forked from cory/tildefriends
479 lines
17 KiB
Groff
479 lines
17 KiB
Groff
|
.\" Automatically generated by Pod::Man 4.14 (Pod::Simple 3.42)
|
||
|
.\"
|
||
|
.\" Standard preamble:
|
||
|
.\" ========================================================================
|
||
|
.de Sp \" Vertical space (when we can't use .PP)
|
||
|
.if t .sp .5v
|
||
|
.if n .sp
|
||
|
..
|
||
|
.de Vb \" Begin verbatim text
|
||
|
.ft CW
|
||
|
.nf
|
||
|
.ne \\$1
|
||
|
..
|
||
|
.de Ve \" End verbatim text
|
||
|
.ft R
|
||
|
.fi
|
||
|
..
|
||
|
.\" Set up some character translations and predefined strings. \*(-- will
|
||
|
.\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left
|
||
|
.\" double quote, and \*(R" will give a right double quote. \*(C+ will
|
||
|
.\" give a nicer C++. Capital omega is used to do unbreakable dashes and
|
||
|
.\" therefore won't be available. \*(C` and \*(C' expand to `' in nroff,
|
||
|
.\" nothing in troff, for use with C<>.
|
||
|
.tr \(*W-
|
||
|
.ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p'
|
||
|
.ie n \{\
|
||
|
. ds -- \(*W-
|
||
|
. ds PI pi
|
||
|
. if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch
|
||
|
. if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch
|
||
|
. ds L" ""
|
||
|
. ds R" ""
|
||
|
. ds C` ""
|
||
|
. ds C' ""
|
||
|
'br\}
|
||
|
.el\{\
|
||
|
. ds -- \|\(em\|
|
||
|
. ds PI \(*p
|
||
|
. ds L" ``
|
||
|
. ds R" ''
|
||
|
. ds C`
|
||
|
. ds C'
|
||
|
'br\}
|
||
|
.\"
|
||
|
.\" Escape single quotes in literal strings from groff's Unicode transform.
|
||
|
.ie \n(.g .ds Aq \(aq
|
||
|
.el .ds Aq '
|
||
|
.\"
|
||
|
.\" If the F register is >0, we'll generate index entries on stderr for
|
||
|
.\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index
|
||
|
.\" entries marked with X<> in POD. Of course, you'll have to process the
|
||
|
.\" output yourself in some meaningful fashion.
|
||
|
.\"
|
||
|
.\" Avoid warning from groff about undefined register 'F'.
|
||
|
.de IX
|
||
|
..
|
||
|
.nr rF 0
|
||
|
.if \n(.g .if rF .nr rF 1
|
||
|
.if (\n(rF:(\n(.g==0)) \{\
|
||
|
. if \nF \{\
|
||
|
. de IX
|
||
|
. tm Index:\\$1\t\\n%\t"\\$2"
|
||
|
..
|
||
|
. if !\nF==2 \{\
|
||
|
. nr % 0
|
||
|
. nr F 2
|
||
|
. \}
|
||
|
. \}
|
||
|
.\}
|
||
|
.rr rF
|
||
|
.\"
|
||
|
.\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2).
|
||
|
.\" Fear. Run. Save yourself. No user-serviceable parts.
