-1ENGINE\s0 from the given path. It
is equivalent to sending the ctrls \fB\s-1SO_PATH\s0\fR with the path argument followed
by \fB\s-1LIST_ADD\s0\fR with value 2 and \fB\s-1LOAD\s0\fR to the dynamic \s-1ENGINE.\s0 If this is
not the required behaviour then alternative ctrls can be sent directly
to the dynamic \s-1ENGINE\s0 using ctrl commands.
.PP
The command \fBinit\fR determines whether to initialize the \s-1ENGINE.\s0 If the value
is \fB0\fR the \s-1ENGINE\s0 will not be initialized, if \fB1\fR and attempt it made to
initialized the \s-1ENGINE\s0 immediately. If the \fBinit\fR command is not present
then an attempt will be made to initialize the \s-1ENGINE\s0 after all commands in
its section have been processed.
.PP
The command \fBdefault_algorithms\fR sets the default algorithms an \s-1ENGINE\s0 will
supply using the functions \fBENGINE_set_default_string()\fR.
.PP
If the name matches none of the above command names it is assumed to be a
ctrl command which is sent to the \s-1ENGINE.\s0 The value of the command is the
argument to the ctrl command. If the value is the string \fB\s-1EMPTY\s0\fR then no
value is sent to the command.
.PP
For example:
.PP
.Vb 1
\& [engine_section]
\&
\& # Configure ENGINE named "foo"
\& foo = foo_section
\&
\& [foo_section]
\& # Load engine from DSO
\& dynamic_path = /some/path/fooengine.so
\& # A foo specific ctrl.
\& some_ctrl = some_value
\& # Another ctrl that doesn\*(Aqt take a value.
\& other_ctrl = EMPTY
\& # Supply all default algorithms
\& default_algorithms = ALL
.Ve
.SS "\s-1EVP\s0 Configuration Module"
.IX Subsection "EVP Configuration Module"
This modules has the name \fBalg_section\fR which points to a section containing
algorithm commands.
.PP
Currently the only algorithm command supported is \fBfips_mode\fR whose
value can only be the boolean string \fBoff\fR. If \fBfips_mode\fR is set to \fBon\fR,
an error occurs as this library version is not \s-1FIPS\s0 capable.
.SS "\s-1SSL\s0 Configuration Module"
.IX Subsection "SSL Configuration Module"
This module has the name \fBssl_conf\fR which points to a section containing
\&\s-1SSL\s0 configurations.
.PP
Each line in the \s-1SSL\s0 configuration section contains the name of the
configuration and the section containing it.
.PP
Each configuration section consists of command value pairs for \fB\s-1SSL_CONF\s0\fR.
Each pair will be passed to a \fB\s-1SSL_CTX\s0\fR or \fB\s-1SSL\s0\fR structure if it calls
\&\fBSSL_CTX_config()\fR or \fBSSL_config()\fR with the appropriate configuration name.
.PP
Note: any characters before an initial dot in the configuration section are
ignored so the same command can be used multiple times.
.PP
For example:
.PP
.Vb 1
\& ssl_conf = ssl_sect
\&
\& [ssl_sect]
\&
\& server = server_section
\&
\& [server_section]
\&
\& RSA.Certificate = server\-rsa.pem
\& ECDSA.Certificate = server\-ecdsa.pem
\& Ciphers = ALL:!RC4
.Ve
.PP
The system default configuration with name \fBsystem_default\fR if present will
be applied during any creation of the \fB\s-1SSL_CTX\s0\fR structure.
.PP
Example of a configuration with the system default:
.PP
.Vb 1
\& ssl_conf = ssl_sect
\&
\& [ssl_sect]
\&
\& system_default = system_default_sect
\&
\& [system_default_sect]
\&
\& MinProtocol = TLSv1.2
.Ve
.SH "NOTES"
.IX Header "NOTES"
If a configuration file attempts to expand a variable that doesn't exist
then an error is flagged and the file will not load. This can happen
if an attempt is made to expand an environment variable that doesn't
exist. For example in a previous version of OpenSSL the default OpenSSL
master configuration file used the value of \fB\s-1HOME\s0\fR which may not be
defined on non Unix systems and would cause an error.
.PP
This can be worked around by including a \fBdefault\fR section to provide
a default value: then if the environment lookup fails the default value
will be used instead. For this to work properly the default value must
be defined earlier in the configuration file than the expansion. See
the \fB\s-1EXAMPLES\s0\fR section for an example of how to do this.
