forked from cory/tildefriends
zlib 1.3.
git-svn-id: https://www.unprompted.com/svn/projects/tildefriends/trunk@4455 ed5197a5-7fde-0310-b194-c3ffbd925b24
This commit is contained in:
2
deps/zlib/examples/fitblk.c
vendored
2
deps/zlib/examples/fitblk.c
vendored
@ -198,7 +198,7 @@ int main(int argc, char **argv)
|
||||
if (ret == Z_MEM_ERROR)
|
||||
quit("out of memory");
|
||||
|
||||
/* set up for next reocmpression */
|
||||
/* set up for next recompression */
|
||||
ret = inflateReset(&inf);
|
||||
assert(ret != Z_STREAM_ERROR);
|
||||
ret = deflateReset(&def);
|
||||
|
26
deps/zlib/examples/zlib_how.html
vendored
26
deps/zlib/examples/zlib_how.html
vendored
@ -1,10 +1,10 @@
|
||||
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN"
|
||||
"http://www.w3.org/TR/REC-html40/loose.dtd">
|
||||
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
|
||||
"http://www.w3.org/TR/html4/loose.dtd">
|
||||
<html>
|
||||
<head>
|
||||
<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
|
||||
<title>zlib Usage Example</title>
|
||||
<!-- Copyright (c) 2004, 2005 Mark Adler. -->
|
||||
<!-- Copyright (c) 2004-2023 Mark Adler. -->
|
||||
</head>
|
||||
<body bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#00A000">
|
||||
<h2 align="center"> zlib Usage Example </h2>
|
||||
@ -17,7 +17,7 @@ from an input file to an output file using <tt>deflate()</tt> and <tt>inflate()<
|
||||
annotations are interspersed between lines of the code. So please read between the lines.
|
||||
We hope this helps explain some of the intricacies of <em>zlib</em>.
|
||||
<p>
|
||||
Without further adieu, here is the program <a href="zpipe.c"><tt>zpipe.c</tt></a>:
|
||||
Without further ado, here is the program <a href="zpipe.c"><tt>zpipe.c</tt></a>:
|
||||
<pre><b>
|
||||
/* zpipe.c: example of proper use of zlib's inflate() and deflate()
|
||||
Not copyrighted -- provided to the public domain
|
||||
@ -155,13 +155,11 @@ before we fall out of the loop at the bottom.
|
||||
</b></pre>
|
||||
We start off by reading data from the input file. The number of bytes read is put directly
|
||||
into <tt>avail_in</tt>, and a pointer to those bytes is put into <tt>next_in</tt>. We also
|
||||
check to see if end-of-file on the input has been reached. If we are at the end of file, then <tt>flush</tt> is set to the
|
||||
check to see if end-of-file on the input has been reached using feof().
|
||||
If we are at the end of file, then <tt>flush</tt> is set to the
|
||||
<em>zlib</em> constant <tt>Z_FINISH</tt>, which is later passed to <tt>deflate()</tt> to
|
||||
indicate that this is the last chunk of input data to compress. We need to use <tt>feof()</tt>
|
||||
to check for end-of-file as opposed to seeing if fewer than <tt>CHUNK</tt> bytes have been read. The
|
||||
reason is that if the input file length is an exact multiple of <tt>CHUNK</tt>, we will miss
|
||||
the fact that we got to the end-of-file, and not know to tell <tt>deflate()</tt> to finish
|
||||
up the compressed stream. If we are not yet at the end of the input, then the <em>zlib</em>
|
||||
indicate that this is the last chunk of input data to compress.
|
||||
If we are not yet at the end of the input, then the <em>zlib</em>
|
||||
constant <tt>Z_NO_FLUSH</tt> will be passed to <tt>deflate</tt> to indicate that we are still
|
||||
in the middle of the uncompressed data.
|
||||
<p>
|
||||
@ -540,6 +538,12 @@ int main(int argc, char **argv)
|
||||
}
|
||||
</b></pre>
|
||||
<hr>
|
||||
<i>Copyright (c) 2004, 2005 by Mark Adler<br>Last modified 11 December 2005</i>
|
||||
<i>Last modified 24 January 2023<br>
|
||||
Copyright © 2004-2023 Mark Adler</i><br>
|
||||
<a rel="license" href="http://creativecommons.org/licenses/by-nd/4.0/">
|
||||
<img alt="Creative Commons License" style="border-width:0"
|
||||
src="https://i.creativecommons.org/l/by-nd/4.0/88x31.png"></a>
|
||||
<a rel="license" href="http://creativecommons.org/licenses/by-nd/4.0/">
|
||||
Creative Commons Attribution-NoDerivatives 4.0 International License</a>.
|
||||
</body>
|
||||
</html>
|
||||
|
732
deps/zlib/examples/zran.c
vendored
732
deps/zlib/examples/zran.c
vendored
@ -1,114 +1,102 @@
|
||||
/* zran.c -- example of zlib/gzip stream indexing and random access
|
||||
* Copyright (C) 2005, 2012, 2018 Mark Adler
|
||||
/* zran.c -- example of deflate stream indexing and random access
|
||||
* Copyright (C) 2005, 2012, 2018, 2023 Mark Adler
|
||||
* For conditions of distribution and use, see copyright notice in zlib.h
|
||||
* Version 1.2 14 Oct 2018 Mark Adler */
|
||||
* Version 1.4 13 Apr 2023 Mark Adler */
|
||||
|
||||
/* Version History:
|
||||
1.0 29 May 2005 First version
|
||||
1.1 29 Sep 2012 Fix memory reallocation error
|
||||
1.2 14 Oct 2018 Handle gzip streams with multiple members
|
||||
Add a header file to facilitate usage in applications
|
||||
1.3 18 Feb 2023 Permit raw deflate streams as well as zlib and gzip
|
||||
Permit crossing gzip member boundaries when extracting
|
||||
Support a size_t size when extracting (was an int)
|
||||
Do a binary search over the index for an access point
|
||||
Expose the access point type to enable save and load
|
||||
1.4 13 Apr 2023 Add a NOPRIME define to not use inflatePrime()
|
||||
*/
|
||||
|
||||
/* Illustrate the use of Z_BLOCK, inflatePrime(), and inflateSetDictionary()
|
||||
for random access of a compressed file. A file containing a zlib or gzip
|
||||
stream is provided on the command line. The compressed stream is decoded in
|
||||
its entirety, and an index built with access points about every SPAN bytes
|
||||
in the uncompressed output. The compressed file is left open, and can then
|
||||
be read randomly, having to decompress on the average SPAN/2 uncompressed
|
||||
bytes before getting to the desired block of data.
