Cory McWilliams 6eec142499
Some checks failed
Build Tilde Friends / Build-All (push) Has been cancelled
update: sqlite 3.48.0.
2025-01-15 12:14:46 -05:00

33691 lines
1.0 MiB

/* DO NOT EDIT!
** This file is automatically generated by the script in the canonical
** SQLite source tree at tool/mkshellc.tcl. That script combines source
** code from various constituent source files of SQLite into this single
** "shell.c" file used to implement the SQLite command-line shell.
**
** Most of the code found below comes from the "src/shell.c.in" file in
** the canonical SQLite source tree. That main file contains "INCLUDE"
** lines that specify other files in the canonical source tree that are
** inserted to getnerate this complete program source file.
**
** The code from multiple files is combined into this single "shell.c"
** source file to help make the command-line program easier to compile.
**
** To modify this program, get a copy of the canonical SQLite source tree,
** edit the src/shell.c.in" and/or some of the other files that are included
** by "src/shell.c.in", then rerun the tool/mkshellc.tcl script.
*/
/*
** 2001 September 15
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains code to implement the "sqlite" command line
** utility for accessing SQLite databases.
*/
#if (defined(_WIN32) || defined(WIN32)) && !defined(_CRT_SECURE_NO_WARNINGS)
/* This needs to come before any includes for MSVC compiler */
#define _CRT_SECURE_NO_WARNINGS
#endif
typedef unsigned int u32;
typedef unsigned short int u16;
/*
** Optionally #include a user-defined header, whereby compilation options
** may be set prior to where they take effect, but after platform setup.
** If SQLITE_CUSTOM_INCLUDE=? is defined, its value names the #include
** file. Note that this macro has a like effect on sqlite3.c compilation.
*/
# define SHELL_STRINGIFY_(f) #f
# define SHELL_STRINGIFY(f) SHELL_STRINGIFY_(f)
#ifdef SQLITE_CUSTOM_INCLUDE
# include SHELL_STRINGIFY(SQLITE_CUSTOM_INCLUDE)
#endif
/*
** Determine if we are dealing with WinRT, which provides only a subset of
** the full Win32 API.
*/
#if !defined(SQLITE_OS_WINRT)
# define SQLITE_OS_WINRT 0
#endif
/*
** If SQLITE_SHELL_FIDDLE is defined then the shell is modified
** somewhat for use as a WASM module in a web browser. This flag
** should only be used when building the "fiddle" web application, as
** the browser-mode build has much different user input requirements
** and this build mode rewires the user input subsystem to account for
** that.
*/
/*
** Warning pragmas copied from msvc.h in the core.
*/
#if defined(_MSC_VER)
#pragma warning(disable : 4054)
#pragma warning(disable : 4055)
#pragma warning(disable : 4100)
#pragma warning(disable : 4127)
#pragma warning(disable : 4130)
#pragma warning(disable : 4152)
#pragma warning(disable : 4189)
#pragma warning(disable : 4206)
#pragma warning(disable : 4210)
#pragma warning(disable : 4232)
#pragma warning(disable : 4244)
#pragma warning(disable : 4305)
#pragma warning(disable : 4306)
#pragma warning(disable : 4702)
#pragma warning(disable : 4706)
#endif /* defined(_MSC_VER) */
/*
** No support for loadable extensions in VxWorks.
*/
#if (defined(__RTP__) || defined(_WRS_KERNEL)) && !SQLITE_OMIT_LOAD_EXTENSION
# define SQLITE_OMIT_LOAD_EXTENSION 1
#endif
/*
** Enable large-file support for fopen() and friends on unix.
*/
#ifndef SQLITE_DISABLE_LFS
# define _LARGE_FILE 1
# ifndef _FILE_OFFSET_BITS
# define _FILE_OFFSET_BITS 64
# endif
# define _LARGEFILE_SOURCE 1
#endif
#if defined(SQLITE_SHELL_FIDDLE) && !defined(_POSIX_SOURCE)
/*
** emcc requires _POSIX_SOURCE (or one of several similar defines)
** to expose strdup().
*/
# define _POSIX_SOURCE
#endif
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <assert.h>
#include <math.h>
#include "sqlite3.h"
typedef sqlite3_int64 i64;
typedef sqlite3_uint64 u64;
typedef unsigned char u8;
#include <ctype.h>
#include <stdarg.h>
#if !defined(_WIN32) && !defined(WIN32)
# include <signal.h>
# if !defined(__RTP__) && !defined(_WRS_KERNEL) && !defined(SQLITE_WASI)
# include <pwd.h>
# endif
#endif
#if (!defined(_WIN32) && !defined(WIN32)) || defined(__MINGW32__)
# include <unistd.h>
# include <dirent.h>
# define GETPID getpid
# if defined(__MINGW32__)
# define DIRENT dirent
# ifndef S_ISLNK
# define S_ISLNK(mode) (0)
# endif
# endif
#else
# define GETPID (int)GetCurrentProcessId
#endif
#include <sys/types.h>
#include <sys/stat.h>
#if HAVE_READLINE
# include <readline/readline.h>
# include <readline/history.h>
#endif
#if HAVE_EDITLINE
# include <editline/readline.h>
#endif
#if HAVE_EDITLINE || HAVE_READLINE
# define shell_add_history(X) add_history(X)
# define shell_read_history(X) read_history(X)
# define shell_write_history(X) write_history(X)
# define shell_stifle_history(X) stifle_history(X)
# define shell_readline(X) readline(X)
#elif HAVE_LINENOISE
# include "linenoise.h"
# define shell_add_history(X) linenoiseHistoryAdd(X)
# define shell_read_history(X) linenoiseHistoryLoad(X)
# define shell_write_history(X) linenoiseHistorySave(X)
# define shell_stifle_history(X) linenoiseHistorySetMaxLen(X)
# define shell_readline(X) linenoise(X)
#else
# define shell_read_history(X)
# define shell_write_history(X)
# define shell_stifle_history(X)
# define SHELL_USE_LOCAL_GETLINE 1
#endif
#ifndef deliberate_fall_through
/* Quiet some compilers about some of our intentional code. */
# if defined(GCC_VERSION) && GCC_VERSION>=7000000
# define deliberate_fall_through __attribute__((fallthrough));
# else
# define deliberate_fall_through
# endif
#endif
#if defined(_WIN32) || defined(WIN32)
# if SQLITE_OS_WINRT
# define SQLITE_OMIT_POPEN 1
# else
# include <io.h>
# include <fcntl.h>
# define isatty(h) _isatty(h)
# ifndef access
# define access(f,m) _access((f),(m))
# endif
# ifndef unlink
# define unlink _unlink
# endif
# ifndef strdup
# define strdup _strdup
# endif
# undef pclose
# define pclose _pclose
# endif
#else
/* Make sure isatty() has a prototype. */
extern int isatty(int);
# if !defined(__RTP__) && !defined(_WRS_KERNEL) && !defined(SQLITE_WASI)
/* popen and pclose are not C89 functions and so are
** sometimes omitted from the <stdio.h> header */
extern FILE *popen(const char*,const char*);
extern int pclose(FILE*);
# else
# define SQLITE_OMIT_POPEN 1
# endif
#endif
#if defined(_WIN32_WCE)
/* Windows CE (arm-wince-mingw32ce-gcc) does not provide isatty()
* thus we always assume that we have a console. That can be
* overridden with the -batch command line option.
*/
#define isatty(x) 1
#endif
/* ctype macros that work with signed characters */
#define IsSpace(X) isspace((unsigned char)X)
#define IsDigit(X) isdigit((unsigned char)X)
#define ToLower(X) (char)tolower((unsigned char)X)
#if defined(_WIN32) || defined(WIN32)
#if SQLITE_OS_WINRT
#include <intrin.h>
#endif
#undef WIN32_LEAN_AND_MEAN
#define WIN32_LEAN_AND_MEAN
#include <windows.h>
/* string conversion routines only needed on Win32 */
extern char *sqlite3_win32_unicode_to_utf8(LPCWSTR);
extern LPWSTR sqlite3_win32_utf8_to_unicode(const char *zText);
#endif
/************************* Begin ../ext/misc/sqlite3_stdio.h ******************/
/*
** 2024-09-24
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
**
** This header file contains definitions of interfaces that provide
** cross-platform I/O for UTF-8 content.
**
** On most platforms, the interfaces definitions in this file are
** just #defines. For example sqlite3_fopen() is a macro that resolves
** to the standard fopen() in the C-library.
**
** But Windows does not have a standard C-library, at least not one that
** can handle UTF-8. So for windows build, the interfaces resolve to new
** C-language routines contained in the separate sqlite3_stdio.c source file.
**
** So on all non-Windows platforms, simply #include this header file and
** use the interfaces defined herein. Then to run your application on Windows,
** also link in the accompanying sqlite3_stdio.c source file when compiling
** to get compatible interfaces.
*/
#ifndef _SQLITE3_STDIO_H_
#define _SQLITE3_STDIO_H_ 1
#ifdef _WIN32
/**** Definitions For Windows ****/
#include <stdio.h>
#include <windows.h>
FILE *sqlite3_fopen(const char *zFilename, const char *zMode);
FILE *sqlite3_popen(const char *zCommand, const char *type);
char *sqlite3_fgets(char *s, int size, FILE *stream);
int sqlite3_fputs(const char *s, FILE *stream);
int sqlite3_fprintf(FILE *stream, const char *format, ...);
void sqlite3_fsetmode(FILE *stream, int mode);
#else
/**** Definitions For All Other Platforms ****/
#include <stdio.h>
#define sqlite3_fopen fopen
#define sqlite3_popen popen
#define sqlite3_fgets fgets
#define sqlite3_fputs fputs
#define sqlite3_fprintf fprintf
#define sqlite3_fsetmode(F,X) /*no-op*/
#endif
#endif /* _SQLITE3_STDIO_H_ */
/************************* End ../ext/misc/sqlite3_stdio.h ********************/
/************************* Begin ../ext/misc/sqlite3_stdio.c ******************/
/*
** 2024-09-24
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
**
** Implementation of standard I/O interfaces for UTF-8 that are missing
** on Windows.
*/
#ifdef _WIN32 /* This file is a no-op on all platforms except Windows */
#ifndef _SQLITE3_STDIO_H_
/* #include "sqlite3_stdio.h" */
#endif
#undef WIN32_LEAN_AND_MEAN
#define WIN32_LEAN_AND_MEAN
#include <windows.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <assert.h>
/* #include "sqlite3.h" */
#include <ctype.h>
#include <stdarg.h>
#include <io.h>
#include <fcntl.h>
/*
** If the SQLITE_U8TEXT_ONLY option is defined, then use O_U8TEXT
** when appropriate on all output. (Sometimes use O_BINARY when
** rendering ASCII text in cases where NL-to-CRLF expansion would
** not be correct.)
**
** If the SQLITE_U8TEXT_STDIO option is defined, then use O_U8TEXT
** when appropriate when writing to stdout or stderr. Use O_BINARY
** or O_TEXT (depending on things like the .mode and the .crlf setting
** in the CLI, or other context clues in other applications) for all
** other output channels.
**
** The default behavior, if neither of the above is defined is to
** use O_U8TEXT when writing to the Windows console (or anything
** else for which _isatty() returns true) and to use O_BINARY or O_TEXT
** for all other output channels.
*/
#if defined(SQLITE_U8TEXT_ONLY)
# define UseWtextForOutput(fd) 1
# define UseWtextForInput(fd) 1
# define IsConsole(fd) _isatty(_fileno(fd))
#elif defined(SQLITE_U8TEXT_STDIO)
# define UseWtextForOutput(fd) ((fd)==stdout || (fd)==stderr)
# define UseWtextForInput(fd) ((fd)==stdin)
# define IsConsole(fd) _isatty(_fileno(fd))
#else
# define UseWtextForOutput(fd) _isatty(_fileno(fd))
# define UseWtextForInput(fd) _isatty(_fileno(fd))
# define IsConsole(fd) 1
#endif
/*
** Global variables determine if simulated O_BINARY mode is to be
** used for stdout or other, respectively. Simulated O_BINARY mode
** means the mode is usually O_BINARY, but switches to O_U8TEXT for
** unicode characters U+0080 or greater (any character that has a
** multi-byte representation in UTF-8). This is the only way we
** have found to render Unicode characters on a Windows console while
** at the same time avoiding undesirable \n to \r\n translation.
*/
static int simBinaryStdout = 0;
static int simBinaryOther = 0;
/*
** Determine if simulated binary mode should be used for output to fd
*/
static int UseBinaryWText(FILE *fd){
if( fd==stdout || fd==stderr ){
return simBinaryStdout;
}else{
return simBinaryOther;
}
}
/*
** Work-alike for the fopen() routine from the standard C library.
*/
FILE *sqlite3_fopen(const char *zFilename, const char *zMode){
FILE *fp = 0;
wchar_t *b1, *b2;
int sz1, sz2;
sz1 = (int)strlen(zFilename);
sz2 = (int)strlen(zMode);
b1 = sqlite3_malloc( (sz1+1)*sizeof(b1[0]) );
b2 = sqlite3_malloc( (sz2+1)*sizeof(b1[0]) );
if( b1 && b2 ){
sz1 = MultiByteToWideChar(CP_UTF8, 0, zFilename, sz1, b1, sz1);
b1[sz1] = 0;
sz2 = MultiByteToWideChar(CP_UTF8, 0, zMode, sz2, b2, sz2);
b2[sz2] = 0;
fp = _wfopen(b1, b2);
}
sqlite3_free(b1);
sqlite3_free(b2);
simBinaryOther = 0;
return fp;
}
/*
** Work-alike for the popen() routine from the standard C library.
*/
FILE *sqlite3_popen(const char *zCommand, const char *zMode){
FILE *fp = 0;
wchar_t *b1, *b2;
int sz1, sz2;
sz1 = (int)strlen(zCommand);
sz2 = (int)strlen(zMode);
b1 = sqlite3_malloc( (sz1+1)*sizeof(b1[0]) );
b2 = sqlite3_malloc( (sz2+1)*sizeof(b1[0]) );
if( b1 && b2 ){
sz1 = MultiByteToWideChar(CP_UTF8, 0, zCommand, sz1, b1, sz1);
b1[sz1] = 0;
sz2 = MultiByteToWideChar(CP_UTF8, 0, zMode, sz2, b2, sz2);
b2[sz2] = 0;
fp = _wpopen(b1, b2);
}
sqlite3_free(b1);
sqlite3_free(b2);
return fp;
}
/*
** Work-alike for fgets() from the standard C library.
*/
char *sqlite3_fgets(char *buf, int sz, FILE *in){
if( UseWtextForInput(in) ){
/* When reading from the command-prompt in Windows, it is necessary
** to use _O_WTEXT input mode to read UTF-16 characters, then translate
** that into UTF-8. Otherwise, non-ASCII characters all get translated
** into '?'.
*/
wchar_t *b1 = sqlite3_malloc( sz*sizeof(wchar_t) );
if( b1==0 ) return 0;
#ifndef SQLITE_USE_STDIO_FOR_CONSOLE
DWORD nRead = 0;
if( IsConsole(in)
&& ReadConsoleW(GetStdHandle(STD_INPUT_HANDLE), b1, sz, &nRead, 0)
){
b1[nRead] = 0;
}else
#endif
{
_setmode(_fileno(in), IsConsole(in) ? _O_WTEXT : _O_U8TEXT);
if( fgetws(b1, sz/4, in)==0 ){
sqlite3_free(b1);
return 0;
}
}
WideCharToMultiByte(CP_UTF8, 0, b1, -1, buf, sz, 0, 0);
sqlite3_free(b1);
return buf;
}else{
/* Reading from a file or other input source, just read bytes without
** any translation. */
return fgets(buf, sz, in);