.PP
If the same variable exists in the same section then all but the last
value will be silently ignored. In certain circumstances such as with
DNs the same field may occur multiple times. This is usually worked
around by ignoring any characters before an initial \fB.\fR e.g.
.PP
.Vb 2
\& 1.OU="My first OU"
\& 2.OU="My Second OU"
.Ve
.SH "EXAMPLES"
.IX Header "EXAMPLES"
Here is a sample configuration file using some of the features
mentioned above.
.PP
.Vb 1
\& # This is the default section.
\&
\& HOME=/temp
\& RANDFILE= ${ENV::HOME}/.rnd
\& configdir=$ENV::HOME/config
\&
\& [ section_one ]
\&
\& # We are now in section one.
\&
\& # Quotes permit leading and trailing whitespace
\& any = " any variable name "
\&
\& other = A string that can \e
\& cover several lines \e
\& by including \e\e characters
\&
\& message = Hello World\en
\&
\& [ section_two ]
\&
\& greeting = $section_one::message
.Ve
.PP
This next example shows how to expand environment variables safely.
.PP
Suppose you want a variable called \fBtmpfile\fR to refer to a
temporary filename. The directory it is placed in can determined by
the \fB\s-1TEMP\s0\fR or \fB\s-1TMP\s0\fR environment variables but they may not be
set to any value at all. If you just include the environment variable
names and the variable doesn't exist then this will cause an error when
an attempt is made to load the configuration file. By making use of the
default section both values can be looked up with \fB\s-1TEMP\s0\fR taking
priority and \fB/tmp\fR used if neither is defined:
.PP
.Vb 5
\& TMP=/tmp
\& # The above value is used if TMP isn\*(Aqt in the environment
\& TEMP=$ENV::TMP
\& # The above value is used if TEMP isn\*(Aqt in the environment
\& tmpfile=${ENV::TEMP}/tmp.filename
.Ve
.PP
Simple OpenSSL library configuration example to enter \s-1FIPS\s0 mode:
.PP
.Vb 3
\& # Default appname: should match "appname" parameter (if any)
\& # supplied to CONF_modules_load_file et al.
\& openssl_conf = openssl_conf_section
\&
\& [openssl_conf_section]
\& # Configuration module list
\& alg_section = evp_sect
\&
\& [evp_sect]
\& # Set to "yes" to enter FIPS mode if supported
\& fips_mode = yes
.Ve
.PP
Note: in the above example you will get an error in non \s-1FIPS\s0 capable versions
of OpenSSL.
.PP
Simple OpenSSL library configuration to make \s-1TLS 1.3\s0 the system-default
minimum \s-1TLS\s0 version:
.PP
.Vb 2
\& # Toplevel section for openssl (including libssl)
\& openssl_conf = default_conf_section
\&
\& [default_conf_section]
\& # We only specify configuration for the "ssl module"
\& ssl_conf = ssl_section
\&
\& [ssl_section]
\& system_default = system_default_section
\&
\& [system_default_section]
\& MinProtocol = TLSv1.3
.Ve
.PP
More complex OpenSSL library configuration. Add \s-1OID\s0 and don't enter \s-1FIPS\s0 mode:
.PP
.Vb 3
\& # Default appname: should match "appname" parameter (if any)
\& # supplied to CONF_modules_load_file et al.
\& openssl_conf = openssl_conf_section
\&
\& [openssl_conf_section]
\& # Configuration module list
\& alg_section = evp_sect
\& oid_section = new_oids
\&
\& [evp_sect]
\& # This will have no effect as FIPS mode is off by default.
\& # Set to "yes" to enter FIPS mode, if supported
\& fips_mode = no
\&
\& [new_oids]
\& # New OID, just short name
\& newoid1 = 1.2.3.4.1
\& # New OID shortname and long name
\& newoid2 = New OID 2 long name, 1.2.3.4.2
.Ve
.PP
The above examples can be used with any application supporting library
configuration if \*(L"openssl_conf\*(R" is modified to match the appropriate \*(L"appname\*(R".
.PP
For example if the second sample file above is saved to \*(L"example.cnf\*(R" then
the command line:
.PP
.Vb 1
\& OPENSSL_CONF=example.cnf openssl asn1parse \-genstr OID:1.2.3.4.1
.Ve
.PP
will output:
.PP
.Vb 1
\& 0:d=0 hl=2 l= 4 prim: OBJECT :newoid1
.Ve
.PP
showing that the \s-1OID\s0 \*(L"newoid1\*(R" has been added as \*(L"1.2.3.4.1\*(R".