|
||
|
. \" fudge factors for nroff and troff
|
||
|
.if n \{\
|
||
|
. ds #H 0
|
||
|
. ds #V .8m
|
||
|
. ds #F .3m
|
||
|
. ds #[ \f1
|
||
|
. ds #] \fP
|
||
|
.\}
|
||
|
.if t \{\
|
||
|
. ds #H ((1u-(\\\\n(.fu%2u))*.13m)
|
||
|
. ds #V .6m
|
||
|
. ds #F 0
|
||
|
. ds #[ \&
|
||
|
. ds #] \&
|
||
|
.\}
|
||
|
. \" simple accents for nroff and troff
|
||
|
.if n \{\
|
||
|
. ds ' \&
|
||
|
. ds ` \&
|
||
|
. ds ^ \&
|
||
|
. ds , \&
|
||
|
. ds ~ ~
|
||
|
. ds /
|
||
|
.\}
|
||
|
.if t \{\
|
||
|
. ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u"
|
||
|
. ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u'
|
||
|
. ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u'
|
||
|
. ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u'
|
||
|
. ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u'
|
||
|
. ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u'
|
||
|
.\}
|
||
|
. \" troff and (daisy-wheel) nroff accents
|
||
|
.ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V'
|
||
|
.ds 8 \h'\*(#H'\(*b\h'-\*(#H'
|
||
|
.ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#]
|
||
|
.ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H'
|
||
|
.ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u'
|
||
|
.ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#]
|
||
|
.ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#]
|
||
|
.ds ae a\h'-(\w'a'u*4/10)'e
|
||
|
.ds Ae A\h'-(\w'A'u*4/10)'E
|
||
|
. \" corrections for vroff
|
||
|
.if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u'
|
||
|
.if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u'
|
||
|
. \" for low resolution devices (crt and lpr)
|
||
|
.if \n(.H>23 .if \n(.V>19 \
|
||
|
\{\
|
||
|
. ds : e
|
||
|
. ds 8 ss
|
||
|
. ds o a
|
||
|
. ds d- d\h'-1'\(ga
|
||
|
. ds D- D\h'-1'\(hy
|
||
|
. ds th \o'bp'
|
||
|
. ds Th \o'LP'
|
||
|
. ds ae ae
|
||
|
. ds Ae AE
|
||
|
.\}
|
||
|
.rm #[ #] #H #V #F C
|
||
|
.\" ========================================================================
|
||
|
.\"
|
||
|
.IX Title "PROXY-CERTIFICATES 7"
|
||
|
.TH PROXY-CERTIFICATES 7 "2020-04-21" "1.1.1g" "OpenSSL"
|
||
|
.\" For nroff, turn off justification. Always turn off hyphenation; it makes
|
||
|
.\" way too many mistakes in technical documents.
|
||
|
.if n .ad l
|
||
|
.nh
|
||
|
.SH "NAME"
|
||
|
proxy\-certificates \- Proxy certificates in OpenSSL
|
||
|
.SH "DESCRIPTION"
|
||
|
.IX Header "DESCRIPTION"
|
||
|
Proxy certificates are defined in \s-1RFC 3820.\s0 They are used to
|
||
|
extend rights to some other entity (a computer process, typically, or
|
||
|
sometimes to the user itself). This allows the entity to perform
|
||
|
operations on behalf of the owner of the \s-1EE\s0 (End Entity) certificate.
|
||
|
.PP
|
||
|
The requirements for a valid proxy certificate are:
|
||
|
.IP "\(bu" 4
|
||
|
They are issued by an End Entity, either a normal \s-1EE\s0 certificate, or
|
||
|
another proxy certificate.
|
||
|
.IP "\(bu" 4
|
||
|
They must not have the \fBsubjectAltName\fR or \fBissuerAltName\fR
|
||
|
extensions.
|
||
|
.IP "\(bu" 4
|
||
|
They must have the \fBproxyCertInfo\fR extension.
|
||
|
.IP "\(bu" 4
|
||
|
They must have the subject of their issuer, with one \fBcommonName\fR
|
||
|
added.
|
||
|
.SS "Enabling proxy certificate verification"
|
||
|
.IX Subsection "Enabling proxy certificate verification"
|
||
|
OpenSSL expects applications that want to use proxy certificates to be
|
||
|
specially aware of them, and make that explicit. This is done by
|
||
|
setting an X509 verification flag:
|
||
|
.PP
|
||
|
.Vb 1
|
||
|
\& X509_STORE_CTX_set_flags(ctx, X509_V_FLAG_ALLOW_PROXY_CERTS);
|
||
|
.Ve
|
||
|
.PP
|
||
|
or
|
||
|
.PP
|
||
|
.Vb 1
|
||
|
\& X509_VERIFY_PARAM_set_flags(param, X509_V_FLAG_ALLOW_PROXY_CERTS);
|
||
|
.Ve
|
||
|
.PP
|
||
|
See \*(L"\s-1NOTES\*(R"\s0 for a discussion on this requirement.
