2023-02-20 02:42:11 +00:00

581 lines
13 KiB
C

#include "mem.h"
#include "util.js.h"
#include <uv.h>
#include <openssl/crypto.h>
#include <quickjs.h>
#include <sqlite3.h>
#include <uv.h>
#include <string.h>
#include <stdbool.h>
typedef struct _tf_mem_node_t tf_mem_node_t;
static uv_mutex_t s_tracking_mutex;
static bool s_mem_tracking;
static tf_mem_node_t* s_mem_tracked;
static int64_t s_tf_malloc_size;
static int64_t s_uv_malloc_size;
static int64_t s_tls_malloc_size;
static int64_t s_js_malloc_size;
static int64_t s_sqlite_malloc_size;
extern uint32_t fnv32a(const void* buffer, int length, uint32_t start);
static size_t _tf_mem_round_up(size_t size)
{
return (size + 7) & ~7;
}
void tf_mem_startup(bool tracking)
{
s_mem_tracking = tracking;
uv_mutex_init(&s_tracking_mutex);
}
void tf_mem_shutdown()
{
s_mem_tracking = false;
s_mem_tracked = NULL;
uv_mutex_destroy(&s_tracking_mutex);
}
typedef struct _tf_mem_node_t
{
void* ptr;
tf_mem_node_t* next;
tf_mem_node_t* previous;
int frames_count;
void* frames[];
} tf_mem_node_t;
static void _tf_mem_add_tracked_allocation(tf_mem_node_t* node)
{
if (s_mem_tracking)
{
uv_mutex_lock(&s_tracking_mutex);
if (s_mem_tracked)
{
node->next = s_mem_tracked;
node->previous = s_mem_tracked->previous;
s_mem_tracked->previous->next = node;
s_mem_tracked->previous = node;
}
else
{
s_mem_tracked = node;
node->next = node->previous = node;
}
uv_mutex_unlock(&s_tracking_mutex);
}
}
static void _tf_mem_remove_tracked_allocation(tf_mem_node_t* node)
{
if (s_mem_tracking)
{
uv_mutex_lock(&s_tracking_mutex);
tf_mem_node_t* previous = node->previous;
tf_mem_node_t* next = node->next;
next->previous = previous;
previous->next = next;
node->next = NULL;
node->previous = NULL;
if (node == s_mem_tracked)
{
s_mem_tracked = next != node ? next : NULL;
}
uv_mutex_unlock(&s_tracking_mutex);
}
}
void tf_mem_walk_allocations(void (*callback)(void* ptr, size_t size, int frames_count, void* const* frames, void* user_data), void* user_data)
{
uv_mutex_lock(&s_tracking_mutex);
for (tf_mem_node_t* node = s_mem_tracked ? s_mem_tracked->next : NULL; node; node = node->next)
{
size_t size = 0;
void* frames[32];
memcpy(&size, node->ptr, sizeof(size));
if (s_mem_tracking)
{
if (node->frames_count)
{
memcpy(frames, node->frames, sizeof(void*) * node->frames_count);
}
}
callback(
(void*)((intptr_t)node->ptr + sizeof(size_t)),
size,
node->frames_count,
node->frames_count ? frames : NULL,
user_data);
if (node == s_mem_tracked)
{
break;
}
}
uv_mutex_unlock(&s_tracking_mutex);
}
typedef struct _summary_t
{
tf_mem_allocation_t* allocations;
int count;
int capacity;
} summary_t;
static int _tf_mem_hash_stack_compare(const void* a, const void* b)
{
const tf_mem_allocation_t* aa = a;
const tf_mem_allocation_t* ab = b;
if (aa->stack_hash != ab->stack_hash)
{
return aa->stack_hash < ab->stack_hash ? -1 : 1;
}
if (aa->frames_count != ab->frames_count)
{
return aa->frames_count < ab->frames_count ? -1 : 1;
}
return memcmp(aa->frames, ab->frames, sizeof(void*) * aa->frames_count);
}
static int _tf_mem_size_compare(const void* a, const void* b)
{
const tf_mem_allocation_t* aa = a;
const tf_mem_allocation_t* ab = b;
if (aa->size > ab->size)
{
return -1;
}
else if (ab->size > aa->size)
{
return 1;
}
return 0;
}