.SH "ENVIRONMENT"
.IX Header "ENVIRONMENT"
.IP "\fB\s-1OPENSSL_CONF\s0\fR" 4
.IX Item "OPENSSL_CONF"
The path to the config file.
Ignored in set-user-ID and set-group-ID programs.
.IP "\fB\s-1OPENSSL_ENGINES\s0\fR" 4
.IX Item "OPENSSL_ENGINES"
The path to the engines directory.
Ignored in set-user-ID and set-group-ID programs.
.SH "BUGS"
.IX Header "BUGS"
Currently there is no way to include characters using the octal \fB\ennn\fR
form. Strings are all null terminated so nulls cannot form part of
the value.
.PP
The escaping isn't quite right: if you want to use sequences like \fB\en\fR
you can't use any quote escaping on the same line.
.PP
Files are loaded in a single pass. This means that an variable expansion
will only work if the variables referenced are defined earlier in the
file.
.SH "SEE ALSO"
.IX Header "SEE ALSO"
\&\fBx509\fR\|(1), \fBreq\fR\|(1), \fBca\fR\|(1)
.SH "COPYRIGHT"
.IX Header "COPYRIGHT"
Copyright 2000\-2020 The OpenSSL Project Authors. All Rights Reserved.
.PP
Licensed under the OpenSSL license (the \*(L"License\*(R"). You may not use
this file except in compliance with the License. You can obtain a copy
in the file \s-1LICENSE\s0 in the source distribution or at
<https://www.openssl.org/source/license.html>.

View File

@ -0,0 +1,704 @@
.\" Automatically generated by Pod::Man 4.14 (Pod::Simple 3.42)
.\"
.\" Standard preamble:
.\" ========================================================================
.de Sp \" Vertical space (when we can't use .PP)
.if t .sp .5v
.if n .sp
..
.de Vb \" Begin verbatim text
.ft CW
.nf
.ne \\$1
..
.de Ve \" End verbatim text
.ft R
.fi
..
.\" Set up some character translations and predefined strings. \*(-- will
.\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left
.\" double quote, and \*(R" will give a right double quote. \*(C+ will
.\" give a nicer C++. Capital omega is used to do unbreakable dashes and
.\" therefore won't be available. \*(C` and \*(C' expand to `' in nroff,
.\" nothing in troff, for use with C<>.
.tr \(*W-
.ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p'
.ie n \{\
. ds -- \(*W-
. ds PI pi
. if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch
. if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch
. ds L" ""
. ds R" ""
. ds C` ""
. ds C' ""
'br\}
.el\{\
. ds -- \|\(em\|
. ds PI \(*p
. ds L" ``
. ds R" ''
. ds C`
. ds C'
'br\}
.\"
.\" Escape single quotes in literal strings from groff's Unicode transform.
.ie \n(.g .ds Aq \(aq
.el .ds Aq '
.\"
.\" If the F register is >0, we'll generate index entries on stderr for
.\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index
.\" entries marked with X<> in POD. Of course, you'll have to process the
.\" output yourself in some meaningful fashion.
.\"
.\" Avoid warning from groff about undefined register 'F'.
.de IX
..
.nr rF 0
.if \n(.g .if rF .nr rF 1
.if (\n(rF:(\n(.g==0)) \{\
. if \nF \{\
. de IX
. tm Index:\\$1\t\\n%\t"\\$2"
..
. if !\nF==2 \{\
. nr % 0
. nr F 2
. \}
. \}
.\}
.rr rF
.\"
.\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2).
.\" Fear. Run. Save yourself. No user-serviceable parts.
. \" fudge factors for nroff and troff
.if n \{\
. ds #H 0
. ds #V .8m
. ds #F .3m
. ds #[ \f1
. ds #] \fP
.\}
.if t \{\
. ds #H ((1u-(\\\\n(.fu%2u))*.13m)
. ds #V .6m
. ds #F 0
. ds #[ \&
. ds #] \&
.\}
. \" simple accents for nroff and troff
.if n \{\
. ds ' \&
. ds ` \&
. ds ^ \&
. ds , \&
. ds ~ ~
. ds /
.\}
.if t \{\
. ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u"
. ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u'
. ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u'
. ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u'
. ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u'
. ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u'
.\}
. \" troff and (daisy-wheel) nroff accents
.ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V'
.ds 8 \h'\*(#H'\(*b\h'-\*(#H'
.ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#]
.ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H'
.ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u'
.ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#]
.ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#]
.ds ae a\h'-(\w'a'u*4/10)'e
.ds Ae A\h'-(\w'A'u*4/10)'E
. \" corrections for vroff
.if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u'
.if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u'
. \" for low resolution devices (crt and lpr)
.if \n(.H>23 .if \n(.V>19 \
\{\
. ds : e
. ds 8 ss
. ds o a
. ds d- d\h'-1'\(ga
. ds D- D\h'-1'\(hy
. ds th \o'bp'
. ds Th \o'LP'
. ds ae ae
. ds Ae AE
.\}
.rm #[ #] #H #V #F C
.\" ========================================================================
.\"
.IX Title "X509V3_CONFIG 5"
.TH X509V3_CONFIG 5 "2020-04-21" "1.1.1g" "OpenSSL"
.\" For nroff, turn off justification. Always turn off hyphenation; it makes
.\" way too many mistakes in technical documents.