|
||
|
.SS "Creating proxy certificates"
|
||
|
.IX Subsection "Creating proxy certificates"
|
||
|
Creating proxy certificates can be done using the \fBopenssl\-x509\fR\|(1)
|
||
|
command, with some extra extensions:
|
||
|
.PP
|
||
|
.Vb 3
|
||
|
\& [ v3_proxy ]
|
||
|
\& # A proxy certificate MUST NEVER be a CA certificate.
|
||
|
\& basicConstraints=CA:FALSE
|
||
|
\&
|
||
|
\& # Usual authority key ID
|
||
|
\& authorityKeyIdentifier=keyid,issuer:always
|
||
|
\&
|
||
|
\& # The extension which marks this certificate as a proxy
|
||
|
\& proxyCertInfo=critical,language:id\-ppl\-anyLanguage,pathlen:1,policy:text:AB
|
||
|
.Ve
|
||
|
.PP
|
||
|
It's also possible to specify the proxy extension in a separate section:
|
||
|
.PP
|
||
|
.Vb 1
|
||
|
\& proxyCertInfo=critical,@proxy_ext
|
||
|
\&
|
||
|
\& [ proxy_ext ]
|
||
|
\& language=id\-ppl\-anyLanguage
|
||
|
\& pathlen=0
|
||
|
\& policy=text:BC
|
||
|
.Ve
|
||
|
.PP
|
||
|
The policy value has a specific syntax, \fIsyntag\fR:\fIstring\fR, where the
|
||
|
\&\fIsyntag\fR determines what will be done with the string. The following
|
||
|
\&\fIsyntag\fRs are recognised:
|
||
|
.IP "\fBtext\fR" 4
|
||
|
.IX Item "text"
|
||
|
indicates that the string is a byte sequence, without any encoding:
|
||
|
.Sp
|
||
|
.Vb 1
|
||
|
\& policy=text:ra\*:ksmo\*:rga\*os
|
||
|
.Ve
|
||
|
.IP "\fBhex\fR" 4
|
||
|
.IX Item "hex"
|
||
|
indicates the string is encoded hexadecimal encoded binary data, with
|
||
|
colons between each byte (every second hex digit):
|
||
|
.Sp
|
||
|
.Vb 1
|
||
|
\& policy=hex:72:E4:6B:73:6D:F6:72:67:E5:73
|
||
|
.Ve
|
||
|
.IP "\fBfile\fR" 4
|
||
|
.IX Item "file"
|
||
|
indicates that the text of the policy should be taken from a file.
|
||
|
The string is then a filename. This is useful for policies that are
|
||
|
large (more than a few lines, e.g. \s-1XML\s0 documents).
|
||
|
.PP
|
||
|
\&\fI\s-1NOTE:\s0 The proxy policy value is what determines the rights granted
|
||
|
to the process during the proxy certificate. It's up to the
|
||
|
application to interpret and combine these policies.\fR
|
||
|
.PP
|
||
|
With a proxy extension, creating a proxy certificate is a matter of
|
||
|
two commands:
|
||
|
.PP
|
||
|
.Vb 3
|
||
|
\& openssl req \-new \-config proxy.cnf \e
|
||
|
\& \-out proxy.req \-keyout proxy.key \e
|
||
|
\& \-subj "/DC=org/DC=openssl/DC=users/CN=proxy 1"
|
||
|
\&
|
||
|
\& openssl x509 \-req \-CAcreateserial \-in proxy.req \-out proxy.crt \e
|
||
|
\& \-CA user.crt \-CAkey user.key \-days 7 \e
|
||
|
\& \-extfile proxy.cnf \-extensions v3_proxy1
|
||
|
.Ve
|
||
|
.PP
|
||
|
You can also create a proxy certificate using another proxy
|
||
|
certificate as issuer (note: using a different configuration
|
||
|
section for the proxy extensions):
|
||
|
.PP
|
||
|
.Vb 3
|
||
|
\& openssl req \-new \-config proxy.cnf \e
|
||
|
\& \-out proxy2.req \-keyout proxy2.key \e
|
||
|
\& \-subj "/DC=org/DC=openssl/DC=users/CN=proxy 1/CN=proxy 2"
|
||
|
\&
|
||
|
\& openssl x509 \-req \-CAcreateserial \-in proxy2.req \-out proxy2.crt \e
|
||
|
\& \-CA proxy.crt \-CAkey proxy.key \-days 7 \e
|
||
|
\& \-extfile proxy.cnf \-extensions v3_proxy2
|
||
|
.Ve
|
||
|
.SS "Using proxy certs in applications"
|
||
|
.IX Subsection "Using proxy certs in applications"
|
||
|
To interpret proxy policies, the application would normally start with
|
||
|
some default rights (perhaps none at all), then compute the resulting
|
||
|
rights by checking the rights against the chain of proxy certificates,
|
||
|
user certificate and \s-1CA\s0 certificates.
