tildefriends/deps/libuv/src/win/pipe.c

2726 lines
79 KiB
C
Raw Normal View History

/* Copyright Joyent, Inc. and other Node contributors. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include <assert.h>
#include <io.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "handle-inl.h"
#include "internal.h"
#include "req-inl.h"
#include "stream-inl.h"
#include "uv-common.h"
#include "uv.h"
#include <aclapi.h>
#include <accctrl.h>
/* A zero-size buffer for use by uv_pipe_read */
static char uv_zero_[] = "";
/* Null uv_buf_t */
static const uv_buf_t uv_null_buf_ = { 0, NULL };
/* The timeout that the pipe will wait for the remote end to write data when
* the local ends wants to shut it down. */
static const int64_t eof_timeout = 50; /* ms */
static const int default_pending_pipe_instances = 4;
/* Pipe prefix */
static char pipe_prefix[] = "\\\\?\\pipe";
static const int pipe_prefix_len = sizeof(pipe_prefix) - 1;
/* IPC incoming xfer queue item. */
typedef struct {
uv__ipc_socket_xfer_type_t xfer_type;
uv__ipc_socket_xfer_info_t xfer_info;
struct uv__queue member;
} uv__ipc_xfer_queue_item_t;
/* IPC frame header flags. */
/* clang-format off */
enum {
UV__IPC_FRAME_HAS_DATA = 0x01,
UV__IPC_FRAME_HAS_SOCKET_XFER = 0x02,
UV__IPC_FRAME_XFER_IS_TCP_CONNECTION = 0x04,
/* These are combinations of the flags above. */
UV__IPC_FRAME_XFER_FLAGS = 0x06,
UV__IPC_FRAME_VALID_FLAGS = 0x07
};
/* clang-format on */
/* IPC frame header. */
typedef struct {
uint32_t flags;
uint32_t reserved1; /* Ignored. */
uint32_t data_length; /* Must be zero if there is no data. */
uint32_t reserved2; /* Must be zero. */
} uv__ipc_frame_header_t;
/* To implement the IPC protocol correctly, these structures must have exactly
* the right size. */
STATIC_ASSERT(sizeof(uv__ipc_frame_header_t) == 16);
STATIC_ASSERT(sizeof(uv__ipc_socket_xfer_info_t) == 632);
/* Coalesced write request. */
typedef struct {
uv_write_t req; /* Internal heap-allocated write request. */
uv_write_t* user_req; /* Pointer to user-specified uv_write_t. */
} uv__coalesced_write_t;
static void eof_timer_init(uv_pipe_t* pipe);
static void eof_timer_start(uv_pipe_t* pipe);
static void eof_timer_stop(uv_pipe_t* pipe);
static void eof_timer_cb(uv_timer_t* timer);
static void eof_timer_destroy(uv_pipe_t* pipe);
static void eof_timer_close_cb(uv_handle_t* handle);
static void uv__unique_pipe_name(char* ptr, char* name, size_t size) {
snprintf(name, size, "\\\\?\\pipe\\uv\\%p-%lu", ptr, GetCurrentProcessId());
}
int uv_pipe_init(uv_loop_t* loop, uv_pipe_t* handle, int ipc) {
uv__stream_init(loop, (uv_stream_t*)handle, UV_NAMED_PIPE);
handle->reqs_pending = 0;
handle->handle = INVALID_HANDLE_VALUE;
handle->name = NULL;
handle->pipe.conn.ipc_remote_pid = 0;
handle->pipe.conn.ipc_data_frame.payload_remaining = 0;
uv__queue_init(&handle->pipe.conn.ipc_xfer_queue);
handle->pipe.conn.ipc_xfer_queue_length = 0;
handle->ipc = ipc;
handle->pipe.conn.non_overlapped_writes_tail = NULL;
return 0;
}
static void uv__pipe_connection_init(uv_pipe_t* handle) {
assert(!(handle->flags & UV_HANDLE_PIPESERVER));
uv__connection_init((uv_stream_t*) handle);
handle->read_req.data = handle;
handle->pipe.conn.eof_timer = NULL;
}
static HANDLE open_named_pipe(const WCHAR* name, DWORD* duplex_flags) {
HANDLE pipeHandle;
/*
* Assume that we have a duplex pipe first, so attempt to
* connect with GENERIC_READ | GENERIC_WRITE.
*/
pipeHandle = CreateFileW(name,
GENERIC_READ | GENERIC_WRITE,
0,
NULL,
OPEN_EXISTING,
FILE_FLAG_OVERLAPPED,
NULL);
if (pipeHandle != INVALID_HANDLE_VALUE) {
*duplex_flags = UV_HANDLE_READABLE | UV_HANDLE_WRITABLE;
return pipeHandle;
}
/*
* If the pipe is not duplex CreateFileW fails with
* ERROR_ACCESS_DENIED. In that case try to connect
* as a read-only or write-only.
*/
if (GetLastError() == ERROR_ACCESS_DENIED) {
pipeHandle = CreateFileW(name,
GENERIC_READ | FILE_WRITE_ATTRIBUTES,
0,
NULL,
OPEN_EXISTING,
FILE_FLAG_OVERLAPPED,
NULL);
if (pipeHandle != INVALID_HANDLE_VALUE) {
*duplex_flags = UV_HANDLE_READABLE;
return pipeHandle;
}
}
if (GetLastError() == ERROR_ACCESS_DENIED) {
pipeHandle = CreateFileW(name,
GENERIC_WRITE | FILE_READ_ATTRIBUTES,
0,
NULL,
OPEN_EXISTING,
FILE_FLAG_OVERLAPPED,
NULL);
if (pipeHandle != INVALID_HANDLE_VALUE) {
*duplex_flags = UV_HANDLE_WRITABLE;
return pipeHandle;
}
}
return INVALID_HANDLE_VALUE;
}
static void close_pipe(uv_pipe_t* pipe) {
assert(pipe->u.fd == -1 || pipe->u.fd > 2);
if (pipe->u.fd == -1)
CloseHandle(pipe->handle);
else
close(pipe->u.fd);
pipe->u.fd = -1;
pipe->handle = INVALID_HANDLE_VALUE;
}
static int uv__pipe_server(
HANDLE* pipeHandle_ptr, DWORD access,
char* name, size_t nameSize, char* random) {
HANDLE pipeHandle;
int err;
for (;;) {
uv__unique_pipe_name(random, name, nameSize);
pipeHandle = CreateNamedPipeA(name,
access | FILE_FLAG_FIRST_PIPE_INSTANCE,
PIPE_TYPE_BYTE | PIPE_READMODE_BYTE | PIPE_WAIT, 1, 65536, 65536, 0,
NULL);
if (pipeHandle != INVALID_HANDLE_VALUE) {
/* No name collisions. We're done. */
break;
}
err = GetLastError();
if (err != ERROR_PIPE_BUSY && err != ERROR_ACCESS_DENIED) {
goto error;
}
/* Pipe name collision. Increment the random number and try again. */
random++;
}
*pipeHandle_ptr = pipeHandle;
return 0;
error:
if (pipeHandle != INVALID_HANDLE_VALUE)
CloseHandle(pipeHandle);
return err;
}
static int uv__create_pipe_pair(
HANDLE* server_pipe_ptr, HANDLE* client_pipe_ptr,
unsigned int server_flags, unsigned int client_flags,
int inherit_client, char* random) {
/* allowed flags are: UV_READABLE_PIPE | UV_WRITABLE_PIPE | UV_NONBLOCK_PIPE */
char pipe_name[64];
SECURITY_ATTRIBUTES sa;
DWORD server_access;
DWORD client_access;
HANDLE server_pipe;
HANDLE client_pipe;
int err;
server_pipe = INVALID_HANDLE_VALUE;
client_pipe = INVALID_HANDLE_VALUE;
server_access = 0;
if (server_flags & UV_READABLE_PIPE)
server_access |= PIPE_ACCESS_INBOUND;
if (server_flags & UV_WRITABLE_PIPE)
server_access |= PIPE_ACCESS_OUTBOUND;
if (server_flags & UV_NONBLOCK_PIPE)
server_access |= FILE_FLAG_OVERLAPPED;
server_access |= WRITE_DAC;
client_access = 0;
if (client_flags & UV_READABLE_PIPE)
client_access |= GENERIC_READ;
else
client_access |= FILE_READ_ATTRIBUTES;
if (client_flags & UV_WRITABLE_PIPE)
client_access |= GENERIC_WRITE;
else
client_access |= FILE_WRITE_ATTRIBUTES;
client_access |= WRITE_DAC;
/* Create server pipe handle. */
err = uv__pipe_server(&server_pipe,
server_access,
pipe_name,
sizeof(pipe_name),
random);
if (err)
goto error;
/* Create client pipe handle. */
sa.nLength = sizeof sa;
sa.lpSecurityDescriptor = NULL;
sa.bInheritHandle = inherit_client;
client_pipe = CreateFileA(pipe_name,
client_access,
0,
&sa,
OPEN_EXISTING,
(client_flags & UV_NONBLOCK_PIPE) ? FILE_FLAG_OVERLAPPED : 0,
NULL);
if (client_pipe == INVALID_HANDLE_VALUE) {
err = GetLastError();
goto error;
}
#ifndef NDEBUG
/* Validate that the pipe was opened in the right mode. */
{
DWORD mode;
BOOL r;
r = GetNamedPipeHandleState(client_pipe, &mode, NULL, NULL, NULL, NULL, 0);
if (r == TRUE) {
assert(mode == (PIPE_READMODE_BYTE | PIPE_WAIT));
} else {
fprintf(stderr, "libuv assertion failure: GetNamedPipeHandleState failed\n");
}
}
#endif
/* Do a blocking ConnectNamedPipe. This should not block because we have
* both ends of the pipe created. */
if (!ConnectNamedPipe(server_pipe, NULL)) {
if (GetLastError() != ERROR_PIPE_CONNECTED) {
err = GetLastError();
goto error;
}
}
*client_pipe_ptr = client_pipe;
*server_pipe_ptr = server_pipe;
return 0;
error:
if (server_pipe != INVALID_HANDLE_VALUE)
CloseHandle(server_pipe);
if (client_pipe != INVALID_HANDLE_VALUE)
CloseHandle(client_pipe);
return err;
}
int uv_pipe(uv_file fds[2], int read_flags, int write_flags) {
uv_file temp[2];
int err;
HANDLE readh;
HANDLE writeh;
/* Make the server side the inbound (read) end, */
/* so that both ends will have FILE_READ_ATTRIBUTES permission. */
/* TODO: better source of local randomness than &fds? */
read_flags |= UV_READABLE_PIPE;
write_flags |= UV_WRITABLE_PIPE;
err = uv__create_pipe_pair(&readh, &writeh, read_flags, write_flags, 0, (char*) &fds[0]);
if (err != 0)
return err;
temp[0] = _open_osfhandle((intptr_t) readh, 0);
if (temp[0] == -1) {
if (errno == UV_EMFILE)
err = UV_EMFILE;
else
err = UV_UNKNOWN;
CloseHandle(readh);
CloseHandle(writeh);
return err;
}
temp[1] = _open_osfhandle((intptr_t) writeh, 0);
if (temp[1] == -1) {
if (errno == UV_EMFILE)
err = UV_EMFILE;
else
err = UV_UNKNOWN;
_close(temp[0]);
CloseHandle(writeh);
return err;
}
fds[0] = temp[0];
fds[1] = temp[1];
return 0;
}
int uv__create_stdio_pipe_pair(uv_loop_t* loop,
uv_pipe_t* parent_pipe, HANDLE* child_pipe_ptr, unsigned int flags) {
/* The parent_pipe is always the server_pipe and kept by libuv.