.if n .ad l
.nh
.SH "NAME"
x509v3_config \- X509 V3 certificate extension configuration format
.SH "DESCRIPTION"
.IX Header "DESCRIPTION"
Several of the OpenSSL utilities can add extensions to a certificate or
certificate request based on the contents of a configuration file.
.PP
Typically the application will contain an option to point to an extension
section. Each line of the extension section takes the form:
.PP
.Vb 1
\& extension_name=[critical,] extension_options
.Ve
.PP
If \fBcritical\fR is present then the extension will be critical.
.PP
The format of \fBextension_options\fR depends on the value of \fBextension_name\fR.
.PP
There are four main types of extension: \fIstring\fR extensions, \fImulti-valued\fR
extensions, \fIraw\fR and \fIarbitrary\fR extensions.
.PP
String extensions simply have a string which contains either the value itself
or how it is obtained.
.PP
For example:
.PP
.Vb 1
\& nsComment="This is a Comment"
.Ve
.PP
Multi-valued extensions have a short form and a long form. The short form
is a list of names and values:
.PP
.Vb 1
\& basicConstraints=critical,CA:true,pathlen:1
.Ve
.PP
The long form allows the values to be placed in a separate section:
.PP
.Vb 1
\& basicConstraints=critical,@bs_section
\&
\& [bs_section]
\&
\& CA=true
\& pathlen=1
.Ve
.PP
Both forms are equivalent.
.PP
The syntax of raw extensions is governed by the extension code: it can
for example contain data in multiple sections. The correct syntax to
use is defined by the extension code itself: check out the certificate
policies extension for an example.
.PP
If an extension type is unsupported then the \fIarbitrary\fR extension syntax
must be used, see the \s-1ARBITRARY EXTENSIONS\s0 section for more details.
.SH "STANDARD EXTENSIONS"
.IX Header "STANDARD EXTENSIONS"
The following sections describe each supported extension in detail.
.SS "Basic Constraints."
.IX Subsection "Basic Constraints."
This is a multi valued extension which indicates whether a certificate is
a \s-1CA\s0 certificate. The first (mandatory) name is \fB\s-1CA\s0\fR followed by \fB\s-1TRUE\s0\fR or
\&\fB\s-1FALSE\s0\fR. If \fB\s-1CA\s0\fR is \fB\s-1TRUE\s0\fR then an optional \fBpathlen\fR name followed by an
non-negative value can be included.
.PP
For example:
.PP
.Vb 1
\& basicConstraints=CA:TRUE
\&
\& basicConstraints=CA:FALSE
\&
\& basicConstraints=critical,CA:TRUE, pathlen:0
.Ve
.PP
A \s-1CA\s0 certificate \fBmust\fR include the basicConstraints value with the \s-1CA\s0 field
set to \s-1TRUE.\s0 An end user certificate must either set \s-1CA\s0 to \s-1FALSE\s0 or exclude the
extension entirely. Some software may require the inclusion of basicConstraints
with \s-1CA\s0 set to \s-1FALSE\s0 for end entity certificates.
.PP
The pathlen parameter indicates the maximum number of CAs that can appear
below this one in a chain. So if you have a \s-1CA\s0 with a pathlen of zero it can
only be used to sign end user certificates and not further CAs.
.SS "Key Usage."
.IX Subsection "Key Usage."
Key usage is a multi valued extension consisting of a list of names of the
permitted key usages.
.PP
The supported names are: digitalSignature, nonRepudiation, keyEncipherment,
dataEncipherment, keyAgreement, keyCertSign, cRLSign, encipherOnly
and decipherOnly.
.PP
Examples:
.PP
.Vb 1
\& keyUsage=digitalSignature, nonRepudiation
\&
\& keyUsage=critical, keyCertSign
.Ve
.SS "Extended Key Usage."
