forked from cory/tildefriends
521 lines
12 KiB
C
521 lines
12 KiB
C
|
/* Copyright Joyent, Inc. and other Node contributors. All rights reserved.
|
||
|
*
|
||
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
||
|
* of this software and associated documentation files (the "Software"), to
|
||
|
* deal in the Software without restriction, including without limitation the
|
||
|
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
|
||
|
* sell copies of the Software, and to permit persons to whom the Software is
|
||
|
* furnished to do so, subject to the following conditions:
|
||
|
*
|
||
|
* The above copyright notice and this permission notice shall be included in
|
||
|
* all copies or substantial portions of the Software.
|
||
|
*
|
||
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
||
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
||
|
* IN THE SOFTWARE.
|
||
|
*/
|
||
|
|
||
|
#include <assert.h>
|
||
|
#include <limits.h>
|
||
|
#include <stdlib.h>
|
||
|
|
||
|
#if defined(__MINGW64_VERSION_MAJOR)
|
||
|
/* MemoryBarrier expands to __mm_mfence in some cases (x86+sse2), which may
|
||
|
* require this header in some versions of mingw64. */
|
||
|
#include <intrin.h>
|
||
|
#endif
|
||
|
|
||
|
#include "uv.h"
|
||
|
#include "internal.h"
|
||
|
|
||
|
static void uv__once_inner(uv_once_t* guard, void (*callback)(void)) {
|
||
|
DWORD result;
|
||
|
HANDLE existing_event, created_event;
|
||
|
|
||
|
created_event = CreateEvent(NULL, 1, 0, NULL);
|
||
|
if (created_event == 0) {
|
||
|
/* Could fail in a low-memory situation? */
|
||
|
uv_fatal_error(GetLastError(), "CreateEvent");
|
||
|
}
|
||
|
|
||
|
existing_event = InterlockedCompareExchangePointer(&guard->event,
|
||
|
created_event,
|
||
|
NULL);
|
||
|
|
||
|
if (existing_event == NULL) {
|
||
|
/* We won the race */
|
||
|
callback();
|
||
|
|
||
|
result = SetEvent(created_event);
|
||
|
assert(result);
|
||
|
guard->ran = 1;
|
||
|
|
||
|
} else {
|
||
|
/* We lost the race. Destroy the event we created and wait for the existing
|
||
|
* one to become signaled. */
|
||
|
CloseHandle(created_event);
|
||
|
result = WaitForSingleObject(existing_event, INFINITE);
|
||
|
assert(result == WAIT_OBJECT_0);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
void uv_once(uv_once_t* guard, void (*callback)(void)) {
|
||
|
/* Fast case - avoid WaitForSingleObject. */
|
||
|
if (guard->ran) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
uv__once_inner(guard, callback);
|
||
|
}
|
||
|
|
||
|
|
||
|
/* Verify that uv_thread_t can be stored in a TLS slot. */
|
||
|
STATIC_ASSERT(sizeof(uv_thread_t) <= sizeof(void*));
|
||
|
|
||
|
static uv_key_t uv__current_thread_key;
|
||
|
static uv_once_t uv__current_thread_init_guard = UV_ONCE_INIT;
|
||
|
|
||
|
|
||
|
static void uv__init_current_thread_key(void) {
|
||
|
if (uv_key_create(&uv__current_thread_key))
|
||
|
abort();
|
||
|
}
|
||
|
|
||
|
|
||
|
struct thread_ctx {
|
||
|
void (*entry)(void* arg);
|
||