static void _tf_mem_summarize(void* ptr, size_t size, int frames_count, void* const* frames, void* user_data)
{
summary_t* summary = user_data;
tf_mem_allocation_t allocation =
{
.stack_hash = fnv32a(frames, sizeof(void*) * frames_count, 0),
.count = 1,
.size = size,
.frames_count = frames_count,
};
memcpy(allocation.frames, frames, sizeof(void*) * frames_count);
int index = tf_util_insert_index(&allocation, summary->allocations, summary->count, sizeof(tf_mem_allocation_t), _tf_mem_hash_stack_compare);
if (index < summary->count &&
allocation.stack_hash == summary->allocations[index].stack_hash &&
allocation.frames_count == summary->allocations[index].frames_count &&
memcmp(frames, summary->allocations[index].frames, sizeof(void*) * frames_count) == 0)
{
summary->allocations[index].count++;
summary->allocations[index].size += size;
}
else
{
if (summary->count + 1 >= summary->capacity)
{
summary->capacity = summary->capacity ? summary->capacity * 2 : 256;
summary->allocations = realloc(summary->allocations, sizeof(tf_mem_allocation_t) * summary->capacity);
}
if (index < summary->count)
{
memmove(summary->allocations + index + 1, summary->allocations + index, sizeof(tf_mem_allocation_t) * (summary->count - index));
}
summary->allocations[index] = allocation;
summary->count++;
}
}
tf_mem_allocation_t* tf_mem_summarize_allocations(int* out_count)
{
summary_t summary = { 0 };
tf_mem_walk_allocations(_tf_mem_summarize, &summary);
qsort(summary.allocations, summary.count, sizeof(tf_mem_allocation_t), _tf_mem_size_compare);
*out_count = summary.count;
tf_mem_allocation_t* result = tf_malloc(sizeof(tf_mem_allocation_t) * summary.count);
memcpy(result, summary.allocations, sizeof(tf_mem_allocation_t) * summary.count);
free(summary.allocations);
return result;
}
static void* _tf_alloc(int64_t* total, size_t size)
{
size_t overhead = sizeof(size_t);
void* buffer[32];
int count = 0;
if (s_mem_tracking)
{
count = tf_util_backtrace(buffer, sizeof(buffer) / sizeof(*buffer));
overhead += sizeof(tf_mem_node_t) + sizeof(void*) * count;
}
size_t rounded_up_size = _tf_mem_round_up(size);
void* ptr = malloc(rounded_up_size + overhead);
if (ptr)
{
__atomic_add_fetch(total, size, __ATOMIC_RELAXED);
memcpy(ptr, &size, sizeof(size_t));
if (s_mem_tracking)
{
tf_mem_node_t* node = (tf_mem_node_t*)((intptr_t)ptr + sizeof(size_t) + rounded_up_size);
memcpy(node, &(tf_mem_node_t) { .ptr = ptr, .frames_count = count }, sizeof(tf_mem_node_t));
if (count)
{
memcpy(node->frames, buffer, sizeof(void*) * count);
}
_tf_mem_add_tracked_allocation(node);
}
return (void*)((intptr_t)ptr + sizeof(size_t));
}
else
{
return NULL;
}
}
static void* _tf_realloc(int64_t* total, void* ptr, size_t size)
{
if (!ptr && !size)
{
return NULL;
}
void* buffer[32];
int count = 0;
size_t overhead = sizeof(size_t);
if (s_mem_tracking)
{
count = tf_util_backtrace(buffer, sizeof(buffer) / sizeof(*buffer));
overhead += sizeof(tf_mem_node_t) + sizeof(void*) * count;
}
void* old_ptr = ptr ? (void*)((intptr_t)ptr - sizeof(size_t)) : NULL;
size_t old_size = 0;
if (old_ptr)
{
memcpy(&old_size, old_ptr, sizeof(size_t));
}
void* new_ptr = NULL;
tf_mem_node_t* node = (void*)((intptr_t)ptr + _tf_mem_round_up(old_size));
size_t rounded_up_size = _tf_mem_round_up(size);