.IX Subsection "Extended Key Usage."
This extensions consists of a list of usages indicating purposes for which
the certificate public key can be used for,
.PP
These can either be object short names or the dotted numerical form of OIDs.
While any \s-1OID\s0 can be used only certain values make sense. In particular the
following \s-1PKIX, NS\s0 and \s-1MS\s0 values are meaningful:
.PP
.Vb 10
\& Value Meaning
\& \-\-\-\-\- \-\-\-\-\-\-\-
\& serverAuth SSL/TLS Web Server Authentication.
\& clientAuth SSL/TLS Web Client Authentication.
\& codeSigning Code signing.
\& emailProtection E\-mail Protection (S/MIME).
\& timeStamping Trusted Timestamping
\& OCSPSigning OCSP Signing
\& ipsecIKE ipsec Internet Key Exchange
\& msCodeInd Microsoft Individual Code Signing (authenticode)
\& msCodeCom Microsoft Commercial Code Signing (authenticode)
\& msCTLSign Microsoft Trust List Signing
\& msEFS Microsoft Encrypted File System
.Ve
.PP
Examples:
.PP
.Vb 2
\& extendedKeyUsage=critical,codeSigning,1.2.3.4
\& extendedKeyUsage=serverAuth,clientAuth
.Ve
.SS "Subject Key Identifier."
.IX Subsection "Subject Key Identifier."
This is really a string extension and can take two possible values. Either
the word \fBhash\fR which will automatically follow the guidelines in \s-1RFC3280\s0
or a hex string giving the extension value to include. The use of the hex
string is strongly discouraged.
.PP
Example:
.PP
.Vb 1
\& subjectKeyIdentifier=hash
.Ve
.SS "Authority Key Identifier."
.IX Subsection "Authority Key Identifier."
The authority key identifier extension permits two options. keyid and issuer:
both can take the optional value \*(L"always\*(R".
.PP
If the keyid option is present an attempt is made to copy the subject key
identifier from the parent certificate. If the value \*(L"always\*(R" is present
then an error is returned if the option fails.
.PP
The issuer option copies the issuer and serial number from the issuer
certificate. This will only be done if the keyid option fails or
is not included unless the \*(L"always\*(R" flag will always include the value.
.PP
Example:
.PP
.Vb 1
\& authorityKeyIdentifier=keyid,issuer
.Ve
.SS "Subject Alternative Name."
.IX Subsection "Subject Alternative Name."
The subject alternative name extension allows various literal values to be
included in the configuration file. These include \fBemail\fR (an email address)
\&\fB\s-1URI\s0\fR a uniform resource indicator, \fB\s-1DNS\s0\fR (a \s-1DNS\s0 domain name), \fB\s-1RID\s0\fR (a
registered \s-1ID: OBJECT IDENTIFIER\s0), \fB\s-1IP\s0\fR (an \s-1IP\s0 address), \fBdirName\fR
(a distinguished name) and otherName.
.PP
The email option include a special 'copy' value. This will automatically
include any email addresses contained in the certificate subject name in
the extension.
.PP
The \s-1IP\s0 address used in the \fB\s-1IP\s0\fR options can be in either IPv4 or IPv6 format.
.PP
The value of \fBdirName\fR should point to a section containing the distinguished
name to use as a set of name value pairs. Multi values AVAs can be formed by
prefacing the name with a \fB+\fR character.
.PP
otherName can include arbitrary data associated with an \s-1OID:\s0 the value
should be the \s-1OID\s0 followed by a semicolon and the content in standard
\&\fBASN1_generate_nconf\fR\|(3) format.
.PP
Examples:
.PP
.Vb 5
\& subjectAltName=email:copy,email:my@other.address,URI:http://my.url.here/
\& subjectAltName=IP:192.168.7.1
\& subjectAltName=IP:13::17
\& subjectAltName=email:my@other.address,RID:1.2.3.4
\& subjectAltName=otherName:1.2.3.4;UTF8:some other identifier
\&
\& subjectAltName=dirName:dir_sect
\&
\& [dir_sect]
\& C=UK
\& O=My Organization
\& OU=My Unit
\& CN=My Name
.Ve
.SS "Issuer Alternative Name."
.IX Subsection "Issuer Alternative Name."
The issuer alternative name option supports all the literal options of
subject alternative name. It does \fBnot\fR support the email:copy option because
that would not make sense. It does support an additional issuer:copy option
that will copy all the subject alternative name values from the issuer
certificate (if possible).
.PP
Example:
.PP
.Vb 1
\& issuerAltName = issuer:copy
.Ve
.SS "Authority Info Access."