|
void* arg;
|
||
|
uv_thread_t self;
|
||
|
};
|
||
|
|
||
|
|
||
|
static UINT __stdcall uv__thread_start(void* arg) {
|
||
|
struct thread_ctx *ctx_p;
|
||
|
struct thread_ctx ctx;
|
||
|
|
||
|
ctx_p = arg;
|
||
|
ctx = *ctx_p;
|
||
|
uv__free(ctx_p);
|
||
|
|
||
|
uv_once(&uv__current_thread_init_guard, uv__init_current_thread_key);
|
||
|
uv_key_set(&uv__current_thread_key, (void*) ctx.self);
|
||
|
|
||
|
ctx.entry(ctx.arg);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
|
||
|
int uv_thread_create(uv_thread_t *tid, void (*entry)(void *arg), void *arg) {
|
||
|
uv_thread_options_t params;
|
||
|
params.flags = UV_THREAD_NO_FLAGS;
|
||
|
return uv_thread_create_ex(tid, ¶ms, entry, arg);
|
||
|
}
|
||
|
|
||
|
int uv_thread_create_ex(uv_thread_t* tid,
|
||
|
const uv_thread_options_t* params,
|
||
|
void (*entry)(void *arg),
|
||
|
void *arg) {
|
||
|
struct thread_ctx* ctx;
|
||
|
int err;
|
||
|
HANDLE thread;
|
||
|
SYSTEM_INFO sysinfo;
|
||
|
size_t stack_size;
|
||
|
size_t pagesize;
|
||
|
|
||
|
stack_size =
|
||
|
params->flags & UV_THREAD_HAS_STACK_SIZE ? params->stack_size : 0;
|
||
|
|
||
|
if (stack_size != 0) {
|
||
|
GetNativeSystemInfo(&sysinfo);
|
||
|
pagesize = (size_t)sysinfo.dwPageSize;
|
||
|
/* Round up to the nearest page boundary. */
|
||
|
stack_size = (stack_size + pagesize - 1) &~ (pagesize - 1);
|
||
|
|
||
|
if ((unsigned)stack_size != stack_size)
|
||
|
return UV_EINVAL;
|
||
|
}
|
||
|
|
||
|
ctx = uv__malloc(sizeof(*ctx));
|
||
|
if (ctx == NULL)
|
||
|
return UV_ENOMEM;
|
||
|
|
||
|
ctx->entry = entry;
|
||
|
ctx->arg = arg;
|
||
|
|
||
|
/* Create the thread in suspended state so we have a chance to pass
|
||
|
* its own creation handle to it */
|
||
|
thread = (HANDLE) _beginthreadex(NULL,
|
||
|
(unsigned)stack_size,
|
||
|
uv__thread_start,
|
||
|
ctx,
|
||
|
CREATE_SUSPENDED,
|
||
|
NULL);
|
||
|
if (thread == NULL) {
|
||
|
err = errno;
|
||
|
uv__free(ctx);
|
||
|
} else {
|
||
|
err = 0;
|
||
|
*tid = thread;
|
||
|
ctx->self = thread;
|
||
|
ResumeThread(thread);
|
||
|
}
|
||
|
|
||
|
switch (err) {
|
||
|
case 0:
|
||
|
return 0;
|
||
|
case EACCES:
|
||
|
return UV_EACCES;
|
||
|
case EAGAIN:
|
||
|
return UV_EAGAIN;
|
||
|
case EINVAL:
|
||
|
return UV_EINVAL;
|
||
|
}
|
||
|
|
||
|
return UV_EIO;
|
||
|
}
|
||
|
|
||
|
|
||
|
uv_thread_t uv_thread_self(void) {
|
||
|
uv_once(&uv__current_thread_init_guard, uv__init_current_thread_key);
|
||
|
return (uv_thread_t) uv_key_get(&uv__current_thread_key);
|
||
|
}
|
||
|
|
||
|
|
||
|
int uv_thread_join(uv_thread_t *tid) {
|
||
|
if (WaitForSingleObject(*tid, INFINITE))
|
||
|
return uv_translate_sys_error(GetLastError());
|
||
|
else {
|
||
|
CloseHandle(*tid);
|
||
|
*tid = 0;
|
||
|
MemoryBarrier(); /* For feature parity with pthread_join(). */
|
||
|
return 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
int uv_thread_equal(const uv_thread_t* t1, const uv_thread_t* t2) {
|
||
|
return *t1 == *t2;
|
||
|
}
|
||
|
|
||
|
|
||
|