}
}
/*
** Send ASCII text as O_BINARY. But for Unicode characters U+0080 and
** greater, switch to O_U8TEXT.
*/
static void piecemealOutput(wchar_t *b1, int sz, FILE *out){
int i;
wchar_t c;
while( sz>0 ){
for(i=0; i<sz && b1[i]>=0x80; i++){}
if( i>0 ){
c = b1[i];
b1[i] = 0;
fflush(out);
_setmode(_fileno(out), _O_U8TEXT);
fputws(b1, out);
fflush(out);
b1 += i;
b1[0] = c;
sz -= i;
}else{
fflush(out);
_setmode(_fileno(out), _O_TEXT);
_setmode(_fileno(out), _O_BINARY);
fwrite(&b1[0], 1, 1, out);
for(i=1; i<sz && b1[i]<0x80; i++){
fwrite(&b1[i], 1, 1, out);
}
fflush(out);
_setmode(_fileno(out), _O_U8TEXT);
b1 += i;
sz -= i;
}
}
}
/*
** Work-alike for fputs() from the standard C library.
*/
int sqlite3_fputs(const char *z, FILE *out){
if( !UseWtextForOutput(out) ){
/* Writing to a file or other destination, just write bytes without
** any translation. */
return fputs(z, out);
}else{
/* One must use UTF16 in order to get unicode support when writing
** to the console on Windows.
*/
int sz = (int)strlen(z);
wchar_t *b1 = sqlite3_malloc( (sz+1)*sizeof(wchar_t) );
if( b1==0 ) return 0;
sz = MultiByteToWideChar(CP_UTF8, 0, z, sz, b1, sz);
b1[sz] = 0;
#ifndef SQLITE_STDIO_FOR_CONSOLE
DWORD nWr = 0;
if( IsConsole(out)
&& WriteConsoleW(GetStdHandle(STD_OUTPUT_HANDLE),b1,sz,&nWr,0)
){
/* If writing to the console, then the WriteConsoleW() is all we
** need to do. */
}else
#endif
{
/* For non-console I/O, or if SQLITE_USE_STDIO_FOR_CONSOLE is defined
** then write using the standard library. */
_setmode(_fileno(out), _O_U8TEXT);
if( UseBinaryWText(out) ){
piecemealOutput(b1, sz, out);
}else{
fputws(b1, out);
}
}
sqlite3_free(b1);
return 0;
}
}
/*
** Work-alike for fprintf() from the standard C library.
*/
int sqlite3_fprintf(FILE *out, const char *zFormat, ...){
int rc;
if( UseWtextForOutput(out) ){
/* When writing to the command-prompt in Windows, it is necessary
** to use _O_WTEXT input mode and write UTF-16 characters.
*/
char *z;
va_list ap;
va_start(ap, zFormat);
z = sqlite3_vmprintf(zFormat, ap);
va_end(ap);
sqlite3_fputs(z, out);
rc = (int)strlen(z);
sqlite3_free(z);
}else{
/* Writing to a file or other destination, just write bytes without
** any translation. */
va_list ap;
va_start(ap, zFormat);
rc = vfprintf(out, zFormat, ap);
va_end(ap);
}
return rc;
}
/*
** Set the mode for an output stream. mode argument is typically _O_BINARY or
** _O_TEXT.
*/
void sqlite3_fsetmode(FILE *fp, int mode){
if( !UseWtextForOutput(fp) ){
fflush(fp);
_setmode(_fileno(fp), mode);
}else if( fp==stdout || fp==stderr ){
simBinaryStdout = (mode==_O_BINARY);
}else{
simBinaryOther = (mode==_O_BINARY);
}
}
#endif /* defined(_WIN32) */
/************************* End ../ext/misc/sqlite3_stdio.c ********************/
/* Use console I/O package as a direct INCLUDE. */
#define SQLITE_INTERNAL_LINKAGE static
#ifdef SQLITE_SHELL_FIDDLE
/* Deselect most features from the console I/O package for Fiddle. */
# define SQLITE_CIO_NO_REDIRECT
# define SQLITE_CIO_NO_CLASSIFY
# define SQLITE_CIO_NO_TRANSLATE
# define SQLITE_CIO_NO_SETMODE
# define SQLITE_CIO_NO_FLUSH
#endif
#define eputz(z) sqlite3_fputs(z,stderr)
#define sputz(fp,z) sqlite3_fputs(z,fp)
/* True if the timer is enabled */
static int enableTimer = 0;
/* A version of strcmp() that works with NULL values */
static int cli_strcmp(const char *a, const char *b){
if( a==0 ) a = "";
if( b==0 ) b = "";
return strcmp(a,b);
}
static int cli_strncmp(const char *a, const char *b, size_t n){
if( a==0 ) a = "";
if( b==0 ) b = "";
return strncmp(a,b,n);
}
/* Return the current wall-clock time */
static sqlite3_int64 timeOfDay(void){
static sqlite3_vfs *clockVfs = 0;
sqlite3_int64 t;
if( clockVfs==0 ) clockVfs = sqlite3_vfs_find(0);
if( clockVfs==0 ) return 0; /* Never actually happens */
if( clockVfs->iVersion>=2 && clockVfs->xCurrentTimeInt64!=0 ){
clockVfs->xCurrentTimeInt64(clockVfs, &t);
}else{
double r;
clockVfs->xCurrentTime(clockVfs, &r);
t = (sqlite3_int64)(r*86400000.0);
}
return t;
}
#if !defined(_WIN32) && !defined(WIN32) && !defined(__minux)
#include <sys/time.h>
#include <sys/resource.h>
/* VxWorks does not support getrusage() as far as we can determine */
#if defined(_WRS_KERNEL) || defined(__RTP__)
struct rusage {
struct timeval ru_utime; /* user CPU time used */
struct timeval ru_stime; /* system CPU time used */
};
#define getrusage(A,B) memset(B,0,sizeof(*B))
#endif
/* Saved resource information for the beginning of an operation */
static struct rusage sBegin; /* CPU time at start */
static sqlite3_int64 iBegin; /* Wall-clock time at start */
/*
** Begin timing an operation
*/
static void beginTimer(void){
if( enableTimer ){
getrusage(RUSAGE_SELF, &sBegin);
iBegin = timeOfDay();
}
}
/* Return the difference of two time_structs in seconds */
static double timeDiff(struct timeval *pStart, struct timeval *pEnd){
return (pEnd->tv_usec - pStart->tv_usec)*0.000001 +
(double)(pEnd->tv_sec - pStart->tv_sec);
}
/*
** Print the timing results.
*/
static void endTimer(FILE *out){
if( enableTimer ){
sqlite3_int64 iEnd = timeOfDay();
struct rusage sEnd;
getrusage(RUSAGE_SELF, &sEnd);
sqlite3_fprintf(out, "Run Time: real %.3f user %f sys %f\n",
(iEnd - iBegin)*0.001,
timeDiff(&sBegin.ru_utime, &sEnd.ru_utime),
timeDiff(&sBegin.ru_stime, &sEnd.ru_stime));
}
}
#define BEGIN_TIMER beginTimer()
#define END_TIMER(X) endTimer(X)
#define HAS_TIMER 1
#elif (defined(_WIN32) || defined(WIN32))
/* Saved resource information for the beginning of an operation */
static HANDLE hProcess;
static FILETIME ftKernelBegin;
static FILETIME ftUserBegin;
static sqlite3_int64 ftWallBegin;
typedef BOOL (WINAPI *GETPROCTIMES)(HANDLE, LPFILETIME, LPFILETIME,
LPFILETIME, LPFILETIME);
static GETPROCTIMES getProcessTimesAddr = NULL;
/*
** Check to see if we have timer support. Return 1 if necessary
** support found (or found previously).
*/
static int hasTimer(void){
if( getProcessTimesAddr ){
return 1;
} else {
#if !SQLITE_OS_WINRT
/* GetProcessTimes() isn't supported in WIN95 and some other Windows
** versions. See if the version we are running on has it, and if it
** does, save off a pointer to it and the current process handle.
*/
hProcess = GetCurrentProcess();
if( hProcess ){
HINSTANCE hinstLib = LoadLibrary(TEXT("Kernel32.dll"));
if( NULL != hinstLib ){
getProcessTimesAddr =
(GETPROCTIMES) GetProcAddress(hinstLib, "GetProcessTimes");
if( NULL != getProcessTimesAddr ){
return 1;
}
FreeLibrary(hinstLib);
}
}
#endif
}
return 0;
}
/*
** Begin timing an operation
*/
static void beginTimer(void){
if( enableTimer && getProcessTimesAddr ){
FILETIME ftCreation, ftExit;
getProcessTimesAddr(hProcess,&ftCreation,&ftExit,
&ftKernelBegin,&ftUserBegin);
ftWallBegin = timeOfDay();
}
}
/* Return the difference of two FILETIME structs in seconds */
static double timeDiff(FILETIME *pStart, FILETIME *pEnd){
sqlite_int64 i64Start = *((sqlite_int64 *) pStart);
sqlite_int64 i64End = *((sqlite_int64 *) pEnd);
return (double) ((i64End - i64Start) / 10000000.0);
}
/*
** Print the timing results.
*/
static void endTimer(FILE *out){
if( enableTimer && getProcessTimesAddr){
FILETIME ftCreation, ftExit, ftKernelEnd, ftUserEnd;
sqlite3_int64 ftWallEnd = timeOfDay();
getProcessTimesAddr(hProcess,&ftCreation,&ftExit,&ftKernelEnd,&ftUserEnd);
sqlite3_fprintf(out, "Run Time: real %.3f user %f sys %f\n",
(ftWallEnd - ftWallBegin)*0.001,
timeDiff(&ftUserBegin, &ftUserEnd),
timeDiff(&ftKernelBegin, &ftKernelEnd));
}
}
#define BEGIN_TIMER beginTimer()
#define END_TIMER(X) endTimer(X)
#define HAS_TIMER hasTimer()
#else
#define BEGIN_TIMER
#define END_TIMER(X) /*no-op*/
#define HAS_TIMER 0
#endif
/*
** Used to prevent warnings about unused parameters
*/
#define UNUSED_PARAMETER(x) (void)(x)
/*
** Number of elements in an array
*/
#define ArraySize(X) (int)(sizeof(X)/sizeof(X[0]))
/*
** If the following flag is set, then command execution stops
** at an error if we are not interactive.
*/
static int bail_on_error = 0;
/*
** Treat stdin as an interactive input if the following variable
** is true. Otherwise, assume stdin is connected to a file or pipe.
*/
static int stdin_is_interactive = 1;
/*
** On Windows systems we need to know if standard output is a console
** in order to show that UTF-16 translation is done in the sign-on
** banner. The following variable is true if it is the console.
*/
static int stdout_is_console = 1;
/*
** The following is the open SQLite database. We make a pointer
** to this database a static variable so that it can be accessed
** by the SIGINT handler to interrupt database processing.
*/
static sqlite3 *globalDb = 0;
/*
** True if an interrupt (Control-C) has been received.
*/
static volatile int seenInterrupt = 0;
/*
** This is the name of our program. It is set in main(), used
** in a number of other places, mostly for error messages.
*/
static char *Argv0;
/*
** Prompt strings. Initialized in main. Settable with
** .prompt main continue
*/
#define PROMPT_LEN_MAX 20
/* First line prompt. default: "sqlite> " */
static char mainPrompt[PROMPT_LEN_MAX];
/* Continuation prompt. default: " ...> " */
static char continuePrompt[PROMPT_LEN_MAX];
/* This is variant of the standard-library strncpy() routine with the
** one change that the destination string is always zero-terminated, even
** if there is no zero-terminator in the first n-1 characters of the source
** string.
*/
static char *shell_strncpy(char *dest, const char *src, size_t n){
size_t i;
for(i=0; i<n-1 && src[i]!=0; i++) dest[i] = src[i];
dest[i] = 0;
return dest;
}
/*
** strcpy() workalike to squelch an unwarranted link-time warning
** from OpenBSD.
*/
static void shell_strcpy(char *dest, const char *src){
while( (*(dest++) = *(src++))!=0 ){}
}
/*
** Optionally disable dynamic continuation prompt.
** Unless disabled, the continuation prompt shows open SQL lexemes if any,
** or open parentheses level if non-zero, or continuation prompt as set.
** This facility interacts with the scanner and process_input() where the
** below 5 macros are used.
*/
#ifdef SQLITE_OMIT_DYNAPROMPT
# define CONTINUATION_PROMPT continuePrompt
# define CONTINUE_PROMPT_RESET
# define CONTINUE_PROMPT_AWAITS(p,s)
# define CONTINUE_PROMPT_AWAITC(p,c)
# define CONTINUE_PAREN_INCR(p,n)
# define CONTINUE_PROMPT_PSTATE 0
typedef void *t_NoDynaPrompt;
# define SCAN_TRACKER_REFTYPE t_NoDynaPrompt
#else
# define CONTINUATION_PROMPT dynamicContinuePrompt()
# define CONTINUE_PROMPT_RESET \
do {setLexemeOpen(&dynPrompt,0,0); trackParenLevel(&dynPrompt,0);} while(0)
# define CONTINUE_PROMPT_AWAITS(p,s) \
if(p && stdin_is_interactive) setLexemeOpen(p, s, 0)
# define CONTINUE_PROMPT_AWAITC(p,c) \
if(p && stdin_is_interactive) setLexemeOpen(p, 0, c)
# define CONTINUE_PAREN_INCR(p,n) \
if(p && stdin_is_interactive) (trackParenLevel(p,n))
# define CONTINUE_PROMPT_PSTATE (&dynPrompt)
typedef struct DynaPrompt *t_DynaPromptRef;
# define SCAN_TRACKER_REFTYPE t_DynaPromptRef
static struct DynaPrompt {
char dynamicPrompt[PROMPT_LEN_MAX];
char acAwait[2];
int inParenLevel;
char *zScannerAwaits;
} dynPrompt = { {0}, {0}, 0, 0 };
/* Record parenthesis nesting level change, or force level to 0. */
static void trackParenLevel(struct DynaPrompt *p, int ni){
p->inParenLevel += ni;
if( ni==0 ) p->inParenLevel = 0;
p->zScannerAwaits = 0;
}
/* Record that a lexeme is opened, or closed with args==0. */
static void setLexemeOpen(struct DynaPrompt *p, char *s, char c){
if( s!=0 || c==0 ){
p->zScannerAwaits = s;
p->acAwait[0] = 0;
}else{
p->acAwait[0] = c;
p->zScannerAwaits = p->acAwait;
}
}
/* Upon demand, derive the continuation prompt to display. */
static char *dynamicContinuePrompt(void){
if( continuePrompt[0]==0
|| (dynPrompt.zScannerAwaits==0 && dynPrompt.inParenLevel == 0) ){
return continuePrompt;
}else{
if( dynPrompt.zScannerAwaits ){
size_t ncp = strlen(continuePrompt);
size_t ndp = strlen(dynPrompt.zScannerAwaits);
if( ndp > ncp-3 ) return continuePrompt;
shell_strcpy(dynPrompt.dynamicPrompt, dynPrompt.zScannerAwaits);
while( ndp<3 ) dynPrompt.dynamicPrompt[ndp++] = ' ';
shell_strncpy(dynPrompt.dynamicPrompt+3, continuePrompt+3,
PROMPT_LEN_MAX-4);
}else{
if( dynPrompt.inParenLevel>9 ){
shell_strncpy(dynPrompt.dynamicPrompt, "(..", 4);
}else if( dynPrompt.inParenLevel<0 ){
shell_strncpy(dynPrompt.dynamicPrompt, ")x!", 4);
}else{
shell_strncpy(dynPrompt.dynamicPrompt, "(x.", 4);
dynPrompt.dynamicPrompt[2] = (char)('0'+dynPrompt.inParenLevel);
}
shell_strncpy(dynPrompt.dynamicPrompt+3, continuePrompt+3,
PROMPT_LEN_MAX-4);
}
}
return dynPrompt.dynamicPrompt;
}
#endif /* !defined(SQLITE_OMIT_DYNAPROMPT) */
/* Indicate out-of-memory and exit. */
static void shell_out_of_memory(void){
eputz("Error: out of memory\n");
exit(1);
}
/* Check a pointer to see if it is NULL. If it is NULL, exit with an
** out-of-memory error.
*/
static void shell_check_oom(const void *p){
if( p==0 ) shell_out_of_memory();
}
/*
** Write I/O traces to the following stream.
*/
#ifdef SQLITE_ENABLE_IOTRACE
static FILE *iotrace = 0;