.IX Subsection "Authority Info Access."
The authority information access extension gives details about how to access
certain information relating to the \s-1CA.\s0 Its syntax is accessOID;location
where \fIlocation\fR has the same syntax as subject alternative name (except
that email:copy is not supported). accessOID can be any valid \s-1OID\s0 but only
certain values are meaningful, for example \s-1OCSP\s0 and caIssuers.
.PP
Example:
.PP
.Vb 2
\& authorityInfoAccess = OCSP;URI:http://ocsp.my.host/
\& authorityInfoAccess = caIssuers;URI:http://my.ca/ca.html
.Ve
.SS "\s-1CRL\s0 distribution points"
.IX Subsection "CRL distribution points"
This is a multi-valued extension whose options can be either in name:value pair
using the same form as subject alternative name or a single value representing
a section name containing all the distribution point fields.
.PP
For a name:value pair a new DistributionPoint with the fullName field set to
the given value both the cRLissuer and reasons fields are omitted in this case.
.PP
In the single option case the section indicated contains values for each
field. In this section:
.PP
If the name is \*(L"fullname\*(R" the value field should contain the full name
of the distribution point in the same format as subject alternative name.
.PP
If the name is \*(L"relativename\*(R" then the value field should contain a section
name whose contents represent a \s-1DN\s0 fragment to be placed in this field.
.PP
The name \*(L"CRLIssuer\*(R" if present should contain a value for this field in
subject alternative name format.
.PP
If the name is \*(L"reasons\*(R" the value field should consist of a comma
separated field containing the reasons. Valid reasons are: \*(L"keyCompromise\*(R",
\&\*(L"CACompromise\*(R", \*(L"affiliationChanged\*(R", \*(L"superseded\*(R", \*(L"cessationOfOperation\*(R",
\&\*(L"certificateHold\*(R", \*(L"privilegeWithdrawn\*(R" and \*(L"AACompromise\*(R".
.PP
Simple examples:
.PP
.Vb 2
\& crlDistributionPoints=URI:http://myhost.com/myca.crl
\& crlDistributionPoints=URI:http://my.com/my.crl,URI:http://oth.com/my.crl
.Ve
.PP
Full distribution point example:
.PP
.Vb 1
\& crlDistributionPoints=crldp1_section
\&
\& [crldp1_section]
\&
\& fullname=URI:http://myhost.com/myca.crl
\& CRLissuer=dirName:issuer_sect
\& reasons=keyCompromise, CACompromise
\&
\& [issuer_sect]
\& C=UK
\& O=Organisation
\& CN=Some Name
.Ve
.SS "Issuing Distribution Point"
.IX Subsection "Issuing Distribution Point"
This extension should only appear in CRLs. It is a multi valued extension
whose syntax is similar to the \*(L"section\*(R" pointed to by the \s-1CRL\s0 distribution
points extension with a few differences.
.PP
The names \*(L"reasons\*(R" and \*(L"CRLissuer\*(R" are not recognized.
.PP
The name \*(L"onlysomereasons\*(R" is accepted which sets this field. The value is
in the same format as the \s-1CRL\s0 distribution point \*(L"reasons\*(R" field.
.PP
The names \*(L"onlyuser\*(R", \*(L"onlyCA\*(R", \*(L"onlyAA\*(R" and \*(L"indirectCRL\*(R" are also accepted
the values should be a boolean value (\s-1TRUE\s0 or \s-1FALSE\s0) to indicate the value of
the corresponding field.
.PP
Example:
.PP
.Vb 1
\& issuingDistributionPoint=critical, @idp_section
\&
\& [idp_section]
\&
\& fullname=URI:http://myhost.com/myca.crl
\& indirectCRL=TRUE
\& onlysomereasons=keyCompromise, CACompromise
\&
\& [issuer_sect]
\& C=UK
\& O=Organisation
\& CN=Some Name
.Ve
.SS "Certificate Policies."
.IX Subsection "Certificate Policies."
This is a \fIraw\fR extension. All the fields of this extension can be set by
using the appropriate syntax.
.PP
If you follow the \s-1PKIX\s0 recommendations and just using one \s-1OID\s0 then you just
include the value of that \s-1OID.\s0 Multiple OIDs can be set separated by commas,
for example:
.PP
.Vb 1
\& certificatePolicies= 1.2.4.5, 1.1.3.4
.Ve
.PP
If you wish to include qualifiers then the policy \s-1OID\s0 and qualifiers need to
be specified in a separate section: this is done by using the \f(CW@section\fR syntax
instead of a literal \s-1OID\s0 value.