int uv_mutex_init(uv_mutex_t* mutex) {
|
||
|
InitializeCriticalSection(mutex);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
|
||
|
int uv_mutex_init_recursive(uv_mutex_t* mutex) {
|
||
|
return uv_mutex_init(mutex);
|
||
|
}
|
||
|
|
||
|
|
||
|
void uv_mutex_destroy(uv_mutex_t* mutex) {
|
||
|
DeleteCriticalSection(mutex);
|
||
|
}
|
||
|
|
||
|
|
||
|
void uv_mutex_lock(uv_mutex_t* mutex) {
|
||
|
EnterCriticalSection(mutex);
|
||
|
}
|
||
|
|
||
|
|
||
|
int uv_mutex_trylock(uv_mutex_t* mutex) {
|
||
|
if (TryEnterCriticalSection(mutex))
|
||
|
return 0;
|
||
|
else
|
||
|
return UV_EBUSY;
|
||
|
}
|
||
|
|
||
|
|
||
|
void uv_mutex_unlock(uv_mutex_t* mutex) {
|
||
|
LeaveCriticalSection(mutex);
|
||
|
}
|
||
|
|
||
|
|
||
|
int uv_rwlock_init(uv_rwlock_t* rwlock) {
|
||
|
/* Initialize the semaphore that acts as the write lock. */
|
||
|
HANDLE handle = CreateSemaphoreW(NULL, 1, 1, NULL);
|
||
|
if (handle == NULL)
|
||
|
return uv_translate_sys_error(GetLastError());
|
||
|
rwlock->state_.write_semaphore_ = handle;
|
||
|
|
||
|
/* Initialize the critical section protecting the reader count. */
|
||
|
InitializeCriticalSection(&rwlock->state_.num_readers_lock_);
|
||
|
|
||
|
/* Initialize the reader count. */
|
||
|
rwlock->state_.num_readers_ = 0;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
|
||
|
void uv_rwlock_destroy(uv_rwlock_t* rwlock) {
|
||
|
DeleteCriticalSection(&rwlock->state_.num_readers_lock_);
|
||
|
CloseHandle(rwlock->state_.write_semaphore_);
|
||
|
}
|
||
|
|
||
|
|
||
|
void uv_rwlock_rdlock(uv_rwlock_t* rwlock) {
|
||
|
/* Acquire the lock that protects the reader count. */
|
||
|
EnterCriticalSection(&rwlock->state_.num_readers_lock_);
|
||
|
|
||
|
/* Increase the reader count, and lock for write if this is the first
|
||
|
* reader.
|
||
|
*/
|
||
|
if (++rwlock->state_.num_readers_ == 1) {
|
||
|
DWORD r = WaitForSingleObject(rwlock->state_.write_semaphore_, INFINITE);
|
||
|
if (r != WAIT_OBJECT_0)
|
||
|
uv_fatal_error(GetLastError(), "WaitForSingleObject");
|
||
|
}
|
||
|
|
||
|
/* Release the lock that protects the reader count. */
|
||
|
LeaveCriticalSection(&rwlock->state_.num_readers_lock_);
|
||
|
}
|
||
|
|
||
|
|
||
|
int uv_rwlock_tryrdlock(uv_rwlock_t* rwlock) {
|
||
|
int err;
|
||
|
|
||
|
if (!TryEnterCriticalSection(&rwlock->state_.num_readers_lock_))
|
||
|
return UV_EBUSY;
|
||
|
|
||
|
err = 0;
|
||
|
|
||
|
if (rwlock->state_.num_readers_ == 0) {
|
||
|
/* Currently there are no other readers, which means that the write lock
|
||
|
* needs to be acquired.
|
||
|
*/
|
||
|
DWORD r = WaitForSingleObject(rwlock->state_.write_semaphore_, 0);
|
||
|
if (r == WAIT_OBJECT_0)
|
||
|
rwlock->state_.num_readers_++;
|
||
|
else if (r == WAIT_TIMEOUT)
|
||
|
err = UV_EBUSY;
|
||
|
else if (r == WAIT_FAILED)
|
||
|
uv_fatal_error(GetLastError(), "WaitForSingleObject");
|
||
|
|
||
|
} else {
|
||
|
/* The write lock has already been acquired because there are other
|
||
|
* active readers.