#endif
/*
** This routine works like printf in that its first argument is a
** format string and subsequent arguments are values to be substituted
** in place of % fields. The result of formatting this string
** is written to iotrace.
*/
#ifdef SQLITE_ENABLE_IOTRACE
static void SQLITE_CDECL iotracePrintf(const char *zFormat, ...){
va_list ap;
char *z;
if( iotrace==0 ) return;
va_start(ap, zFormat);
z = sqlite3_vmprintf(zFormat, ap);
va_end(ap);
sqlite3_fprintf(iotrace, "%s", z);
sqlite3_free(z);
}
#endif
/* Lookup table to estimate the number of columns consumed by a Unicode
** character.
*/
static const struct {
unsigned char w; /* Width of the character in columns */
int iFirst; /* First character in a span having this width */
} aUWidth[] = {
/* {1, 0x00000}, */
{0, 0x00300}, {1, 0x00370}, {0, 0x00483}, {1, 0x00487}, {0, 0x00488},
{1, 0x0048a}, {0, 0x00591}, {1, 0x005be}, {0, 0x005bf}, {1, 0x005c0},
{0, 0x005c1}, {1, 0x005c3}, {0, 0x005c4}, {1, 0x005c6}, {0, 0x005c7},
{1, 0x005c8}, {0, 0x00600}, {1, 0x00604}, {0, 0x00610}, {1, 0x00616},
{0, 0x0064b}, {1, 0x0065f}, {0, 0x00670}, {1, 0x00671}, {0, 0x006d6},
{1, 0x006e5}, {0, 0x006e7}, {1, 0x006e9}, {0, 0x006ea}, {1, 0x006ee},
{0, 0x0070f}, {1, 0x00710}, {0, 0x00711}, {1, 0x00712}, {0, 0x00730},
{1, 0x0074b}, {0, 0x007a6}, {1, 0x007b1}, {0, 0x007eb}, {1, 0x007f4},
{0, 0x00901}, {1, 0x00903}, {0, 0x0093c}, {1, 0x0093d}, {0, 0x00941},
{1, 0x00949}, {0, 0x0094d}, {1, 0x0094e}, {0, 0x00951}, {1, 0x00955},
{0, 0x00962}, {1, 0x00964}, {0, 0x00981}, {1, 0x00982}, {0, 0x009bc},
{1, 0x009bd}, {0, 0x009c1}, {1, 0x009c5}, {0, 0x009cd}, {1, 0x009ce},
{0, 0x009e2}, {1, 0x009e4}, {0, 0x00a01}, {1, 0x00a03}, {0, 0x00a3c},
{1, 0x00a3d}, {0, 0x00a41}, {1, 0x00a43}, {0, 0x00a47}, {1, 0x00a49},
{0, 0x00a4b}, {1, 0x00a4e}, {0, 0x00a70}, {1, 0x00a72}, {0, 0x00a81},
{1, 0x00a83}, {0, 0x00abc}, {1, 0x00abd}, {0, 0x00ac1}, {1, 0x00ac6},
{0, 0x00ac7}, {1, 0x00ac9}, {0, 0x00acd}, {1, 0x00ace}, {0, 0x00ae2},
{1, 0x00ae4}, {0, 0x00b01}, {1, 0x00b02}, {0, 0x00b3c}, {1, 0x00b3d},
{0, 0x00b3f}, {1, 0x00b40}, {0, 0x00b41}, {1, 0x00b44}, {0, 0x00b4d},
{1, 0x00b4e}, {0, 0x00b56}, {1, 0x00b57}, {0, 0x00b82}, {1, 0x00b83},
{0, 0x00bc0}, {1, 0x00bc1}, {0, 0x00bcd}, {1, 0x00bce}, {0, 0x00c3e},
{1, 0x00c41}, {0, 0x00c46}, {1, 0x00c49}, {0, 0x00c4a}, {1, 0x00c4e},
{0, 0x00c55}, {1, 0x00c57}, {0, 0x00cbc}, {1, 0x00cbd}, {0, 0x00cbf},
{1, 0x00cc0}, {0, 0x00cc6}, {1, 0x00cc7}, {0, 0x00ccc}, {1, 0x00cce},
{0, 0x00ce2}, {1, 0x00ce4}, {0, 0x00d41}, {1, 0x00d44}, {0, 0x00d4d},
{1, 0x00d4e}, {0, 0x00dca}, {1, 0x00dcb}, {0, 0x00dd2}, {1, 0x00dd5},
{0, 0x00dd6}, {1, 0x00dd7}, {0, 0x00e31}, {1, 0x00e32}, {0, 0x00e34},
{1, 0x00e3b}, {0, 0x00e47}, {1, 0x00e4f}, {0, 0x00eb1}, {1, 0x00eb2},
{0, 0x00eb4}, {1, 0x00eba}, {0, 0x00ebb}, {1, 0x00ebd}, {0, 0x00ec8},
{1, 0x00ece}, {0, 0x00f18}, {1, 0x00f1a}, {0, 0x00f35}, {1, 0x00f36},
{0, 0x00f37}, {1, 0x00f38}, {0, 0x00f39}, {1, 0x00f3a}, {0, 0x00f71},
{1, 0x00f7f}, {0, 0x00f80}, {1, 0x00f85}, {0, 0x00f86}, {1, 0x00f88},
{0, 0x00f90}, {1, 0x00f98}, {0, 0x00f99}, {1, 0x00fbd}, {0, 0x00fc6},
{1, 0x00fc7}, {0, 0x0102d}, {1, 0x01031}, {0, 0x01032}, {1, 0x01033},
{0, 0x01036}, {1, 0x01038}, {0, 0x01039}, {1, 0x0103a}, {0, 0x01058},
{1, 0x0105a}, {2, 0x01100}, {0, 0x01160}, {1, 0x01200}, {0, 0x0135f},
{1, 0x01360}, {0, 0x01712}, {1, 0x01715}, {0, 0x01732}, {1, 0x01735},
{0, 0x01752}, {1, 0x01754}, {0, 0x01772}, {1, 0x01774}, {0, 0x017b4},
{1, 0x017b6}, {0, 0x017b7}, {1, 0x017be}, {0, 0x017c6}, {1, 0x017c7},
{0, 0x017c9}, {1, 0x017d4}, {0, 0x017dd}, {1, 0x017de}, {0, 0x0180b},
{1, 0x0180e}, {0, 0x018a9}, {1, 0x018aa}, {0, 0x01920}, {1, 0x01923},
{0, 0x01927}, {1, 0x01929}, {0, 0x01932}, {1, 0x01933}, {0, 0x01939},
{1, 0x0193c}, {0, 0x01a17}, {1, 0x01a19}, {0, 0x01b00}, {1, 0x01b04},
{0, 0x01b34}, {1, 0x01b35}, {0, 0x01b36}, {1, 0x01b3b}, {0, 0x01b3c},
{1, 0x01b3d}, {0, 0x01b42}, {1, 0x01b43}, {0, 0x01b6b}, {1, 0x01b74},
{0, 0x01dc0}, {1, 0x01dcb}, {0, 0x01dfe}, {1, 0x01e00}, {0, 0x0200b},
{1, 0x02010}, {0, 0x0202a}, {1, 0x0202f}, {0, 0x02060}, {1, 0x02064},
{0, 0x0206a}, {1, 0x02070}, {0, 0x020d0}, {1, 0x020f0}, {2, 0x02329},
{1, 0x0232b}, {2, 0x02e80}, {0, 0x0302a}, {2, 0x03030}, {1, 0x0303f},
{2, 0x03040}, {0, 0x03099}, {2, 0x0309b}, {1, 0x0a4d0}, {0, 0x0a806},
{1, 0x0a807}, {0, 0x0a80b}, {1, 0x0a80c}, {0, 0x0a825}, {1, 0x0a827},
{2, 0x0ac00}, {1, 0x0d7a4}, {2, 0x0f900}, {1, 0x0fb00}, {0, 0x0fb1e},
{1, 0x0fb1f}, {0, 0x0fe00}, {2, 0x0fe10}, {1, 0x0fe1a}, {0, 0x0fe20},
{1, 0x0fe24}, {2, 0x0fe30}, {1, 0x0fe70}, {0, 0x0feff}, {2, 0x0ff00},
{1, 0x0ff61}, {2, 0x0ffe0}, {1, 0x0ffe7}, {0, 0x0fff9}, {1, 0x0fffc},
{0, 0x10a01}, {1, 0x10a04}, {0, 0x10a05}, {1, 0x10a07}, {0, 0x10a0c},
{1, 0x10a10}, {0, 0x10a38}, {1, 0x10a3b}, {0, 0x10a3f}, {1, 0x10a40},
{0, 0x1d167}, {1, 0x1d16a}, {0, 0x1d173}, {1, 0x1d183}, {0, 0x1d185},
{1, 0x1d18c}, {0, 0x1d1aa}, {1, 0x1d1ae}, {0, 0x1d242}, {1, 0x1d245},
{2, 0x20000}, {1, 0x2fffe}, {2, 0x30000}, {1, 0x3fffe}, {0, 0xe0001},
{1, 0xe0002}, {0, 0xe0020}, {1, 0xe0080}, {0, 0xe0100}, {1, 0xe01f0}
};
/*
** Return an estimate of the width, in columns, for the single Unicode
** character c. For normal characters, the answer is always 1. But the
** estimate might be 0 or 2 for zero-width and double-width characters.
**
** Different display devices display unicode using different widths. So
** it is impossible to know that true display width with 100% accuracy.
** Inaccuracies in the width estimates might cause columns to be misaligned.
** Unfortunately, there is nothing we can do about that.
*/
int cli_wcwidth(int c){
int iFirst, iLast;
/* Fast path for common characters */
if( c<=0x300 ) return 1;
/* The general case */
iFirst = 0;
iLast = sizeof(aUWidth)/sizeof(aUWidth[0]) - 1;
while( iFirst<iLast-1 ){
int iMid = (iFirst+iLast)/2;
int cMid = aUWidth[iMid].iFirst;
if( cMid < c ){
iFirst = iMid;
}else if( cMid > c ){
iLast = iMid - 1;
}else{
return aUWidth[iMid].w;
}
}
if( aUWidth[iLast].iFirst > c ) return aUWidth[iFirst].w;
return aUWidth[iLast].w;
}
/*
** Compute the value and length of a multi-byte UTF-8 character that
** begins at z[0]. Return the length. Write the Unicode value into *pU.
**
** This routine only works for *multi-byte* UTF-8 characters.
*/
static int decodeUtf8(const unsigned char *z, int *pU){
if( (z[0] & 0xe0)==0xc0 && (z[1] & 0xc0)==0x80 ){
*pU = ((z[0] & 0x1f)<<6) | (z[1] & 0x3f);
return 2;
}
if( (z[0] & 0xf0)==0xe0 && (z[1] & 0xc0)==0x80 && (z[2] & 0xc0)==0x80 ){
*pU = ((z[0] & 0x0f)<<12) | ((z[1] & 0x3f)<<6) | (z[2] & 0x3f);
return 3;
}
if( (z[0] & 0xf8)==0xf0 && (z[1] & 0xc0)==0x80 && (z[2] & 0xc0)==0x80
&& (z[3] & 0xc0)==0x80
){
*pU = ((z[0] & 0x0f)<<18) | ((z[1] & 0x3f)<<12) | ((z[2] & 0x3f))<<6
| (z[4] & 0x3f);
return 4;
}
*pU = 0;
return 1;
}
#if 0 /* NOT USED */
/*
** Return the width, in display columns, of a UTF-8 string.
**
** Each normal character counts as 1. Zero-width characters count
** as zero, and double-width characters count as 2.
*/
int cli_wcswidth(const char *z){
const unsigned char *a = (const unsigned char*)z;
int n = 0;
int i = 0;
unsigned char c;
while( (c = a[i])!=0 ){
if( c>=0xc0 ){
int u;
int len = decodeUtf8(&a[i], &u);
i += len;
n += cli_wcwidth(u);
}else if( c>=' ' ){
n++;
i++;
}else{
i++;
}
}
return n;
}
#endif
/*
** Output string zUtf to stdout as w characters. If w is negative,
** then right-justify the text. W is the width in UTF-8 characters, not
** in bytes. This is different from the %*.*s specification in printf
** since with %*.*s the width is measured in bytes, not characters.
**
** Take into account zero-width and double-width Unicode characters.
** In other words, a zero-width character does not count toward the
** the w limit. A double-width character counts as two.
*/
static void utf8_width_print(FILE *out, int w, const char *zUtf){
const unsigned char *a = (const unsigned char*)zUtf;
unsigned char c;
int i = 0;
int n = 0;
int aw = w<0 ? -w : w;
if( zUtf==0 ) zUtf = "";
while( (c = a[i])!=0 ){
if( (c&0xc0)==0xc0 ){
int u;
int len = decodeUtf8(a+i, &u);
int x = cli_wcwidth(u);
if( x+n>aw ){
break;
}
i += len;
n += x;
}else if( n>=aw ){
break;
}else{
n++;
i++;
}
}
if( n>=aw ){
sqlite3_fprintf(out, "%.*s", i, zUtf);
}else if( w<0 ){
sqlite3_fprintf(out, "%*s%s", aw-n, "", zUtf);
}else{
sqlite3_fprintf(out, "%s%*s", zUtf, aw-n, "");
}
}
/*
** Determines if a string is a number of not.
*/
static int isNumber(const char *z, int *realnum){
if( *z=='-' || *z=='+' ) z++;
if( !IsDigit(*z) ){
return 0;
}
z++;
if( realnum ) *realnum = 0;
while( IsDigit(*z) ){ z++; }
if( *z=='.' ){
z++;
if( !IsDigit(*z) ) return 0;
while( IsDigit(*z) ){ z++; }
if( realnum ) *realnum = 1;
}
if( *z=='e' || *z=='E' ){
z++;
if( *z=='+' || *z=='-' ) z++;
if( !IsDigit(*z) ) return 0;
while( IsDigit(*z) ){ z++; }
if( realnum ) *realnum = 1;
}
return *z==0;
}
/*
** Compute a string length that is limited to what can be stored in
** lower 30 bits of a 32-bit signed integer.
*/
static int strlen30(const char *z){
const char *z2 = z;
while( *z2 ){ z2++; }
return 0x3fffffff & (int)(z2 - z);
}
/*
** Return the length of a string in characters. Multibyte UTF8 characters
** count as a single character.
*/
static int strlenChar(const char *z){
int n = 0;
while( *z ){
if( (0xc0&*(z++))!=0x80 ) n++;
}
return n;
}
/*
** Return open FILE * if zFile exists, can be opened for read
** and is an ordinary file or a character stream source.
** Otherwise return 0.
*/
static FILE * openChrSource(const char *zFile){
#if defined(_WIN32) || defined(WIN32)
struct __stat64 x = {0};
# define STAT_CHR_SRC(mode) ((mode & (_S_IFCHR|_S_IFIFO|_S_IFREG))!=0)
/* On Windows, open first, then check the stream nature. This order
** is necessary because _stat() and sibs, when checking a named pipe,
** effectively break the pipe as its supplier sees it. */
FILE *rv = sqlite3_fopen(zFile, "rb");
if( rv==0 ) return 0;
if( _fstat64(_fileno(rv), &x) != 0
|| !STAT_CHR_SRC(x.st_mode)){
fclose(rv);
rv = 0;
}
return rv;
#else
struct stat x = {0};
int rc = stat(zFile, &x);
# define STAT_CHR_SRC(mode) (S_ISREG(mode)||S_ISFIFO(mode)||S_ISCHR(mode))
if( rc!=0 ) return 0;
if( STAT_CHR_SRC(x.st_mode) ){
return sqlite3_fopen(zFile, "rb");
}else{
return 0;