.PP
The section referred to must include the policy \s-1OID\s0 using the name
policyIdentifier, cPSuri qualifiers can be included using the syntax:
.PP
.Vb 1
\& CPS.nnn=value
.Ve
.PP
userNotice qualifiers can be set using the syntax:
.PP
.Vb 1
\& userNotice.nnn=@notice
.Ve
.PP
The value of the userNotice qualifier is specified in the relevant section.
This section can include explicitText, organization and noticeNumbers
options. explicitText and organization are text strings, noticeNumbers is a
comma separated list of numbers. The organization and noticeNumbers options
(if included) must \s-1BOTH\s0 be present. If you use the userNotice option with \s-1IE5\s0
then you need the 'ia5org' option at the top level to modify the encoding:
otherwise it will not be interpreted properly.
.PP
Example:
.PP
.Vb 1
\& certificatePolicies=ia5org,1.2.3.4,1.5.6.7.8,@polsect
\&
\& [polsect]
\&
\& policyIdentifier = 1.3.5.8
\& CPS.1="http://my.host.name/"
\& CPS.2="http://my.your.name/"
\& userNotice.1=@notice
\&
\& [notice]
\&
\& explicitText="Explicit Text Here"
\& organization="Organisation Name"
\& noticeNumbers=1,2,3,4
.Ve
.PP
The \fBia5org\fR option changes the type of the \fIorganization\fR field. In \s-1RFC2459\s0
it can only be of type DisplayText. In \s-1RFC3280\s0 IA5String is also permissible.
Some software (for example some versions of \s-1MSIE\s0) may require ia5org.
.PP
\&\s-1ASN1\s0 type of explicitText can be specified by prepending \fB\s-1UTF8\s0\fR,
\&\fB\s-1BMP\s0\fR or \fB\s-1VISIBLE\s0\fR prefix followed by colon. For example:
.PP
.Vb 2
\& [notice]
\& explicitText="UTF8:Explicit Text Here"
.Ve
.SS "Policy Constraints"
.IX Subsection "Policy Constraints"
This is a multi-valued extension which consisting of the names
\&\fBrequireExplicitPolicy\fR or \fBinhibitPolicyMapping\fR and a non negative integer
value. At least one component must be present.
.PP
Example:
.PP
.Vb 1
\& policyConstraints = requireExplicitPolicy:3
.Ve
.SS "Inhibit Any Policy"
.IX Subsection "Inhibit Any Policy"
This is a string extension whose value must be a non negative integer.
.PP
Example:
.PP
.Vb 1
\& inhibitAnyPolicy = 2
.Ve
.SS "Name Constraints"
.IX Subsection "Name Constraints"
The name constraints extension is a multi-valued extension. The name should
begin with the word \fBpermitted\fR or \fBexcluded\fR followed by a \fB;\fR. The rest of
the name and the value follows the syntax of subjectAltName except email:copy
is not supported and the \fB\s-1IP\s0\fR form should consist of an \s-1IP\s0 addresses and
subnet mask separated by a \fB/\fR.
.PP
Examples:
.PP
.Vb 1
\& nameConstraints=permitted;IP:192.168.0.0/255.255.0.0
\&
\& nameConstraints=permitted;email:.somedomain.com
\&
\& nameConstraints=excluded;email:.com
.Ve
.SS "\s-1OCSP\s0 No Check"
.IX Subsection "OCSP No Check"
The \s-1OCSP\s0 No Check extension is a string extension but its value is ignored.
.PP
Example:
.PP
.Vb 1
\& noCheck = ignored
.Ve
.SS "\s-1TLS\s0 Feature (aka Must Staple)"
.IX Subsection "TLS Feature (aka Must Staple)"
This is a multi-valued extension consisting of a list of \s-1TLS\s0 extension
identifiers. Each identifier may be a number (0..65535) or a supported name.
When a \s-1TLS\s0 client sends a listed extension, the \s-1TLS\s0 server is expected to
include that extension in its reply.
.PP
The supported names are: \fBstatus_request\fR and \fBstatus_request_v2\fR.
.PP
Example:
.PP
.Vb 1
\& tlsfeature = status_request
.Ve
.SH "DEPRECATED EXTENSIONS"
.IX Header "DEPRECATED EXTENSIONS"
The following extensions are non standard, Netscape specific and largely
obsolete. Their use in new applications is discouraged.
.SS "Netscape String extensions."
.IX Subsection "Netscape String extensions."