|
||||
|
||||
An access point can be created at the start of any deflate block, by saving
|
||||
the starting file offset and bit of that block, and the 32K bytes of
|
||||
uncompressed data that precede that block. Also the uncompressed offset of
|
||||
that block is saved to provide a reference for locating a desired starting
|
||||
point in the uncompressed stream. deflate_index_build() works by
|
||||
decompressing the input zlib or gzip stream a block at a time, and at the
|
||||
end of each block deciding if enough uncompressed data has gone by to
|
||||
justify the creation of a new access point. If so, that point is saved in a
|
||||
data structure that grows as needed to accommodate the points.
|
||||
|
||||
To use the index, an offset in the uncompressed data is provided, for which
|
||||
the latest access point at or preceding that offset is located in the index.
|
||||
The input file is positioned to the specified location in the index, and if
|
||||
necessary the first few bits of the compressed data is read from the file.
|
||||
inflate is initialized with those bits and the 32K of uncompressed data, and
|
||||
the decompression then proceeds until the desired offset in the file is
|
||||
reached. Then the decompression continues to read the desired uncompressed
|
||||
data from the file.
|
||||
|
||||
Another approach would be to generate the index on demand. In that case,
|
||||
requests for random access reads from the compressed data would try to use
|
||||
the index, but if a read far enough past the end of the index is required,
|
||||
then further index entries would be generated and added.
|
||||
|
||||
There is some fair bit of overhead to starting inflation for the random
|
||||
access, mainly copying the 32K byte dictionary. So if small pieces of the
|
||||
file are being accessed, it would make sense to implement a cache to hold
|
||||
some lookahead and avoid many calls to deflate_index_extract() for small
|
||||
lengths.
|
||||
|
||||
Another way to build an index would be to use inflateCopy(). That would
|
||||
not be constrained to have access points at block boundaries, but requires
|
||||
more memory per access point, and also cannot be saved to file due to the
|
||||
use of pointers in the state. The approach here allows for storage of the
|
||||
index in a file.
|
||||
*/
|
||||
// Illustrate the use of Z_BLOCK, inflatePrime(), and inflateSetDictionary()
|
||||
// for random access of a compressed file. A file containing a raw deflate
|
||||
// stream is provided on the command line. The compressed stream is decoded in
|
||||
// its entirety, and an index built with access points about every SPAN bytes
|
||||
// in the uncompressed output. The compressed file is left open, and can then
|
||||
// be read randomly, having to decompress on the average SPAN/2 uncompressed
|
||||
// bytes before getting to the desired block of data.
|
||||
//
|
||||
// An access point can be created at the start of any deflate block, by saving
|
||||
// the starting file offset and bit of that block, and the 32K bytes of
|
||||
// uncompressed data that precede that block. Also the uncompressed offset of
|
||||
// that block is saved to provide a reference for locating a desired starting
|
||||
// point in the uncompressed stream. deflate_index_build() decompresses the
|
||||
// input raw deflate stream a block at a time, and at the end of each block
|
||||
// decides if enough uncompressed data has gone by to justify the creation of a
|
||||
// new access point. If so, that point is saved in a data structure that grows
|
||||
// as needed to accommodate the points.
|
||||
//
|
||||
// To use the index, an offset in the uncompressed data is provided, for which
|
||||
// the latest access point at or preceding that offset is located in the index.
|
||||
// The input file is positioned to the specified location in the index, and if
|
||||
// necessary the first few bits of the compressed data is read from the file.
|
||||
// inflate is initialized with those bits and the 32K of uncompressed data, and
|
||||
// decompression then proceeds until the desired offset in the file is reached.
|
||||
// Then decompression continues to read the requested uncompressed data from
|
||||
// the file.
|
||||
//
|
||||
// There is some fair bit of overhead to starting inflation for the random
|
||||
// access, mainly copying the 32K byte dictionary. If small pieces of the file
|
||||
// are being accessed, it would make sense to implement a cache to hold some
|
||||
// lookahead to avoid many calls to deflate_index_extract() for small lengths.
|
||||
//
|
||||
// Another way to build an index would be to use inflateCopy(). That would not
|
||||
// be constrained to have access points at block boundaries, but would require
|
||||
// more memory per access point, and could not be saved to a file due to the
|
||||
// use of pointers in the state. The approach here allows for storage of the
|
||||
// index in a file.
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
#include <limits.h>
|
||||
#include "zlib.h"
|
||||
#include "zran.h"
|
||||
|
||||
#define WINSIZE 32768U /* sliding window size */
|
||||
#define CHUNK 16384 /* file input buffer size */
|
||||
#define WINSIZE 32768U // sliding window size
|
||||
#define CHUNK 16384 // file input buffer size
|
||||
|
||||
/* Access point entry. */
|
||||
struct point {
|
||||
off_t out; /* corresponding offset in uncompressed data */
|
||||
off_t in; /* offset in input file of first full byte */
|
||||
int bits; /* number of bits (1-7) from byte at in-1, or 0 */
|
||||
unsigned char window[WINSIZE]; /* preceding 32K of uncompressed data */
|
||||
};
|
||||
|
||||
/* See comments in zran.h. */
|
||||
void deflate_index_free(struct deflate_index *index)
|
||||
{
|
||||
// See comments in zran.h.
|
||||
void deflate_index_free(struct deflate_index *index) {
|
||||
if (index != NULL) {
|
||||
free(index->list);
|
||||
free(index);
|
||||
}
|
||||
}
|
||||
|
||||
/* Add an entry to the access point list. If out of memory, deallocate the
|
||||
existing list and return NULL. index->gzip is the allocated size of the
|
||||
index in point entries, until it is time for deflate_index_build() to
|
||||
return, at which point gzip is set to indicate a gzip file or not.
|
||||
*/
|
||||
static struct deflate_index *addpoint(struct deflate_index *index, int bits,
|
||||
off_t in, off_t out, unsigned left,
|
||||
unsigned char *window)
|
||||
{
|
||||
struct point *next;
|
||||
|
||||
/* if list is empty, create it (start with eight points) */
|
||||
// Add an access point to the list. If out of memory, deallocate the existing
|
||||
// list and return NULL. index->mode is temporarily the allocated number of
|
||||
// access points, until it is time for deflate_index_build() to return. Then
|
||||
// index->mode is set to the mode of inflation.