}
#endif
#undef STAT_CHR_SRC
}
/*
** This routine reads a line of text from FILE in, stores
** the text in memory obtained from malloc() and returns a pointer
** to the text. NULL is returned at end of file, or if malloc()
** fails.
**
** If zLine is not NULL then it is a malloced buffer returned from
** a previous call to this routine that may be reused.
*/
static char *local_getline(char *zLine, FILE *in){
int nLine = zLine==0 ? 0 : 100;
int n = 0;
while( 1 ){
if( n+100>nLine ){
nLine = nLine*2 + 100;
zLine = realloc(zLine, nLine);
shell_check_oom(zLine);
}
if( sqlite3_fgets(&zLine[n], nLine - n, in)==0 ){
if( n==0 ){
free(zLine);
return 0;
}
zLine[n] = 0;
break;
}
while( zLine[n] ) n++;
if( n>0 && zLine[n-1]=='\n' ){
n--;
if( n>0 && zLine[n-1]=='\r' ) n--;
zLine[n] = 0;
break;
}
}
return zLine;
}
/*
** Retrieve a single line of input text.
**
** If in==0 then read from standard input and prompt before each line.
** If isContinuation is true, then a continuation prompt is appropriate.
** If isContinuation is zero, then the main prompt should be used.
**
** If zPrior is not NULL then it is a buffer from a prior call to this
** routine that can be reused.
**
** The result is stored in space obtained from malloc() and must either
** be freed by the caller or else passed back into this routine via the
** zPrior argument for reuse.
*/
#ifndef SQLITE_SHELL_FIDDLE
static char *one_input_line(FILE *in, char *zPrior, int isContinuation){
char *zPrompt;
char *zResult;
if( in!=0 ){
zResult = local_getline(zPrior, in);
}else{
zPrompt = isContinuation ? CONTINUATION_PROMPT : mainPrompt;
#if SHELL_USE_LOCAL_GETLINE
sputz(stdout, zPrompt);
fflush(stdout);
do{
zResult = local_getline(zPrior, stdin);
zPrior = 0;
/* ^C trap creates a false EOF, so let "interrupt" thread catch up. */
if( zResult==0 ) sqlite3_sleep(50);
}while( zResult==0 && seenInterrupt>0 );
#else
free(zPrior);
zResult = shell_readline(zPrompt);
while( zResult==0 ){
/* ^C trap creates a false EOF, so let "interrupt" thread catch up. */
sqlite3_sleep(50);
if( seenInterrupt==0 ) break;
zResult = shell_readline("");
}
if( zResult && *zResult ) shell_add_history(zResult);
#endif
}
return zResult;
}
#endif /* !SQLITE_SHELL_FIDDLE */
/*
** Return the value of a hexadecimal digit. Return -1 if the input
** is not a hex digit.
*/
static int hexDigitValue(char c){
if( c>='0' && c<='9' ) return c - '0';
if( c>='a' && c<='f' ) return c - 'a' + 10;
if( c>='A' && c<='F' ) return c - 'A' + 10;
return -1;
}
/*
** Interpret zArg as an integer value, possibly with suffixes.
*/
static sqlite3_int64 integerValue(const char *zArg){
sqlite3_int64 v = 0;
static const struct { char *zSuffix; int iMult; } aMult[] = {
{ "KiB", 1024 },
{ "MiB", 1024*1024 },
{ "GiB", 1024*1024*1024 },
{ "KB", 1000 },
{ "MB", 1000000 },
{ "GB", 1000000000 },
{ "K", 1000 },
{ "M", 1000000 },
{ "G", 1000000000 },
};
int i;
int isNeg = 0;
if( zArg[0]=='-' ){
isNeg = 1;
zArg++;
}else if( zArg[0]=='+' ){
zArg++;
}
if( zArg[0]=='0' && zArg[1]=='x' ){
int x;
zArg += 2;
while( (x = hexDigitValue(zArg[0]))>=0 ){
v = (v<<4) + x;
zArg++;
}
}else{
while( IsDigit(zArg[0]) ){
v = v*10 + zArg[0] - '0';
zArg++;
}
}
for(i=0; i<ArraySize(aMult); i++){
if( sqlite3_stricmp(aMult[i].zSuffix, zArg)==0 ){
v *= aMult[i].iMult;
break;
}
}
return isNeg? -v : v;
}
/*
** A variable length string to which one can append text.
*/
typedef struct ShellText ShellText;
struct ShellText {
char *z;
int n;
int nAlloc;
};
/*
** Initialize and destroy a ShellText object
*/
static void initText(ShellText *p){
memset(p, 0, sizeof(*p));
}
static void freeText(ShellText *p){
free(p->z);
initText(p);
}
/* zIn is either a pointer to a NULL-terminated string in memory obtained
** from malloc(), or a NULL pointer. The string pointed to by zAppend is
** added to zIn, and the result returned in memory obtained from malloc().
** zIn, if it was not NULL, is freed.
**
** If the third argument, quote, is not '\0', then it is used as a
** quote character for zAppend.
*/
static void appendText(ShellText *p, const char *zAppend, char quote){
i64 len;
i64 i;
i64 nAppend = strlen30(zAppend);
len = nAppend+p->n+1;
if( quote ){
len += 2;
for(i=0; i<nAppend; i++){
if( zAppend[i]==quote ) len++;
}
}
if( p->z==0 || p->n+len>=p->nAlloc ){
p->nAlloc = p->nAlloc*2 + len + 20;
p->z = realloc(p->z, p->nAlloc);
shell_check_oom(p->z);
}
if( quote ){
char *zCsr = p->z+p->n;
*zCsr++ = quote;
for(i=0; i<nAppend; i++){
*zCsr++ = zAppend[i];
if( zAppend[i]==quote ) *zCsr++ = quote;
}
*zCsr++ = quote;
p->n = (int)(zCsr - p->z);
*zCsr = '\0';
}else{
memcpy(p->z+p->n, zAppend, nAppend);
p->n += nAppend;
p->z[p->n] = '\0';
}
}
/*
** Attempt to determine if identifier zName needs to be quoted, either
** because it contains non-alphanumeric characters, or because it is an
** SQLite keyword. Be conservative in this estimate: When in doubt assume
** that quoting is required.
**
** Return '"' if quoting is required. Return 0 if no quoting is required.
*/
static char quoteChar(const char *zName){
int i;
if( zName==0 ) return '"';
if( !isalpha((unsigned char)zName[0]) && zName[0]!='_' ) return '"';
for(i=0; zName[i]; i++){
if( !isalnum((unsigned char)zName[i]) && zName[i]!='_' ) return '"';
}
return sqlite3_keyword_check(zName, i) ? '"' : 0;
}
/*
** Construct a fake object name and column list to describe the structure
** of the view, virtual table, or table valued function zSchema.zName.
*/
static char *shellFakeSchema(
sqlite3 *db, /* The database connection containing the vtab */
const char *zSchema, /* Schema of the database holding the vtab */
const char *zName /* The name of the virtual table */
){
sqlite3_stmt *pStmt = 0;
char *zSql;
ShellText s;
char cQuote;
char *zDiv = "(";
int nRow = 0;
zSql = sqlite3_mprintf("PRAGMA \"%w\".table_info=%Q;",
zSchema ? zSchema : "main", zName);
shell_check_oom(zSql);
sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0);
sqlite3_free(zSql);
initText(&s);
if( zSchema ){
cQuote = quoteChar(zSchema);
if( cQuote && sqlite3_stricmp(zSchema,"temp")==0 ) cQuote = 0;
appendText(&s, zSchema, cQuote);
appendText(&s, ".", 0);
}
cQuote = quoteChar(zName);
appendText(&s, zName, cQuote);
while( sqlite3_step(pStmt)==SQLITE_ROW ){
const char *zCol = (const char*)sqlite3_column_text(pStmt, 1);
nRow++;
appendText(&s, zDiv, 0);
zDiv = ",";
if( zCol==0 ) zCol = "";
cQuote = quoteChar(zCol);
appendText(&s, zCol, cQuote);
}
appendText(&s, ")", 0);
sqlite3_finalize(pStmt);
if( nRow==0 ){
freeText(&s);
s.z = 0;
}
return s.z;
}
/*
** SQL function: strtod(X)
**
** Use the C-library strtod() function to convert string X into a double.
** Used for comparing the accuracy of SQLite's internal text-to-float conversion
** routines against the C-library.
*/
static void shellStrtod(
sqlite3_context *pCtx,
int nVal,
sqlite3_value **apVal
){
char *z = (char*)sqlite3_value_text(apVal[0]);
UNUSED_PARAMETER(nVal);
if( z==0 ) return;
sqlite3_result_double(pCtx, strtod(z,0));
}
/*
** SQL function: dtostr(X)
**
** Use the C-library printf() function to convert real value X into a string.
** Used for comparing the accuracy of SQLite's internal float-to-text conversion
** routines against the C-library.
*/
static void shellDtostr(
sqlite3_context *pCtx,
int nVal,
sqlite3_value **apVal
){
double r = sqlite3_value_double(apVal[0]);
int n = nVal>=2 ? sqlite3_value_int(apVal[1]) : 26;
char z[400];
if( n<1 ) n = 1;
if( n>350 ) n = 350;
sqlite3_snprintf(sizeof(z), z, "%#+.*e", n, r);
sqlite3_result_text(pCtx, z, -1, SQLITE_TRANSIENT);
}
/*
** SQL function: shell_module_schema(X)
**
** Return a fake schema for the table-valued function or eponymous virtual
** table X.
*/
static void shellModuleSchema(
sqlite3_context *pCtx,
int nVal,
sqlite3_value **apVal
){
const char *zName;
char *zFake;
UNUSED_PARAMETER(nVal);
zName = (const char*)sqlite3_value_text(apVal[0]);
zFake = zName? shellFakeSchema(sqlite3_context_db_handle(pCtx), 0, zName) : 0;
if( zFake ){
sqlite3_result_text(pCtx, sqlite3_mprintf("/* %s */", zFake),
-1, sqlite3_free);
free(zFake);
}
}
/*
** SQL function: shell_add_schema(S,X)
**
** Add the schema name X to the CREATE statement in S and return the result.
** Examples:
**
** CREATE TABLE t1(x) -> CREATE TABLE xyz.t1(x);
**
** Also works on
**
** CREATE INDEX
** CREATE UNIQUE INDEX
** CREATE VIEW
** CREATE TRIGGER
** CREATE VIRTUAL TABLE
**
** This UDF is used by the .schema command to insert the schema name of
** attached databases into the middle of the sqlite_schema.sql field.
*/
static void shellAddSchemaName(
sqlite3_context *pCtx,
int nVal,
sqlite3_value **apVal
){
static const char *aPrefix[] = {
"TABLE",
"INDEX",
"UNIQUE INDEX",
"VIEW",
"TRIGGER",
"VIRTUAL TABLE"
};
int i = 0;
const char *zIn = (const char*)sqlite3_value_text(apVal[0]);
const char *zSchema = (const char*)sqlite3_value_text(apVal[1]);
const char *zName = (const char*)sqlite3_value_text(apVal[2]);
sqlite3 *db = sqlite3_context_db_handle(pCtx);
UNUSED_PARAMETER(nVal);
if( zIn!=0 && cli_strncmp(zIn, "CREATE ", 7)==0 ){
for(i=0; i<ArraySize(aPrefix); i++){
int n = strlen30(aPrefix[i]);
if( cli_strncmp(zIn+7, aPrefix[i], n)==0 && zIn[n+7]==' ' ){
char *z = 0;
char *zFake = 0;
if( zSchema ){
char cQuote = quoteChar(zSchema);
if( cQuote && sqlite3_stricmp(zSchema,"temp")!=0 ){
z = sqlite3_mprintf("%.*s \"%w\".%s", n+7, zIn, zSchema, zIn+n+8);
}else{
z = sqlite3_mprintf("%.*s %s.%s", n+7, zIn, zSchema, zIn+n+8);
}
}
if( zName
&& aPrefix[i][0]=='V'
&& (zFake = shellFakeSchema(db, zSchema, zName))!=0
){
if( z==0 ){
z = sqlite3_mprintf("%s\n/* %s */", zIn, zFake);
}else{
z = sqlite3_mprintf("%z\n/* %s */", z, zFake);
}
free(zFake);
}
if( z ){
sqlite3_result_text(pCtx, z, -1, sqlite3_free);
return;
}
}
}
}
sqlite3_result_value(pCtx, apVal[0]);
}
/*
** The source code for several run-time loadable extensions is inserted
** below by the ../tool/mkshellc.tcl script. Before processing that included
** code, we need to override some macros to make the included program code
** work here in the middle of this regular program.
*/
#define SQLITE_EXTENSION_INIT1
#define SQLITE_EXTENSION_INIT2(X) (void)(X)
#if defined(_WIN32) && defined(_MSC_VER)
/************************* Begin test_windirent.h ******************/
/*
** 2015 November 30
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains declarations for most of the opendir() family of
** POSIX functions on Win32 using the MSVCRT.
*/
#if defined(_WIN32) && defined(_MSC_VER) && !defined(SQLITE_WINDIRENT_H)
#define SQLITE_WINDIRENT_H
/*
** We need several data types from the Windows SDK header.
*/
#ifndef WIN32_LEAN_AND_MEAN
#define WIN32_LEAN_AND_MEAN
#endif
#include "windows.h"
/*
** We need several support functions from the SQLite core.
*/
/* #include "sqlite3.h" */
/*
** We need several things from the ANSI and MSVCRT headers.
*/
#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <io.h>
#include <limits.h>
#include <sys/types.h>
#include <sys/stat.h>
/*
** We may need several defines that should have been in "sys/stat.h".
*/
#ifndef S_ISREG
#define S_ISREG(mode) (((mode) & S_IFMT) == S_IFREG)
#endif
#ifndef S_ISDIR
#define S_ISDIR(mode) (((mode) & S_IFMT) == S_IFDIR)
#endif
#ifndef S_ISLNK
#define S_ISLNK(mode) (0)
#endif
/*
** We may need to provide the "mode_t" type.
*/
#ifndef MODE_T_DEFINED
#define MODE_T_DEFINED
typedef unsigned short mode_t;
#endif
/*
** We may need to provide the "ino_t" type.
*/
#ifndef INO_T_DEFINED
#define INO_T_DEFINED
typedef unsigned short ino_t;
#endif
/*
** We need to define "NAME_MAX" if it was not present in "limits.h".
*/
#ifndef NAME_MAX
# ifdef FILENAME_MAX
# define NAME_MAX (FILENAME_MAX)
# else
# define NAME_MAX (260)
# endif
#endif
/*
** We need to define "NULL_INTPTR_T" and "BAD_INTPTR_T".
*/
#ifndef NULL_INTPTR_T
# define NULL_INTPTR_T ((intptr_t)(0))
#endif
#ifndef BAD_INTPTR_T
# define BAD_INTPTR_T ((intptr_t)(-1))
#endif
/*
** We need to provide the necessary structures and related types.
*/
#ifndef DIRENT_DEFINED
#define DIRENT_DEFINED
typedef struct DIRENT DIRENT;
typedef DIRENT *LPDIRENT;
struct DIRENT {
ino_t d_ino; /* Sequence number, do not use. */
unsigned d_attributes; /* Win32 file attributes. */
char d_name[NAME_MAX + 1]; /* Name within the directory. */
};
#endif
#ifndef DIR_DEFINED
#define DIR_DEFINED
typedef struct DIR DIR;
typedef DIR *LPDIR;
struct DIR {
intptr_t d_handle; /* Value returned by "_findfirst". */
DIRENT d_first; /* DIRENT constructed based on "_findfirst". */
DIRENT d_next; /* DIRENT constructed based on "_findnext". */
};
#endif
/*
** Provide a macro, for use by the implementation, to determine if a
** particular directory entry should be skipped over when searching for
** the next directory entry that should be returned by the readdir() or
** readdir_r() functions.
*/
#ifndef is_filtered
# define is_filtered(a) ((((a).attrib)&_A_HIDDEN) || (((a).attrib)&_A_SYSTEM))
#endif
/*
** Provide the function prototype for the POSIX compatible getenv()
** function. This function is not thread-safe.
*/
extern const char *windirent_getenv(const char *name);
/*
** Finally, we can provide the function prototypes for the opendir(),
** readdir(), readdir_r(), and closedir() POSIX functions.
*/
extern LPDIR opendir(const char *dirname);
extern LPDIRENT readdir(LPDIR dirp);
extern INT readdir_r(LPDIR dirp, LPDIRENT entry, LPDIRENT *result);
extern INT closedir(LPDIR dirp);
#endif /* defined(WIN32) && defined(_MSC_VER) */
/************************* End test_windirent.h ********************/
/************************* Begin test_windirent.c ******************/
/*
** 2015 November 30
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains code to implement most of the opendir() family of