* The child_pipe is always the client_pipe and is passed to the child.
* The flags are specified with respect to their usage in the child. */
HANDLE server_pipe;
HANDLE client_pipe;
unsigned int server_flags;
unsigned int client_flags;
int err;
uv__pipe_connection_init(parent_pipe);
server_pipe = INVALID_HANDLE_VALUE;
client_pipe = INVALID_HANDLE_VALUE;
server_flags = 0;
client_flags = 0;
if (flags & UV_READABLE_PIPE) {
/* The server needs inbound (read) access too, otherwise CreateNamedPipe()
* won't give us the FILE_READ_ATTRIBUTES permission. We need that to probe
* the state of the write buffer when we're trying to shutdown the pipe. */
server_flags |= UV_READABLE_PIPE | UV_WRITABLE_PIPE;
client_flags |= UV_READABLE_PIPE;
}
if (flags & UV_WRITABLE_PIPE) {
server_flags |= UV_READABLE_PIPE;
client_flags |= UV_WRITABLE_PIPE;
}
server_flags |= UV_NONBLOCK_PIPE;
if (flags & UV_NONBLOCK_PIPE || parent_pipe->ipc) {
client_flags |= UV_NONBLOCK_PIPE;
}
err = uv__create_pipe_pair(&server_pipe, &client_pipe,
server_flags, client_flags, 1, (char*) server_pipe);
if (err)
goto error;
if (CreateIoCompletionPort(server_pipe,
loop->iocp,
(ULONG_PTR) parent_pipe,
0) == NULL) {
err = GetLastError();
goto error;
}
parent_pipe->handle = server_pipe;
*child_pipe_ptr = client_pipe;
/* The server end is now readable and/or writable. */
if (flags & UV_READABLE_PIPE)
parent_pipe->flags |= UV_HANDLE_WRITABLE;
if (flags & UV_WRITABLE_PIPE)
parent_pipe->flags |= UV_HANDLE_READABLE;
return 0;
error:
if (server_pipe != INVALID_HANDLE_VALUE)
CloseHandle(server_pipe);
if (client_pipe != INVALID_HANDLE_VALUE)
CloseHandle(client_pipe);
return err;
}
static int uv__set_pipe_handle(uv_loop_t* loop,
uv_pipe_t* handle,
HANDLE pipeHandle,
int fd,
DWORD duplex_flags) {
NTSTATUS nt_status;
IO_STATUS_BLOCK io_status;
FILE_MODE_INFORMATION mode_info;
DWORD mode = PIPE_READMODE_BYTE | PIPE_WAIT;
DWORD current_mode = 0;
DWORD err = 0;
assert(handle->flags & UV_HANDLE_CONNECTION);
assert(!(handle->flags & UV_HANDLE_PIPESERVER));
if (handle->flags & UV_HANDLE_CLOSING)
return UV_EINVAL;
if (handle->handle != INVALID_HANDLE_VALUE)
return UV_EBUSY;
if (!SetNamedPipeHandleState(pipeHandle, &mode, NULL, NULL)) {
err = GetLastError();
if (err == ERROR_ACCESS_DENIED) {
/*
* SetNamedPipeHandleState can fail if the handle doesn't have either
* GENERIC_WRITE or FILE_WRITE_ATTRIBUTES.
* But if the handle already has the desired wait and blocking modes
* we can continue.
*/
if (!GetNamedPipeHandleState(pipeHandle, &current_mode, NULL, NULL,
NULL, NULL, 0)) {
return uv_translate_sys_error(GetLastError());
} else if (current_mode & PIPE_NOWAIT) {
return UV_EACCES;
}
} else {
/* If this returns ERROR_INVALID_PARAMETER we probably opened
* something that is not a pipe. */
if (err == ERROR_INVALID_PARAMETER) {
return UV_ENOTSOCK;
}
return uv_translate_sys_error(err);
}
}
/* Check if the pipe was created with FILE_FLAG_OVERLAPPED. */
nt_status = pNtQueryInformationFile(pipeHandle,
&io_status,
&mode_info,
sizeof(mode_info),
FileModeInformation);
if (nt_status != STATUS_SUCCESS) {
return uv_translate_sys_error(err);
}
if (mode_info.Mode & FILE_SYNCHRONOUS_IO_ALERT ||
mode_info.Mode & FILE_SYNCHRONOUS_IO_NONALERT) {
/* Non-overlapped pipe. */
handle->flags |= UV_HANDLE_NON_OVERLAPPED_PIPE;
handle->pipe.conn.readfile_thread_handle = NULL;
InitializeCriticalSection(&handle->pipe.conn.readfile_thread_lock);
} else {
/* Overlapped pipe. Try to associate with IOCP. */
if (CreateIoCompletionPort(pipeHandle,
loop->iocp,
(ULONG_PTR) handle,
0) == NULL) {
handle->flags |= UV_HANDLE_EMULATE_IOCP;
}
}
handle->handle = pipeHandle;
handle->u.fd = fd;
handle->flags |= duplex_flags;
return 0;
}
static int pipe_alloc_accept(uv_loop_t* loop, uv_pipe_t* handle,
uv_pipe_accept_t* req, BOOL firstInstance) {
assert(req->pipeHandle == INVALID_HANDLE_VALUE);
req->pipeHandle =
CreateNamedPipeW(handle->name,
PIPE_ACCESS_DUPLEX | FILE_FLAG_OVERLAPPED | WRITE_DAC |
(firstInstance ? FILE_FLAG_FIRST_PIPE_INSTANCE : 0),
PIPE_TYPE_BYTE | PIPE_READMODE_BYTE | PIPE_WAIT,
PIPE_UNLIMITED_INSTANCES, 65536, 65536, 0, NULL);
if (req->pipeHandle == INVALID_HANDLE_VALUE) {
return 0;
}
/* Associate it with IOCP so we can get events. */
if (CreateIoCompletionPort(req->pipeHandle,
loop->iocp,
(ULONG_PTR) handle,
0) == NULL) {
uv_fatal_error(GetLastError(), "CreateIoCompletionPort");
}
/* Stash a handle in the server object for use from places such as
* getsockname and chmod. As we transfer ownership of these to client
* objects, we'll allocate new ones here. */
handle->handle = req->pipeHandle;
return 1;
}
static DWORD WINAPI pipe_shutdown_thread_proc(void* parameter) {
uv_loop_t* loop;
uv_pipe_t* handle;
uv_shutdown_t* req;
req = (uv_shutdown_t*) parameter;
assert(req);
handle = (uv_pipe_t*) req->handle;
assert(handle);
loop = handle->loop;
assert(loop);
FlushFileBuffers(handle->handle);
/* Post completed */
POST_COMPLETION_FOR_REQ(loop, req);
return 0;
}
void uv__pipe_shutdown(uv_loop_t* loop, uv_pipe_t* handle, uv_shutdown_t *req) {
DWORD result;
NTSTATUS nt_status;
IO_STATUS_BLOCK io_status;
FILE_PIPE_LOCAL_INFORMATION pipe_info;
assert(handle->flags & UV_HANDLE_CONNECTION);
assert(req != NULL);
assert(handle->stream.conn.write_reqs_pending == 0);
SET_REQ_SUCCESS(req);
if (handle->flags & UV_HANDLE_CLOSING) {
uv__insert_pending_req(loop, (uv_req_t*) req);
return;
}
/* Try to avoid flushing the pipe buffer in the thread pool. */
nt_status = pNtQueryInformationFile(handle->handle,
&io_status,
&pipe_info,
sizeof pipe_info,
FilePipeLocalInformation);
if (nt_status != STATUS_SUCCESS) {
SET_REQ_ERROR(req, pRtlNtStatusToDosError(nt_status));
handle->flags |= UV_HANDLE_WRITABLE; /* Questionable. */
uv__insert_pending_req(loop, (uv_req_t*) req);
return;
}
if (pipe_info.OutboundQuota == pipe_info.WriteQuotaAvailable) {
/* Short-circuit, no need to call FlushFileBuffers:
* all writes have been read. */
uv__insert_pending_req(loop, (uv_req_t*) req);
return;
}
/* Run FlushFileBuffers in the thread pool. */
result = QueueUserWorkItem(pipe_shutdown_thread_proc,
req,
WT_EXECUTELONGFUNCTION);
if (!result) {
SET_REQ_ERROR(req, GetLastError());
handle->flags |= UV_HANDLE_WRITABLE; /* Questionable. */
uv__insert_pending_req(loop, (uv_req_t*) req);
return;
}
}
void uv__pipe_endgame(uv_loop_t* loop, uv_pipe_t* handle) {
uv__ipc_xfer_queue_item_t* xfer_queue_item;
assert(handle->reqs_pending == 0);
assert(handle->flags & UV_HANDLE_CLOSING);
assert(!(handle->flags & UV_HANDLE_CLOSED));
if (handle->flags & UV_HANDLE_CONNECTION) {
/* Free pending sockets */
while (!uv__queue_empty(&handle->pipe.conn.ipc_xfer_queue)) {
struct uv__queue* q;
SOCKET socket;
q = uv__queue_head(&handle->pipe.conn.ipc_xfer_queue);
uv__queue_remove(q);
xfer_queue_item = uv__queue_data(q, uv__ipc_xfer_queue_item_t, member);
/* Materialize socket and close it */
socket = WSASocketW(FROM_PROTOCOL_INFO,
FROM_PROTOCOL_INFO,
FROM_PROTOCOL_INFO,
&xfer_queue_item->xfer_info.socket_info,
0,
WSA_FLAG_OVERLAPPED);
uv__free(xfer_queue_item);
if (socket != INVALID_SOCKET)
closesocket(socket);
}
handle->pipe.conn.ipc_xfer_queue_length = 0;
if (handle->flags & UV_HANDLE_EMULATE_IOCP) {
if (handle->read_req.wait_handle != INVALID_HANDLE_VALUE) {
UnregisterWait(handle->read_req.wait_handle);
handle->read_req.wait_handle = INVALID_HANDLE_VALUE;
}
if (handle->read_req.event_handle != NULL) {
CloseHandle(handle->read_req.event_handle);
handle->read_req.event_handle = NULL;
}
}
if (handle->flags & UV_HANDLE_NON_OVERLAPPED_PIPE)
DeleteCriticalSection(&handle->pipe.conn.readfile_thread_lock);
}
if (handle->flags & UV_HANDLE_PIPESERVER) {
assert(handle->pipe.serv.accept_reqs);
uv__free(handle->pipe.serv.accept_reqs);
handle->pipe.serv.accept_reqs = NULL;
}
uv__handle_close(handle);
}
void uv_pipe_pending_instances(uv_pipe_t* handle, int count) {
if (handle->flags & UV_HANDLE_BOUND)
return;
handle->pipe.serv.pending_instances = count;
handle->flags |= UV_HANDLE_PIPESERVER;
}
/* Creates a pipe server. */
int uv_pipe_bind(uv_pipe_t* handle, const char* name) {
return uv_pipe_bind2(handle, name, strlen(name), 0);
}
int uv_pipe_bind2(uv_pipe_t* handle,
const char* name,
size_t namelen,
unsigned int flags) {
uv_loop_t* loop = handle->loop;
int i, err, nameSize;
uv_pipe_accept_t* req;
if (flags & ~UV_PIPE_NO_TRUNCATE) {
return UV_EINVAL;
}
if (name == NULL) {
return UV_EINVAL;
}
if (namelen == 0) {
return UV_EINVAL;
}
if (*name == '\0') {
return UV_EINVAL;
}
if (flags & UV_PIPE_NO_TRUNCATE) {
if (namelen > 256) {
return UV_EINVAL;
}
}
if (handle->flags & UV_HANDLE_BOUND) {
return UV_EINVAL;
}
if (uv__is_closing(handle)) {
return UV_EINVAL;
}
if (!(handle->flags & UV_HANDLE_PIPESERVER)) {
handle->pipe.serv.pending_instances = default_pending_pipe_instances;
}
handle->pipe.serv.accept_reqs = (uv_pipe_accept_t*)
uv__malloc(sizeof(uv_pipe_accept_t) * handle->pipe.serv.pending_instances);
if (!handle->pipe.serv.accept_reqs) {
uv_fatal_error(ERROR_OUTOFMEMORY, "uv__malloc");
}
for (i = 0; i < handle->pipe.serv.pending_instances; i++) {
req = &handle->pipe.serv.accept_reqs[i];
UV_REQ_INIT(req, UV_ACCEPT);
req->data = handle;
req->pipeHandle = INVALID_HANDLE_VALUE;
req->next_pending = NULL;
}
/* Convert name to UTF16. */
nameSize = MultiByteToWideChar(CP_UTF8, 0, name, -1, NULL, 0) * sizeof(WCHAR);
handle->name = uv__malloc(nameSize);
if (!handle->name) {
uv_fatal_error(ERROR_OUTOFMEMORY, "uv__malloc");
}
if (!MultiByteToWideChar(CP_UTF8,
0,
name,
-1,
handle->name,
nameSize / sizeof(WCHAR))) {
err = GetLastError();
goto error;
}
/*
* Attempt to create the first pipe with FILE_FLAG_FIRST_PIPE_INSTANCE.