|
||||
static struct deflate_index *add_point(struct deflate_index *index, int bits,
|
||||
off_t in, off_t out, unsigned left,
|
||||
unsigned char *window) {
|
||||
if (index == NULL) {
|
||||
// The list is empty. Create it, starting with eight access points.
|
||||
index = malloc(sizeof(struct deflate_index));
|
||||
if (index == NULL) return NULL;
|
||||
index->list = malloc(sizeof(struct point) << 3);
|
||||
if (index == NULL)
|
||||
return NULL;
|
||||
index->have = 0;
|
||||
index->mode = 8;
|
||||
index->list = malloc(sizeof(point_t) * index->mode);
|
||||
if (index->list == NULL) {
|
||||
free(index);
|
||||
return NULL;
|
||||
}
|
||||
index->gzip = 8;
|
||||
index->have = 0;
|
||||
}
|
||||
|
||||
/* if list is full, make it bigger */
|
||||
else if (index->have == index->gzip) {
|
||||
index->gzip <<= 1;
|
||||
next = realloc(index->list, sizeof(struct point) * index->gzip);
|
||||
else if (index->have == index->mode) {
|
||||
// The list is full. Make it bigger.
|
||||
index->mode <<= 1;
|
||||
point_t *next = realloc(index->list, sizeof(point_t) * index->mode);
|
||||
if (next == NULL) {
|
||||
deflate_index_free(index);
|
||||
return NULL;
|
||||
@ -116,318 +104,379 @@ static struct deflate_index *addpoint(struct deflate_index *index, int bits,
|
||||
index->list = next;
|
||||
}
|
||||
|
||||
/* fill in entry and increment how many we have */
|
||||
next = (struct point *)(index->list) + index->have;
|
||||
next->bits = bits;
|
||||
next->in = in;
|
||||
// Fill in the access point and increment how many we have.
|
||||
point_t *next = (point_t *)(index->list) + index->have++;
|
||||
if (index->have < 0) {
|
||||
// Overflowed the int!
|
||||
deflate_index_free(index);
|
||||
return NULL;
|
||||
}
|
||||
next->out = out;
|
||||
next->in = in;
|
||||
next->bits = bits;
|
||||
if (left)
|
||||
memcpy(next->window, window + WINSIZE - left, left);
|
||||
if (left < WINSIZE)
|
||||
memcpy(next->window + left, window, WINSIZE - left);
|
||||
index->have++;
|
||||
|
||||
/* return list, possibly reallocated */
|
||||
// Return the index, which may have been newly allocated or destroyed.
|
||||
return index;
|
||||
}
|
||||
|
||||
/* See comments in zran.h. */
|
||||
int deflate_index_build(FILE *in, off_t span, struct deflate_index **built)
|
||||
{
|
||||
int ret;
|
||||
int gzip = 0; /* true if reading a gzip file */
|
||||
off_t totin, totout; /* our own total counters to avoid 4GB limit */
|
||||
off_t last; /* totout value of last access point */
|
||||
struct deflate_index *index; /* access points being generated */
|
||||
z_stream strm;
|
||||
unsigned char input[CHUNK];
|
||||
unsigned char window[WINSIZE];
|
||||
// Decompression modes. These are the inflateInit2() windowBits parameter.
|
||||
#define RAW -15
|
||||
#define ZLIB 15
|
||||
#define GZIP 31
|
||||
|
||||
/* initialize inflate */
|
||||
strm.zalloc = Z_NULL;
|
||||
strm.zfree = Z_NULL;
|
||||
strm.opaque = Z_NULL;
|
||||
strm.avail_in = 0;
|
||||
strm.next_in = Z_NULL;
|
||||
ret = inflateInit2(&strm, 47); /* automatic zlib or gzip decoding */
|
||||
if (ret != Z_OK)
|
||||
return ret;
|
||||
// See comments in zran.h.
|
||||
int deflate_index_build(FILE *in, off_t span, struct deflate_index **built) {
|
||||
// Set up inflation state.
|
||||
z_stream strm = {0}; // inflate engine (gets fired up later)
|
||||
unsigned char buf[CHUNK]; // input buffer
|
||||
unsigned char win[WINSIZE] = {0}; // output sliding window
|
||||
off_t totin = 0; // total bytes read from input
|
||||
off_t totout = 0; // total bytes uncompressed
|
||||
int mode = 0; // mode: RAW, ZLIB, or GZIP (0 => not set yet)
|
||||
|
||||
/* inflate the input, maintain a sliding window, and build an index -- this
|
||||
also validates the integrity of the compressed data using the check
|
||||
information in the gzip or zlib stream */
|
||||
totin = totout = last = 0;
|
||||
index = NULL; /* will be allocated by first addpoint() */
|
||||
strm.avail_out = 0;
|
||||
// Decompress from in, generating access points along the way.
|
||||
int ret; // the return value from zlib, or Z_ERRNO
|
||||
off_t last; // last access point uncompressed offset
|
||||
struct deflate_index *index = NULL; // list of access points
|
||||
do {
|
||||
/* get some compressed data from input file */
|
||||
strm.avail_in = fread(input, 1, CHUNK, in);
|
||||
if (ferror(in)) {
|
||||
ret = Z_ERRNO;
|
||||
goto deflate_index_build_error;
|
||||
}
|
||||
// Assure available input, at least until reaching EOF.