** POSIX functions on Win32 using the MSVCRT.
*/
#if defined(_WIN32) && defined(_MSC_VER)
/* #include "test_windirent.h" */
/*
** Implementation of the POSIX getenv() function using the Win32 API.
** This function is not thread-safe.
*/
const char *windirent_getenv(
const char *name
){
static char value[32768]; /* Maximum length, per MSDN */
DWORD dwSize = sizeof(value) / sizeof(char); /* Size in chars */
DWORD dwRet; /* Value returned by GetEnvironmentVariableA() */
memset(value, 0, sizeof(value));
dwRet = GetEnvironmentVariableA(name, value, dwSize);
if( dwRet==0 || dwRet>dwSize ){
/*
** The function call to GetEnvironmentVariableA() failed -OR-
** the buffer is not large enough. Either way, return NULL.
*/
return 0;
}else{
/*
** The function call to GetEnvironmentVariableA() succeeded
** -AND- the buffer contains the entire value.
*/
return value;
}
}
/*
** Implementation of the POSIX opendir() function using the MSVCRT.
*/
LPDIR opendir(
const char *dirname
){
struct _finddata_t data;
LPDIR dirp = (LPDIR)sqlite3_malloc(sizeof(DIR));
SIZE_T namesize = sizeof(data.name) / sizeof(data.name[0]);
if( dirp==NULL ) return NULL;
memset(dirp, 0, sizeof(DIR));
/* TODO: Remove this if Unix-style root paths are not used. */
if( sqlite3_stricmp(dirname, "/")==0 ){
dirname = windirent_getenv("SystemDrive");
}
memset(&data, 0, sizeof(struct _finddata_t));
_snprintf(data.name, namesize, "%s\\*", dirname);
dirp->d_handle = _findfirst(data.name, &data);
if( dirp->d_handle==BAD_INTPTR_T ){
closedir(dirp);
return NULL;
}
/* TODO: Remove this block to allow hidden and/or system files. */
if( is_filtered(data) ){
next:
memset(&data, 0, sizeof(struct _finddata_t));
if( _findnext(dirp->d_handle, &data)==-1 ){
closedir(dirp);
return NULL;
}
/* TODO: Remove this block to allow hidden and/or system files. */
if( is_filtered(data) ) goto next;
}
dirp->d_first.d_attributes = data.attrib;
strncpy(dirp->d_first.d_name, data.name, NAME_MAX);
dirp->d_first.d_name[NAME_MAX] = '\0';
return dirp;
}
/*
** Implementation of the POSIX readdir() function using the MSVCRT.
*/
LPDIRENT readdir(
LPDIR dirp
){
struct _finddata_t data;
if( dirp==NULL ) return NULL;
if( dirp->d_first.d_ino==0 ){
dirp->d_first.d_ino++;
dirp->d_next.d_ino++;
return &dirp->d_first;
}
next:
memset(&data, 0, sizeof(struct _finddata_t));
if( _findnext(dirp->d_handle, &data)==-1 ) return NULL;
/* TODO: Remove this block to allow hidden and/or system files. */
if( is_filtered(data) ) goto next;
dirp->d_next.d_ino++;
dirp->d_next.d_attributes = data.attrib;
strncpy(dirp->d_next.d_name, data.name, NAME_MAX);
dirp->d_next.d_name[NAME_MAX] = '\0';
return &dirp->d_next;
}
/*
** Implementation of the POSIX readdir_r() function using the MSVCRT.
*/
INT readdir_r(
LPDIR dirp,
LPDIRENT entry,
LPDIRENT *result
){
struct _finddata_t data;
if( dirp==NULL ) return EBADF;
if( dirp->d_first.d_ino==0 ){
dirp->d_first.d_ino++;
dirp->d_next.d_ino++;
entry->d_ino = dirp->d_first.d_ino;
entry->d_attributes = dirp->d_first.d_attributes;
strncpy(entry->d_name, dirp->d_first.d_name, NAME_MAX);
entry->d_name[NAME_MAX] = '\0';
*result = entry;
return 0;
}
next:
memset(&data, 0, sizeof(struct _finddata_t));
if( _findnext(dirp->d_handle, &data)==-1 ){
*result = NULL;
return ENOENT;
}
/* TODO: Remove this block to allow hidden and/or system files. */
if( is_filtered(data) ) goto next;
entry->d_ino = (ino_t)-1; /* not available */
entry->d_attributes = data.attrib;
strncpy(entry->d_name, data.name, NAME_MAX);
entry->d_name[NAME_MAX] = '\0';
*result = entry;
return 0;
}
/*
** Implementation of the POSIX closedir() function using the MSVCRT.
*/
INT closedir(
LPDIR dirp
){
INT result = 0;
if( dirp==NULL ) return EINVAL;
if( dirp->d_handle!=NULL_INTPTR_T && dirp->d_handle!=BAD_INTPTR_T ){
result = _findclose(dirp->d_handle);
}
sqlite3_free(dirp);
return result;
}
#endif /* defined(WIN32) && defined(_MSC_VER) */
/************************* End test_windirent.c ********************/
#define dirent DIRENT
#endif
/************************* Begin ../ext/misc/memtrace.c ******************/
/*
** 2019-01-21
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
**
** This file implements an extension that uses the SQLITE_CONFIG_MALLOC
** mechanism to add a tracing layer on top of SQLite. If this extension
** is registered prior to sqlite3_initialize(), it will cause all memory
** allocation activities to be logged on standard output, or to some other
** FILE specified by the initializer.
**
** This file needs to be compiled into the application that uses it.
**
** This extension is used to implement the --memtrace option of the
** command-line shell.
*/
#include <assert.h>
#include <string.h>
#include <stdio.h>
/* The original memory allocation routines */
static sqlite3_mem_methods memtraceBase;
static FILE *memtraceOut;
/* Methods that trace memory allocations */
static void *memtraceMalloc(int n){
if( memtraceOut ){
fprintf(memtraceOut, "MEMTRACE: allocate %d bytes\n",
memtraceBase.xRoundup(n));
}
return memtraceBase.xMalloc(n);
}
static void memtraceFree(void *p){
if( p==0 ) return;
if( memtraceOut ){
fprintf(memtraceOut, "MEMTRACE: free %d bytes\n", memtraceBase.xSize(p));
}
memtraceBase.xFree(p);
}
static void *memtraceRealloc(void *p, int n){
if( p==0 ) return memtraceMalloc(n);
if( n==0 ){
memtraceFree(p);
return 0;
}
if( memtraceOut ){
fprintf(memtraceOut, "MEMTRACE: resize %d -> %d bytes\n",
memtraceBase.xSize(p), memtraceBase.xRoundup(n));
}
return memtraceBase.xRealloc(p, n);
}
static int memtraceSize(void *p){
return memtraceBase.xSize(p);
}
static int memtraceRoundup(int n){
return memtraceBase.xRoundup(n);
}
static int memtraceInit(void *p){
return memtraceBase.xInit(p);
}
static void memtraceShutdown(void *p){
memtraceBase.xShutdown(p);
}
/* The substitute memory allocator */
static sqlite3_mem_methods ersaztMethods = {
memtraceMalloc,
memtraceFree,
memtraceRealloc,
memtraceSize,
memtraceRoundup,
memtraceInit,
memtraceShutdown,
0
};
/* Begin tracing memory allocations to out. */
int sqlite3MemTraceActivate(FILE *out){
int rc = SQLITE_OK;
if( memtraceBase.xMalloc==0 ){
rc = sqlite3_config(SQLITE_CONFIG_GETMALLOC, &memtraceBase);
if( rc==SQLITE_OK ){
rc = sqlite3_config(SQLITE_CONFIG_MALLOC, &ersaztMethods);
}
}
memtraceOut = out;
return rc;
}
/* Deactivate memory tracing */
int sqlite3MemTraceDeactivate(void){
int rc = SQLITE_OK;
if( memtraceBase.xMalloc!=0 ){
rc = sqlite3_config(SQLITE_CONFIG_MALLOC, &memtraceBase);
if( rc==SQLITE_OK ){
memset(&memtraceBase, 0, sizeof(memtraceBase));
}
}
memtraceOut = 0;
return rc;
}
/************************* End ../ext/misc/memtrace.c ********************/
/************************* Begin ../ext/misc/pcachetrace.c ******************/
/*
** 2023-06-21
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
**
** This file implements an extension that uses the SQLITE_CONFIG_PCACHE2
** mechanism to add a tracing layer on top of pluggable page cache of
** SQLite. If this extension is registered prior to sqlite3_initialize(),
** it will cause all page cache activities to be logged on standard output,
** or to some other FILE specified by the initializer.
**
** This file needs to be compiled into the application that uses it.
**
** This extension is used to implement the --pcachetrace option of the
** command-line shell.
*/
#include <assert.h>
#include <string.h>
#include <stdio.h>
/* The original page cache routines */
static sqlite3_pcache_methods2 pcacheBase;
static FILE *pcachetraceOut;
/* Methods that trace pcache activity */
static int pcachetraceInit(void *pArg){
int nRes;
if( pcachetraceOut ){
fprintf(pcachetraceOut, "PCACHETRACE: xInit(%p)\n", pArg);
}
nRes = pcacheBase.xInit(pArg);
if( pcachetraceOut ){
fprintf(pcachetraceOut, "PCACHETRACE: xInit(%p) -> %d\n", pArg, nRes);
}
return nRes;
}
static void pcachetraceShutdown(void *pArg){
if( pcachetraceOut ){
fprintf(pcachetraceOut, "PCACHETRACE: xShutdown(%p)\n", pArg);
}
pcacheBase.xShutdown(pArg);
}
static sqlite3_pcache *pcachetraceCreate(int szPage, int szExtra, int bPurge){
sqlite3_pcache *pRes;
if( pcachetraceOut ){
fprintf(pcachetraceOut, "PCACHETRACE: xCreate(%d,%d,%d)\n",
szPage, szExtra, bPurge);
}
pRes = pcacheBase.xCreate(szPage, szExtra, bPurge);
if( pcachetraceOut ){
fprintf(pcachetraceOut, "PCACHETRACE: xCreate(%d,%d,%d) -> %p\n",
szPage, szExtra, bPurge, pRes);
}
return pRes;
}
static void pcachetraceCachesize(sqlite3_pcache *p, int nCachesize){
if( pcachetraceOut ){
fprintf(pcachetraceOut, "PCACHETRACE: xCachesize(%p, %d)\n", p, nCachesize);
}
pcacheBase.xCachesize(p, nCachesize);
}
static int pcachetracePagecount(sqlite3_pcache *p){
int nRes;
if( pcachetraceOut ){
fprintf(pcachetraceOut, "PCACHETRACE: xPagecount(%p)\n", p);
}
nRes = pcacheBase.xPagecount(p);
if( pcachetraceOut ){
fprintf(pcachetraceOut, "PCACHETRACE: xPagecount(%p) -> %d\n", p, nRes);
}
return nRes;
}
static sqlite3_pcache_page *pcachetraceFetch(
sqlite3_pcache *p,
unsigned key,
int crFg
){
sqlite3_pcache_page *pRes;
if( pcachetraceOut ){
fprintf(pcachetraceOut, "PCACHETRACE: xFetch(%p,%u,%d)\n", p, key, crFg);
}
pRes = pcacheBase.xFetch(p, key, crFg);
if( pcachetraceOut ){
fprintf(pcachetraceOut, "PCACHETRACE: xFetch(%p,%u,%d) -> %p\n",
p, key, crFg, pRes);
}
return pRes;
}
static void pcachetraceUnpin(
sqlite3_pcache *p,
sqlite3_pcache_page *pPg,
int bDiscard
){
if( pcachetraceOut ){
fprintf(pcachetraceOut, "PCACHETRACE: xUnpin(%p, %p, %d)\n",
p, pPg, bDiscard);
}
pcacheBase.xUnpin(p, pPg, bDiscard);
}
static void pcachetraceRekey(
sqlite3_pcache *p,
sqlite3_pcache_page *pPg,
unsigned oldKey,
unsigned newKey
){
if( pcachetraceOut ){
fprintf(pcachetraceOut, "PCACHETRACE: xRekey(%p, %p, %u, %u)\n",
p, pPg, oldKey, newKey);
}
pcacheBase.xRekey(p, pPg, oldKey, newKey);
}
static void pcachetraceTruncate(sqlite3_pcache *p, unsigned n){
if( pcachetraceOut ){
fprintf(pcachetraceOut, "PCACHETRACE: xTruncate(%p, %u)\n", p, n);
}
pcacheBase.xTruncate(p, n);
}
static void pcachetraceDestroy(sqlite3_pcache *p){
if( pcachetraceOut ){
fprintf(pcachetraceOut, "PCACHETRACE: xDestroy(%p)\n", p);
}
pcacheBase.xDestroy(p);
}
static void pcachetraceShrink(sqlite3_pcache *p){
if( pcachetraceOut ){
fprintf(pcachetraceOut, "PCACHETRACE: xShrink(%p)\n", p);
}
pcacheBase.xShrink(p);
}
/* The substitute pcache methods */
static sqlite3_pcache_methods2 ersaztPcacheMethods = {
0,
0,
pcachetraceInit,
pcachetraceShutdown,
pcachetraceCreate,
pcachetraceCachesize,
pcachetracePagecount,
pcachetraceFetch,
pcachetraceUnpin,
pcachetraceRekey,
pcachetraceTruncate,
pcachetraceDestroy,
pcachetraceShrink
};
/* Begin tracing memory allocations to out. */
int sqlite3PcacheTraceActivate(FILE *out){
int rc = SQLITE_OK;
if( pcacheBase.xFetch==0 ){
rc = sqlite3_config(SQLITE_CONFIG_GETPCACHE2, &pcacheBase);
if( rc==SQLITE_OK ){
rc = sqlite3_config(SQLITE_CONFIG_PCACHE2, &ersaztPcacheMethods);
}
}
pcachetraceOut = out;
return rc;
}
/* Deactivate memory tracing */
int sqlite3PcacheTraceDeactivate(void){
int rc = SQLITE_OK;
if( pcacheBase.xFetch!=0 ){
rc = sqlite3_config(SQLITE_CONFIG_PCACHE2, &pcacheBase);
if( rc==SQLITE_OK ){
memset(&pcacheBase, 0, sizeof(pcacheBase));
}
}
pcachetraceOut = 0;
return rc;
