2022-01-05 02:04:05 +00:00

380 lines
11 KiB
C

/* Copyright Joyent, Inc. and other Node contributors. All rights reserved.
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "uv.h"
#include "internal.h"
#include <assert.h>
#include <stdint.h>
#include <errno.h>
#include <dlfcn.h>
#include <mach/mach.h>
#include <mach/mach_time.h>
#include <mach-o/dyld.h> /* _NSGetExecutablePath */
#include <sys/resource.h>
#include <sys/sysctl.h>
#include <unistd.h> /* sysconf */
#include "darwin-stub.h"
static uv_once_t once = UV_ONCE_INIT;
static uint64_t (*time_func)(void);
static mach_timebase_info_data_t timebase;
typedef unsigned char UInt8;
int uv__platform_loop_init(uv_loop_t* loop) {
loop->cf_state = NULL;
if (uv__kqueue_init(loop))
return UV__ERR(errno);
return 0;
}
void uv__platform_loop_delete(uv_loop_t* loop) {
uv__fsevents_loop_delete(loop);
}
static void uv__hrtime_init_once(void) {
if (KERN_SUCCESS != mach_timebase_info(&timebase))
abort();
time_func = (uint64_t (*)(void)) dlsym(RTLD_DEFAULT, "mach_continuous_time");
if (time_func == NULL)
time_func = mach_absolute_time;
}
uint64_t uv__hrtime(uv_clocktype_t type) {
uv_once(&once, uv__hrtime_init_once);
return time_func() * timebase.numer / timebase.denom;
}
int uv_exepath(char* buffer, size_t* size) {
/* realpath(exepath) may be > PATH_MAX so double it to be on the safe side. */
char abspath[PATH_MAX * 2 + 1];
char exepath[PATH_MAX + 1];
uint32_t exepath_size;
size_t abspath_size;
if (buffer == NULL || size == NULL || *size == 0)
return UV_EINVAL;
exepath_size = sizeof(exepath);
if (_NSGetExecutablePath(exepath, &exepath_size))
return UV_EIO;
if (realpath(exepath, abspath) != abspath)
return UV__ERR(errno);
abspath_size = strlen(abspath);
if (abspath_size == 0)
return UV_EIO;
*size -= 1;
if (*size > abspath_size)
*size = abspath_size;
memcpy(buffer, abspath, *size);
buffer[*size] = '\0';
return 0;
}
uint64_t uv_get_free_memory(void) {
vm_statistics_data_t info;
mach_msg_type_number_t count = sizeof(info) / sizeof(integer_t);
if (host_statistics(mach_host_self(), HOST_VM_INFO,
(host_info_t)&info, &count) != KERN_SUCCESS) {
return UV_EINVAL; /* FIXME(bnoordhuis) Translate error. */
}
return (uint64_t) info.free_count * sysconf(_SC_PAGESIZE);
}
uint64_t uv_get_total_memory(void) {
uint64_t info;
int which[] = {CTL_HW, HW_MEMSIZE};
size_t size = sizeof(info);
if (sysctl(which, ARRAY_SIZE(which), &info, &size, NULL, 0))
return UV__ERR(errno);
return (uint64_t) info;
}
uint64_t uv_get_constrained_memory(void) {
return 0; /* Memory constraints are unknown. */
}
void uv_loadavg(double avg[3]) {
struct loadavg info;
size_t size = sizeof(info);
int which[] = {CTL_VM, VM_LOADAVG};
if (sysctl(which, ARRAY_SIZE(which), &info, &size, NULL, 0) < 0) return;
avg[0] = (double) info.ldavg[0] / info.fscale;
avg[1] = (double) info.ldavg[1] / info.fscale;
avg[2] = (double) info.ldavg[2] / info.fscale;
}
int uv_resident_set_memory(size_t* rss) {
mach_msg_type_number_t count;
task_basic_info_data_t info;
kern_return_t err;
count = TASK_BASIC_INFO_COUNT;
err = task_info(mach_task_self(),
TASK_BASIC_INFO,
(task_info_t) &info,
&count);
(void) &err;
/* task_info(TASK_BASIC_INFO) cannot really fail. Anything other than
* KERN_SUCCESS implies a libuv bug.