|
||
|
.PP
|
||
|
The complicated part is figuring out how to pass data between your
|
||
|
application and the certificate validation procedure.
|
||
|
.PP
|
||
|
The following ingredients are needed for such processing:
|
||
|
.IP "\(bu" 4
|
||
|
a callback function that will be called for every certificate being
|
||
|
validated. The callback is called several times for each certificate,
|
||
|
so you must be careful to do the proxy policy interpretation at the
|
||
|
right time. You also need to fill in the defaults when the \s-1EE\s0
|
||
|
certificate is checked.
|
||
|
.IP "\(bu" 4
|
||
|
a data structure that is shared between your application code and the
|
||
|
callback.
|
||
|
.IP "\(bu" 4
|
||
|
a wrapper function that sets it all up.
|
||
|
.IP "\(bu" 4
|
||
|
an ex_data index function that creates an index into the generic
|
||
|
ex_data store that is attached to an X509 validation context.
|
||
|
.PP
|
||
|
The following skeleton code can be used as a starting point:
|
||
|
.PP
|
||
|
.Vb 4
|
||
|
\& #include <string.h>
|
||
|
\& #include <netdb.h>
|
||
|
\& #include <openssl/x509.h>
|
||
|
\& #include <openssl/x509v3.h>
|
||
|
\&
|
||
|
\& #define total_rights 25
|
||
|
\&
|
||
|
\& /*
|
||
|
\& * In this example, I will use a view of granted rights as a bit
|
||
|
\& * array, one bit for each possible right.
|
||
|
\& */
|
||
|
\& typedef struct your_rights {
|
||
|
\& unsigned char rights[(total_rights + 7) / 8];
|
||
|
\& } YOUR_RIGHTS;
|
||
|
\&
|
||
|
\& /*
|
||
|
\& * The following procedure will create an index for the ex_data
|
||
|
\& * store in the X509 validation context the first time it\*(Aqs
|
||
|
\& * called. Subsequent calls will return the same index.
|
||
|
\& */
|
||
|
\& static int get_proxy_auth_ex_data_idx(X509_STORE_CTX *ctx)
|
||
|
\& {
|
||
|
\& static volatile int idx = \-1;
|
||
|
\&
|
||
|
\& if (idx < 0) {
|
||
|
\& X509_STORE_lock(X509_STORE_CTX_get0_store(ctx));
|
||
|
\& if (idx < 0) {
|
||
|
\& idx = X509_STORE_CTX_get_ex_new_index(0,
|
||
|
\& "for verify callback",
|
||
|
\& NULL,NULL,NULL);
|
||
|
\& }
|
||
|
\& X509_STORE_unlock(X509_STORE_CTX_get0_store(ctx));
|
||
|
\& }
|
||
|
\& return idx;
|
||
|
\& }
|
||
|
\&
|
||
|
\& /* Callback to be given to the X509 validation procedure. */
|
||
|
\& static int verify_callback(int ok, X509_STORE_CTX *ctx)
|
||
|
\& {
|
||
|
\& if (ok == 1) {
|
||
|
\& /*
|
||
|
\& * It\*(Aqs REALLY important you keep the proxy policy check
|
||
|
\& * within this section. It\*(Aqs important to know that when
|
||
|
\& * ok is 1, the certificates are checked from top to
|
||
|
\& * bottom. You get the CA root first, followed by the
|
||
|
\& * possible chain of intermediate CAs, followed by the EE
|
||
|
\& * certificate, followed by the possible proxy
|
||
|
\& * certificates.