* If this fails then there's already a pipe server for the given pipe name.
*/
if (!pipe_alloc_accept(loop,
handle,
&handle->pipe.serv.accept_reqs[0],
TRUE)) {
err = GetLastError();
if (err == ERROR_ACCESS_DENIED) {
err = WSAEADDRINUSE; /* Translates to UV_EADDRINUSE. */
} else if (err == ERROR_PATH_NOT_FOUND || err == ERROR_INVALID_NAME) {
err = WSAEACCES; /* Translates to UV_EACCES. */
}
goto error;
}
handle->pipe.serv.pending_accepts = NULL;
handle->flags |= UV_HANDLE_PIPESERVER;
handle->flags |= UV_HANDLE_BOUND;
return 0;
error:
if (handle->name) {
uv__free(handle->name);
handle->name = NULL;
}
return uv_translate_sys_error(err);
}
static DWORD WINAPI pipe_connect_thread_proc(void* parameter) {
uv_loop_t* loop;
uv_pipe_t* handle;
uv_connect_t* req;
HANDLE pipeHandle = INVALID_HANDLE_VALUE;
DWORD duplex_flags;
req = (uv_connect_t*) parameter;
assert(req);
handle = (uv_pipe_t*) req->handle;
assert(handle);
loop = handle->loop;
assert(loop);
/* We're here because CreateFile on a pipe returned ERROR_PIPE_BUSY. We wait
* up to 30 seconds for the pipe to become available with WaitNamedPipe. */
while (WaitNamedPipeW(req->u.connect.name, 30000)) {
/* The pipe is now available, try to connect. */
pipeHandle = open_named_pipe(req->u.connect.name, &duplex_flags);
if (pipeHandle != INVALID_HANDLE_VALUE)
break;
SwitchToThread();
}
uv__free(req->u.connect.name);
req->u.connect.name = NULL;
if (pipeHandle != INVALID_HANDLE_VALUE) {
SET_REQ_SUCCESS(req);
req->u.connect.pipeHandle = pipeHandle;
req->u.connect.duplex_flags = duplex_flags;
} else {
SET_REQ_ERROR(req, GetLastError());
}
/* Post completed */
POST_COMPLETION_FOR_REQ(loop, req);
return 0;
}
void uv_pipe_connect(uv_connect_t* req,
uv_pipe_t* handle,
const char* name,
uv_connect_cb cb) {
uv_pipe_connect2(req, handle, name, strlen(name), 0, cb);
}
int uv_pipe_connect2(uv_connect_t* req,
uv_pipe_t* handle,
const char* name,
size_t namelen,
unsigned int flags,
uv_connect_cb cb) {
uv_loop_t* loop = handle->loop;
int err, nameSize;
HANDLE pipeHandle = INVALID_HANDLE_VALUE;
DWORD duplex_flags;
if (flags & ~UV_PIPE_NO_TRUNCATE) {
return UV_EINVAL;
}
if (name == NULL) {
return UV_EINVAL;
}
if (namelen == 0) {
return UV_EINVAL;
}
if (*name == '\0') {
return UV_EINVAL;
}
if (flags & UV_PIPE_NO_TRUNCATE) {
if (namelen > 256) {
return UV_EINVAL;
}
}
UV_REQ_INIT(req, UV_CONNECT);
req->handle = (uv_stream_t*) handle;
req->cb = cb;
req->u.connect.pipeHandle = INVALID_HANDLE_VALUE;
req->u.connect.duplex_flags = 0;
req->u.connect.name = NULL;
if (handle->flags & UV_HANDLE_PIPESERVER) {
err = ERROR_INVALID_PARAMETER;
goto error;
}
if (handle->flags & UV_HANDLE_CONNECTION) {
err = ERROR_PIPE_BUSY;
goto error;
}
uv__pipe_connection_init(handle);
/* Convert name to UTF16. */
nameSize = MultiByteToWideChar(CP_UTF8, 0, name, -1, NULL, 0) * sizeof(WCHAR);
handle->name = uv__malloc(nameSize);
if (!handle->name) {
uv_fatal_error(ERROR_OUTOFMEMORY, "uv__malloc");
}
if (!MultiByteToWideChar(CP_UTF8,
0,
name,
-1,
handle->name,
nameSize / sizeof(WCHAR))) {
err = GetLastError();
goto error;
}
pipeHandle = open_named_pipe(handle->name, &duplex_flags);
if (pipeHandle == INVALID_HANDLE_VALUE) {
if (GetLastError() == ERROR_PIPE_BUSY) {
req->u.connect.name = uv__malloc(nameSize);
if (!req->u.connect.name) {
uv_fatal_error(ERROR_OUTOFMEMORY, "uv__malloc");
}
memcpy(req->u.connect.name, handle->name, nameSize);
/* Wait for the server to make a pipe instance available. */
if (!QueueUserWorkItem(&pipe_connect_thread_proc,
req,
WT_EXECUTELONGFUNCTION)) {
uv__free(req->u.connect.name);
req->u.connect.name = NULL;
err = GetLastError();
goto error;
}
REGISTER_HANDLE_REQ(loop, handle, req);
handle->reqs_pending++;
return 0;
}
err = GetLastError();
goto error;
}
req->u.connect.pipeHandle = pipeHandle;
req->u.connect.duplex_flags = duplex_flags;
SET_REQ_SUCCESS(req);
uv__insert_pending_req(loop, (uv_req_t*) req);
handle->reqs_pending++;
REGISTER_HANDLE_REQ(loop, handle, req);
return 0;
error:
if (handle->name) {
uv__free(handle->name);
handle->name = NULL;
}
if (pipeHandle != INVALID_HANDLE_VALUE)
CloseHandle(pipeHandle);
/* Make this req pending reporting an error. */
SET_REQ_ERROR(req, err);
uv__insert_pending_req(loop, (uv_req_t*) req);
handle->reqs_pending++;
REGISTER_HANDLE_REQ(loop, handle, req);
return 0;
}
void uv__pipe_interrupt_read(uv_pipe_t* handle) {
BOOL r;
if (!(handle->flags & UV_HANDLE_READ_PENDING))
return; /* No pending reads. */
if (handle->flags & UV_HANDLE_CANCELLATION_PENDING)
return; /* Already cancelled. */
if (handle->handle == INVALID_HANDLE_VALUE)
return; /* Pipe handle closed. */
if (!(handle->flags & UV_HANDLE_NON_OVERLAPPED_PIPE)) {
/* Cancel asynchronous read. */
r = CancelIoEx(handle->handle, &handle->read_req.u.io.overlapped);
assert(r || GetLastError() == ERROR_NOT_FOUND);
(void) r;
} else {
/* Cancel synchronous read (which is happening in the thread pool). */
HANDLE thread;
volatile HANDLE* thread_ptr = &handle->pipe.conn.readfile_thread_handle;
EnterCriticalSection(&handle->pipe.conn.readfile_thread_lock);
thread = *thread_ptr;
if (thread == NULL) {
/* The thread pool thread has not yet reached the point of blocking, we
* can pre-empt it by setting thread_handle to INVALID_HANDLE_VALUE. */
*thread_ptr = INVALID_HANDLE_VALUE;
} else {
/* Spin until the thread has acknowledged (by setting the thread to
* INVALID_HANDLE_VALUE) that it is past the point of blocking. */
while (thread != INVALID_HANDLE_VALUE) {
r = CancelSynchronousIo(thread);
assert(r || GetLastError() == ERROR_NOT_FOUND);
SwitchToThread(); /* Yield thread. */
thread = *thread_ptr;
}
}
LeaveCriticalSection(&handle->pipe.conn.readfile_thread_lock);
}
/* Set flag to indicate that read has been cancelled. */
handle->flags |= UV_HANDLE_CANCELLATION_PENDING;
}
void uv__pipe_read_stop(uv_pipe_t* handle) {
handle->flags &= ~UV_HANDLE_READING;
DECREASE_ACTIVE_COUNT(handle->loop, handle);
uv__pipe_interrupt_read(handle);
}
/* Cleans up uv_pipe_t (server or connection) and all resources associated with
* it. */
void uv__pipe_close(uv_loop_t* loop, uv_pipe_t* handle) {
int i;
HANDLE pipeHandle;
if (handle->flags & UV_HANDLE_READING) {
handle->flags &= ~UV_HANDLE_READING;
DECREASE_ACTIVE_COUNT(loop, handle);
}
if (handle->flags & UV_HANDLE_LISTENING) {
handle->flags &= ~UV_HANDLE_LISTENING;
DECREASE_ACTIVE_COUNT(loop, handle);
}
handle->flags &= ~(UV_HANDLE_READABLE | UV_HANDLE_WRITABLE);
uv__handle_closing(handle);
uv__pipe_interrupt_read(handle);
if (handle->name) {
uv__free(handle->name);
handle->name = NULL;
}
if (handle->flags & UV_HANDLE_PIPESERVER) {
for (i = 0; i < handle->pipe.serv.pending_instances; i++) {
pipeHandle = handle->pipe.serv.accept_reqs[i].pipeHandle;
if (pipeHandle != INVALID_HANDLE_VALUE) {
CloseHandle(pipeHandle);
handle->pipe.serv.accept_reqs[i].pipeHandle = INVALID_HANDLE_VALUE;
}
}
handle->handle = INVALID_HANDLE_VALUE;
}
if (handle->flags & UV_HANDLE_CONNECTION) {
eof_timer_destroy(handle);
}
if ((handle->flags & UV_HANDLE_CONNECTION)
&& handle->handle != INVALID_HANDLE_VALUE) {
/* This will eventually destroy the write queue for us too. */
close_pipe(handle);
}
if (handle->reqs_pending == 0)
uv__want_endgame(loop, (uv_handle_t*) handle);
}
static void uv__pipe_queue_accept(uv_loop_t* loop, uv_pipe_t* handle,
uv_pipe_accept_t* req, BOOL firstInstance) {
assert(handle->flags & UV_HANDLE_LISTENING);
if (!firstInstance && !pipe_alloc_accept(loop, handle, req, FALSE)) {
SET_REQ_ERROR(req, GetLastError());
uv__insert_pending_req(loop, (uv_req_t*) req);
handle->reqs_pending++;
return;
}
assert(req->pipeHandle != INVALID_HANDLE_VALUE);
/* Prepare the overlapped structure. */
memset(&(req->u.io.overlapped), 0, sizeof(req->u.io.overlapped));
if (!ConnectNamedPipe(req->pipeHandle, &req->u.io.overlapped) &&