|
||||
if (strm.avail_in == 0) {
|
||||
ret = Z_DATA_ERROR;
|
||||
goto deflate_index_build_error;
|
||||
}
|
||||
strm.next_in = input;
|
||||
|
||||
/* check for a gzip stream */
|
||||
if (totin == 0 && strm.avail_in >= 3 &&
|
||||
input[0] == 31 && input[1] == 139 && input[2] == 8)
|
||||
gzip = 1;
|
||||
|
||||
/* process all of that, or until end of stream */
|
||||
do {
|
||||
/* reset sliding window if necessary */
|
||||
if (strm.avail_out == 0) {
|
||||
strm.avail_out = WINSIZE;
|
||||
strm.next_out = window;
|
||||
}
|
||||
|
||||
/* inflate until out of input, output, or at end of block --
|
||||
update the total input and output counters */
|
||||
strm.avail_in = fread(buf, 1, sizeof(buf), in);
|
||||
totin += strm.avail_in;
|
||||
totout += strm.avail_out;
|
||||
ret = inflate(&strm, Z_BLOCK); /* return at end of block */
|
||||
totin -= strm.avail_in;
|
||||
totout -= strm.avail_out;
|
||||
if (ret == Z_NEED_DICT)
|
||||
ret = Z_DATA_ERROR;
|
||||
if (ret == Z_MEM_ERROR || ret == Z_DATA_ERROR)
|
||||
goto deflate_index_build_error;
|
||||
if (ret == Z_STREAM_END) {
|
||||
if (gzip &&
|
||||
(strm.avail_in || ungetc(getc(in), in) != EOF)) {
|
||||
ret = inflateReset(&strm);
|
||||
if (ret != Z_OK)
|
||||
goto deflate_index_build_error;
|
||||
continue;
|
||||
}
|
||||
strm.next_in = buf;
|
||||
if (strm.avail_in < sizeof(buf) && ferror(in)) {
|
||||
ret = Z_ERRNO;
|
||||
break;
|
||||
}
|
||||
|
||||
/* if at end of block, consider adding an index entry (note that if
|
||||
data_type indicates an end-of-block, then all of the
|
||||
uncompressed data from that block has been delivered, and none
|
||||
of the compressed data after that block has been consumed,
|
||||
except for up to seven bits) -- the totout == 0 provides an
|
||||
entry point after the zlib or gzip header, and assures that the
|
||||
index always has at least one access point; we avoid creating an
|
||||
access point after the last block by checking bit 6 of data_type
|
||||
*/
|
||||
if ((strm.data_type & 128) && !(strm.data_type & 64) &&
|
||||
(totout == 0 || totout - last > span)) {
|
||||
index = addpoint(index, strm.data_type & 7, totin,
|
||||
totout, strm.avail_out, window);
|
||||
if (index == NULL) {
|
||||
ret = Z_MEM_ERROR;
|
||||
goto deflate_index_build_error;
|
||||
}
|
||||
last = totout;
|
||||
if (mode == 0) {
|
||||
// At the start of the input -- determine the type. Assume raw
|
||||
// if it is neither zlib nor gzip. This could in theory result
|
||||
// in a false positive for zlib, but in practice the fill bits
|
||||
// after a stored block are always zeros, so a raw stream won't
|
||||
// start with an 8 in the low nybble.
|
||||
mode = strm.avail_in == 0 ? RAW : // empty -- will fail
|
||||
(strm.next_in[0] & 0xf) == 8 ? ZLIB :
|
||||
strm.next_in[0] == 0x1f ? GZIP :
|
||||
/* else */ RAW;
|
||||
ret = inflateInit2(&strm, mode);
|
||||
if (ret != Z_OK)
|
||||
break;
|
||||
}
|
||||
} while (strm.avail_in != 0);
|
||||
} while (ret != Z_STREAM_END);
|
||||
}
|
||||
|
||||
/* clean up and return index (release unused entries in list) */
|
||||
(void)inflateEnd(&strm);
|
||||
index->list = realloc(index->list, sizeof(struct point) * index->have);
|
||||
index->gzip = gzip;
|
||||
// Assure available output. This rotates the output through, for use as
|
||||
// a sliding window on the uncompressed data.
|
||||
if (strm.avail_out == 0) {
|
||||
strm.avail_out = sizeof(win);
|
||||
strm.next_out = win;
|
||||
}
|
||||
|
||||
if (mode == RAW && index == NULL)
|
||||
// We skip the inflate() call at the start of raw deflate data in
|
||||
// order generate an access point there. Set data_type to imitate
|
||||
// the end of a header.
|
||||
strm.data_type = 0x80;
|
||||
else {
|
||||
// Inflate and update the number of uncompressed bytes.
|
||||
unsigned before = strm.avail_out;
|
||||
ret = inflate(&strm, Z_BLOCK);
|
||||
totout += before - strm.avail_out;
|
||||
}
|
||||
|
||||
if ((strm.data_type & 0xc0) == 0x80 &&
|
||||
(index == NULL || totout - last >= span)) {
|
||||
// We are at the end of a header or a non-last deflate block, so we
|
||||
// can add an access point here. Furthermore, we are either at the
|
||||
// very start for the first access point, or there has been span or
|
||||
// more uncompressed bytes since the last access point, so we want
|
||||
// to add an access point here.
|
||||
index = add_point(index, strm.data_type & 7, totin - strm.avail_in,
|
||||
totout, strm.avail_out, win);
|
||||
if (index == NULL) {
|
||||
ret = Z_MEM_ERROR;
|
||||
break;
|
||||
}
|
||||
last = totout;
|
||||
}
|
||||
|
||||
if (ret == Z_STREAM_END && mode == GZIP &&
|
||||
(strm.avail_in || ungetc(getc(in), in) != EOF))
|
||||
// There is more input after the end of a gzip member. Reset the
|
||||
// inflate state to read another gzip member. On success, this will
|
||||
// set ret to Z_OK to continue decompressing.
|
||||
ret = inflateReset2(&strm, GZIP);
|
||||
|
||||
// Keep going until Z_STREAM_END or error. If the compressed data ends
|
||||
// prematurely without a file read error, Z_BUF_ERROR is returned.
|
||||
} while (ret == Z_OK);
|
||||
inflateEnd(&strm);
|
||||
|
||||
if (ret != Z_STREAM_END) {
|
||||
// An error was encountered. Discard the index and return a negative
|
||||
// error code.
|
||||
deflate_index_free(index);
|
||||
return ret == Z_NEED_DICT ? Z_DATA_ERROR : ret;
|
||||
}
|
||||
|
||||
// Shrink the index to only the occupied access points and return it.
|
||||
index->mode = mode;
|
||||
index->length = totout;
|
||||
point_t *list = realloc(index->list, sizeof(point_t) * index->have);
|
||||
if (list == NULL) {
|
||||
// Seems like a realloc() to make something smaller should always work,
|
||||
// but just in case.
|
||||
deflate_index_free(index);
|
||||
return Z_MEM_ERROR;
|
||||
}
|
||||
index->list = list;
|
||||
*built = index;
|
||||
return index->have;
|
||||
|
||||
/* return error */
|
||||
deflate_index_build_error:
|
||||
(void)inflateEnd(&strm);
|
||||
deflate_index_free(index);
|
||||
return ret;
|
||||
}
|
||||
|
||||
/* See comments in zran.h. */
|
||||
int deflate_index_extract(FILE *in, struct deflate_index *index, off_t offset,
|
||||
unsigned char *buf, int len)
|
||||
{
|
||||
int ret, skip;
|
||||
z_stream strm;
|
||||
struct point *here;
|
||||
unsigned char input[CHUNK];
|
||||
unsigned char discard[WINSIZE];
|
||||
#ifdef NOPRIME
|
||||
// Support zlib versions before 1.2.3 (July 2005), or incomplete zlib clones
|
||||
// that do not have inflatePrime().