|
||
|
\& */
|
||
|
\& X509 *xs = X509_STORE_CTX_get_current_cert(ctx);
|
||
|
\&
|
||
|
\& if (X509_get_extension_flags(xs) & EXFLAG_PROXY) {
|
||
|
\& YOUR_RIGHTS *rights =
|
||
|
\& (YOUR_RIGHTS *)X509_STORE_CTX_get_ex_data(ctx,
|
||
|
\& get_proxy_auth_ex_data_idx(ctx));
|
||
|
\& PROXY_CERT_INFO_EXTENSION *pci =
|
||
|
\& X509_get_ext_d2i(xs, NID_proxyCertInfo, NULL, NULL);
|
||
|
\&
|
||
|
\& switch (OBJ_obj2nid(pci\->proxyPolicy\->policyLanguage)) {
|
||
|
\& case NID_Independent:
|
||
|
\& /*
|
||
|
\& * Do whatever you need to grant explicit rights
|
||
|
\& * to this particular proxy certificate, usually
|
||
|
\& * by pulling them from some database. If there
|
||
|
\& * are none to be found, clear all rights (making
|
||
|
\& * this and any subsequent proxy certificate void
|
||
|
\& * of any rights).
|
||
|
\& */
|
||
|
\& memset(rights\->rights, 0, sizeof(rights\->rights));
|
||
|
\& break;
|
||
|
\& case NID_id_ppl_inheritAll:
|
||
|
\& /*
|
||
|
\& * This is basically a NOP, we simply let the
|
||
|
\& * current rights stand as they are.
|
||
|
\& */
|
||
|
\& break;
|
||
|
\& default:
|
||
|
\& /*
|
||
|
\& * This is usually the most complex section of
|
||
|
\& * code. You really do whatever you want as long
|
||
|
\& * as you follow RFC 3820. In the example we use
|
||
|
\& * here, the simplest thing to do is to build
|
||
|
\& * another, temporary bit array and fill it with
|
||
|
\& * the rights granted by the current proxy
|
||
|
\& * certificate, then use it as a mask on the
|
||
|
\& * accumulated rights bit array, and voila\*`, you
|
||
|
\& * now have a new accumulated rights bit array.
|
||
|
\& */
|
||
|
\& {
|
||
|
\& int i;
|
||
|
\& YOUR_RIGHTS tmp_rights;
|
||
|
\& memset(tmp_rights.rights, 0,
|
||
|
\& sizeof(tmp_rights.rights));
|
||
|
\&
|
||
|
\& /*
|
||
|
\& * process_rights() is supposed to be a
|
||
|
\& * procedure that takes a string and its
|
||
|
\& * length, interprets it and sets the bits
|
||
|
\& * in the YOUR_RIGHTS pointed at by the
|
||
|
\& * third argument.
|
||
|
\& */
|
||
|
\& process_rights((char *) pci\->proxyPolicy\->policy\->data,
|
||
|
\& pci\->proxyPolicy\->policy\->length,
|
||
|
\& &tmp_rights);
|
||
|
\&
|
||
|
\& for(i = 0; i < total_rights / 8; i++)
|
||
|
\& rights\->rights[i] &= tmp_rights.rights[i];
|
||
|
\& }
|
||
|
\& break;
|
||
|
\& }
|
||
|
\& PROXY_CERT_INFO_EXTENSION_free(pci);
|
||
|
\& } else if (!(X509_get_extension_flags(xs) & EXFLAG_CA)) {
|
||
|
\& /* We have an EE certificate, let\*(Aqs use it to set default! */
|
||
|
\& YOUR_RIGHTS *rights =
|
||
|
\& (YOUR_RIGHTS *)X509_STORE_CTX_get_ex_data(ctx,
|
||
|
\& get_proxy_auth_ex_data_idx(ctx));
|
||
|
\&
|
||
|
\& /*
|
||
|
\& * The following procedure finds out what rights the
|
||
|
\& * owner of the current certificate has, and sets them
|
||
|
\& * in the YOUR_RIGHTS structure pointed at by the
|
||
|
\& * second argument.