GetLastError() != ERROR_IO_PENDING) {
if (GetLastError() == ERROR_PIPE_CONNECTED) {
SET_REQ_SUCCESS(req);
} else {
CloseHandle(req->pipeHandle);
req->pipeHandle = INVALID_HANDLE_VALUE;
/* Make this req pending reporting an error. */
SET_REQ_ERROR(req, GetLastError());
}
uv__insert_pending_req(loop, (uv_req_t*) req);
handle->reqs_pending++;
return;
}
/* Wait for completion via IOCP */
handle->reqs_pending++;
}
int uv__pipe_accept(uv_pipe_t* server, uv_stream_t* client) {
uv_loop_t* loop = server->loop;
uv_pipe_t* pipe_client;
uv_pipe_accept_t* req;
struct uv__queue* q;
uv__ipc_xfer_queue_item_t* item;
int err;
if (server->ipc) {
if (uv__queue_empty(&server->pipe.conn.ipc_xfer_queue)) {
/* No valid pending sockets. */
return WSAEWOULDBLOCK;
}
q = uv__queue_head(&server->pipe.conn.ipc_xfer_queue);
uv__queue_remove(q);
server->pipe.conn.ipc_xfer_queue_length--;
item = uv__queue_data(q, uv__ipc_xfer_queue_item_t, member);
err = uv__tcp_xfer_import(
(uv_tcp_t*) client, item->xfer_type, &item->xfer_info);
uv__free(item);
if (err != 0)
return err;
} else {
pipe_client = (uv_pipe_t*) client;
uv__pipe_connection_init(pipe_client);
/* Find a connection instance that has been connected, but not yet
* accepted. */
req = server->pipe.serv.pending_accepts;
if (!req) {
/* No valid connections found, so we error out. */
return WSAEWOULDBLOCK;
}
/* Initialize the client handle and copy the pipeHandle to the client */
pipe_client->handle = req->pipeHandle;
pipe_client->flags |= UV_HANDLE_READABLE | UV_HANDLE_WRITABLE;
/* Prepare the req to pick up a new connection */
server->pipe.serv.pending_accepts = req->next_pending;
req->next_pending = NULL;
req->pipeHandle = INVALID_HANDLE_VALUE;
server->handle = INVALID_HANDLE_VALUE;
if (!(server->flags & UV_HANDLE_CLOSING)) {
uv__pipe_queue_accept(loop, server, req, FALSE);
}
}
return 0;
}
/* Starts listening for connections for the given pipe. */
int uv__pipe_listen(uv_pipe_t* handle, int backlog, uv_connection_cb cb) {
uv_loop_t* loop = handle->loop;
int i;
if (handle->flags & UV_HANDLE_LISTENING) {
handle->stream.serv.connection_cb = cb;
}
if (!(handle->flags & UV_HANDLE_BOUND)) {
return WSAEINVAL;
}
if (handle->flags & UV_HANDLE_READING) {
return WSAEISCONN;
}
if (!(handle->flags & UV_HANDLE_PIPESERVER)) {
return ERROR_NOT_SUPPORTED;
}
if (handle->ipc) {
return WSAEINVAL;
}
handle->flags |= UV_HANDLE_LISTENING;
INCREASE_ACTIVE_COUNT(loop, handle);
handle->stream.serv.connection_cb = cb;
/* First pipe handle should have already been created in uv_pipe_bind */
assert(handle->pipe.serv.accept_reqs[0].pipeHandle != INVALID_HANDLE_VALUE);
for (i = 0; i < handle->pipe.serv.pending_instances; i++) {
uv__pipe_queue_accept(loop, handle, &handle->pipe.serv.accept_reqs[i], i == 0);
}
return 0;
}
static DWORD WINAPI uv_pipe_zero_readfile_thread_proc(void* arg) {
uv_read_t* req = (uv_read_t*) arg;
uv_pipe_t* handle = (uv_pipe_t*) req->data;
uv_loop_t* loop = handle->loop;
volatile HANDLE* thread_ptr = &handle->pipe.conn.readfile_thread_handle;
CRITICAL_SECTION* lock = &handle->pipe.conn.readfile_thread_lock;
HANDLE thread;
DWORD bytes;
DWORD err;
assert(req->type == UV_READ);
assert(handle->type == UV_NAMED_PIPE);
err = 0;
/* Create a handle to the current thread. */
if (!DuplicateHandle(GetCurrentProcess(),
GetCurrentThread(),
GetCurrentProcess(),
&thread,
0,
FALSE,
DUPLICATE_SAME_ACCESS)) {
err = GetLastError();
goto out1;
}
/* The lock needs to be held when thread handle is modified. */
EnterCriticalSection(lock);
if (*thread_ptr == INVALID_HANDLE_VALUE) {
/* uv__pipe_interrupt_read() cancelled reading before we got here. */
err = ERROR_OPERATION_ABORTED;
} else {
/* Let main thread know which worker thread is doing the blocking read. */
assert(*thread_ptr == NULL);
*thread_ptr = thread;
}
LeaveCriticalSection(lock);
if (err)
goto out2;
/* Block the thread until data is available on the pipe, or the read is
* cancelled. */
if (!ReadFile(handle->handle, &uv_zero_, 0, &bytes, NULL))
err = GetLastError();
/* Let the main thread know the worker is past the point of blocking. */
assert(thread == *thread_ptr);
*thread_ptr = INVALID_HANDLE_VALUE;
/* Briefly acquire the mutex. Since the main thread holds the lock while it
* is spinning trying to cancel this thread's I/O, we will block here until
* it stops doing that. */
EnterCriticalSection(lock);
LeaveCriticalSection(lock);
out2:
/* Close the handle to the current thread. */
CloseHandle(thread);
out1:
/* Set request status and post a completion record to the IOCP. */
if (err)
SET_REQ_ERROR(req, err);
else
SET_REQ_SUCCESS(req);
POST_COMPLETION_FOR_REQ(loop, req);
return 0;
}
static DWORD WINAPI uv_pipe_writefile_thread_proc(void* parameter) {
int result;
DWORD bytes;
uv_write_t* req = (uv_write_t*) parameter;
uv_pipe_t* handle = (uv_pipe_t*) req->handle;
uv_loop_t* loop = handle->loop;
assert(req != NULL);
assert(req->type == UV_WRITE);
assert(handle->type == UV_NAMED_PIPE);
result = WriteFile(handle->handle,
req->write_buffer.base,
req->write_buffer.len,
&bytes,
NULL);
if (!result) {
SET_REQ_ERROR(req, GetLastError());
}
POST_COMPLETION_FOR_REQ(loop, req);
return 0;
}
static void CALLBACK post_completion_read_wait(void* context, BOOLEAN timed_out) {
uv_read_t* req;
uv_tcp_t* handle;
req = (uv_read_t*) context;
assert(req != NULL);
handle = (uv_tcp_t*)req->data;
assert(handle != NULL);
assert(!timed_out);
if (!PostQueuedCompletionStatus(handle->loop->iocp,
req->u.io.overlapped.InternalHigh,
0,
&req->u.io.overlapped)) {
uv_fatal_error(GetLastError(), "PostQueuedCompletionStatus");
}
}
static void CALLBACK post_completion_write_wait(void* context, BOOLEAN timed_out) {
uv_write_t* req;
uv_tcp_t* handle;
req = (uv_write_t*) context;
assert(req != NULL);
handle = (uv_tcp_t*)req->handle;
assert(handle != NULL);
assert(!timed_out);
if (!PostQueuedCompletionStatus(handle->loop->iocp,
req->u.io.overlapped.InternalHigh,
0,
&req->u.io.overlapped)) {
uv_fatal_error(GetLastError(), "PostQueuedCompletionStatus");
}
}
static void uv__pipe_queue_read(uv_loop_t* loop, uv_pipe_t* handle) {
uv_read_t* req;
int result;
assert(handle->flags & UV_HANDLE_READING);
assert(!(handle->flags & UV_HANDLE_READ_PENDING));
assert(handle->handle != INVALID_HANDLE_VALUE);
req = &handle->read_req;
if (handle->flags & UV_HANDLE_NON_OVERLAPPED_PIPE) {
handle->pipe.conn.readfile_thread_handle = NULL; /* Reset cancellation. */
if (!QueueUserWorkItem(&uv_pipe_zero_readfile_thread_proc,
req,
WT_EXECUTELONGFUNCTION)) {
/* Make this req pending reporting an error. */
SET_REQ_ERROR(req, GetLastError());
goto error;
}
} else {
memset(&req->u.io.overlapped, 0, sizeof(req->u.io.overlapped));
if (handle->flags & UV_HANDLE_EMULATE_IOCP) {
assert(req->event_handle != NULL);
req->u.io.overlapped.hEvent = (HANDLE) ((uintptr_t) req->event_handle | 1);
}
/* Do 0-read */
result = ReadFile(handle->handle,
&uv_zero_,
0,
NULL,
&req->u.io.overlapped);
if (!result && GetLastError() != ERROR_IO_PENDING) {
/* Make this req pending reporting an error. */
SET_REQ_ERROR(req, GetLastError());
goto error;
}
if (handle->flags & UV_HANDLE_EMULATE_IOCP) {
if (req->wait_handle == INVALID_HANDLE_VALUE) {
if (!RegisterWaitForSingleObject(&req->wait_handle,
req->event_handle, post_completion_read_wait, (void*) req,
INFINITE, WT_EXECUTEINWAITTHREAD)) {
SET_REQ_ERROR(req, GetLastError());
goto error;
}
}
}
}
/* Start the eof timer if there is one */
eof_timer_start(handle);
handle->flags |= UV_HANDLE_READ_PENDING;
handle->reqs_pending++;
return;
error:
uv__insert_pending_req(loop, (uv_req_t*)req);
handle->flags |= UV_HANDLE_READ_PENDING;
handle->reqs_pending++;
}
int uv__pipe_read_start(uv_pipe_t* handle,
uv_alloc_cb alloc_cb,
uv_read_cb read_cb) {
uv_loop_t* loop = handle->loop;
handle->flags |= UV_HANDLE_READING;