}
/************************* End ../ext/misc/pcachetrace.c ********************/
/************************* Begin ../ext/misc/shathree.c ******************/
/*
** 2017-03-08
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
******************************************************************************
**
** This SQLite extension implements functions that compute SHA3 hashes
** in the way described by the (U.S.) NIST FIPS 202 SHA-3 Standard.
** Three SQL functions are implemented:
**
** sha3(X,SIZE)
** sha3_agg(Y,SIZE)
** sha3_query(Z,SIZE)
**
** The sha3(X) function computes the SHA3 hash of the input X, or NULL if
** X is NULL. If inputs X is text, the UTF-8 rendering of that text is
** used to compute the hash. If X is a BLOB, then the binary data of the
** blob is used to compute the hash. If X is an integer or real number,
** then that number if converted into UTF-8 text and the hash is computed
** over the text.
**
** The sha3_agg(Y) function computes the SHA3 hash of all Y inputs. Since
** order is important for the hash, it is recommended that the Y expression
** by followed by an ORDER BY clause to guarantee that the inputs occur
** in the desired order.
**
** The sha3_query(Y) function evaluates all queries in the SQL statements of Y
** and returns a hash of their results.
**
** The SIZE argument is optional. If omitted, the SHA3-256 hash algorithm
** is used. If SIZE is included it must be one of the integers 224, 256,
** 384, or 512, to determine SHA3 hash variant that is computed.
**
** Because the sha3_agg() and sha3_query() functions compute a hash over
** multiple values, the values are encode to use include type information.
**
** In sha3_agg(), the sequence of bytes that gets hashed for each input
** Y depends on the datatype of Y:
**
** typeof(Y)='null' A single "N" is hashed. (One byte)
**
** typeof(Y)='integer' The data hash is the character "I" followed
** by an 8-byte big-endian binary of the
** 64-bit signed integer. (Nine bytes total.)
**
** typeof(Y)='real' The character "F" followed by an 8-byte
** big-ending binary of the double. (Nine
** bytes total.)
**
** typeof(Y)='text' The hash is over prefix "Tnnn:" followed
** by the UTF8 encoding of the text. The "nnn"
** in the prefix is the minimum-length decimal
** representation of the octet_length of the text.
** Notice the ":" at the end of the prefix, which
** is needed to separate the prefix from the
** content in cases where the content starts
** with a digit.
**
** typeof(Y)='blob' The hash is taken over prefix "Bnnn:" followed
** by the binary content of the blob. The "nnn"
** in the prefix is the mimimum-length decimal
** representation of the byte-length of the blob.
**
** According to the rules above, all of the following SELECT statements
** should return TRUE:
**
** SELECT sha3(1) = sha3('1');
**
** SELECT sha3('hello') = sha3(x'68656c6c6f');
**
** WITH a(x) AS (VALUES('xyzzy'))
** SELECT sha3_agg(x) = sha3('T5:xyzzy') FROM a;
**
** WITH a(x) AS (VALUES(x'010203'))
** SELECT sha3_agg(x) = sha3(x'42333a010203') FROM a;
**
** WITH a(x) AS (VALUES(0x123456))
** SELECT sha3_agg(x) = sha3(x'490000000000123456') FROM a;
**
** WITH a(x) AS (VALUES(100.015625))
** SELECT sha3_agg(x) = sha3(x'464059010000000000') FROM a;
**
** WITH a(x) AS (VALUES(NULL))
** SELECT sha3_agg(x) = sha3('N') FROM a;
**
**
** In sha3_query(), individual column values are encoded as with
** sha3_agg(), but with the addition that a single "R" character is
** inserted at the start of each row.
**
** Note that sha3_agg() hashes rows for which Y is NULL. Add a FILTER
** clause if NULL rows should be excluded:
**
** SELECT sha3_agg(x ORDER BY rowid) FILTER(WHERE x NOT NULL) FROM t1;
*/
/* #include "sqlite3ext.h" */
SQLITE_EXTENSION_INIT1
#include <assert.h>
#include <string.h>
#include <stdarg.h>
#ifndef SQLITE_AMALGAMATION
/* typedef sqlite3_uint64 u64; */
#endif /* SQLITE_AMALGAMATION */
/******************************************************************************
** The Hash Engine
*/
/*
** Macros to determine whether the machine is big or little endian,
** and whether or not that determination is run-time or compile-time.
**
** For best performance, an attempt is made to guess at the byte-order
** using C-preprocessor macros. If that is unsuccessful, or if
** -DSHA3_BYTEORDER=0 is set, then byte-order is determined
** at run-time.
*/
#ifndef SHA3_BYTEORDER
# if defined(i386) || defined(__i386__) || defined(_M_IX86) || \
defined(__x86_64) || defined(__x86_64__) || defined(_M_X64) || \
defined(_M_AMD64) || defined(_M_ARM) || defined(__x86) || \
defined(__arm__)
# define SHA3_BYTEORDER 1234
# elif defined(sparc) || defined(__ppc__)
# define SHA3_BYTEORDER 4321
# else
# define SHA3_BYTEORDER 0
# endif
#endif
/*
** State structure for a SHA3 hash in progress
*/
typedef struct SHA3Context SHA3Context;
struct SHA3Context {
union {
u64 s[25]; /* Keccak state. 5x5 lines of 64 bits each */
unsigned char x[1600]; /* ... or 1600 bytes */
} u;
unsigned nRate; /* Bytes of input accepted per Keccak iteration */
unsigned nLoaded; /* Input bytes loaded into u.x[] so far this cycle */
unsigned ixMask; /* Insert next input into u.x[nLoaded^ixMask]. */
unsigned iSize; /* 224, 256, 358, or 512 */
};
/*
** A single step of the Keccak mixing function for a 1600-bit state
*/
static void KeccakF1600Step(SHA3Context *p){
int i;
u64 b0, b1, b2, b3, b4;
u64 c0, c1, c2, c3, c4;
u64 d0, d1, d2, d3, d4;
static const u64 RC[] = {
0x0000000000000001ULL, 0x0000000000008082ULL,
0x800000000000808aULL, 0x8000000080008000ULL,
0x000000000000808bULL, 0x0000000080000001ULL,
0x8000000080008081ULL, 0x8000000000008009ULL,
0x000000000000008aULL, 0x0000000000000088ULL,
0x0000000080008009ULL, 0x000000008000000aULL,
0x000000008000808bULL, 0x800000000000008bULL,
0x8000000000008089ULL, 0x8000000000008003ULL,
0x8000000000008002ULL, 0x8000000000000080ULL,
0x000000000000800aULL, 0x800000008000000aULL,
0x8000000080008081ULL, 0x8000000000008080ULL,
0x0000000080000001ULL, 0x8000000080008008ULL
};
# define a00 (p->u.s[0])
# define a01 (p->u.s[1])
# define a02 (p->u.s[2])
# define a03 (p->u.s[3])
# define a04 (p->u.s[4])
# define a10 (p->u.s[5])
# define a11 (p->u.s[6])
# define a12 (p->u.s[7])
# define a13 (p->u.s[8])
# define a14 (p->u.s[9])
# define a20 (p->u.s[10])
# define a21 (p->u.s[11])
# define a22 (p->u.s[12])
# define a23 (p->u.s[13])
# define a24 (p->u.s[14])
# define a30 (p->u.s[15])
# define a31 (p->u.s[16])
# define a32 (p->u.s[17])
# define a33 (p->u.s[18])
# define a34 (p->u.s[19])
# define a40 (p->u.s[20])
# define a41 (p->u.s[21])
# define a42 (p->u.s[22])
# define a43 (p->u.s[23])
# define a44 (p->u.s[24])
# define ROL64(a,x) ((a<<x)|(a>>(64-x)))
for(i=0; i<24; i+=4){
c0 = a00^a10^a20^a30^a40;
c1 = a01^a11^a21^a31^a41;
c2 = a02^a12^a22^a32^a42;
c3 = a03^a13^a23^a33^a43;
c4 = a04^a14^a24^a34^a44;
d0 = c4^ROL64(c1, 1);
d1 = c0^ROL64(c2, 1);
d2 = c1^ROL64(c3, 1);
d3 = c2^ROL64(c4, 1);
d4 = c3^ROL64(c0, 1);
b0 = (a00^d0);
b1 = ROL64((a11^d1), 44);
b2 = ROL64((a22^d2), 43);
b3 = ROL64((a33^d3), 21);
b4 = ROL64((a44^d4), 14);
a00 = b0 ^((~b1)& b2 );
a00 ^= RC[i];
a11 = b1 ^((~b2)& b3 );
a22 = b2 ^((~b3)& b4 );
a33 = b3 ^((~b4)& b0 );
a44 = b4 ^((~b0)& b1 );
b2 = ROL64((a20^d0), 3);
b3 = ROL64((a31^d1), 45);
b4 = ROL64((a42^d2), 61);
b0 = ROL64((a03^d3), 28);
b1 = ROL64((a14^d4), 20);
a20 = b0 ^((~b1)& b2 );
a31 = b1 ^((~b2)& b3 );
a42 = b2 ^((~b3)& b4 );
a03 = b3 ^((~b4)& b0 );
a14 = b4 ^((~b0)& b1 );
b4 = ROL64((a40^d0), 18);
b0 = ROL64((a01^d1), 1);
b1 = ROL64((a12^d2), 6);
b2 = ROL64((a23^d3), 25);
b3 = ROL64((a34^d4), 8);
a40 = b0 ^((~b1)& b2 );
a01 = b1 ^((~b2)& b3 );
a12 = b2 ^((~b3)& b4 );
a23 = b3 ^((~b4)& b0 );
a34 = b4 ^((~b0)& b1 );
b1 = ROL64((a10^d0), 36);
b2 = ROL64((a21^d1), 10);
b3 = ROL64((a32^d2), 15);
b4 = ROL64((a43^d3), 56);
b0 = ROL64((a04^d4), 27);
a10 = b0 ^((~b1)& b2 );
a21 = b1 ^((~b2)& b3 );
a32 = b2 ^((~b3)& b4 );
a43 = b3 ^((~b4)& b0 );
a04 = b4 ^((~b0)& b1 );
b3 = ROL64((a30^d0), 41);
b4 = ROL64((a41^d1), 2);
b0 = ROL64((a02^d2), 62);
b1 = ROL64((a13^d3), 55);
b2 = ROL64((a24^d4), 39);
a30 = b0 ^((~b1)& b2 );
a41 = b1 ^((~b2)& b3 );
a02 = b2 ^((~b3)& b4 );
a13 = b3 ^((~b4)& b0 );
a24 = b4 ^((~b0)& b1 );
c0 = a00^a20^a40^a10^a30;
c1 = a11^a31^a01^a21^a41;
c2 = a22^a42^a12^a32^a02;
c3 = a33^a03^a23^a43^a13;
c4 = a44^a14^a34^a04^a24;
d0 = c4^ROL64(c1, 1);
d1 = c0^ROL64(c2, 1);
d2 = c1^ROL64(c3, 1);
d3 = c2^ROL64(c4, 1);
d4 = c3^ROL64(c0, 1);
b0 = (a00^d0);
b1 = ROL64((a31^d1), 44);
b2 = ROL64((a12^d2), 43);
b3 = ROL64((a43^d3), 21);
b4 = ROL64((a24^d4), 14);
a00 = b0 ^((~b1)& b2 );
a00 ^= RC[i+1];
a31 = b1 ^((~b2)& b3 );
a12 = b2 ^((~b3)& b4 );
a43 = b3 ^((~b4)& b0 );
a24 = b4 ^((~b0)& b1 );
b2 = ROL64((a40^d0), 3);
b3 = ROL64((a21^d1), 45);
b4 = ROL64((a02^d2), 61);
b0 = ROL64((a33^d3), 28);
b1 = ROL64((a14^d4), 20);
a40 = b0 ^((~b1)& b2 );
a21 = b1 ^((~b2)& b3 );
a02 = b2 ^((~b3)& b4 );
a33 = b3 ^((~b4)& b0 );
a14 = b4 ^((~b0)& b1 );
b4 = ROL64((a30^d0), 18);
b0 = ROL64((a11^d1), 1);
b1 = ROL64((a42^d2), 6);
b2 = ROL64((a23^d3), 25);
b3 = ROL64((a04^d4), 8);
a30 = b0 ^((~b1)& b2 );
a11 = b1 ^((~b2)& b3 );
a42 = b2 ^((~b3)& b4 );
a23 = b3 ^((~b4)& b0 );
a04 = b4 ^((~b0)& b1 );
b1 = ROL64((a20^d0), 36);
b2 = ROL64((a01^d1), 10);
b3 = ROL64((a32^d2), 15);
b4 = ROL64((a13^d3), 56);
b0 = ROL64((a44^d4), 27);
a20 = b0 ^((~b1)& b2 );
a01 = b1 ^((~b2)& b3 );
a32 = b2 ^((~b3)& b4 );
a13 = b3 ^((~b4)& b0 );
a44 = b4 ^((~b0)& b1 );
b3 = ROL64((a10^d0), 41);
b4 = ROL64((a41^d1), 2);
b0 = ROL64((a22^d2), 62);
b1 = ROL64((a03^d3), 55);
b2 = ROL64((a34^d4), 39);
a10 = b0 ^((~b1)& b2 );
a41 = b1 ^((~b2)& b3 );
a22 = b2 ^((~b3)& b4 );
a03 = b3 ^((~b4)& b0 );
a34 = b4 ^((~b0)& b1 );
c0 = a00^a40^a30^a20^a10;
c1 = a31^a21^a11^a01^a41;
c2 = a12^a02^a42^a32^a22;
c3 = a43^a33^a23^a13^a03;
c4 = a24^a14^a04^a44^a34;
d0 = c4^ROL64(c1, 1);
d1 = c0^ROL64(c2, 1);
d2 = c1^ROL64(c3, 1);
d3 = c2^ROL64(c4, 1);
d4 = c3^ROL64(c0, 1);
b0 = (a00^d0);
b1 = ROL64((a21^d1), 44);
b2 = ROL64((a42^d2), 43);
b3 = ROL64((a13^d3), 21);
b4 = ROL64((a34^d4), 14);
a00 = b0 ^((~b1)& b2 );
a00 ^= RC[i+2];
a21 = b1 ^((~b2)& b3 );
a42 = b2 ^((~b3)& b4 );
a13 = b3 ^((~b4)& b0 );
a34 = b4 ^((~b0)& b1 );
b2 = ROL64((a30^d0), 3);
b3 = ROL64((a01^d1), 45);
b4 = ROL64((a22^d2), 61);
b0 = ROL64((a43^d3), 28);
b1 = ROL64((a14^d4), 20);
a30 = b0 ^((~b1)& b2 );
a01 = b1 ^((~b2)& b3 );
a22 = b2 ^((~b3)& b4 );
a43 = b3 ^((~b4)& b0 );
a14 = b4 ^((~b0)& b1 );
b4 = ROL64((a10^d0), 18);
b0 = ROL64((a31^d1), 1);
b1 = ROL64((a02^d2), 6);
b2 = ROL64((a23^d3), 25);
b3 = ROL64((a44^d4), 8);
a10 = b0 ^((~b1)& b2 );
a31 = b1 ^((~b2)& b3 );
a02 = b2 ^((~b3)& b4 );
a23 = b3 ^((~b4)& b0 );
a44 = b4 ^((~b0)& b1 );
b1 = ROL64((a40^d0), 36);
b2 = ROL64((a11^d1), 10);
b3 = ROL64((a32^d2), 15);
b4 = ROL64((a03^d3), 56);
b0 = ROL64((a24^d4), 27);
a40 = b0 ^((~b1)& b2 );
a11 = b1 ^((~b2)& b3 );
a32 = b2 ^((~b3)& b4 );
a03 = b3 ^((~b4)& b0 );
a24 = b4 ^((~b0)& b1 );
b3 = ROL64((a20^d0), 41);
b4 = ROL64((a41^d1), 2);
b0 = ROL64((a12^d2), 62);
b1 = ROL64((a33^d3), 55);
b2 = ROL64((a04^d4), 39);
a20 = b0 ^((~b1)& b2 );
a41 = b1 ^((~b2)& b3 );
a12 = b2 ^((~b3)& b4 );
a33 = b3 ^((~b4)& b0 );
a04 = b4 ^((~b0)& b1 );
c0 = a00^a30^a10^a40^a20;
c1 = a21^a01^a31^a11^a41;
c2 = a42^a22^a02^a32^a12;
c3 = a13^a43^a23^a03^a33;
c4 = a34^a14^a44^a24^a04;
d0 = c4^ROL64(c1, 1);
d1 = c0^ROL64(c2, 1);
d2 = c1^ROL64(c3, 1);
d3 = c2^ROL64(c4, 1);
d4 = c3^ROL64(c0, 1);
b0 = (a00^d0);
b1 = ROL64((a01^d1), 44);
b2 = ROL64((a02^d2), 43);
b3 = ROL64((a03^d3), 21);
b4 = ROL64((a04^d4), 14);
a00 = b0 ^((~b1)& b2 );
a00 ^= RC[i+3];
a01 = b1 ^((~b2)& b3 );
a02 = b2 ^((~b3)& b4 );
a03 = b3 ^((~b4)& b0 );
a04 = b4 ^((~b0)& b1 );
b2 = ROL64((a10^d0), 3);
b3 = ROL64((a11^d1), 45);
b4 = ROL64((a12^d2), 61);
b0 = ROL64((a13^d3), 28);
b1 = ROL64((a14^d4), 20);
a10 = b0 ^((~b1)& b2 );
a11 = b1 ^((~b2)& b3 );
a12 = b2 ^((~b3)& b4 );
a13 = b3 ^((~b4)& b0 );
a14 = b4 ^((~b0)& b1 );
b4 = ROL64((a20^d0), 18);
b0 = ROL64((a21^d1), 1);
b1 = ROL64((a22^d2), 6);
b2 = ROL64((a23^d3), 25);
b3 = ROL64((a24^d4), 8);
a20 = b0 ^((~b1)& b2 );
a21 = b1 ^((~b2)& b3 );
a22 = b2 ^((~b3)& b4 );
a23 = b3 ^((~b4)& b0 );
a24 = b4 ^((~b0)& b1 );
b1 = ROL64((a30^d0), 36);
b2 = ROL64((a31^d1), 10);
b3 = ROL64((a32^d2), 15);
b4 = ROL64((a33^d3), 56);
b0 = ROL64((a34^d4), 27);
a30 = b0 ^((~b1)& b2 );
a31 = b1 ^((~b2)& b3 );
a32 = b2 ^((~b3)& b4 );
a33 = b3 ^((~b4)& b0 );
a34 = b4 ^((~b0)& b1 );
b3 = ROL64((a40^d0), 41);
b4 = ROL64((a41^d1), 2);
b0 = ROL64((a42^d2), 62);
b1 = ROL64((a43^d3), 55);
b2 = ROL64((a44^d4), 39);
a40 = b0 ^((~b1)& b2 );
a41 = b1 ^((~b2)& b3 );
a42 = b2 ^((~b3)& b4 );
a43 = b3 ^((~b4)& b0 );
a44 = b4 ^((~b0)& b1 );