|
||
|
\& */
|
||
|
\& set_default_rights(xs, rights);
|
||
|
\& }
|
||
|
\& }
|
||
|
\& return ok;
|
||
|
\& }
|
||
|
\&
|
||
|
\& static int my_X509_verify_cert(X509_STORE_CTX *ctx,
|
||
|
\& YOUR_RIGHTS *needed_rights)
|
||
|
\& {
|
||
|
\& int ok;
|
||
|
\& int (*save_verify_cb)(int ok,X509_STORE_CTX *ctx) =
|
||
|
\& X509_STORE_CTX_get_verify_cb(ctx);
|
||
|
\& YOUR_RIGHTS rights;
|
||
|
\&
|
||
|
\& X509_STORE_CTX_set_verify_cb(ctx, verify_callback);
|
||
|
\& X509_STORE_CTX_set_ex_data(ctx, get_proxy_auth_ex_data_idx(ctx),
|
||
|
\& &rights);
|
||
|
\& X509_STORE_CTX_set_flags(ctx, X509_V_FLAG_ALLOW_PROXY_CERTS);
|
||
|
\& ok = X509_verify_cert(ctx);
|
||
|
\&
|
||
|
\& if (ok == 1) {
|
||
|
\& ok = check_needed_rights(rights, needed_rights);
|
||
|
\& }
|
||
|
\&
|
||
|
\& X509_STORE_CTX_set_verify_cb(ctx, save_verify_cb);
|
||
|
\&
|
||
|
\& return ok;
|
||
|
\& }
|
||
|
.Ve
|
||
|
.PP
|
||
|
If you use \s-1SSL\s0 or \s-1TLS,\s0 you can easily set up a callback to have the
|
||
|
certificates checked properly, using the code above:
|
||
|
.PP
|
||
|
.Vb 2
|
||
|
\& SSL_CTX_set_cert_verify_callback(s_ctx, my_X509_verify_cert,
|
||
|
\& &needed_rights);
|
||
|
.Ve
|
||
|
.SH "NOTES"
|
||
|
.IX Header "NOTES"
|
||
|
To this date, it seems that proxy certificates have only been used in
|
||
|
environments that are aware of them, and no one seems to have
|
||
|
investigated how they can be used or misused outside of such an
|
||
|
environment.
|
||
|
.PP
|
||
|
For that reason, OpenSSL requires that applications aware of proxy
|
||
|
certificates must also make that explicit.
|
||
|
.PP
|
||
|
\&\fBsubjectAltName\fR and \fBissuerAltName\fR are forbidden in proxy
|
||
|
certificates, and this is enforced in OpenSSL. The subject must be
|
||
|
the same as the issuer, with one commonName added on.
|
||
|
.SH "SEE ALSO"
|
||
|
.IX Header "SEE ALSO"
|
||
|
\&\fBX509_STORE_CTX_set_flags\fR\|(3),
|
||
|
\&\fBX509_STORE_CTX_set_verify_cb\fR\|(3),
|
||
|
\&\fBX509_VERIFY_PARAM_set_flags\fR\|(3),
|
||
|
\&\fBSSL_CTX_set_cert_verify_callback\fR\|(3),
|
||
|
\&\fBopenssl\-req\fR\|(1), \fBopenssl\-x509\fR\|(1),
|
||
|
\&\s-1RFC 3820\s0 <https://tools.ietf.org/html/rfc3820>
|
||
|
.SH "COPYRIGHT"
|
||
|
.IX Header "COPYRIGHT"
|
||
|
Copyright 2019 The OpenSSL Project Authors. All Rights Reserved.
|
||
|
.PP
|
||
|
Licensed under the Apache License 2.0 (the \*(L"License\*(R"). You may not use
|
||
|
this file except in compliance with the License. You can obtain a copy
|
||
|
in the file \s-1LICENSE\s0 in the source distribution or at
|
||
|
<https://www.openssl.org/source/license.html>.
|