INCREASE_ACTIVE_COUNT(loop, handle);
handle->read_cb = read_cb;
handle->alloc_cb = alloc_cb;
/* If reading was stopped and then started again, there could still be a read
* request pending. */
if (!(handle->flags & UV_HANDLE_READ_PENDING)) {
if (handle->flags & UV_HANDLE_EMULATE_IOCP &&
handle->read_req.event_handle == NULL) {
handle->read_req.event_handle = CreateEvent(NULL, 0, 0, NULL);
if (handle->read_req.event_handle == NULL) {
uv_fatal_error(GetLastError(), "CreateEvent");
}
}
uv__pipe_queue_read(loop, handle);
}
return 0;
}
static void uv__insert_non_overlapped_write_req(uv_pipe_t* handle,
uv_write_t* req) {
req->next_req = NULL;
if (handle->pipe.conn.non_overlapped_writes_tail) {
req->next_req =
handle->pipe.conn.non_overlapped_writes_tail->next_req;
handle->pipe.conn.non_overlapped_writes_tail->next_req = (uv_req_t*)req;
handle->pipe.conn.non_overlapped_writes_tail = req;
} else {
req->next_req = (uv_req_t*)req;
handle->pipe.conn.non_overlapped_writes_tail = req;
}
}
static uv_write_t* uv_remove_non_overlapped_write_req(uv_pipe_t* handle) {
uv_write_t* req;
if (handle->pipe.conn.non_overlapped_writes_tail) {
req = (uv_write_t*)handle->pipe.conn.non_overlapped_writes_tail->next_req;
if (req == handle->pipe.conn.non_overlapped_writes_tail) {
handle->pipe.conn.non_overlapped_writes_tail = NULL;
} else {
handle->pipe.conn.non_overlapped_writes_tail->next_req =
req->next_req;
}
return req;
} else {
/* queue empty */
return NULL;
}
}
static void uv__queue_non_overlapped_write(uv_pipe_t* handle) {
uv_write_t* req = uv_remove_non_overlapped_write_req(handle);
if (req) {
if (!QueueUserWorkItem(&uv_pipe_writefile_thread_proc,
req,
WT_EXECUTELONGFUNCTION)) {
uv_fatal_error(GetLastError(), "QueueUserWorkItem");
}
}
}
static int uv__build_coalesced_write_req(uv_write_t* user_req,
const uv_buf_t bufs[],
size_t nbufs,
uv_write_t** req_out,
uv_buf_t* write_buf_out) {
/* Pack into a single heap-allocated buffer:
* (a) a uv_write_t structure where libuv stores the actual state.
* (b) a pointer to the original uv_write_t.
* (c) data from all `bufs` entries.
*/
char* heap_buffer;
size_t heap_buffer_length, heap_buffer_offset;
uv__coalesced_write_t* coalesced_write_req; /* (a) + (b) */
char* data_start; /* (c) */
size_t data_length;
unsigned int i;
/* Compute combined size of all combined buffers from `bufs`. */
data_length = 0;
for (i = 0; i < nbufs; i++)
data_length += bufs[i].len;
/* The total combined size of data buffers should not exceed UINT32_MAX,
* because WriteFile() won't accept buffers larger than that. */
if (data_length > UINT32_MAX)
return WSAENOBUFS; /* Maps to UV_ENOBUFS. */
/* Compute heap buffer size. */
heap_buffer_length = sizeof *coalesced_write_req + /* (a) + (b) */
data_length; /* (c) */
/* Allocate buffer. */
heap_buffer = uv__malloc(heap_buffer_length);
if (heap_buffer == NULL)
return ERROR_NOT_ENOUGH_MEMORY; /* Maps to UV_ENOMEM. */
/* Copy uv_write_t information to the buffer. */
coalesced_write_req = (uv__coalesced_write_t*) heap_buffer;
coalesced_write_req->req = *user_req; /* copy (a) */
coalesced_write_req->req.coalesced = 1;
coalesced_write_req->user_req = user_req; /* copy (b) */
heap_buffer_offset = sizeof *coalesced_write_req; /* offset (a) + (b) */
/* Copy data buffers to the heap buffer. */
data_start = &heap_buffer[heap_buffer_offset];
for (i = 0; i < nbufs; i++) {
memcpy(&heap_buffer[heap_buffer_offset],
bufs[i].base,
bufs[i].len); /* copy (c) */
heap_buffer_offset += bufs[i].len; /* offset (c) */
}
assert(heap_buffer_offset == heap_buffer_length);
/* Set out arguments and return. */
*req_out = &coalesced_write_req->req;
*write_buf_out = uv_buf_init(data_start, (unsigned int) data_length);
return 0;
}
static int uv__pipe_write_data(uv_loop_t* loop,
uv_write_t* req,
uv_pipe_t* handle,
const uv_buf_t bufs[],
size_t nbufs,
uv_write_cb cb,
int copy_always) {
int err;
int result;
uv_buf_t write_buf;
assert(handle->handle != INVALID_HANDLE_VALUE);
UV_REQ_INIT(req, UV_WRITE);
req->handle = (uv_stream_t*) handle;
req->send_handle = NULL;
req->cb = cb;
/* Private fields. */
req->coalesced = 0;
req->event_handle = NULL;
req->wait_handle = INVALID_HANDLE_VALUE;
/* Prepare the overlapped structure. */
memset(&req->u.io.overlapped, 0, sizeof(req->u.io.overlapped));
if (handle->flags & (UV_HANDLE_EMULATE_IOCP | UV_HANDLE_BLOCKING_WRITES)) {
req->event_handle = CreateEvent(NULL, 0, 0, NULL);
if (req->event_handle == NULL) {
uv_fatal_error(GetLastError(), "CreateEvent");
}
req->u.io.overlapped.hEvent = (HANDLE) ((uintptr_t) req->event_handle | 1);
}
req->write_buffer = uv_null_buf_;
if (nbufs == 0) {
/* Write empty buffer. */
write_buf = uv_null_buf_;
} else if (nbufs == 1 && !copy_always) {
/* Write directly from bufs[0]. */
write_buf = bufs[0];
} else {
/* Coalesce all `bufs` into one big buffer. This also creates a new
* write-request structure that replaces the old one. */
err = uv__build_coalesced_write_req(req, bufs, nbufs, &req, &write_buf);
if (err != 0)
return err;
}
if ((handle->flags &
(UV_HANDLE_BLOCKING_WRITES | UV_HANDLE_NON_OVERLAPPED_PIPE)) ==
(UV_HANDLE_BLOCKING_WRITES | UV_HANDLE_NON_OVERLAPPED_PIPE)) {
DWORD bytes;
result =
WriteFile(handle->handle, write_buf.base, write_buf.len, &bytes, NULL);
if (!result) {
err = GetLastError();
return err;
} else {
/* Request completed immediately. */
req->u.io.queued_bytes = 0;
}
REGISTER_HANDLE_REQ(loop, handle, req);
handle->reqs_pending++;
handle->stream.conn.write_reqs_pending++;
POST_COMPLETION_FOR_REQ(loop, req);
return 0;
} else if (handle->flags & UV_HANDLE_NON_OVERLAPPED_PIPE) {
req->write_buffer = write_buf;
uv__insert_non_overlapped_write_req(handle, req);
if (handle->stream.conn.write_reqs_pending == 0) {
uv__queue_non_overlapped_write(handle);
}
/* Request queued by the kernel. */
req->u.io.queued_bytes = write_buf.len;
handle->write_queue_size += req->u.io.queued_bytes;
} else if (handle->flags & UV_HANDLE_BLOCKING_WRITES) {
/* Using overlapped IO, but wait for completion before returning */
result = WriteFile(handle->handle,
write_buf.base,
write_buf.len,
NULL,
&req->u.io.overlapped);
if (!result && GetLastError() != ERROR_IO_PENDING) {
err = GetLastError();
CloseHandle(req->event_handle);
req->event_handle = NULL;
return err;
}
if (result) {
/* Request completed immediately. */
req->u.io.queued_bytes = 0;
} else {
/* Request queued by the kernel. */
req->u.io.queued_bytes = write_buf.len;
handle->write_queue_size += req->u.io.queued_bytes;
if (WaitForSingleObject(req->event_handle, INFINITE) !=
WAIT_OBJECT_0) {
err = GetLastError();
CloseHandle(req->event_handle);
req->event_handle = NULL;
return err;
}
}
CloseHandle(req->event_handle);
req->event_handle = NULL;
REGISTER_HANDLE_REQ(loop, handle, req);
handle->reqs_pending++;
handle->stream.conn.write_reqs_pending++;
return 0;
} else {
result = WriteFile(handle->handle,
write_buf.base,
write_buf.len,
NULL,
&req->u.io.overlapped);
if (!result && GetLastError() != ERROR_IO_PENDING) {
return GetLastError();
}
if (result) {
/* Request completed immediately. */
req->u.io.queued_bytes = 0;
} else {
/* Request queued by the kernel. */
req->u.io.queued_bytes = write_buf.len;
handle->write_queue_size += req->u.io.queued_bytes;
}
if (handle->flags & UV_HANDLE_EMULATE_IOCP) {
if (!RegisterWaitForSingleObject(&req->wait_handle,
req->event_handle, post_completion_write_wait, (void*) req,
INFINITE, WT_EXECUTEINWAITTHREAD)) {
return GetLastError();
}
}
}
REGISTER_HANDLE_REQ(loop, handle, req);
handle->reqs_pending++;
handle->stream.conn.write_reqs_pending++;
return 0;
}
static DWORD uv__pipe_get_ipc_remote_pid(uv_pipe_t* handle) {
DWORD* pid = &handle->pipe.conn.ipc_remote_pid;
/* If the both ends of the IPC pipe are owned by the same process,
* the remote end pid may not yet be set. If so, do it here.