Netscape Comment (\fBnsComment\fR) is a string extension containing a comment
which will be displayed when the certificate is viewed in some browsers.
.PP
Example:
.PP
.Vb 1
\& nsComment = "Some Random Comment"
.Ve
.PP
Other supported extensions in this category are: \fBnsBaseUrl\fR,
\&\fBnsRevocationUrl\fR, \fBnsCaRevocationUrl\fR, \fBnsRenewalUrl\fR, \fBnsCaPolicyUrl\fR
and \fBnsSslServerName\fR.
.SS "Netscape Certificate Type"
.IX Subsection "Netscape Certificate Type"
This is a multi-valued extensions which consists of a list of flags to be
included. It was used to indicate the purposes for which a certificate could
be used. The basicConstraints, keyUsage and extended key usage extensions are
now used instead.
.PP
Acceptable values for nsCertType are: \fBclient\fR, \fBserver\fR, \fBemail\fR,
\&\fBobjsign\fR, \fBreserved\fR, \fBsslCA\fR, \fBemailCA\fR, \fBobjCA\fR.
.SH "ARBITRARY EXTENSIONS"
.IX Header "ARBITRARY EXTENSIONS"
If an extension is not supported by the OpenSSL code then it must be encoded
using the arbitrary extension format. It is also possible to use the arbitrary
format for supported extensions. Extreme care should be taken to ensure that
the data is formatted correctly for the given extension type.
.PP
There are two ways to encode arbitrary extensions.
.PP
The first way is to use the word \s-1ASN1\s0 followed by the extension content
using the same syntax as \fBASN1_generate_nconf\fR\|(3).
For example:
.PP
.Vb 1
\& 1.2.3.4=critical,ASN1:UTF8String:Some random data
\&
\& 1.2.3.4=ASN1:SEQUENCE:seq_sect
\&
\& [seq_sect]
\&
\& field1 = UTF8:field1
\& field2 = UTF8:field2
.Ve
.PP
It is also possible to use the word \s-1DER\s0 to include the raw encoded data in any
extension.
.PP
.Vb 2
\& 1.2.3.4=critical,DER:01:02:03:04
\& 1.2.3.4=DER:01020304
.Ve
.PP
The value following \s-1DER\s0 is a hex dump of the \s-1DER\s0 encoding of the extension
Any extension can be placed in this form to override the default behaviour.
For example:
.PP
.Vb 1
\& basicConstraints=critical,DER:00:01:02:03
.Ve
.SH "WARNINGS"
.IX Header "WARNINGS"
There is no guarantee that a specific implementation will process a given
extension. It may therefore be sometimes possible to use certificates for
purposes prohibited by their extensions because a specific application does
not recognize or honour the values of the relevant extensions.
.PP
The \s-1DER\s0 and \s-1ASN1\s0 options should be used with caution. It is possible to create
totally invalid extensions if they are not used carefully.
.SH "NOTES"
.IX Header "NOTES"
If an extension is multi-value and a field value must contain a comma the long
form must be used otherwise the comma would be misinterpreted as a field
separator. For example:
.PP
.Vb 1
\& subjectAltName=URI:ldap://somehost.com/CN=foo,OU=bar
.Ve
.PP
will produce an error but the equivalent form:
.PP
.Vb 1
\& subjectAltName=@subject_alt_section
\&
\& [subject_alt_section]
\& subjectAltName=URI:ldap://somehost.com/CN=foo,OU=bar
.Ve
.PP
is valid.
.PP
Due to the behaviour of the OpenSSL \fBconf\fR library the same field name
can only occur once in a section. This means that:
.PP
.Vb 1
\& subjectAltName=@alt_section
\&
\& [alt_section]
\&
\& email=steve@here
\& email=steve@there
.Ve
.PP
will only recognize the last value. This can be worked around by using the form:
.PP
.Vb 1
\& [alt_section]
\&
\& email.1=steve@here
\& email.2=steve@there
.Ve
.SH "SEE ALSO"
.IX Header "SEE ALSO"
\&\fBreq\fR\|(1), \fBca\fR\|(1), \fBx509\fR\|(1),
\&\fBASN1_generate_nconf\fR\|(3)
.SH "COPYRIGHT"
.IX Header "COPYRIGHT"
Copyright 2004\-2019 The OpenSSL Project Authors. All Rights Reserved.
.PP
Licensed under the OpenSSL license (the \*(L"License\*(R"). You may not use
this file except in compliance with the License. You can obtain a copy
in the file \s-1LICENSE\s0 in the source distribution or at
<https://www.openssl.org/source/license.html>.