tildefriends/deps/quickjs/tests/test_qjscalc.js

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

257 lines
5.7 KiB
JavaScript
Raw Permalink Normal View History

"use math";
"use strict";
function assert(actual, expected, message) {
if (arguments.length == 1)
expected = true;
if (actual === expected)
return;
if (actual !== null && expected !== null
&& typeof actual == 'object' && typeof expected == 'object'
&& actual.toString() === expected.toString())
return;
throw Error("assertion failed: got |" + actual + "|" +
", expected |" + expected + "|" +
(message ? " (" + message + ")" : ""));
}
function assertThrows(err, func)
{
var ex;
ex = false;
try {
func();
} catch(e) {
ex = true;
assert(e instanceof err);
}
assert(ex, true, "exception expected");
}
// load more elaborate version of assert if available
try { __loadScript("test_assert.js"); } catch(e) {}
/*----------------*/
function pow(a, n)
{
var r, i;
r = 1;
for(i = 0; i < n; i++)
r *= a;
return r;
}
function test_integer()
{
var a, r;
a = pow(3, 100);
assert((a - 1) != a);
assert(a == 515377520732011331036461129765621272702107522001);
assert(a == 0x5a4653ca673768565b41f775d6947d55cf3813d1);
assert(Integer.isInteger(1) === true);
assert(Integer.isInteger(1.0) === false);
assert(Integer.floorLog2(0) === -1);
assert(Integer.floorLog2(7) === 2);
r = 1 << 31;
assert(r, 2147483648, "1 << 31 === 2147483648");
r = 1 << 32;
assert(r, 4294967296, "1 << 32 === 4294967296");
r = (1 << 31) < 0;
assert(r, false, "(1 << 31) < 0 === false");
assert(typeof 1 === "number");
assert(typeof 9007199254740991 === "number");
assert(typeof 9007199254740992 === "bigint");
}
function test_float()
{
assert(typeof 1.0 === "bigfloat");
assert(1 == 1.0);
assert(1 !== 1.0);
}
/* jscalc tests */
function test_modulo()
{
var i, p, a, b;
/* Euclidian modulo operator */
assert((-3) % 2 == 1);
assert(3 % (-2) == 1);
p = 101;
for(i = 1; i < p; i++) {
a = Integer.invmod(i, p);
assert(a >= 0 && a < p);
assert((i * a) % p == 1);
}
assert(Integer.isPrime(2^107-1));
assert(!Integer.isPrime((2^107-1) * (2^89-1)));
a = Integer.factor((2^89-1)*2^3*11*13^2*1009);
assert(a == [ 2,2,2,11,13,13,1009,618970019642690137449562111 ]);
}
function test_fraction()
{
assert((1/3 + 1).toString(), "4/3")
assert((2/3)^30, 1073741824/205891132094649);
assert(1/3 < 2/3);
assert(1/3 < 1);
assert(1/3 == 1.0/3);
assert(1.0/3 < 2/3);
}
function test_mod()
{
var a, b, p;
a = Mod(3, 101);
b = Mod(-1, 101);
assert((a + b) == Mod(2, 101));
assert(a ^ 100 == Mod(1, 101));
p = 2 ^ 607 - 1; /* mersenne prime */
a = Mod(3, p) ^ (p - 1);
assert(a == Mod(1, p));
}
function test_polynomial()
{
var a, b, q, r, t, i;
a = (1 + X) ^ 4;