* TODO: this is weird; it'd probably better to use a handshake. */
if (*pid == 0) {
GetNamedPipeClientProcessId(handle->handle, pid);
if (*pid == GetCurrentProcessId()) {
GetNamedPipeServerProcessId(handle->handle, pid);
}
}
return *pid;
}
int uv__pipe_write_ipc(uv_loop_t* loop,
uv_write_t* req,
uv_pipe_t* handle,
const uv_buf_t data_bufs[],
size_t data_buf_count,
uv_stream_t* send_handle,
uv_write_cb cb) {
uv_buf_t stack_bufs[6];
uv_buf_t* bufs;
size_t buf_count, buf_index;
uv__ipc_frame_header_t frame_header;
uv__ipc_socket_xfer_type_t xfer_type = UV__IPC_SOCKET_XFER_NONE;
uv__ipc_socket_xfer_info_t xfer_info;
uint64_t data_length;
size_t i;
int err;
/* Compute the combined size of data buffers. */
data_length = 0;
for (i = 0; i < data_buf_count; i++)
data_length += data_bufs[i].len;
if (data_length > UINT32_MAX)
return WSAENOBUFS; /* Maps to UV_ENOBUFS. */
/* Prepare the frame's socket xfer payload. */
if (send_handle != NULL) {
uv_tcp_t* send_tcp_handle = (uv_tcp_t*) send_handle;
/* Verify that `send_handle` it is indeed a tcp handle. */
if (send_tcp_handle->type != UV_TCP)
return ERROR_NOT_SUPPORTED;
/* Export the tcp handle. */
err = uv__tcp_xfer_export(send_tcp_handle,
uv__pipe_get_ipc_remote_pid(handle),
&xfer_type,
&xfer_info);
if (err != 0)
return err;
}
/* Compute the number of uv_buf_t's required. */
buf_count = 1 + data_buf_count; /* Frame header and data buffers. */
if (send_handle != NULL)
buf_count += 1; /* One extra for the socket xfer information. */
/* Use the on-stack buffer array if it is big enough; otherwise allocate
* space for it on the heap. */
if (buf_count < ARRAY_SIZE(stack_bufs)) {
/* Use on-stack buffer array. */
bufs = stack_bufs;
} else {
/* Use heap-allocated buffer array. */
bufs = uv__calloc(buf_count, sizeof(uv_buf_t));
if (bufs == NULL)
return ERROR_NOT_ENOUGH_MEMORY; /* Maps to UV_ENOMEM. */
}
buf_index = 0;
/* Initialize frame header and add it to the buffers list. */
memset(&frame_header, 0, sizeof frame_header);
bufs[buf_index++] = uv_buf_init((char*) &frame_header, sizeof frame_header);
if (send_handle != NULL) {
/* Add frame header flags. */
switch (xfer_type) {
case UV__IPC_SOCKET_XFER_TCP_CONNECTION:
frame_header.flags |= UV__IPC_FRAME_HAS_SOCKET_XFER |
UV__IPC_FRAME_XFER_IS_TCP_CONNECTION;
break;
case UV__IPC_SOCKET_XFER_TCP_SERVER:
frame_header.flags |= UV__IPC_FRAME_HAS_SOCKET_XFER;
break;
default:
assert(0); /* Unreachable. */
}
/* Add xfer info buffer. */
bufs[buf_index++] = uv_buf_init((char*) &xfer_info, sizeof xfer_info);
}
if (data_length > 0) {
/* Update frame header. */
frame_header.flags |= UV__IPC_FRAME_HAS_DATA;
frame_header.data_length = (uint32_t) data_length;
/* Add data buffers to buffers list. */
for (i = 0; i < data_buf_count; i++)
bufs[buf_index++] = data_bufs[i];
}
/* Write buffers. We set the `always_copy` flag, so it is not a problem that
* some of the written data lives on the stack. */
err = uv__pipe_write_data(loop, req, handle, bufs, buf_count, cb, 1);
/* If we had to heap-allocate the bufs array, free it now. */
if (bufs != stack_bufs) {
uv__free(bufs);
}
return err;
}
int uv__pipe_write(uv_loop_t* loop,
uv_write_t* req,
uv_pipe_t* handle,
const uv_buf_t bufs[],
size_t nbufs,
uv_stream_t* send_handle,
uv_write_cb cb) {
if (handle->ipc) {
/* IPC pipe write: use framing protocol. */
return uv__pipe_write_ipc(loop, req, handle, bufs, nbufs, send_handle, cb);
} else {
/* Non-IPC pipe write: put data on the wire directly. */
assert(send_handle == NULL);
return uv__pipe_write_data(loop, req, handle, bufs, nbufs, cb, 0);
}
}
static void uv__pipe_read_eof(uv_loop_t* loop, uv_pipe_t* handle,
uv_buf_t buf) {
/* If there is an eof timer running, we don't need it any more, so discard
* it. */
eof_timer_destroy(handle);
uv_read_stop((uv_stream_t*) handle);
handle->read_cb((uv_stream_t*) handle, UV_EOF, &buf);
}
static void uv__pipe_read_error(uv_loop_t* loop, uv_pipe_t* handle, int error,
uv_buf_t buf) {
/* If there is an eof timer running, we don't need it any more, so discard
* it. */
eof_timer_destroy(handle);
uv_read_stop((uv_stream_t*) handle);
handle->read_cb((uv_stream_t*)handle, uv_translate_sys_error(error), &buf);
}
static void uv__pipe_read_error_or_eof(uv_loop_t* loop, uv_pipe_t* handle,
int error, uv_buf_t buf) {
if (error == ERROR_BROKEN_PIPE) {
uv__pipe_read_eof(loop, handle, buf);
} else {
uv__pipe_read_error(loop, handle, error, buf);
}
}
static void uv__pipe_queue_ipc_xfer_info(
uv_pipe_t* handle,
uv__ipc_socket_xfer_type_t xfer_type,
uv__ipc_socket_xfer_info_t* xfer_info) {
uv__ipc_xfer_queue_item_t* item;
item = (uv__ipc_xfer_queue_item_t*) uv__malloc(sizeof(*item));
if (item == NULL)
uv_fatal_error(ERROR_OUTOFMEMORY, "uv__malloc");
item->xfer_type = xfer_type;
item->xfer_info = *xfer_info;
uv__queue_insert_tail(&handle->pipe.conn.ipc_xfer_queue, &item->member);
handle->pipe.conn.ipc_xfer_queue_length++;
}
/* Read an exact number of bytes from a pipe. If an error or end-of-file is
* encountered before the requested number of bytes are read, an error is
* returned. */
static int uv__pipe_read_exactly(HANDLE h, void* buffer, DWORD count) {
DWORD bytes_read, bytes_read_now;
bytes_read = 0;
while (bytes_read < count) {
if (!ReadFile(h,
(char*) buffer + bytes_read,
count - bytes_read,
&bytes_read_now,
NULL)) {
return GetLastError();
}
bytes_read += bytes_read_now;
}
assert(bytes_read == count);
return 0;
}
static DWORD uv__pipe_read_data(uv_loop_t* loop,
uv_pipe_t* handle,
DWORD suggested_bytes,
DWORD max_bytes) {
DWORD bytes_read;
uv_buf_t buf;
/* Ask the user for a buffer to read data into. */
buf = uv_buf_init(NULL, 0);
handle->alloc_cb((uv_handle_t*) handle, suggested_bytes, &buf);
if (buf.base == NULL || buf.len == 0) {
handle->read_cb((uv_stream_t*) handle, UV_ENOBUFS, &buf);
return 0; /* Break out of read loop. */
}
/* Ensure we read at most the smaller of:
* (a) the length of the user-allocated buffer.
* (b) the maximum data length as specified by the `max_bytes` argument.