|
||||
|
||||
/* proceed only if something reasonable to do */
|
||||
if (len < 0)
|
||||
# define INFLATEPRIME inflatePreface
|
||||
|
||||
// Append the low bits bits of value to in[] at bit position *have, updating
|
||||
// *have. value must be zero above its low bits bits. bits must be positive.
|
||||
// This assumes that any bits above the *have bits in the last byte are zeros.
|
||||
// That assumption is preserved on return, as any bits above *have + bits in
|
||||
// the last byte written will be set to zeros.
|
||||
static inline void append_bits(unsigned value, int bits,
|
||||
unsigned char *in, int *have) {
|
||||
in += *have >> 3; // where the first bits from value will go
|
||||
int k = *have & 7; // the number of bits already there
|
||||
*have += bits;
|
||||
if (k)
|
||||
*in |= value << k; // write value above the low k bits
|
||||
else
|
||||
*in = value;
|
||||
k = 8 - k; // the number of bits just appended
|
||||
while (bits > k) {
|
||||
value >>= k; // drop the bits appended
|
||||
bits -= k;
|
||||
k = 8; // now at a byte boundary
|
||||
*++in = value;
|
||||
}
|
||||
}
|
||||
|
||||
// Insert enough bits in the form of empty deflate blocks in front of the the
|
||||
// low bits bits of value, in order to bring the sequence to a byte boundary.
|
||||
// Then feed that to inflate(). This does what inflatePrime() does, except that
|
||||
// a negative value of bits is not supported. bits must be in 0..16. If the
|
||||
// arguments are invalid, Z_STREAM_ERROR is returned. Otherwise the return
|
||||
// value from inflate() is returned.
|
||||
static int inflatePreface(z_stream *strm, int bits, int value) {
|
||||
// Check input.
|
||||
if (strm == Z_NULL || bits < 0 || bits > 16)
|
||||
return Z_STREAM_ERROR;
|
||||
if (bits == 0)
|
||||
return Z_OK;
|
||||
value &= (2 << (bits - 1)) - 1;
|
||||
|
||||
// An empty dynamic block with an odd number of bits (95). The high bit of
|
||||
// the last byte is unused.
|
||||
static const unsigned char dyn[] = {
|
||||
4, 0xe0, 0x81, 8, 0, 0, 0, 0, 0x20, 0xa8, 0xab, 0x1f
|
||||
};
|
||||
const int dynlen = 95; // number of bits in the block
|
||||
|
||||
// Build an input buffer for inflate that is a multiple of eight bits in
|
||||
// length, and that ends with the low bits bits of value.
|
||||
unsigned char in[(dynlen + 3 * 10 + 16 + 7) / 8];
|
||||
int have = 0;
|
||||
if (bits & 1) {
|
||||
// Insert an empty dynamic block to get to an odd number of bits, so
|
||||
// when bits bits from value are appended, we are at an even number of
|
||||
// bits.
|
||||
memcpy(in, dyn, sizeof(dyn));
|
||||
have = dynlen;
|
||||
}
|
||||
while ((have + bits) & 7)
|
||||
// Insert empty fixed blocks until appending bits bits would put us on
|
||||
// a byte boundary. This will insert at most three fixed blocks.
|
||||
append_bits(2, 10, in, &have);
|
||||
|
||||
// Append the bits bits from value, which takes us to a byte boundary.
|
||||
append_bits(value, bits, in, &have);
|
||||
|
||||
// Deliver the input to inflate(). There is no output space provided, but
|
||||
// inflate() can't get stuck waiting on output not ingesting all of the
|
||||
// provided input. The reason is that there will be at most 16 bits of
|
||||
// input from value after the empty deflate blocks (which themselves
|
||||
// generate no output). At least ten bits are needed to generate the first
|
||||
// output byte from a fixed block. The last two bytes of the buffer have to
|
||||
// be ingested in order to get ten bits, which is the most that value can
|
||||
// occupy.
|
||||
strm->avail_in = have >> 3;
|
||||
strm->next_in = in;
|
||||
strm->avail_out = 0;
|
||||
strm->next_out = in; // not used, but can't be NULL
|
||||
return inflate(strm, Z_NO_FLUSH);
|
||||
}
|
||||
|
||||
#else
|
||||
# define INFLATEPRIME inflatePrime
|
||||
#endif
|
||||
|
||||
// See comments in zran.h.
|
||||
ptrdiff_t deflate_index_extract(FILE *in, struct deflate_index *index,
|
||||
off_t offset, unsigned char *buf, size_t len) {
|
||||
// Do a quick sanity check on the index.
|
||||
if (index == NULL || index->have < 1 || index->list[0].out != 0)
|
||||
return Z_STREAM_ERROR;
|
||||
|
||||
// If nothing to extract, return zero bytes extracted.
|
||||
if (len == 0 || offset < 0 || offset >= index->length)
|
||||
return 0;
|
||||
|
||||
/* find where in stream to start */
|
||||
here = index->list;
|
||||
ret = index->have;
|
||||
while (--ret && here[1].out <= offset)
|
||||
here++;
|
||||
// Find the access point closest to but not after offset.
|
||||
int lo = -1, hi = index->have;
|
||||
point_t *point = index->list;
|
||||
while (hi - lo > 1) {
|
||||
int mid = (lo + hi) >> 1;
|
||||
if (offset < point[mid].out)
|
||||
hi = mid;
|
||||
else
|
||||
lo = mid;
|
||||
}
|
||||
point += lo;
|
||||
|
||||
/* initialize file and inflate state to start there */
|
||||
strm.zalloc = Z_NULL;
|
||||
strm.zfree = Z_NULL;
|
||||
strm.opaque = Z_NULL;
|
||||
strm.avail_in = 0;
|
||||
strm.next_in = Z_NULL;
|
||||
ret = inflateInit2(&strm, -15); /* raw inflate */
|
||||
// Initialize the input file and prime the inflate engine to start there.