assert(a == X^4+4*X^3+6*X^2+4*X+1);
r = (1 + X);
q = (1+X+X^2);
b = (1 - X^2);
a = q * b + r;
t = Polynomial.divrem(a, b);
assert(t[0] == q);
assert(t[1] == r);
a = 1 + 2*X + 3*X^2;
assert(a.apply(0.1) == 1.23);
a = 1-2*X^2+2*X^3;
assert(deriv(a) == (6*X^2-4*X));
assert(deriv(integ(a)) == a);
a = (X-1)*(X-2)*(X-3)*(X-4)*(X-0.1);
r = polroots(a);
for(i = 0; i < r.length; i++) {
b = abs(a.apply(r[i]));
assert(b <= 1e-13);
}
}
function test_poly_mod()
{
var a, p;
/* modulo using polynomials */
p = X^2 + X + 1;
a = PolyMod(3+X, p) ^ 10;
assert(a == PolyMod(-3725*X-18357, p));
a = PolyMod(1/X, 1+X^2);
assert(a == PolyMod(-X, X^2+1));
}
function test_rfunc()
{
var a;
a = (X+1)/((X+1)*(X-1));
assert(a == 1/(X-1));
a = (X + 2) / (X - 2);
assert(a.apply(1/3) == -7/5);
assert(deriv((X^2-X+1)/(X-1)) == (X^2-2*X)/(X^2-2*X+1));
}
function test_series()
{
var a, b;
a = 1+X+O(X^5);
b = a.inverse();
assert(b == 1-X+X^2-X^3+X^4+O(X^5));
assert(deriv(b) == -1+2*X-3*X^2+4*X^3+O(X^4));
assert(deriv(integ(b)) == b);
a = Series(1/(1-X), 5);
assert(a == 1+X+X^2+X^3+X^4+O(X^5));
b = a.apply(0.1);
assert(b == 1.1111);
assert(exp(3*X^2+O(X^10)) == 1+3*X^2+9/2*X^4+9/2*X^6+27/8*X^8+O(X^10));
assert(sin(X+O(X^6)) == X-1/6*X^3+1/120*X^5+O(X^6));
assert(cos(X+O(X^6)) == 1-1/2*X^2+1/24*X^4+O(X^6));
assert(tan(X+O(X^8)) == X+1/3*X^3+2/15*X^5+17/315*X^7+O(X^8));
assert((1+X+O(X^6))^(2+X) == 1+2*X+2*X^2+3/2*X^3+5/6*X^4+5/12*X^5+O(X^6));
}
function test_matrix()
{
var a, b, r;
a = [[1, 2],[3, 4]];
b = [3, 4];
r = a * b;
assert(r == [11, 25]);
r = (a^-1) * 2;
assert(r == [[-4, 2],[3, -1]]);
assert(norm2([1,2,3]) == 14);
assert(diag([1,2,3]) == [ [ 1, 0, 0 ], [ 0, 2, 0 ], [ 0, 0, 3 ] ]);
assert(trans(a) == [ [ 1, 3 ], [ 2, 4 ] ]);
assert(trans([1,2,3]) == [[1,2,3]]);
assert(trace(a) == 5);
assert(charpoly(Matrix.hilbert(4)) == X^4-176/105*X^3+3341/12600*X^2-41/23625*X+1/6048000);
assert(det(Matrix.hilbert(4)) == 1/6048000);
a = [[1,2,1],[-2,-3,1],[3,5,0]];
assert(rank(a) == 2);
assert(ker(a) == [ [ 5 ], [ -3 ], [ 1 ] ]);
assert(dp([1, 2, 3], [3, -4, -7]) === -26);
assert(cp([1, 2, 3], [3, -4, -7]) == [ -2, 16, -10 ]);
}
function assert_eq(a, ref)
{
assert(abs(a / ref - 1.0) <= 1e-15);
}
function test_trig()
{
assert_eq(sin(1/2), 0.479425538604203);
assert_eq(sin(2+3*I), 9.154499146911428-4.168906959966565*I);
assert_eq(cos(2+3*I), -4.189625690968807-9.109227893755337*I);
assert_eq((2+0.5*I)^(1.1-0.5*I), 2.494363021357619-0.23076804554558092*I);
assert_eq(sqrt(2*I), 1 + I);
}
test_integer();
test_float();
test_modulo();
test_fraction();
test_mod();
test_polynomial();
test_poly_mod();
test_rfunc();
test_series();
test_matrix();
test_trig();