*/
if (max_bytes > buf.len)
max_bytes = buf.len;
/* Read into the user buffer. */
if (!ReadFile(handle->handle, buf.base, max_bytes, &bytes_read, NULL)) {
uv__pipe_read_error_or_eof(loop, handle, GetLastError(), buf);
return 0; /* Break out of read loop. */
}
/* Call the read callback. */
handle->read_cb((uv_stream_t*) handle, bytes_read, &buf);
return bytes_read;
}
static DWORD uv__pipe_read_ipc(uv_loop_t* loop, uv_pipe_t* handle) {
uint32_t* data_remaining = &handle->pipe.conn.ipc_data_frame.payload_remaining;
int err;
if (*data_remaining > 0) {
/* Read frame data payload. */
DWORD bytes_read =
uv__pipe_read_data(loop, handle, *data_remaining, *data_remaining);
*data_remaining -= bytes_read;
return bytes_read;
} else {
/* Start of a new IPC frame. */
uv__ipc_frame_header_t frame_header;
uint32_t xfer_flags;
uv__ipc_socket_xfer_type_t xfer_type;
uv__ipc_socket_xfer_info_t xfer_info;
/* Read the IPC frame header. */
err = uv__pipe_read_exactly(
handle->handle, &frame_header, sizeof frame_header);
if (err)
goto error;
/* Validate that flags are valid. */
if ((frame_header.flags & ~UV__IPC_FRAME_VALID_FLAGS) != 0)
goto invalid;
/* Validate that reserved2 is zero. */
if (frame_header.reserved2 != 0)
goto invalid;
/* Parse xfer flags. */
xfer_flags = frame_header.flags & UV__IPC_FRAME_XFER_FLAGS;
if (xfer_flags & UV__IPC_FRAME_HAS_SOCKET_XFER) {
/* Socket coming -- determine the type. */
xfer_type = xfer_flags & UV__IPC_FRAME_XFER_IS_TCP_CONNECTION
? UV__IPC_SOCKET_XFER_TCP_CONNECTION
: UV__IPC_SOCKET_XFER_TCP_SERVER;
} else if (xfer_flags == 0) {
/* No socket. */
xfer_type = UV__IPC_SOCKET_XFER_NONE;
} else {
/* Invalid flags. */
goto invalid;
}
/* Parse data frame information. */
if (frame_header.flags & UV__IPC_FRAME_HAS_DATA) {
*data_remaining = frame_header.data_length;
} else if (frame_header.data_length != 0) {
/* Data length greater than zero but data flag not set -- invalid. */
goto invalid;
}
/* If no socket xfer info follows, return here. Data will be read in a
* subsequent invocation of uv__pipe_read_ipc(). */
if (xfer_type == UV__IPC_SOCKET_XFER_NONE)
return sizeof frame_header; /* Number of bytes read. */
/* Read transferred socket information. */
err = uv__pipe_read_exactly(handle->handle, &xfer_info, sizeof xfer_info);
if (err)
goto error;
/* Store the pending socket info. */
uv__pipe_queue_ipc_xfer_info(handle, xfer_type, &xfer_info);
/* Return number of bytes read. */
return sizeof frame_header + sizeof xfer_info;
}
invalid:
/* Invalid frame. */
err = WSAECONNABORTED; /* Maps to UV_ECONNABORTED. */
error:
uv__pipe_read_error_or_eof(loop, handle, err, uv_null_buf_);
return 0; /* Break out of read loop. */
}
void uv__process_pipe_read_req(uv_loop_t* loop,
uv_pipe_t* handle,
uv_req_t* req) {
assert(handle->type == UV_NAMED_PIPE);
handle->flags &= ~(UV_HANDLE_READ_PENDING | UV_HANDLE_CANCELLATION_PENDING);
DECREASE_PENDING_REQ_COUNT(handle);
eof_timer_stop(handle);
/* At this point, we're done with bookkeeping. If the user has stopped
* reading the pipe in the meantime, there is nothing left to do, since there
* is no callback that we can call. */
if (!(handle->flags & UV_HANDLE_READING))
return;
if (!REQ_SUCCESS(req)) {
/* An error occurred doing the zero-read. */
DWORD err = GET_REQ_ERROR(req);
/* If the read was cancelled by uv__pipe_interrupt_read(), the request may
* indicate an ERROR_OPERATION_ABORTED error. This error isn't relevant to
* the user; we'll start a new zero-read at the end of this function. */
if (err != ERROR_OPERATION_ABORTED)
uv__pipe_read_error_or_eof(loop, handle, err, uv_null_buf_);
} else {
/* The zero-read completed without error, indicating there is data
* available in the kernel buffer. */
DWORD avail;
/* Get the number of bytes available. */
avail = 0;
if (!PeekNamedPipe(handle->handle, NULL, 0, NULL, &avail, NULL))
uv__pipe_read_error_or_eof(loop, handle, GetLastError(), uv_null_buf_);
/* Read until we've either read all the bytes available, or the 'reading'
* flag is cleared. */
while (avail > 0 && handle->flags & UV_HANDLE_READING) {
/* Depending on the type of pipe, read either IPC frames or raw data. */
DWORD bytes_read =
handle->ipc ? uv__pipe_read_ipc(loop, handle)
: uv__pipe_read_data(loop, handle, avail, (DWORD) -1);
/* If no bytes were read, treat this as an indication that an error
* occurred, and break out of the read loop. */
if (bytes_read == 0)
break;
/* It is possible that more bytes were read than we thought were
* available. To prevent `avail` from underflowing, break out of the loop
* if this is the case. */
if (bytes_read > avail)
break;
/* Recompute the number of bytes available. */
avail -= bytes_read;
}
}
/* Start another zero-read request if necessary. */
if ((handle->flags & UV_HANDLE_READING) &&
!(handle->flags & UV_HANDLE_READ_PENDING)) {
uv__pipe_queue_read(loop, handle);
}
}
void uv__process_pipe_write_req(uv_loop_t* loop, uv_pipe_t* handle,
uv_write_t* req) {
int err;
assert(handle->type == UV_NAMED_PIPE);
assert(handle->write_queue_size >= req->u.io.queued_bytes);
handle->write_queue_size -= req->u.io.queued_bytes;
UNREGISTER_HANDLE_REQ(loop, handle, req);
if (handle->flags & UV_HANDLE_EMULATE_IOCP) {
if (req->wait_handle != INVALID_HANDLE_VALUE) {
UnregisterWait(req->wait_handle);
req->wait_handle = INVALID_HANDLE_VALUE;
}
if (req->event_handle) {
CloseHandle(req->event_handle);
req->event_handle = NULL;
}
}
err = GET_REQ_ERROR(req);
/* If this was a coalesced write, extract pointer to the user_provided
* uv_write_t structure so we can pass the expected pointer to the callback,
* then free the heap-allocated write req. */
if (req->coalesced) {
uv__coalesced_write_t* coalesced_write =
container_of(req, uv__coalesced_write_t, req);
req = coalesced_write->user_req;
uv__free(coalesced_write);
}
if (req->cb) {
req->cb(req, uv_translate_sys_error(err));
}
handle->stream.conn.write_reqs_pending--;
if (handle->flags & UV_HANDLE_NON_OVERLAPPED_PIPE &&
handle->pipe.conn.non_overlapped_writes_tail) {
assert(handle->stream.conn.write_reqs_pending > 0);
uv__queue_non_overlapped_write(handle);
}
if (handle->stream.conn.write_reqs_pending == 0 &&
uv__is_stream_shutting(handle))
uv__pipe_shutdown(loop, handle, handle->stream.conn.shutdown_req);
DECREASE_PENDING_REQ_COUNT(handle);
}
void uv__process_pipe_accept_req(uv_loop_t* loop, uv_pipe_t* handle,
uv_req_t* raw_req) {
uv_pipe_accept_t* req = (uv_pipe_accept_t*) raw_req;
assert(handle->type == UV_NAMED_PIPE);
if (handle->flags & UV_HANDLE_CLOSING) {
/* The req->pipeHandle should be freed already in uv__pipe_close(). */
assert(req->pipeHandle == INVALID_HANDLE_VALUE);
DECREASE_PENDING_REQ_COUNT(handle);
return;
}
if (REQ_SUCCESS(req)) {
assert(req->pipeHandle != INVALID_HANDLE_VALUE);
req->next_pending = handle->pipe.serv.pending_accepts;
handle->pipe.serv.pending_accepts = req;
if (handle->stream.serv.connection_cb) {
handle->stream.serv.connection_cb((uv_stream_t*)handle, 0);
}
} else {
if (req->pipeHandle != INVALID_HANDLE_VALUE) {
CloseHandle(req->pipeHandle);
req->pipeHandle = INVALID_HANDLE_VALUE;
}
if (!(handle->flags & UV_HANDLE_CLOSING)) {
uv__pipe_queue_accept(loop, handle, req, FALSE);
}
}
DECREASE_PENDING_REQ_COUNT(handle);
}
void uv__process_pipe_connect_req(uv_loop_t* loop, uv_pipe_t* handle,
uv_connect_t* req) {
HANDLE pipeHandle;
DWORD duplex_flags;
int err;
assert(handle->type == UV_NAMED_PIPE);
UNREGISTER_HANDLE_REQ(loop, handle, req);
err = 0;
if (REQ_SUCCESS(req)) {
pipeHandle = req->u.connect.pipeHandle;
duplex_flags = req->u.connect.duplex_flags;
if (handle->flags & UV_HANDLE_CLOSING)
err = UV_ECANCELED;
else
err = uv__set_pipe_handle(loop, handle, pipeHandle, -1, duplex_flags);
if (err)
CloseHandle(pipeHandle);
} else {
err = uv_translate_sys_error(GET_REQ_ERROR(req));
}
if (req->cb)
req->cb(req, err);
DECREASE_PENDING_REQ_COUNT(handle);
}
void uv__process_pipe_shutdown_req(uv_loop_t* loop, uv_pipe_t* handle,
uv_shutdown_t* req) {
int err;
assert(handle->type == UV_NAMED_PIPE);
/* Clear the shutdown_req field so we don't go here again. */
handle->stream.conn.shutdown_req = NULL;
UNREGISTER_HANDLE_REQ(loop, handle, req);
if (handle->flags & UV_HANDLE_CLOSING) {
/* Already closing. Cancel the shutdown. */
err = UV_ECANCELED;
} else if (!REQ_SUCCESS(req)) {
/* An error occurred in trying to shutdown gracefully. */
err = uv_translate_sys_error(GET_REQ_ERROR(req));
} else {
if (handle->flags & UV_HANDLE_READABLE) {
/* Initialize and optionally start the eof timer. Only do this if the pipe
* is readable and we haven't seen EOF come in ourselves. */
eof_timer_init(handle);
/* If reading start the timer right now. Otherwise uv__pipe_queue_read will
* start it. */
if (handle->flags & UV_HANDLE_READ_PENDING) {
eof_timer_start(handle);
}
} else {
/* This pipe is not readable. We can just close it to let the other end
* know that we're done writing. */
close_pipe(handle);
}
err = 0;
}
if (req->cb)
req->cb(req, err);
DECREASE_PENDING_REQ_COUNT(handle);
}
static void eof_timer_init(uv_pipe_t* pipe) {
int r;
assert(pipe->pipe.conn.eof_timer == NULL);
assert(pipe->flags & UV_HANDLE_CONNECTION);
pipe->pipe.conn.eof_timer = (uv_timer_t*) uv__malloc(sizeof *pipe->pipe.conn.eof_timer);
r = uv_timer_init(pipe->loop, pipe->pipe.conn.eof_timer);
assert(r == 0); /* timers can't fail */
(void) r;
pipe->pipe.conn.eof_timer->data = pipe;
uv_unref((uv_handle_t*) pipe->pipe.conn.eof_timer);
}
static void eof_timer_start(uv_pipe_t* pipe) {
assert(pipe->flags & UV_HANDLE_CONNECTION);
if (pipe->pipe.conn.eof_timer != NULL) {
uv_timer_start(pipe->pipe.conn.eof_timer, eof_timer_cb, eof_timeout, 0);
}
}
static void eof_timer_stop(uv_pipe_t* pipe) {
assert(pipe->flags & UV_HANDLE_CONNECTION);
if (pipe->pipe.conn.eof_timer != NULL) {
uv_timer_stop(pipe->pipe.conn.eof_timer);
}
}
static void eof_timer_cb(uv_timer_t* timer) {
uv_pipe_t* pipe = (uv_pipe_t*) timer->data;
uv_loop_t* loop = timer->loop;
assert(pipe->type == UV_NAMED_PIPE);
/* This should always be true, since we start the timer only in
* uv__pipe_queue_read after successfully calling ReadFile, or in
* uv__process_pipe_shutdown_req if a read is pending, and we always
* immediately stop the timer in uv__process_pipe_read_req. */
assert(pipe->flags & UV_HANDLE_READ_PENDING);
/* If there are many packets coming off the iocp then the timer callback may
* be called before the read request is coming off the queue. Therefore we
* check here if the read request has completed but will be processed later.