if (old_ptr && !size)
{
_tf_mem_remove_tracked_allocation(node);
free(old_ptr);
}
else
{
if (old_ptr)
{
_tf_mem_remove_tracked_allocation(node);
}
new_ptr = realloc(old_ptr, rounded_up_size + overhead);
}
if (new_ptr)
{
__atomic_add_fetch(total, (int64_t)size - (int64_t)old_size, __ATOMIC_RELAXED);
memcpy(new_ptr, &size, sizeof(size_t));
if (s_mem_tracking)
{
tf_mem_node_t* node = (tf_mem_node_t*)((intptr_t)new_ptr + sizeof(size_t) + rounded_up_size);
memcpy(node, &(tf_mem_node_t) { .ptr = new_ptr, .frames_count = count }, sizeof(tf_mem_node_t));
if (count)
{
memcpy(node->frames, buffer, sizeof(void*) * count);
}
_tf_mem_add_tracked_allocation(node);
}
return (void*)((intptr_t)new_ptr + sizeof(size_t));
}
else
{
__atomic_sub_fetch(total, old_size, __ATOMIC_RELAXED);
return NULL;
}
}
static void _tf_free(int64_t* total, void* ptr)
{
if (ptr)
{
void* old_ptr = (void*)((intptr_t)ptr - sizeof(size_t));
size_t size = 0;
memcpy(&size, old_ptr, sizeof(size_t));
tf_mem_node_t* node = (void*)((intptr_t)ptr + _tf_mem_round_up(size));
__atomic_sub_fetch(total, size, __ATOMIC_RELAXED);
_tf_mem_remove_tracked_allocation(node);
free(old_ptr);
}
}
static void* _tf_uv_alloc(size_t size)
{
return _tf_alloc(&s_uv_malloc_size, size);
}
static void* _tf_uv_realloc(void* ptr, size_t size)
{
return _tf_realloc(&s_uv_malloc_size, ptr, size);
}
static void* _tf_uv_calloc(size_t nmemb, size_t size)
{
size_t total_size = nmemb * size;
size_t rounded_up_size = _tf_mem_round_up(total_size);
size_t overhead = sizeof(size_t);
void* buffer[32];
int count = 0;
if (s_mem_tracking)
{
count = tf_util_backtrace(buffer, sizeof(buffer) / sizeof(*buffer));
overhead += sizeof(tf_mem_node_t) + sizeof(void*) * count;
}
void* ptr = calloc(1, rounded_up_size + overhead);
if (ptr)
{
__atomic_add_fetch(&s_uv_malloc_size, total_size, __ATOMIC_RELAXED);
memcpy(ptr, &total_size, sizeof(size_t));
if (s_mem_tracking)
{
tf_mem_node_t* node = (tf_mem_node_t*)((intptr_t)ptr + sizeof(size_t) + rounded_up_size);
memcpy(node, &(tf_mem_node_t) { .ptr = ptr, .frames_count = count }, sizeof(tf_mem_node_t));
if (count)
{
memcpy(node->frames, buffer, sizeof(void*) * count);
}
_tf_mem_add_tracked_allocation(node);
}
return (void*)((intptr_t)ptr + sizeof(size_t));
}
else
{
return NULL;
}
}
static void _tf_uv_free(void* ptr)
{
_tf_free(&s_uv_malloc_size, ptr);
}
void tf_mem_replace_uv_allocator()
{
uv_replace_allocator(_tf_uv_alloc, _tf_uv_realloc, _tf_uv_calloc, _tf_uv_free);
}
size_t tf_mem_get_uv_malloc_size()
{
return s_uv_malloc_size;
}
void* _tf_tls_alloc(size_t size, const char* file, int line)
{
return _tf_alloc(&s_tls_malloc_size, size);
}
void* _tf_tls_realloc(void* ptr, size_t size, const char* file, int line)
{
return _tf_realloc(&s_tls_malloc_size, ptr, size);
}
void _tf_tls_free(void* ptr, const char* file, int line)
{
_tf_free(&s_tls_malloc_size, ptr);
}
void tf_mem_replace_tls_allocator()
{
CRYPTO_set_mem_functions(_tf_tls_alloc, _tf_tls_realloc, _tf_tls_free);
}
size_t tf_mem_get_tls_malloc_size()
{
return s_tls_malloc_size;
}
void* tf_malloc(size_t size)
{
return _tf_alloc(&s_tf_malloc_size, size);
}
void* tf_realloc(void* ptr, size_t size)
{
return _tf_realloc(&s_tf_malloc_size, ptr, size);
}
void tf_free(void* ptr)
{
_tf_free(&s_tf_malloc_size, ptr);