|
||
|
*/
|
||
|
rwlock->state_.num_readers_++;
|
||
|
}
|
||
|
|
||
|
LeaveCriticalSection(&rwlock->state_.num_readers_lock_);
|
||
|
return err;
|
||
|
}
|
||
|
|
||
|
|
||
|
void uv_rwlock_rdunlock(uv_rwlock_t* rwlock) {
|
||
|
EnterCriticalSection(&rwlock->state_.num_readers_lock_);
|
||
|
|
||
|
if (--rwlock->state_.num_readers_ == 0) {
|
||
|
if (!ReleaseSemaphore(rwlock->state_.write_semaphore_, 1, NULL))
|
||
|
uv_fatal_error(GetLastError(), "ReleaseSemaphore");
|
||
|
}
|
||
|
|
||
|
LeaveCriticalSection(&rwlock->state_.num_readers_lock_);
|
||
|
}
|
||
|
|
||
|
|
||
|
void uv_rwlock_wrlock(uv_rwlock_t* rwlock) {
|
||
|
DWORD r = WaitForSingleObject(rwlock->state_.write_semaphore_, INFINITE);
|
||
|
if (r != WAIT_OBJECT_0)
|
||
|
uv_fatal_error(GetLastError(), "WaitForSingleObject");
|
||
|
}
|
||
|
|
||
|
|
||
|
int uv_rwlock_trywrlock(uv_rwlock_t* rwlock) {
|
||
|
DWORD r = WaitForSingleObject(rwlock->state_.write_semaphore_, 0);
|
||
|
if (r == WAIT_OBJECT_0)
|
||
|
return 0;
|
||
|
else if (r == WAIT_TIMEOUT)
|
||
|
return UV_EBUSY;
|
||
|
else
|
||
|
uv_fatal_error(GetLastError(), "WaitForSingleObject");
|
||
|
}
|
||
|
|
||
|
|
||
|
void uv_rwlock_wrunlock(uv_rwlock_t* rwlock) {
|
||
|
if (!ReleaseSemaphore(rwlock->state_.write_semaphore_, 1, NULL))
|
||
|
uv_fatal_error(GetLastError(), "ReleaseSemaphore");
|
||
|
}
|
||
|
|
||
|
|
||
|
int uv_sem_init(uv_sem_t* sem, unsigned int value) {
|
||
|
*sem = CreateSemaphore(NULL, value, INT_MAX, NULL);
|
||
|
if (*sem == NULL)
|
||
|
return uv_translate_sys_error(GetLastError());
|
||
|
else
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
|
||
|
void uv_sem_destroy(uv_sem_t* sem) {
|
||
|
if (!CloseHandle(*sem))
|
||
|
abort();
|
||
|
}
|
||
|
|
||
|
|
||
|
void uv_sem_post(uv_sem_t* sem) {
|
||
|
if (!ReleaseSemaphore(*sem, 1, NULL))
|
||
|
abort();
|
||
|
}
|
||
|
|
||
|
|
||
|
void uv_sem_wait(uv_sem_t* sem) {
|
||
|
if (WaitForSingleObject(*sem, INFINITE) != WAIT_OBJECT_0)
|
||
|
abort();
|
||
|
}
|
||
|
|
||
|
|
||
|
int uv_sem_trywait(uv_sem_t* sem) {
|
||
|
DWORD r = WaitForSingleObject(*sem, 0);
|
||
|
|
||
|
if (r == WAIT_OBJECT_0)
|
||
|
return 0;
|
||
|
|
||
|
if (r == WAIT_TIMEOUT)
|
||
|
return UV_EAGAIN;
|
||
|
|
||
|
abort();
|
||
|
return -1; /* Satisfy the compiler. */
|
||
|
}
|
||
|
|
||
|
|
||
|
int uv_cond_init(uv_cond_t* cond) {
|
||
|
InitializeConditionVariable(&cond->cond_var);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
|
||
|
void uv_cond_destroy(uv_cond_t* cond) {
|
||
|
/* nothing to do */
|
||
|
(void) &cond;
|
||
|
}
|
||
|
|
||
|
|
||
|
void uv_cond_signal(uv_cond_t* cond) {
|
||
|
WakeConditionVariable(&cond->cond_var);
|
||
|
}
|
||
|
|
||
|
|
||
|
void uv_cond_broadcast(uv_cond_t* cond) {
|
||
|
WakeAllConditionVariable(&cond->cond_var);
|
||
|
}
|
||
|
|
||
|
|
||
|