}
}
/*
** Initialize a new hash. iSize determines the size of the hash
** in bits and should be one of 224, 256, 384, or 512. Or iSize
** can be zero to use the default hash size of 256 bits.
*/
static void SHA3Init(SHA3Context *p, int iSize){
memset(p, 0, sizeof(*p));
p->iSize = iSize;
if( iSize>=128 && iSize<=512 ){
p->nRate = (1600 - ((iSize + 31)&~31)*2)/8;
}else{
p->nRate = (1600 - 2*256)/8;
}
#if SHA3_BYTEORDER==1234
/* Known to be little-endian at compile-time. No-op */
#elif SHA3_BYTEORDER==4321
p->ixMask = 7; /* Big-endian */
#else
{
static unsigned int one = 1;
if( 1==*(unsigned char*)&one ){
/* Little endian. No byte swapping. */
p->ixMask = 0;
}else{
/* Big endian. Byte swap. */
p->ixMask = 7;
}
}
#endif
}
/*
** Make consecutive calls to the SHA3Update function to add new content
** to the hash
*/
static void SHA3Update(
SHA3Context *p,
const unsigned char *aData,
unsigned int nData
){
unsigned int i = 0;
if( aData==0 ) return;
#if SHA3_BYTEORDER==1234
if( (p->nLoaded % 8)==0 && ((aData - (const unsigned char*)0)&7)==0 ){
for(; i+7<nData; i+=8){
p->u.s[p->nLoaded/8] ^= *(u64*)&aData[i];
p->nLoaded += 8;
if( p->nLoaded>=p->nRate ){
KeccakF1600Step(p);
p->nLoaded = 0;
}
}
}
#endif
for(; i<nData; i++){
#if SHA3_BYTEORDER==1234
p->u.x[p->nLoaded] ^= aData[i];
#elif SHA3_BYTEORDER==4321
p->u.x[p->nLoaded^0x07] ^= aData[i];
#else
p->u.x[p->nLoaded^p->ixMask] ^= aData[i];
#endif
p->nLoaded++;
if( p->nLoaded==p->nRate ){
KeccakF1600Step(p);
p->nLoaded = 0;
}
}
}
/*
** After all content has been added, invoke SHA3Final() to compute
** the final hash. The function returns a pointer to the binary
** hash value.
*/
static unsigned char *SHA3Final(SHA3Context *p){
unsigned int i;
if( p->nLoaded==p->nRate-1 ){
const unsigned char c1 = 0x86;
SHA3Update(p, &c1, 1);
}else{
const unsigned char c2 = 0x06;
const unsigned char c3 = 0x80;
SHA3Update(p, &c2, 1);
p->nLoaded = p->nRate - 1;
SHA3Update(p, &c3, 1);
}
for(i=0; i<p->nRate; i++){
p->u.x[i+p->nRate] = p->u.x[i^p->ixMask];
}
return &p->u.x[p->nRate];
}
/* End of the hashing logic
*****************************************************************************/
/*
** Implementation of the sha3(X,SIZE) function.
**
** Return a BLOB which is the SIZE-bit SHA3 hash of X. The default
** size is 256. If X is a BLOB, it is hashed as is.
** For all other non-NULL types of input, X is converted into a UTF-8 string
** and the string is hashed without the trailing 0x00 terminator. The hash
** of a NULL value is NULL.
*/
static void sha3Func(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
SHA3Context cx;
int eType = sqlite3_value_type(argv[0]);
int nByte = sqlite3_value_bytes(argv[0]);
int iSize;
if( argc==1 ){
iSize = 256;
}else{
iSize = sqlite3_value_int(argv[1]);
if( iSize!=224 && iSize!=256 && iSize!=384 && iSize!=512 ){
sqlite3_result_error(context, "SHA3 size should be one of: 224 256 "
"384 512", -1);
return;
}
}
if( eType==SQLITE_NULL ) return;
SHA3Init(&cx, iSize);
if( eType==SQLITE_BLOB ){
SHA3Update(&cx, sqlite3_value_blob(argv[0]), nByte);
}else{
SHA3Update(&cx, sqlite3_value_text(argv[0]), nByte);
}
sqlite3_result_blob(context, SHA3Final(&cx), iSize/8, SQLITE_TRANSIENT);
}
/* Compute a string using sqlite3_vsnprintf() with a maximum length
** of 50 bytes and add it to the hash.
*/
static void sha3_step_vformat(
SHA3Context *p, /* Add content to this context */
const char *zFormat,
...
){
va_list ap;
int n;
char zBuf[50];
va_start(ap, zFormat);
sqlite3_vsnprintf(sizeof(zBuf),zBuf,zFormat,ap);
va_end(ap);
n = (int)strlen(zBuf);
SHA3Update(p, (unsigned char*)zBuf, n);
}
/*
** Update a SHA3Context using a single sqlite3_value.
*/
static void sha3UpdateFromValue(SHA3Context *p, sqlite3_value *pVal){
switch( sqlite3_value_type(pVal) ){
case SQLITE_NULL: {
SHA3Update(p, (const unsigned char*)"N",1);
break;
}
case SQLITE_INTEGER: {
sqlite3_uint64 u;
int j;
unsigned char x[9];
sqlite3_int64 v = sqlite3_value_int64(pVal);
memcpy(&u, &v, 8);
for(j=8; j>=1; j--){
x[j] = u & 0xff;
u >>= 8;
}
x[0] = 'I';
SHA3Update(p, x, 9);
break;
}
case SQLITE_FLOAT: {
sqlite3_uint64 u;
int j;
unsigned char x[9];
double r = sqlite3_value_double(pVal);
memcpy(&u, &r, 8);
for(j=8; j>=1; j--){
x[j] = u & 0xff;
u >>= 8;
}
x[0] = 'F';
SHA3Update(p,x,9);
break;
}
case SQLITE_TEXT: {
int n2 = sqlite3_value_bytes(pVal);
const unsigned char *z2 = sqlite3_value_text(pVal);
sha3_step_vformat(p,"T%d:",n2);
SHA3Update(p, z2, n2);
break;
}
case SQLITE_BLOB: {
int n2 = sqlite3_value_bytes(pVal);
const unsigned char *z2 = sqlite3_value_blob(pVal);
sha3_step_vformat(p,"B%d:",n2);
SHA3Update(p, z2, n2);
break;
}
}
}
/*
** Implementation of the sha3_query(SQL,SIZE) function.
**
** This function compiles and runs the SQL statement(s) given in the
** argument. The results are hashed using a SIZE-bit SHA3. The default
** size is 256.
**
** The format of the byte stream that is hashed is summarized as follows:
**
** S<n>:<sql>
** R
** N
** I<int>
** F<ieee-float>
** B<size>:<bytes>
** T<size>:<text>
**
** <sql> is the original SQL text for each statement run and <n> is
** the size of that text. The SQL text is UTF-8. A single R character
** occurs before the start of each row. N means a NULL value.
** I mean an 8-byte little-endian integer <int>. F is a floating point
** number with an 8-byte little-endian IEEE floating point value <ieee-float>.
** B means blobs of <size> bytes. T means text rendered as <size>
** bytes of UTF-8. The <n> and <size> values are expressed as an ASCII
** text integers.
**
** For each SQL statement in the X input, there is one S segment. Each
** S segment is followed by zero or more R segments, one for each row in the
** result set. After each R, there are one or more N, I, F, B, or T segments,
** one for each column in the result set. Segments are concatentated directly
** with no delimiters of any kind.
*/
static void sha3QueryFunc(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
sqlite3 *db = sqlite3_context_db_handle(context);
const char *zSql = (const char*)sqlite3_value_text(argv[0]);
sqlite3_stmt *pStmt = 0;
int nCol; /* Number of columns in the result set */
int i; /* Loop counter */
int rc;
int n;
const char *z;
SHA3Context cx;
int iSize;
if( argc==1 ){
iSize = 256;
}else{
iSize = sqlite3_value_int(argv[1]);
if( iSize!=224 && iSize!=256 && iSize!=384 && iSize!=512 ){
sqlite3_result_error(context, "SHA3 size should be one of: 224 256 "
"384 512", -1);
return;
}
}
if( zSql==0 ) return;
SHA3Init(&cx, iSize);
while( zSql[0] ){
rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, &zSql);
if( rc ){
char *zMsg = sqlite3_mprintf("error SQL statement [%s]: %s",
zSql, sqlite3_errmsg(db));
sqlite3_finalize(pStmt);
sqlite3_result_error(context, zMsg, -1);
sqlite3_free(zMsg);
return;
}
if( !sqlite3_stmt_readonly(pStmt) ){
char *zMsg = sqlite3_mprintf("non-query: [%s]", sqlite3_sql(pStmt));
sqlite3_finalize(pStmt);
sqlite3_result_error(context, zMsg, -1);
sqlite3_free(zMsg);
return;
}
nCol = sqlite3_column_count(pStmt);
z = sqlite3_sql(pStmt);
if( z ){
n = (int)strlen(z);
sha3_step_vformat(&cx,"S%d:",n);
SHA3Update(&cx,(unsigned char*)z,n);
}
/* Compute a hash over the result of the query */
while( SQLITE_ROW==sqlite3_step(pStmt) ){
SHA3Update(&cx,(const unsigned char*)"R",1);
for(i=0; i<nCol; i++){
sha3UpdateFromValue(&cx, sqlite3_column_value(pStmt,i));
}
}
sqlite3_finalize(pStmt);
}
sqlite3_result_blob(context, SHA3Final(&cx), iSize/8, SQLITE_TRANSIENT);
}
/*
** xStep function for sha3_agg().
*/
static void sha3AggStep(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
SHA3Context *p;
p = (SHA3Context*)sqlite3_aggregate_context(context, sizeof(*p));
if( p==0 ) return;
if( p->nRate==0 ){
int sz = 256;
if( argc==2 ){
sz = sqlite3_value_int(argv[1]);
if( sz!=224 && sz!=384 && sz!=512 ){
sz = 256;
}
}
SHA3Init(p, sz);
}
sha3UpdateFromValue(p, argv[0]);
}
/*
** xFinal function for sha3_agg().
*/
static void sha3AggFinal(sqlite3_context *context){
SHA3Context *p;
p = (SHA3Context*)sqlite3_aggregate_context(context, sizeof(*p));
if( p==0 ) return;
if( p->iSize ){
sqlite3_result_blob(context, SHA3Final(p), p->iSize/8, SQLITE_TRANSIENT);
}
}
#ifdef _WIN32
#endif
int sqlite3_shathree_init(
sqlite3 *db,
char **pzErrMsg,
const sqlite3_api_routines *pApi
){
int rc = SQLITE_OK;
SQLITE_EXTENSION_INIT2(pApi);
(void)pzErrMsg; /* Unused parameter */
rc = sqlite3_create_function(db, "sha3", 1,
SQLITE_UTF8 | SQLITE_INNOCUOUS | SQLITE_DETERMINISTIC,
0, sha3Func, 0, 0);
if( rc==SQLITE_OK ){
rc = sqlite3_create_function(db, "sha3", 2,
SQLITE_UTF8 | SQLITE_INNOCUOUS | SQLITE_DETERMINISTIC,
0, sha3Func, 0, 0);
}
if( rc==SQLITE_OK ){
rc = sqlite3_create_function(db, "sha3_agg", 1,
SQLITE_UTF8 | SQLITE_INNOCUOUS | SQLITE_DETERMINISTIC,
0, 0, sha3AggStep, sha3AggFinal);
}
if( rc==SQLITE_OK ){
rc = sqlite3_create_function(db, "sha3_agg", 2,
SQLITE_UTF8 | SQLITE_INNOCUOUS | SQLITE_DETERMINISTIC,
0, 0, sha3AggStep, sha3AggFinal);
}
if( rc==SQLITE_OK ){
rc = sqlite3_create_function(db, "sha3_query", 1,
SQLITE_UTF8 | SQLITE_DIRECTONLY,
0, sha3QueryFunc, 0, 0);
}
if( rc==SQLITE_OK ){
rc = sqlite3_create_function(db, "sha3_query", 2,
SQLITE_UTF8 | SQLITE_DIRECTONLY,
0, sha3QueryFunc, 0, 0);
}
return rc;
}
/************************* End ../ext/misc/shathree.c ********************/
/************************* Begin ../ext/misc/sha1.c ******************/
/*
** 2017-01-27
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
******************************************************************************
**
** This SQLite extension implements functions that compute SHA1 hashes.
** Two SQL functions are implemented:
**
** sha1(X)
** sha1_query(Y)
**
** The sha1(X) function computes the SHA1 hash of the input X, or NULL if
** X is NULL.
**
** The sha1_query(Y) function evalutes all queries in the SQL statements of Y
** and returns a hash of their results.
*/
/* #include "sqlite3ext.h" */
SQLITE_EXTENSION_INIT1
#include <assert.h>
#include <string.h>
#include <stdarg.h>
/******************************************************************************
** The Hash Engine
*/
/* Context for the SHA1 hash */
typedef struct SHA1Context SHA1Context;
struct SHA1Context {
unsigned int state[5];
unsigned int count[2];
unsigned char buffer[64];
};
#define SHA_ROT(x,l,r) ((x) << (l) | (x) >> (r))
#define rol(x,k) SHA_ROT(x,k,32-(k))
#define ror(x,k) SHA_ROT(x,32-(k),k)
#define blk0le(i) (block[i] = (ror(block[i],8)&0xFF00FF00) \
|(rol(block[i],8)&0x00FF00FF))
#define blk0be(i) block[i]
#define blk(i) (block[i&15] = rol(block[(i+13)&15]^block[(i+8)&15] \
^block[(i+2)&15]^block[i&15],1))
/*
* (R0+R1), R2, R3, R4 are the different operations (rounds) used in SHA1
*
* Rl0() for little-endian and Rb0() for big-endian. Endianness is
* determined at run-time.
*/
#define Rl0(v,w,x,y,z,i) \
z+=((w&(x^y))^y)+blk0le(i)+0x5A827999+rol(v,5);w=ror(w,2);
#define Rb0(v,w,x,y,z,i) \
z+=((w&(x^y))^y)+blk0be(i)+0x5A827999+rol(v,5);w=ror(w,2);
#define R1(v,w,x,y,z,i) \
z+=((w&(x^y))^y)+blk(i)+0x5A827999+rol(v,5);w=ror(w,2);
#define R2(v,w,x,y,z,i) \
z+=(w^x^y)+blk(i)+0x6ED9EBA1+rol(v,5);w=ror(w,2);
#define R3(v,w,x,y,z,i) \
z+=(((w|x)&y)|(w&x))+blk(i)+0x8F1BBCDC+rol(v,5);w=ror(w,2);
#define R4(v,w,x,y,z,i) \
z+=(w^x^y)+blk(i)+0xCA62C1D6+rol(v,5);w=ror(w,2);
/*
* Hash a single 512-bit block. This is the core of the algorithm.
