tildefriends/deps/libuv/test/test-metrics.c

393 lines
11 KiB
C
Raw Normal View History

/* Copyright libuv project contributors. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "uv.h"
#include "task.h"
#include <string.h> /* memset */
#define UV_NS_TO_MS 1000000
typedef struct {
uv_fs_t open_req;
uv_fs_t write_req;
uv_fs_t close_req;
} fs_reqs_t;
static uint64_t last_events_count;
static char test_buf[] = "test-buffer\n";
static fs_reqs_t fs_reqs;
static int pool_events_counter;
static void timer_spin_cb(uv_timer_t* handle) {
uint64_t t;
(*(int*) handle->data)++;
t = uv_hrtime();
/* Spin for 500 ms to spin loop time out of the delta check. */
while (uv_hrtime() - t < 600 * UV_NS_TO_MS) { }
}
TEST_IMPL(metrics_idle_time) {
#if defined(__OpenBSD__)
RETURN_SKIP("Test does not currently work in OpenBSD");
#endif
const uint64_t timeout = 1000;
uv_timer_t timer;
uint64_t idle_time;
int cntr;
cntr = 0;
timer.data = &cntr;
ASSERT_OK(uv_loop_configure(uv_default_loop(), UV_METRICS_IDLE_TIME));
ASSERT_OK(uv_timer_init(uv_default_loop(), &timer));
ASSERT_OK(uv_timer_start(&timer, timer_spin_cb, timeout, 0));
ASSERT_OK(uv_run(uv_default_loop(), UV_RUN_DEFAULT));
ASSERT_GT(cntr, 0);
idle_time = uv_metrics_idle_time(uv_default_loop());
/* Permissive check that the idle time matches within the timeout ±500 ms. */
ASSERT_LE(idle_time, (timeout + 500) * UV_NS_TO_MS);
ASSERT_GE(idle_time, (timeout - 500) * UV_NS_TO_MS);
MAKE_VALGRIND_HAPPY(uv_default_loop());
return 0;
}
static void metrics_routine_cb(void* arg) {
const uint64_t timeout = 1000;
uv_loop_t loop;
uv_timer_t timer;
uint64_t idle_time;
int cntr;
cntr = 0;
timer.data = &cntr;
ASSERT_OK(uv_loop_init(&loop));
ASSERT_OK(uv_loop_configure(&loop, UV_METRICS_IDLE_TIME));
ASSERT_OK(uv_timer_init(&loop, &timer));
ASSERT_OK(uv_timer_start(&timer, timer_spin_cb, timeout, 0));
ASSERT_OK(uv_run(&loop, UV_RUN_DEFAULT));
ASSERT_GT(cntr, 0);
idle_time = uv_metrics_idle_time(&loop);
/* Only checking that idle time is greater than the lower bound since there
* may have been thread contention, causing the event loop to be delayed in
* the idle phase longer than expected.