|
||||
int ret = fseeko(in, point->in - (point->bits ? 1 : 0), SEEK_SET);
|
||||
if (ret == -1)
|
||||
return Z_ERRNO;
|
||||
int ch = 0;
|
||||
if (point->bits && (ch = getc(in)) == EOF)
|
||||
return ferror(in) ? Z_ERRNO : Z_BUF_ERROR;
|
||||
z_stream strm = {0};
|
||||
ret = inflateInit2(&strm, RAW);
|
||||
if (ret != Z_OK)
|
||||
return ret;
|
||||
ret = fseeko(in, here->in - (here->bits ? 1 : 0), SEEK_SET);
|
||||
if (ret == -1)
|
||||
goto deflate_index_extract_ret;
|
||||
if (here->bits) {
|
||||
ret = getc(in);
|
||||
if (ret == -1) {
|
||||
ret = ferror(in) ? Z_ERRNO : Z_DATA_ERROR;
|
||||
goto deflate_index_extract_ret;
|
||||
}
|
||||
(void)inflatePrime(&strm, here->bits, ret >> (8 - here->bits));
|
||||
}
|
||||
(void)inflateSetDictionary(&strm, here->window, WINSIZE);
|
||||
if (point->bits)
|
||||
INFLATEPRIME(&strm, point->bits, ch >> (8 - point->bits));
|
||||
inflateSetDictionary(&strm, point->window, WINSIZE);
|
||||
|
||||
/* skip uncompressed bytes until offset reached, then satisfy request */
|
||||
offset -= here->out;
|
||||
strm.avail_in = 0;
|
||||
skip = 1; /* while skipping to offset */
|
||||
// Skip uncompressed bytes until offset reached, then satisfy request.
|
||||
unsigned char input[CHUNK];
|
||||
unsigned char discard[WINSIZE];
|
||||
offset -= point->out; // number of bytes to skip to get to offset
|
||||
size_t left = len; // number of bytes left to read after offset
|
||||
do {
|
||||
/* define where to put uncompressed data, and how much */
|
||||
if (offset > WINSIZE) { /* skip WINSIZE bytes */
|
||||
strm.avail_out = WINSIZE;
|
||||
if (offset) {
|
||||
// Discard up to offset uncompressed bytes.
|
||||
strm.avail_out = offset < WINSIZE ? (unsigned)offset : WINSIZE;
|
||||
strm.next_out = discard;
|
||||
offset -= WINSIZE;
|
||||
}
|
||||
else if (offset > 0) { /* last skip */
|
||||
strm.avail_out = (unsigned)offset;
|
||||
strm.next_out = discard;
|
||||
offset = 0;
|
||||
}
|
||||
else if (skip) { /* at offset now */
|
||||
strm.avail_out = len;
|
||||
strm.next_out = buf;
|
||||
skip = 0; /* only do this once */
|
||||
else {
|
||||
// Uncompress up to left bytes into buf.
|
||||
strm.avail_out = left < UINT_MAX ? (unsigned)left : UINT_MAX;
|
||||
strm.next_out = buf + len - left;
|
||||
}
|
||||
|
||||
/* uncompress until avail_out filled, or end of stream */
|
||||
do {
|
||||
if (strm.avail_in == 0) {
|
||||
strm.avail_in = fread(input, 1, CHUNK, in);
|
||||
if (ferror(in)) {
|
||||
ret = Z_ERRNO;
|
||||
goto deflate_index_extract_ret;
|
||||
}
|
||||
if (strm.avail_in == 0) {
|
||||
ret = Z_DATA_ERROR;
|
||||
goto deflate_index_extract_ret;
|
||||
}
|
||||
strm.next_in = input;
|
||||
// Uncompress, setting got to the number of bytes uncompressed.
|
||||
if (strm.avail_in == 0) {
|
||||
// Assure available input.
|
||||
strm.avail_in = fread(input, 1, CHUNK, in);
|
||||
if (strm.avail_in < CHUNK && ferror(in)) {
|
||||
ret = Z_ERRNO;
|
||||
break;
|
||||
}
|
||||
ret = inflate(&strm, Z_NO_FLUSH); /* normal inflate */
|
||||
if (ret == Z_NEED_DICT)
|
||||
ret = Z_DATA_ERROR;
|
||||
if (ret == Z_MEM_ERROR || ret == Z_DATA_ERROR)
|
||||
goto deflate_index_extract_ret;
|
||||
if (ret == Z_STREAM_END) {
|
||||
/* the raw deflate stream has ended */
|
||||
if (index->gzip == 0)
|
||||
/* this is a zlib stream that has ended -- done */
|
||||
break;
|
||||
strm.next_in = input;
|
||||
}
|
||||
unsigned got = strm.avail_out;
|
||||
ret = inflate(&strm, Z_NO_FLUSH);
|
||||
got -= strm.avail_out;
|
||||
|
||||
/* near the end of a gzip member, which might be followed by
|
||||
another gzip member -- skip the gzip trailer and see if
|
||||
there is more input after it */
|
||||
if (strm.avail_in < 8) {
|
||||
fseeko(in, 8 - strm.avail_in, SEEK_CUR);
|
||||
strm.avail_in = 0;
|
||||
}
|
||||
else {
|
||||
strm.avail_in -= 8;
|
||||
strm.next_in += 8;
|
||||
}
|
||||
if (strm.avail_in == 0 && ungetc(getc(in), in) == EOF)
|
||||
/* the input ended after the gzip trailer -- done */
|
||||
break;
|
||||
// Update the appropriate count.
|
||||
if (offset)
|
||||
offset -= got;
|
||||
else
|
||||
left -= got;
|
||||
|
||||
/* there is more input, so another gzip member should follow --
|
||||
validate and skip the gzip header */
|
||||
ret = inflateReset2(&strm, 31);
|
||||
if (ret != Z_OK)
|
||||
goto deflate_index_extract_ret;
|
||||
// If we're at the end of a gzip member and there's more to read,
|
||||
// continue to the next gzip member.
|
||||
if (ret == Z_STREAM_END && index->mode == GZIP) {
|
||||
// Discard the gzip trailer.
|
||||
unsigned drop = 8; // length of gzip trailer
|
||||
if (strm.avail_in >= drop) {
|
||||
strm.avail_in -= drop;
|
||||
strm.next_in += drop;
|
||||
}
|
||||
else {
|
||||
// Read and discard the remainder of the gzip trailer.