*/
assert(err == KERN_SUCCESS);
*rss = info.resident_size;
return 0;
}
int uv_uptime(double* uptime) {
time_t now;
struct timeval info;
size_t size = sizeof(info);
static int which[] = {CTL_KERN, KERN_BOOTTIME};
if (sysctl(which, ARRAY_SIZE(which), &info, &size, NULL, 0))
return UV__ERR(errno);
now = time(NULL);
*uptime = now - info.tv_sec;
return 0;
}
static int uv__get_cpu_speed(uint64_t* speed) {
/* IOKit */
void (*pIOObjectRelease)(io_object_t);
kern_return_t (*pIOMasterPort)(mach_port_t, mach_port_t*);
CFMutableDictionaryRef (*pIOServiceMatching)(const char*);
kern_return_t (*pIOServiceGetMatchingServices)(mach_port_t,
CFMutableDictionaryRef,
io_iterator_t*);
io_service_t (*pIOIteratorNext)(io_iterator_t);
CFTypeRef (*pIORegistryEntryCreateCFProperty)(io_registry_entry_t,
CFStringRef,
CFAllocatorRef,
IOOptionBits);
/* CoreFoundation */
CFStringRef (*pCFStringCreateWithCString)(CFAllocatorRef,
const char*,
CFStringEncoding);
CFStringEncoding (*pCFStringGetSystemEncoding)(void);
UInt8 *(*pCFDataGetBytePtr)(CFDataRef);
CFIndex (*pCFDataGetLength)(CFDataRef);
void (*pCFDataGetBytes)(CFDataRef, CFRange, UInt8*);
void (*pCFRelease)(CFTypeRef);
void* core_foundation_handle;
void* iokit_handle;
int err;
kern_return_t kr;
mach_port_t mach_port;
io_iterator_t it;
io_object_t service;
mach_port = 0;
err = UV_ENOENT;
core_foundation_handle = dlopen("/System/Library/Frameworks/"
"CoreFoundation.framework/"
"CoreFoundation",
RTLD_LAZY | RTLD_LOCAL);
iokit_handle = dlopen("/System/Library/Frameworks/IOKit.framework/"
"IOKit",
RTLD_LAZY | RTLD_LOCAL);
if (core_foundation_handle == NULL || iokit_handle == NULL)
goto out;
#define V(handle, symbol) \
do { \
*(void **)(&p ## symbol) = dlsym((handle), #symbol); \
if (p ## symbol == NULL) \
goto out; \
} \
while (0)
V(iokit_handle, IOMasterPort);
V(iokit_handle, IOServiceMatching);
V(iokit_handle, IOServiceGetMatchingServices);
V(iokit_handle, IOIteratorNext);
V(iokit_handle, IOObjectRelease);
V(iokit_handle, IORegistryEntryCreateCFProperty);
V(core_foundation_handle, CFStringCreateWithCString);
V(core_foundation_handle, CFStringGetSystemEncoding);
V(core_foundation_handle, CFDataGetBytePtr);
V(core_foundation_handle, CFDataGetLength);
V(core_foundation_handle, CFDataGetBytes);
V(core_foundation_handle, CFRelease);
#undef V
#define S(s) pCFStringCreateWithCString(NULL, (s), kCFStringEncodingUTF8)
kr = pIOMasterPort(MACH_PORT_NULL, &mach_port);
assert(kr == KERN_SUCCESS);
CFMutableDictionaryRef classes_to_match
= pIOServiceMatching("IOPlatformDevice");
kr = pIOServiceGetMatchingServices(mach_port, classes_to_match, &it);
assert(kr == KERN_SUCCESS);
service = pIOIteratorNext(it);
CFStringRef device_type_str = S("device_type");
CFStringRef clock_frequency_str = S("clock-frequency");
while (service != 0) {
CFDataRef data;
data = pIORegistryEntryCreateCFProperty(service,
device_type_str,
NULL,
0);
if (data) {
const UInt8* raw = pCFDataGetBytePtr(data);
if (strncmp((char*)raw, "cpu", 3) == 0 ||
strncmp((char*)raw, "processor", 9) == 0) {
CFDataRef freq_ref;
freq_ref = pIORegistryEntryCreateCFProperty(service,
clock_frequency_str,
NULL,
0);
if (freq_ref) {
const UInt8* freq_ref_ptr = pCFDataGetBytePtr(freq_ref);
CFIndex len = pCFDataGetLength(freq_ref);
if (len == 8)
memcpy(speed, freq_ref_ptr, 8);
else if (len == 4) {
uint32_t v;
memcpy(&v, freq_ref_ptr, 4);
*speed = v;
} else {
*speed = 0;
}
pCFRelease(freq_ref);
pCFRelease(data);
break;
}
}
pCFRelease(data);
}
service = pIOIteratorNext(it);
}
pIOObjectRelease(it);
err = 0;
if (device_type_str != NULL)
pCFRelease(device_type_str);
if (clock_frequency_str != NULL)
pCFRelease(clock_frequency_str);
out:
if (core_foundation_handle != NULL)
dlclose(core_foundation_handle);
if (iokit_handle != NULL)
dlclose(iokit_handle);
mach_port_deallocate(mach_task_self(), mach_port);
return err;
}
int uv_cpu_info(uv_cpu_info_t** cpu_infos, int* count) {
unsigned int ticks = (unsigned int)sysconf(_SC_CLK_TCK),
multiplier = ((uint64_t)1000L / ticks);
char model[512];
size_t size;
unsigned int i;
natural_t numcpus;
mach_msg_type_number_t msg_type;
processor_cpu_load_info_data_t *info;
uv_cpu_info_t* cpu_info;
uint64_t cpuspeed;
int err;
size = sizeof(model);
if (sysctlbyname("machdep.cpu.brand_string", &model, &size, NULL, 0) &&
sysctlbyname("hw.model", &model, &size, NULL, 0)) {
return UV__ERR(errno);
}
err = uv__get_cpu_speed(&cpuspeed);
if (err < 0)
return err;
if (host_processor_info(mach_host_self(), PROCESSOR_CPU_LOAD_INFO, &numcpus,
(processor_info_array_t*)&info,
&msg_type) != KERN_SUCCESS) {
return UV_EINVAL; /* FIXME(bnoordhuis) Translate error. */
}
*cpu_infos = uv__malloc(numcpus * sizeof(**cpu_infos));
if (!(*cpu_infos)) {
vm_deallocate(mach_task_self(), (vm_address_t)info, msg_type);
return UV_ENOMEM;
}
*count = numcpus;
for (i = 0; i < numcpus; i++) {
cpu_info = &(*cpu_infos)[i];
cpu_info->cpu_times.user = (uint64_t)(info[i].cpu_ticks[0]) * multiplier;
cpu_info->cpu_times.nice = (uint64_t)(info[i].cpu_ticks[3]) * multiplier;
cpu_info->cpu_times.sys = (uint64_t)(info[i].cpu_ticks[1]) * multiplier;
cpu_info->cpu_times.idle = (uint64_t)(info[i].cpu_ticks[2]) * multiplier;
cpu_info->cpu_times.irq = 0;
cpu_info->model = uv__strdup(model);
cpu_info->speed = cpuspeed/1000000;
}
vm_deallocate(mach_task_self(), (vm_address_t)info, msg_type);
return 0;
}