*/
ASSERT_GE(idle_time, (timeout - 500) * UV_NS_TO_MS);
close_loop(&loop);
ASSERT_OK(uv_loop_close(&loop));
}
TEST_IMPL(metrics_idle_time_thread) {
uv_thread_t threads[5];
int i;
for (i = 0; i < 5; i++) {
ASSERT_OK(uv_thread_create(&threads[i], metrics_routine_cb, NULL));
}
for (i = 0; i < 5; i++) {
uv_thread_join(&threads[i]);
}
return 0;
}
static void timer_noop_cb(uv_timer_t* handle) {
(*(int*) handle->data)++;
}
TEST_IMPL(metrics_idle_time_zero) {
uv_metrics_t metrics;
uv_timer_t timer;
int cntr;
cntr = 0;
timer.data = &cntr;
ASSERT_OK(uv_loop_configure(uv_default_loop(), UV_METRICS_IDLE_TIME));
ASSERT_OK(uv_timer_init(uv_default_loop(), &timer));
ASSERT_OK(uv_timer_start(&timer, timer_noop_cb, 0, 0));
ASSERT_OK(uv_run(uv_default_loop(), UV_RUN_DEFAULT));
ASSERT_GT(cntr, 0);
ASSERT_OK(uv_metrics_idle_time(uv_default_loop()));
ASSERT_OK(uv_metrics_info(uv_default_loop(), &metrics));
ASSERT_UINT64_EQ(cntr, metrics.loop_count);
MAKE_VALGRIND_HAPPY(uv_default_loop());
return 0;
}
static void close_cb(uv_fs_t* req) {
uv_metrics_t metrics;
ASSERT_OK(uv_metrics_info(uv_default_loop(), &metrics));
ASSERT_UINT64_EQ(3, metrics.loop_count);
ASSERT_UINT64_GT(metrics.events, last_events_count);
uv_fs_req_cleanup(req);
last_events_count = metrics.events;
}
static void write_cb(uv_fs_t* req) {
uv_metrics_t metrics;
ASSERT_OK(uv_metrics_info(uv_default_loop(), &metrics));
ASSERT_UINT64_EQ(2, metrics.loop_count);
ASSERT_UINT64_GT(metrics.events, last_events_count);
ASSERT_EQ(req->result, sizeof(test_buf));
uv_fs_req_cleanup(req);
last_events_count = metrics.events;
ASSERT_OK(uv_fs_close(uv_default_loop(),
&fs_reqs.close_req,
fs_reqs.open_req.result,
close_cb));
}
static void create_cb(uv_fs_t* req) {
uv_metrics_t metrics;
ASSERT_OK(uv_metrics_info(uv_default_loop(), &metrics));
/* Event count here is still 0 so not going to check. */
ASSERT_UINT64_EQ(1, metrics.loop_count);
ASSERT_GE(req->result, 0);
uv_fs_req_cleanup(req);
last_events_count = metrics.events;
uv_buf_t iov = uv_buf_init(test_buf, sizeof(test_buf));
ASSERT_OK(uv_fs_write(uv_default_loop(),
&fs_reqs.write_req,
req->result,
&iov,
1,
0,
write_cb));
}
static void prepare_cb(uv_prepare_t* handle) {
uv_metrics_t metrics;
uv_prepare_stop(handle);
ASSERT_OK(uv_metrics_info(uv_default_loop(), &metrics));
ASSERT_UINT64_EQ(0, metrics.loop_count);
ASSERT_UINT64_EQ(0, metrics.events);
ASSERT_OK(uv_fs_open(uv_default_loop(),
&fs_reqs.open_req,
"test_file",
O_WRONLY | O_CREAT, S_IRUSR | S_IWUSR,
create_cb));
}
TEST_IMPL(metrics_info_check) {
uv_fs_t unlink_req;
uv_prepare_t prepare;
uv_fs_unlink(NULL, &unlink_req, "test_file", NULL);
uv_fs_req_cleanup(&unlink_req);
ASSERT_OK(uv_prepare_init(uv_default_loop(), &prepare));
ASSERT_OK(uv_prepare_start(&prepare, prepare_cb));
ASSERT_OK(uv_run(uv_default_loop(), UV_RUN_DEFAULT));
uv_fs_unlink(NULL, &unlink_req, "test_file", NULL);
uv_fs_req_cleanup(&unlink_req);
MAKE_VALGRIND_HAPPY(uv_default_loop());
return 0;
}
static void fs_prepare_cb(uv_prepare_t* handle) {
uv_metrics_t metrics;
ASSERT_OK(uv_metrics_info(uv_default_loop(), &metrics));
if (pool_events_counter == 1)