|
||||
drop -= strm.avail_in;
|
||||
strm.avail_in = 0;
|
||||
do {
|
||||
if (getc(in) == EOF)
|
||||
// The input does not have a complete trailer.
|
||||
return ferror(in) ? Z_ERRNO : Z_BUF_ERROR;
|
||||
} while (--drop);
|
||||
}
|
||||
|
||||
if (strm.avail_in || ungetc(getc(in), in) != EOF) {
|
||||
// There's more after the gzip trailer. Use inflate to skip the
|
||||
// gzip header and resume the raw inflate there.
|
||||
inflateReset2(&strm, GZIP);
|
||||
do {
|
||||
if (strm.avail_in == 0) {
|
||||
strm.avail_in = fread(input, 1, CHUNK, in);
|
||||
if (ferror(in)) {
|
||||
if (strm.avail_in < CHUNK && ferror(in)) {
|
||||
ret = Z_ERRNO;
|
||||
goto deflate_index_extract_ret;
|
||||
}
|
||||
if (strm.avail_in == 0) {
|
||||
ret = Z_DATA_ERROR;
|
||||
goto deflate_index_extract_ret;
|
||||
break;
|
||||
}
|
||||
strm.next_in = input;
|
||||
}
|
||||
ret = inflate(&strm, Z_BLOCK);
|
||||
if (ret == Z_MEM_ERROR || ret == Z_DATA_ERROR)
|
||||
goto deflate_index_extract_ret;
|
||||
} while ((strm.data_type & 128) == 0);
|
||||
|
||||
/* set up to continue decompression of the raw deflate stream
|
||||
that follows the gzip header */
|
||||
ret = inflateReset2(&strm, -15);
|
||||
strm.avail_out = WINSIZE;
|
||||
strm.next_out = discard;
|
||||
ret = inflate(&strm, Z_BLOCK); // stop at end of header
|
||||
} while (ret == Z_OK && (strm.data_type & 0x80) == 0);
|
||||
if (ret != Z_OK)
|
||||
goto deflate_index_extract_ret;
|
||||
break;
|
||||
inflateReset2(&strm, RAW);
|
||||
}
|
||||
}
|
||||
|
||||
/* continue to process the available input before reading more */
|
||||
} while (strm.avail_out != 0);
|
||||
// Continue until we have the requested data, the deflate data has
|
||||
// ended, or an error is encountered.
|
||||
} while (ret == Z_OK && left);
|
||||
inflateEnd(&strm);
|
||||
|
||||
if (ret == Z_STREAM_END)
|
||||
/* reached the end of the compressed data -- return the data that
|
||||
was available, possibly less than requested */
|
||||
break;
|
||||
|
||||
/* do until offset reached and requested data read */
|
||||
} while (skip);
|
||||
|
||||
/* compute the number of uncompressed bytes read after the offset */
|
||||
ret = skip ? 0 : len - strm.avail_out;
|
||||
|
||||
/* clean up and return the bytes read, or the negative error */
|
||||
deflate_index_extract_ret:
|
||||
(void)inflateEnd(&strm);
|
||||
return ret;
|
||||
// Return the number of uncompressed bytes read into buf, or the error.
|
||||
return ret == Z_OK || ret == Z_STREAM_END ? len - left : ret;
|
||||
}
|
||||
|
||||
#ifdef TEST
|
||||
|
||||
#define SPAN 1048576L /* desired distance between access points */
|
||||
#define LEN 16384 /* number of bytes to extract */
|
||||
#define SPAN 1048576L // desired distance between access points
|
||||
#define LEN 16384 // number of bytes to extract
|
||||
|
||||
/* Demonstrate the use of deflate_index_build() and deflate_index_extract() by
|
||||
processing the file provided on the command line, and extracting LEN bytes
|
||||
from 2/3rds of the way through the uncompressed output, writing that to
|
||||
stdout. An offset can be provided as the second argument, in which case the
|
||||
data is extracted from there instead. */
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
int len;
|
||||
off_t offset = -1;
|
||||
FILE *in;
|
||||
struct deflate_index *index = NULL;
|
||||
unsigned char buf[LEN];
|
||||
|
||||
/* open input file */
|
||||
// Demonstrate the use of deflate_index_build() and deflate_index_extract() by
|
||||
// processing the file provided on the command line, and extracting LEN bytes
|
||||
// from 2/3rds of the way through the uncompressed output, writing that to
|
||||
// stdout. An offset can be provided as the second argument, in which case the
|
||||
// data is extracted from there instead.
|
||||
int main(int argc, char **argv) {
|
||||
// Open the input file.
|
||||
if (argc < 2 || argc > 3) {
|
||||
fprintf(stderr, "usage: zran file.gz [offset]\n");
|
||||
fprintf(stderr, "usage: zran file.raw [offset]\n");
|
||||
return 1;
|
||||
}
|
||||
in = fopen(argv[1], "rb");
|
||||
FILE *in = fopen(argv[1], "rb");
|
||||
if (in == NULL) {
|
||||
fprintf(stderr, "zran: could not open %s for reading\n", argv[1]);
|
||||
return 1;
|
||||
}
|
||||
|
||||
/* get optional offset */
|
||||
// Get optional offset.
|
||||
off_t offset = -1;
|
||||
if (argc == 3) {
|
||||
char *end;
|
||||
offset = strtoll(argv[2], &end, 10);
|
||||
@ -437,14 +486,18 @@ int main(int argc, char **argv)
|
||||
}
|
||||
}
|
||||
|
||||
/* build index */
|
||||
len = deflate_index_build(in, SPAN, &index);
|
||||
// Build index.
|
||||
struct deflate_index *index = NULL;
|
||||
int len = deflate_index_build(in, SPAN, &index);
|
||||
if (len < 0) {
|
||||
fclose(in);
|
||||
switch (len) {
|
||||
case Z_MEM_ERROR:
|
||||
fprintf(stderr, "zran: out of memory\n");
|
||||
break;
|
||||
case Z_BUF_ERROR:
|
||||
fprintf(stderr, "zran: %s ended prematurely\n", argv[1]);
|
||||
break;
|
||||
case Z_DATA_ERROR:
|
||||
fprintf(stderr, "zran: compressed data error in %s\n", argv[1]);
|
||||
break;
|
||||
@ -458,19 +511,20 @@ int main(int argc, char **argv)
|
||||
}
|
||||
fprintf(stderr, "zran: built index with %d access points\n", len);
|
||||
|
||||
/* use index by reading some bytes from an arbitrary offset */
|
||||
// Use index by reading some bytes from an arbitrary offset.