*/
if ((pipe->flags & UV_HANDLE_READ_PENDING) &&
HasOverlappedIoCompleted(&pipe->read_req.u.io.overlapped)) {
return;
}
/* Force both ends off the pipe. */
close_pipe(pipe);
/* Stop reading, so the pending read that is going to fail will not be
* reported to the user. */
uv_read_stop((uv_stream_t*) pipe);
/* Report the eof and update flags. This will get reported even if the user
* stopped reading in the meantime. TODO: is that okay? */
uv__pipe_read_eof(loop, pipe, uv_null_buf_);
}
static void eof_timer_destroy(uv_pipe_t* pipe) {
assert(pipe->flags & UV_HANDLE_CONNECTION);
if (pipe->pipe.conn.eof_timer) {
uv_close((uv_handle_t*) pipe->pipe.conn.eof_timer, eof_timer_close_cb);
pipe->pipe.conn.eof_timer = NULL;
}
}
static void eof_timer_close_cb(uv_handle_t* handle) {
assert(handle->type == UV_TIMER);
uv__free(handle);
}
int uv_pipe_open(uv_pipe_t* pipe, uv_file file) {
HANDLE os_handle = uv__get_osfhandle(file);
NTSTATUS nt_status;
IO_STATUS_BLOCK io_status;
FILE_ACCESS_INFORMATION access;
DWORD duplex_flags = 0;
int err;
if (os_handle == INVALID_HANDLE_VALUE)
return UV_EBADF;
if (pipe->flags & UV_HANDLE_PIPESERVER)
return UV_EINVAL;
if (pipe->flags & UV_HANDLE_CONNECTION)
return UV_EBUSY;
uv__pipe_connection_init(pipe);
uv__once_init();
/* In order to avoid closing a stdio file descriptor 0-2, duplicate the
* underlying OS handle and forget about the original fd.
* We could also opt to use the original OS handle and just never close it,
* but then there would be no reliable way to cancel pending read operations
* upon close.
*/
if (file <= 2) {
if (!DuplicateHandle(INVALID_HANDLE_VALUE,
os_handle,
INVALID_HANDLE_VALUE,
&os_handle,
0,
FALSE,
DUPLICATE_SAME_ACCESS))
return uv_translate_sys_error(GetLastError());
assert(os_handle != INVALID_HANDLE_VALUE);
file = -1;
}
/* Determine what kind of permissions we have on this handle.
* Cygwin opens the pipe in message mode, but we can support it,
* just query the access flags and set the stream flags accordingly.
*/
nt_status = pNtQueryInformationFile(os_handle,
&io_status,
&access,
sizeof(access),
FileAccessInformation);
if (nt_status != STATUS_SUCCESS)
return UV_EINVAL;
if (pipe->ipc) {
if (!(access.AccessFlags & FILE_WRITE_DATA) ||
!(access.AccessFlags & FILE_READ_DATA)) {
return UV_EINVAL;
}
}
if (access.AccessFlags & FILE_WRITE_DATA)
duplex_flags |= UV_HANDLE_WRITABLE;
if (access.AccessFlags & FILE_READ_DATA)
duplex_flags |= UV_HANDLE_READABLE;
err = uv__set_pipe_handle(pipe->loop,
pipe,
os_handle,
file,
duplex_flags);
if (err) {
if (file == -1)
CloseHandle(os_handle);
return err;
}
if (pipe->ipc) {
assert(!(pipe->flags & UV_HANDLE_NON_OVERLAPPED_PIPE));
GetNamedPipeClientProcessId(os_handle, &pipe->pipe.conn.ipc_remote_pid);
if (pipe->pipe.conn.ipc_remote_pid == GetCurrentProcessId()) {
GetNamedPipeServerProcessId(os_handle, &pipe->pipe.conn.ipc_remote_pid);
}
assert(pipe->pipe.conn.ipc_remote_pid != (DWORD)(uv_pid_t) -1);
}
return 0;
}
static int uv__pipe_getname(const uv_pipe_t* handle, char* buffer, size_t* size) {
NTSTATUS nt_status;
IO_STATUS_BLOCK io_status;
FILE_NAME_INFORMATION tmp_name_info;
FILE_NAME_INFORMATION* name_info;
WCHAR* name_buf;
unsigned int addrlen;
unsigned int name_size;
unsigned int name_len;
int err;
uv__once_init();
name_info = NULL;
if (handle->name != NULL) {
/* The user might try to query the name before we are connected,
* and this is just easier to return the cached value if we have it. */
name_buf = handle->name;
name_len = wcslen(name_buf);
/* check how much space we need */
addrlen = WideCharToMultiByte(CP_UTF8,
0,
name_buf,
name_len,
NULL,
0,
NULL,
NULL);
if (!addrlen) {
*size = 0;
err = uv_translate_sys_error(GetLastError());
return err;
} else if (addrlen >= *size) {
*size = addrlen + 1;
err = UV_ENOBUFS;
goto error;
}
addrlen = WideCharToMultiByte(CP_UTF8,
0,
name_buf,
name_len,
buffer,
addrlen,
NULL,
NULL);
if (!addrlen) {
*size = 0;
err = uv_translate_sys_error(GetLastError());
return err;
}
*size = addrlen;
buffer[addrlen] = '\0';
return 0;
}
if (handle->handle == INVALID_HANDLE_VALUE) {
*size = 0;
return UV_EINVAL;
}
/* NtQueryInformationFile will block if another thread is performing a
* blocking operation on the queried handle. If the pipe handle is
* synchronous, there may be a worker thread currently calling ReadFile() on
* the pipe handle, which could cause a deadlock. To avoid this, interrupt
* the read. */
if (handle->flags & UV_HANDLE_CONNECTION &&
handle->flags & UV_HANDLE_NON_OVERLAPPED_PIPE) {
uv__pipe_interrupt_read((uv_pipe_t*) handle); /* cast away const warning */
}
nt_status = pNtQueryInformationFile(handle->handle,
&io_status,
&tmp_name_info,
sizeof tmp_name_info,
FileNameInformation);
if (nt_status == STATUS_BUFFER_OVERFLOW) {
name_size = sizeof(*name_info) + tmp_name_info.FileNameLength;
name_info = uv__malloc(name_size);
if (!name_info) {
*size = 0;
err = UV_ENOMEM;
goto cleanup;
}
nt_status = pNtQueryInformationFile(handle->handle,
&io_status,
name_info,
name_size,
FileNameInformation);
}
if (nt_status != STATUS_SUCCESS) {
*size = 0;
err = uv_translate_sys_error(pRtlNtStatusToDosError(nt_status));
goto error;
}
if (!name_info) {
/* the struct on stack was used */
name_buf = tmp_name_info.FileName;
name_len = tmp_name_info.FileNameLength;
} else {
name_buf = name_info->FileName;
name_len = name_info->FileNameLength;
}
if (name_len == 0) {
*size = 0;
err = 0;
goto error;
}
name_len /= sizeof(WCHAR);
/* check how much space we need */
addrlen = WideCharToMultiByte(CP_UTF8,
0,
name_buf,
name_len,
NULL,
0,
NULL,
NULL);
if (!addrlen) {
*size = 0;
err = uv_translate_sys_error(GetLastError());
goto error;
} else if (pipe_prefix_len + addrlen >= *size) {
/* "\\\\.\\pipe" + name */
*size = pipe_prefix_len + addrlen + 1;
err = UV_ENOBUFS;
goto error;
}
memcpy(buffer, pipe_prefix, pipe_prefix_len);
addrlen = WideCharToMultiByte(CP_UTF8,
0,
name_buf,
name_len,
buffer+pipe_prefix_len,
*size-pipe_prefix_len,
NULL,
NULL);
if (!addrlen) {
*size = 0;
err = uv_translate_sys_error(GetLastError());
goto error;
}
addrlen += pipe_prefix_len;
*size = addrlen;
buffer[addrlen] = '\0';
err = 0;
error:
uv__free(name_info);
cleanup:
return err;
}
int uv_pipe_pending_count(uv_pipe_t* handle) {
if (!handle->ipc)
return 0;
return handle->pipe.conn.ipc_xfer_queue_length;
}
int uv_pipe_getsockname(const uv_pipe_t* handle, char* buffer, size_t* size) {
if (handle->flags & UV_HANDLE_BOUND)
return uv__pipe_getname(handle, buffer, size);
if (handle->flags & UV_HANDLE_CONNECTION ||
handle->handle != INVALID_HANDLE_VALUE) {
*size = 0;
return 0;
}
return UV_EBADF;
}
int uv_pipe_getpeername(const uv_pipe_t* handle, char* buffer, size_t* size) {
/* emulate unix behaviour */
if (handle->flags & UV_HANDLE_BOUND)
return UV_ENOTCONN;
if (handle->handle != INVALID_HANDLE_VALUE)
return uv__pipe_getname(handle, buffer, size);
if (handle->flags & UV_HANDLE_CONNECTION) {
if (handle->name != NULL)
return uv__pipe_getname(handle, buffer, size);
}
return UV_EBADF;
}
uv_handle_type uv_pipe_pending_type(uv_pipe_t* handle) {
if (!handle->ipc)
return UV_UNKNOWN_HANDLE;
if (handle->pipe.conn.ipc_xfer_queue_length == 0)
return UV_UNKNOWN_HANDLE;
else
return UV_TCP;
}
int uv_pipe_chmod(uv_pipe_t* handle, int mode) {
SID_IDENTIFIER_AUTHORITY sid_world = { SECURITY_WORLD_SID_AUTHORITY };
PACL old_dacl, new_dacl;
PSECURITY_DESCRIPTOR sd;
EXPLICIT_ACCESS ea;
PSID everyone;
int error;
if (handle == NULL || handle->handle == INVALID_HANDLE_VALUE)
return UV_EBADF;
if (mode != UV_READABLE &&
mode != UV_WRITABLE &&
mode != (UV_WRITABLE | UV_READABLE))
return UV_EINVAL;
if (!AllocateAndInitializeSid(&sid_world,
1,
SECURITY_WORLD_RID,
0, 0, 0, 0, 0, 0, 0,
&everyone)) {
error = GetLastError();
goto done;
}
if (GetSecurityInfo(handle->handle,
SE_KERNEL_OBJECT,
DACL_SECURITY_INFORMATION,
NULL,
NULL,
&old_dacl,
NULL,
&sd)) {
error = GetLastError();
goto clean_sid;
}
memset(&ea, 0, sizeof(EXPLICIT_ACCESS));
if (mode & UV_READABLE)
ea.grfAccessPermissions |= GENERIC_READ | FILE_WRITE_ATTRIBUTES;
if (mode & UV_WRITABLE)
ea.grfAccessPermissions |= GENERIC_WRITE | FILE_READ_ATTRIBUTES;
ea.grfAccessPermissions |= SYNCHRONIZE;
ea.grfAccessMode = SET_ACCESS;
ea.grfInheritance = NO_INHERITANCE;
ea.Trustee.TrusteeForm = TRUSTEE_IS_SID;
ea.Trustee.TrusteeType = TRUSTEE_IS_WELL_KNOWN_GROUP;
ea.Trustee.ptstrName = (LPTSTR)everyone;
if (SetEntriesInAcl(1, &ea, old_dacl, &new_dacl)) {
error = GetLastError();
goto clean_sd;
}
if (SetSecurityInfo(handle->handle,
SE_KERNEL_OBJECT,
DACL_SECURITY_INFORMATION,
NULL,
NULL,
new_dacl,
NULL)) {
error = GetLastError();
goto clean_dacl;
}
error = 0;
clean_dacl:
LocalFree((HLOCAL) new_dacl);
clean_sd:
LocalFree((HLOCAL) sd);
clean_sid:
FreeSid(everyone);
done:
return uv_translate_sys_error(error);
}