ASSERT_EQ(metrics.events, metrics.events_waiting);
if (pool_events_counter < 7)
return;
uv_prepare_stop(handle);
pool_events_counter = -42;
}
static void fs_stat_cb(uv_fs_t* req) {
uv_fs_req_cleanup(req);
pool_events_counter++;
}
static void fs_work_cb(uv_work_t* req) {
}
static void fs_after_work_cb(uv_work_t* req, int status) {
free(req);
pool_events_counter++;
}
static void fs_write_cb(uv_fs_t* req) {
uv_work_t* work1 = malloc(sizeof(*work1));
uv_work_t* work2 = malloc(sizeof(*work2));
pool_events_counter++;
uv_fs_req_cleanup(req);
ASSERT_OK(uv_queue_work(uv_default_loop(),
work1,
fs_work_cb,
fs_after_work_cb));
ASSERT_OK(uv_queue_work(uv_default_loop(),
work2,
fs_work_cb,
fs_after_work_cb));
}
static void fs_random_cb(uv_random_t* req, int status, void* buf, size_t len) {
pool_events_counter++;
}
static void fs_addrinfo_cb(uv_getaddrinfo_t* req,
int status,
struct addrinfo* res) {
uv_freeaddrinfo(req->addrinfo);
pool_events_counter++;
}
TEST_IMPL(metrics_pool_events) {
uv_buf_t iov;
uv_fs_t open_req;
uv_fs_t stat1_req;
uv_fs_t stat2_req;
uv_fs_t unlink_req;
uv_fs_t write_req;
uv_getaddrinfo_t addrinfo_req;
uv_metrics_t metrics;
uv_prepare_t prepare;
uv_random_t random_req;
int fd;
char rdata;
ASSERT_OK(uv_loop_configure(uv_default_loop(), UV_METRICS_IDLE_TIME));
uv_fs_unlink(NULL, &unlink_req, "test_file", NULL);
uv_fs_req_cleanup(&unlink_req);
ASSERT_OK(uv_prepare_init(uv_default_loop(), &prepare));
ASSERT_OK(uv_prepare_start(&prepare, fs_prepare_cb));
pool_events_counter = 0;
fd = uv_fs_open(NULL,
&open_req,
"test_file",
O_WRONLY | O_CREAT,
S_IRUSR | S_IWUSR,
NULL);
ASSERT_GT(fd, 0);
uv_fs_req_cleanup(&open_req);
iov = uv_buf_init(test_buf, sizeof(test_buf));
ASSERT_OK(uv_fs_write(uv_default_loop(),
&write_req,
fd,
&iov,
1,
0,
fs_write_cb));
ASSERT_OK(uv_fs_stat(uv_default_loop(),
&stat1_req,
"test_file",
fs_stat_cb));
ASSERT_OK(uv_fs_stat(uv_default_loop(),
&stat2_req,
"test_file",
fs_stat_cb));
ASSERT_OK(uv_random(uv_default_loop(),
&random_req,
&rdata,
1,
0,
fs_random_cb));
ASSERT_OK(uv_getaddrinfo(uv_default_loop(),
&addrinfo_req,
fs_addrinfo_cb,
"example.invalid",
NULL,
NULL));
/* Sleep for a moment to hopefully force the events to complete before
* entering the event loop. */
uv_sleep(100);
ASSERT_OK(uv_run(uv_default_loop(), UV_RUN_DEFAULT));
ASSERT_OK(uv_metrics_info(uv_default_loop(), &metrics));
/* It's possible for uv__work_done() to execute one extra time even though the
* QUEUE has already been cleared out. This has to do with the way we use an
* uv_async to tell the event loop thread to process the worker pool QUEUE. */
ASSERT_GE(metrics.events, 7);
/* It's possible one of the other events also got stuck in the event queue, so
* check GE instead of EQ. Reason for 4 instead of 5 is because the call to
* uv_getaddrinfo() is racey and slow. So can't guarantee that it'll always
* execute before sleep completes. */
ASSERT_GE(metrics.events_waiting, 4);
ASSERT_EQ(pool_events_counter, -42);
uv_fs_unlink(NULL, &unlink_req, "test_file", NULL);
uv_fs_req_cleanup(&unlink_req);
MAKE_VALGRIND_HAPPY(uv_default_loop());
return 0;
}