|
||||
unsigned char buf[LEN];
|
||||
if (offset == -1)
|
||||
offset = (index->length << 1) / 3;
|
||||
len = deflate_index_extract(in, index, offset, buf, LEN);
|
||||
if (len < 0)
|
||||
offset = ((index->length + 1) << 1) / 3;
|
||||
ptrdiff_t got = deflate_index_extract(in, index, offset, buf, LEN);
|
||||
if (got < 0)
|
||||
fprintf(stderr, "zran: extraction failed: %s error\n",
|
||||
len == Z_MEM_ERROR ? "out of memory" : "input corrupted");
|
||||
got == Z_MEM_ERROR ? "out of memory" : "input corrupted");
|
||||
else {
|
||||
fwrite(buf, 1, len, stdout);
|
||||
fprintf(stderr, "zran: extracted %d bytes at %llu\n", len, offset);
|
||||
fwrite(buf, 1, got, stdout);
|
||||
fprintf(stderr, "zran: extracted %ld bytes at %lld\n", got, offset);
|
||||
}
|
||||
|
||||
/* clean up and exit */
|
||||
// Clean up and exit.
|
||||
deflate_index_free(index);
|
||||
fclose(in);
|
||||
return 0;
|
||||
|
69
deps/zlib/examples/zran.h
vendored
69
deps/zlib/examples/zran.h
vendored
@ -1,40 +1,51 @@
|
||||
/* zran.h -- example of zlib/gzip stream indexing and random access
|
||||
* Copyright (C) 2005, 2012, 2018 Mark Adler
|
||||
/* zran.h -- example of deflated stream indexing and random access
|
||||
* Copyright (C) 2005, 2012, 2018, 2023 Mark Adler
|
||||
* For conditions of distribution and use, see copyright notice in zlib.h
|
||||
* Version 1.2 14 Oct 2018 Mark Adler */
|
||||
* Version 1.3 18 Feb 2023 Mark Adler */
|
||||
|
||||
#include <stdio.h>
|
||||
#include "zlib.h"
|
||||
|
||||
/* Access point list. */
|
||||
// Access point.
|
||||
typedef struct point {
|
||||
off_t out; // offset in uncompressed data
|
||||
off_t in; // offset in compressed file of first full byte
|
||||
int bits; // 0, or number of bits (1-7) from byte at in-1
|
||||
unsigned char window[32768]; // preceding 32K of uncompressed data
|
||||
} point_t;
|
||||
|
||||
// Access point list.
|
||||
struct deflate_index {
|
||||
int have; /* number of list entries */
|
||||
int gzip; /* 1 if the index is of a gzip file, 0 if it is of a
|
||||
zlib stream */
|
||||
off_t length; /* total length of uncompressed data */
|
||||
void *list; /* allocated list of entries */
|
||||
int have; // number of access points in list
|
||||
int mode; // -15 for raw, 15 for zlib, or 31 for gzip
|
||||
off_t length; // total length of uncompressed data
|
||||
point_t *list; // allocated list of access points
|
||||
};
|
||||
|
||||
/* Make one entire pass through a zlib or gzip compressed stream and build an
|
||||
index, with access points about every span bytes of uncompressed output.
|
||||
gzip files with multiple members are indexed in their entirety. span should
|
||||
be chosen to balance the speed of random access against the memory
|
||||
requirements of the list, about 32K bytes per access point. The return value
|
||||
is the number of access points on success (>= 1), Z_MEM_ERROR for out of
|
||||
memory, Z_DATA_ERROR for an error in the input file, or Z_ERRNO for a file
|
||||
read error. On success, *built points to the resulting index. */
|
||||
// Make one pass through a zlib, gzip, or raw deflate compressed stream and
|
||||
// build an index, with access points about every span bytes of uncompressed
|
||||
// output. gzip files with multiple members are fully indexed. span should be
|
||||
// chosen to balance the speed of random access against the memory requirements
|
||||
// of the list, which is about 32K bytes per access point. The return value is
|
||||
// the number of access points on success (>= 1), Z_MEM_ERROR for out of
|
||||
// memory, Z_BUF_ERROR for a premature end of input, Z_DATA_ERROR for a format
|
||||
// or verification error in the input file, or Z_ERRNO for a file read error.
|
||||
// On success, *built points to the resulting index.
|
||||
int deflate_index_build(FILE *in, off_t span, struct deflate_index **built);
|
||||
|
||||
/* Deallocate an index built by deflate_index_build() */
|
||||
void deflate_index_free(struct deflate_index *index);
|
||||
// Use the index to read len bytes from offset into buf. Return the number of
|
||||
// bytes read or a negative error code. If data is requested past the end of
|
||||
// the uncompressed data, then deflate_index_extract() will return a value less
|
||||
// than len, indicating how much was actually read into buf. If given a valid
|
||||
// index, this function should not return an error unless the file was modified
|
||||
// somehow since the index was generated, given that deflate_index_build() had
|
||||
// validated all of the input. If nevertheless there is a failure, Z_BUF_ERROR
|
||||
// is returned if the compressed data ends prematurely, Z_DATA_ERROR if the
|
||||
// deflate compressed data is not valid, Z_MEM_ERROR if out of memory,
|
||||
// Z_STREAM_ERROR if the index is not valid, or Z_ERRNO if there is an error
|
||||
// reading or seeking on the input file.
|
||||
ptrdiff_t deflate_index_extract(FILE *in, struct deflate_index *index,
|
||||
off_t offset, unsigned char *buf, size_t len);
|
||||
|
||||
/* Use the index to read len bytes from offset into buf. Return bytes read or
|
||||
negative for error (Z_DATA_ERROR or Z_MEM_ERROR). If data is requested past
|
||||
the end of the uncompressed data, then deflate_index_extract() will return a
|
||||
value less than len, indicating how much was actually read into buf. This
|
||||
function should not return a data error unless the file was modified since
|
||||
the index was generated, since deflate_index_build() validated all of the
|
||||
input. deflate_index_extract() will return Z_ERRNO if there is an error on
|
||||
reading or seeking the input file. */
|
||||
int deflate_index_extract(FILE *in, struct deflate_index *index, off_t offset,
|
||||
unsigned char *buf, int len);
|
||||
// Deallocate an index built by deflate_index_build().
|
||||
void deflate_index_free(struct deflate_index *index);
|
||||
|
Reference in New Issue
Block a user