}
char* tf_strdup(const char* string)
{
size_t len = strlen(string);
char* buffer = tf_malloc(len + 1);
memcpy(buffer, string, len + 1);
return buffer;
}
void* tf_resize_vec(void* ptr, size_t size)
{
void* alloc_ptr = ptr ? (void*)((intptr_t)ptr - sizeof(size_t)) : NULL;
size_t alloc_size = 0;
if (alloc_ptr)
{
memcpy(&alloc_size, alloc_ptr, sizeof(size_t));
}
if ((alloc_size >= 16 * size + sizeof(size_t)) || !size)
{
/* If we've dropped significantly in size or are freeing, resize down. */
return tf_realloc(ptr, size);
}
else if (alloc_size >= size + sizeof(size_t))
{
/* Otherwise, if we're big enough, stay the same size. */
return ptr;
}
else
{
/* If we need to grow, overallocate 2x to give room to continue growing. */
return tf_realloc(ptr, size * 2);
}
}
size_t tf_mem_get_tf_malloc_size()
{
return s_tf_malloc_size;
}
static void* _tf_js_malloc(JSMallocState* state, size_t size)
{
int64_t delta = 0;
void* ptr = _tf_alloc(&delta, size);
if (ptr)
{
__atomic_add_fetch(&s_js_malloc_size, delta, __ATOMIC_RELAXED);
state->malloc_count++;
state->malloc_size += delta;
}
return ptr;
}
static void _tf_js_free(JSMallocState* state, void* ptr)
{
if (ptr)
{
int64_t delta = 0;
_tf_free(&delta, ptr);
__atomic_add_fetch(&s_js_malloc_size, delta, __ATOMIC_RELAXED);
state->malloc_count--;
state->malloc_size += delta;
}
}
static void* _tf_js_realloc(JSMallocState* state, void* ptr, size_t size)
{
int64_t delta = 0;
void* result = _tf_realloc(&delta, ptr, size);
__atomic_add_fetch(&s_js_malloc_size, delta, __ATOMIC_RELAXED);
state->malloc_count += (ptr ? -1 : 0) + (result ? 1 : 0);
state->malloc_size += delta;
return result;
}
static size_t _tf_js_malloc_usable_size(const void* ptr)
{
void* old_ptr = ptr ? (void*)((intptr_t)ptr - sizeof(size_t)) : NULL;
size_t old_size = 0;
if (old_ptr)
{
memcpy(&old_size, old_ptr, sizeof(size_t));
}
return old_size;
}
void tf_get_js_malloc_functions(JSMallocFunctions* out)
{
*out = (JSMallocFunctions)
{
.js_malloc = _tf_js_malloc,
.js_free = _tf_js_free,
.js_realloc = _tf_js_realloc,
.js_malloc_usable_size = _tf_js_malloc_usable_size,
};
}
size_t tf_mem_get_js_malloc_size()
{
return s_js_malloc_size;
}
static void* _tf_sqlite_malloc(int size)
{
return _tf_alloc(&s_sqlite_malloc_size, size);
}
static void _tf_sqlite_free(void* ptr)
{
_tf_free(&s_sqlite_malloc_size, ptr);
}
static void* _tf_sqlite_realloc(void* ptr, int size)
{
return _tf_realloc(&s_sqlite_malloc_size, ptr, size);
}
static int _tf_sqlite_size(void* ptr)
{
void* old_ptr = ptr ? (void*)((intptr_t)ptr - sizeof(size_t)) : NULL;
size_t old_size = 0;
if (old_ptr)
{
memcpy(&old_size, old_ptr, sizeof(size_t));
}
return (int)old_size;
}
static int _tf_sqlite_roundup(int size)
{
return (size + 7) & ~7;
}
static int _tf_sqlite_init(void* user_data)
{
return SQLITE_OK;
}
static void _tf_sqlite_shutdown(void* user_data)
{
}
void tf_mem_replace_sqlite_allocator()
{
sqlite3_mem_methods methods =
{
.xMalloc = _tf_sqlite_malloc,
.xFree = _tf_sqlite_free,
.xRealloc = _tf_sqlite_realloc,
.xSize = _tf_sqlite_size,
.xRoundup = _tf_sqlite_roundup,
.xInit = _tf_sqlite_init,
.xShutdown = _tf_sqlite_shutdown,
};
sqlite3_config(SQLITE_CONFIG_MALLOC, &methods);
}
size_t tf_mem_get_sqlite_malloc_size()
{
return s_sqlite_malloc_size;
}