void uv_cond_wait(uv_cond_t* cond, uv_mutex_t* mutex) {
|
||
|
if (!SleepConditionVariableCS(&cond->cond_var, mutex, INFINITE))
|
||
|
abort();
|
||
|
}
|
||
|
|
||
|
int uv_cond_timedwait(uv_cond_t* cond, uv_mutex_t* mutex, uint64_t timeout) {
|
||
|
if (SleepConditionVariableCS(&cond->cond_var, mutex, (DWORD)(timeout / 1e6)))
|
||
|
return 0;
|
||
|
if (GetLastError() != ERROR_TIMEOUT)
|
||
|
abort();
|
||
|
return UV_ETIMEDOUT;
|
||
|
}
|
||
|
|
||
|
|
||
|
int uv_barrier_init(uv_barrier_t* barrier, unsigned int count) {
|
||
|
int err;
|
||
|
|
||
|
barrier->n = count;
|
||
|
barrier->count = 0;
|
||
|
|
||
|
err = uv_mutex_init(&barrier->mutex);
|
||
|
if (err)
|
||
|
return err;
|
||
|
|
||
|
err = uv_sem_init(&barrier->turnstile1, 0);
|
||
|
if (err)
|
||
|
goto error2;
|
||
|
|
||
|
err = uv_sem_init(&barrier->turnstile2, 1);
|
||
|
if (err)
|
||
|
goto error;
|
||
|
|
||
|
return 0;
|
||
|
|
||
|
error:
|
||
|
uv_sem_destroy(&barrier->turnstile1);
|
||
|
error2:
|
||
|
uv_mutex_destroy(&barrier->mutex);
|
||
|
return err;
|
||
|
|
||
|
}
|
||
|
|
||
|
|
||
|
void uv_barrier_destroy(uv_barrier_t* barrier) {
|
||
|
uv_sem_destroy(&barrier->turnstile2);
|
||
|
uv_sem_destroy(&barrier->turnstile1);
|
||
|
uv_mutex_destroy(&barrier->mutex);
|
||
|
}
|
||
|
|
||
|
|
||
|
int uv_barrier_wait(uv_barrier_t* barrier) {
|
||
|
int serial_thread;
|
||
|
|
||
|
uv_mutex_lock(&barrier->mutex);
|
||
|
if (++barrier->count == barrier->n) {
|
||
|
uv_sem_wait(&barrier->turnstile2);
|
||
|
uv_sem_post(&barrier->turnstile1);
|
||
|
}
|
||
|
uv_mutex_unlock(&barrier->mutex);
|
||
|
|
||
|
uv_sem_wait(&barrier->turnstile1);
|
||
|
uv_sem_post(&barrier->turnstile1);
|
||
|
|
||
|
uv_mutex_lock(&barrier->mutex);
|
||
|
serial_thread = (--barrier->count == 0);
|
||
|
if (serial_thread) {
|
||
|
uv_sem_wait(&barrier->turnstile1);
|
||
|
uv_sem_post(&barrier->turnstile2);
|
||
|
}
|
||
|
uv_mutex_unlock(&barrier->mutex);
|
||
|
|
||
|
uv_sem_wait(&barrier->turnstile2);
|
||
|
uv_sem_post(&barrier->turnstile2);
|
||
|
return serial_thread;
|
||
|
}
|
||
|
|
||
|
|
||
|
int uv_key_create(uv_key_t* key) {
|
||
|
key->tls_index = TlsAlloc();
|
||
|
if (key->tls_index == TLS_OUT_OF_INDEXES)
|
||
|
return UV_ENOMEM;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
|
||
|
void uv_key_delete(uv_key_t* key) {
|
||
|
if (TlsFree(key->tls_index) == FALSE)
|
||
|
abort();
|
||
|
key->tls_index = TLS_OUT_OF_INDEXES;
|
||
|
}
|
||
|
|
||
|
|
||
|
void* uv_key_get(uv_key_t* key) {
|
||
|
void* value;
|
||
|
|
||
|
value = TlsGetValue(key->tls_index);
|
||
|
if (value == NULL)
|
||
|
if (GetLastError() != ERROR_SUCCESS)
|
||
|
abort();
|
||
|
|
||
|
return value;
|
||
|
}
|
||
|
|
||
|
|
||
|
void uv_key_set(uv_key_t* key, void* value) {
|
||
|
if (TlsSetValue(key->tls_index, value) == FALSE)
|
||
|
abort();
|
||
|
}
|