*/
static void SHA1Transform(unsigned int state[5], const unsigned char buffer[64]){
unsigned int qq[5]; /* a, b, c, d, e; */
static int one = 1;
unsigned int block[16];
memcpy(block, buffer, 64);
memcpy(qq,state,5*sizeof(unsigned int));
#define a qq[0]
#define b qq[1]
#define c qq[2]
#define d qq[3]
#define e qq[4]
/* Copy p->state[] to working vars */
/*
a = state[0];
b = state[1];
c = state[2];
d = state[3];
e = state[4];
*/
/* 4 rounds of 20 operations each. Loop unrolled. */
if( 1 == *(unsigned char*)&one ){
Rl0(a,b,c,d,e, 0); Rl0(e,a,b,c,d, 1); Rl0(d,e,a,b,c, 2); Rl0(c,d,e,a,b, 3);
Rl0(b,c,d,e,a, 4); Rl0(a,b,c,d,e, 5); Rl0(e,a,b,c,d, 6); Rl0(d,e,a,b,c, 7);
Rl0(c,d,e,a,b, 8); Rl0(b,c,d,e,a, 9); Rl0(a,b,c,d,e,10); Rl0(e,a,b,c,d,11);
Rl0(d,e,a,b,c,12); Rl0(c,d,e,a,b,13); Rl0(b,c,d,e,a,14); Rl0(a,b,c,d,e,15);
}else{
Rb0(a,b,c,d,e, 0); Rb0(e,a,b,c,d, 1); Rb0(d,e,a,b,c, 2); Rb0(c,d,e,a,b, 3);
Rb0(b,c,d,e,a, 4); Rb0(a,b,c,d,e, 5); Rb0(e,a,b,c,d, 6); Rb0(d,e,a,b,c, 7);
Rb0(c,d,e,a,b, 8); Rb0(b,c,d,e,a, 9); Rb0(a,b,c,d,e,10); Rb0(e,a,b,c,d,11);
Rb0(d,e,a,b,c,12); Rb0(c,d,e,a,b,13); Rb0(b,c,d,e,a,14); Rb0(a,b,c,d,e,15);
}
R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19);
R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23);
R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27);
R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31);
R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35);
R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39);
R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43);
R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47);
R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51);
R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55);
R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59);
R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63);
R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67);
R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71);
R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75);
R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79);
/* Add the working vars back into context.state[] */
state[0] += a;
state[1] += b;
state[2] += c;
state[3] += d;
state[4] += e;
#undef a
#undef b
#undef c
#undef d
#undef e
}
/* Initialize a SHA1 context */
static void hash_init(SHA1Context *p){
/* SHA1 initialization constants */
p->state[0] = 0x67452301;
p->state[1] = 0xEFCDAB89;
p->state[2] = 0x98BADCFE;
p->state[3] = 0x10325476;
p->state[4] = 0xC3D2E1F0;
p->count[0] = p->count[1] = 0;
}
/* Add new content to the SHA1 hash */
static void hash_step(
SHA1Context *p, /* Add content to this context */
const unsigned char *data, /* Data to be added */
unsigned int len /* Number of bytes in data */
){
unsigned int i, j;
j = p->count[0];
if( (p->count[0] += len << 3) < j ){
p->count[1] += (len>>29)+1;
}
j = (j >> 3) & 63;
if( (j + len) > 63 ){
(void)memcpy(&p->buffer[j], data, (i = 64-j));
SHA1Transform(p->state, p->buffer);
for(; i + 63 < len; i += 64){
SHA1Transform(p->state, &data[i]);
}
j = 0;
}else{
i = 0;
}
(void)memcpy(&p->buffer[j], &data[i], len - i);
}
/* Compute a string using sqlite3_vsnprintf() and hash it */
static void hash_step_vformat(
SHA1Context *p, /* Add content to this context */
const char *zFormat,
...
){
va_list ap;
int n;
char zBuf[50];
va_start(ap, zFormat);
sqlite3_vsnprintf(sizeof(zBuf),zBuf,zFormat,ap);
va_end(ap);
n = (int)strlen(zBuf);
hash_step(p, (unsigned char*)zBuf, n);
}
/* Add padding and compute the message digest. Render the
** message digest as lower-case hexadecimal and put it into
** zOut[]. zOut[] must be at least 41 bytes long. */
static void hash_finish(
SHA1Context *p, /* The SHA1 context to finish and render */
char *zOut, /* Store hex or binary hash here */
int bAsBinary /* 1 for binary hash, 0 for hex hash */
){
unsigned int i;
unsigned char finalcount[8];
unsigned char digest[20];
static const char zEncode[] = "0123456789abcdef";
for (i = 0; i < 8; i++){
finalcount[i] = (unsigned char)((p->count[(i >= 4 ? 0 : 1)]
>> ((3-(i & 3)) * 8) ) & 255); /* Endian independent */
}
hash_step(p, (const unsigned char *)"\200", 1);
while ((p->count[0] & 504) != 448){
hash_step(p, (const unsigned char *)"\0", 1);
}
hash_step(p, finalcount, 8); /* Should cause a SHA1Transform() */
for (i = 0; i < 20; i++){
digest[i] = (unsigned char)((p->state[i>>2] >> ((3-(i & 3)) * 8) ) & 255);
}
if( bAsBinary ){
memcpy(zOut, digest, 20);
}else{
for(i=0; i<20; i++){
zOut[i*2] = zEncode[(digest[i]>>4)&0xf];
zOut[i*2+1] = zEncode[digest[i] & 0xf];
}
zOut[i*2]= 0;
}
}
/* End of the hashing logic
*****************************************************************************/
/*
** Implementation of the sha1(X) function.
**
** Return a lower-case hexadecimal rendering of the SHA1 hash of the
** argument X. If X is a BLOB, it is hashed as is. For all other
** types of input, X is converted into a UTF-8 string and the string
** is hash without the trailing 0x00 terminator. The hash of a NULL
** value is NULL.
*/
static void sha1Func(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
SHA1Context cx;
int eType = sqlite3_value_type(argv[0]);
int nByte = sqlite3_value_bytes(argv[0]);
char zOut[44];
assert( argc==1 );
if( eType==SQLITE_NULL ) return;
hash_init(&cx);
if( eType==SQLITE_BLOB ){
hash_step(&cx, sqlite3_value_blob(argv[0]), nByte);
}else{
hash_step(&cx, sqlite3_value_text(argv[0]), nByte);
}
if( sqlite3_user_data(context)!=0 ){
hash_finish(&cx, zOut, 1);
sqlite3_result_blob(context, zOut, 20, SQLITE_TRANSIENT);
}else{
hash_finish(&cx, zOut, 0);
sqlite3_result_blob(context, zOut, 40, SQLITE_TRANSIENT);
}
}
/*
** Implementation of the sha1_query(SQL) function.
**
** This function compiles and runs the SQL statement(s) given in the
** argument. The results are hashed using SHA1 and that hash is returned.
**
** The original SQL text is included as part of the hash.
**
** The hash is not just a concatenation of the outputs. Each query
** is delimited and each row and value within the query is delimited,
** with all values being marked with their datatypes.
*/
static void sha1QueryFunc(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
sqlite3 *db = sqlite3_context_db_handle(context);
const char *zSql = (const char*)sqlite3_value_text(argv[0]);
sqlite3_stmt *pStmt = 0;
int nCol; /* Number of columns in the result set */
int i; /* Loop counter */
int rc;
int n;
const char *z;
SHA1Context cx;
char zOut[44];
assert( argc==1 );
if( zSql==0 ) return;
hash_init(&cx);
while( zSql[0] ){
rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, &zSql);
if( rc ){
char *zMsg = sqlite3_mprintf("error SQL statement [%s]: %s",
zSql, sqlite3_errmsg(db));
sqlite3_finalize(pStmt);
sqlite3_result_error(context, zMsg, -1);
sqlite3_free(zMsg);
return;
}
if( !sqlite3_stmt_readonly(pStmt) ){
char *zMsg = sqlite3_mprintf("non-query: [%s]", sqlite3_sql(pStmt));
sqlite3_finalize(pStmt);
sqlite3_result_error(context, zMsg, -1);
sqlite3_free(zMsg);
return;
}
nCol = sqlite3_column_count(pStmt);
z = sqlite3_sql(pStmt);
n = (int)strlen(z);
hash_step_vformat(&cx,"S%d:",n);
hash_step(&cx,(unsigned char*)z,n);
/* Compute a hash over the result of the query */
while( SQLITE_ROW==sqlite3_step(pStmt) ){
hash_step(&cx,(const unsigned char*)"R",1);
for(i=0; i<nCol; i++){
switch( sqlite3_column_type(pStmt,i) ){
case SQLITE_NULL: {
hash_step(&cx, (const unsigned char*)"N",1);
break;
}
case SQLITE_INTEGER: {
sqlite3_uint64 u;
int j;
unsigned char x[9];
sqlite3_int64 v = sqlite3_column_int64(pStmt,i);
memcpy(&u, &v, 8);
for(j=8; j>=1; j--){
x[j] = u & 0xff;
u >>= 8;
}
x[0] = 'I';
hash_step(&cx, x, 9);
break;
}
case SQLITE_FLOAT: {
sqlite3_uint64 u;
int j;
unsigned char x[9];
double r = sqlite3_column_double(pStmt,i);
memcpy(&u, &r, 8);
for(j=8; j>=1; j--){
x[j] = u & 0xff;
u >>= 8;
}
x[0] = 'F';
hash_step(&cx,x,9);
break;
}
case SQLITE_TEXT: {
int n2 = sqlite3_column_bytes(pStmt, i);
const unsigned char *z2 = sqlite3_column_text(pStmt, i);
hash_step_vformat(&cx,"T%d:",n2);
hash_step(&cx, z2, n2);
break;
}
case SQLITE_BLOB: {
int n2 = sqlite3_column_bytes(pStmt, i);
const unsigned char *z2 = sqlite3_column_blob(pStmt, i);
hash_step_vformat(&cx,"B%d:",n2);
hash_step(&cx, z2, n2);
break;
}
}
}
}
sqlite3_finalize(pStmt);
}
hash_finish(&cx, zOut, 0);
sqlite3_result_text(context, zOut, 40, SQLITE_TRANSIENT);
}
#ifdef _WIN32
#endif
int sqlite3_sha_init(
sqlite3 *db,
char **pzErrMsg,
const sqlite3_api_routines *pApi
){
int rc = SQLITE_OK;
static int one = 1;
SQLITE_EXTENSION_INIT2(pApi);
(void)pzErrMsg; /* Unused parameter */
rc = sqlite3_create_function(db, "sha1", 1,
SQLITE_UTF8 | SQLITE_INNOCUOUS | SQLITE_DETERMINISTIC,
0, sha1Func, 0, 0);
if( rc==SQLITE_OK ){
rc = sqlite3_create_function(db, "sha1b", 1,
SQLITE_UTF8 | SQLITE_INNOCUOUS | SQLITE_DETERMINISTIC,
(void*)&one, sha1Func, 0, 0);
}
if( rc==SQLITE_OK ){
rc = sqlite3_create_function(db, "sha1_query", 1,
SQLITE_UTF8|SQLITE_DIRECTONLY, 0,
sha1QueryFunc, 0, 0);
}
return rc;
}
/************************* End ../ext/misc/sha1.c ********************/
/************************* Begin ../ext/misc/uint.c ******************/
/*
** 2020-04-14
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
******************************************************************************
**
** This SQLite extension implements the UINT collating sequence.
**
** UINT works like BINARY for text, except that embedded strings
** of digits compare in numeric order.
**
** * Leading zeros are handled properly, in the sense that
** they do not mess of the maginitude comparison of embedded
** strings of digits. "x00123y" is equal to "x123y".
**
** * Only unsigned integers are recognized. Plus and minus
** signs are ignored. Decimal points and exponential notation
** are ignored.
**
** * Embedded integers can be of arbitrary length. Comparison
** is *not* limited integers that can be expressed as a
** 64-bit machine integer.
*/
/* #include "sqlite3ext.h" */
SQLITE_EXTENSION_INIT1
#include <assert.h>
#include <string.h>
#include <ctype.h>
/*
** Compare text in lexicographic order, except strings of digits
** compare in numeric order.
*/
static int uintCollFunc(
void *notUsed,
int nKey1, const void *pKey1,
int nKey2, const void *pKey2
){
const unsigned char *zA = (const unsigned char*)pKey1;
const unsigned char *zB = (const unsigned char*)pKey2;
int i=0, j=0, x;
(void)notUsed;
while( i<nKey1 && j<nKey2 ){
x = zA[i] - zB[j];
if( isdigit(zA[i]) ){
int k;
if( !isdigit(zB[j]) ) return x;
while( i<nKey1 && zA[i]=='0' ){ i++; }
while( j<nKey2 && zB[j]=='0' ){ j++; }
k = 0;
while( i+k<nKey1 && isdigit(zA[i+k])
&& j+k<nKey2 && isdigit(zB[j+k]) ){
k++;
}
if( i+k<nKey1 && isdigit(zA[i+k]) ){
return +1;
}else if( j+k<nKey2 && isdigit(zB[j+k]) ){
return -1;
}else{
x = memcmp(zA+i, zB+j, k);
if( x ) return x;
i += k;
j += k;
}
}else if( x ){
return x;
}else{
i++;
j++;
}
}
return (nKey1 - i) - (nKey2 - j);
}
#ifdef _WIN32
#endif
int sqlite3_uint_init(
sqlite3 *db,
char **pzErrMsg,
const sqlite3_api_routines *pApi
){
SQLITE_EXTENSION_INIT2(pApi);
(void)pzErrMsg; /* Unused parameter */
return sqlite3_create_collation(db, "uint", SQLITE_UTF8, 0, uintCollFunc);
}
/************************* End ../ext/misc/uint.c ********************/
/************************* Begin ../ext/misc/decimal.c ******************/
/*
** 2020-06-22
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
******************************************************************************
**
** Routines to implement arbitrary-precision decimal math.
**
** The focus here is on simplicity and correctness, not performance.
*/
/* #include "sqlite3ext.h" */
SQLITE_EXTENSION_INIT1
#include <assert.h>
#include <string.h>
#include <ctype.h>
#include <stdlib.h>
/* Mark a function parameter as unused, to suppress nuisance compiler
** warnings. */
#ifndef UNUSED_PARAMETER
# define UNUSED_PARAMETER(X) (void)(X)
#endif
/* A decimal object */
typedef struct Decimal Decimal;
struct Decimal {
char sign; /* 0 for positive, 1 for negative */
char oom; /* True if an OOM is encountered */
char isNull; /* True if holds a NULL rather than a number */
char isInit; /* True upon initialization */
int nDigit; /* Total number of digits */
int nFrac; /* Number of digits to the right of the decimal point */
signed char *a; /* Array of digits. Most significant first. */
};
/*
** Release memory held by a Decimal, but do not free the object itself.
*/
static void decimal_clear(Decimal *p){
sqlite3_free(p->a);
}
/*
** Destroy a Decimal object
*/
static void decimal_free(Decimal *p){
if( p ){
decimal_clear(p);
sqlite3_free(p);
}
}
/*
** Allocate a new Decimal object initialized to the text in zIn[].
** Return NULL if any kind of error occurs.
*/
static Decimal *decimalNewFromText(const char *zIn, int n){
Decimal *p = 0;
int i;
int iExp = 0;
p = sqlite3_malloc( sizeof(*p) );
if( p==0 ) goto new_from_text_failed;
p->sign = 0;
p->oom = 0;
p->isInit = 1;
p->isNull = 0;
p->nDigit = 0;
p->nFrac = 0;
p->a = sqlite3_malloc64( n+1 );
if( p->a==0 ) goto new_from_text_failed;
for(i=0; isspace(zIn[i]); i++){}
if( zIn[i]=='-' ){
p->sign = 1;
i++;
}else if( zIn[i]=='+' ){
i++;
}
while( i<n && zIn[i]=='0' ) i++;
while( i<n ){
char c = zIn[i];
if( c>='0' && c<='9' ){
p->a[p->nDigit++] = c - '0';
}else if( c=='.' ){
p->nFrac = p->nDigit + 1;
}else if( c=='e' || c=='E' ){
int j = i+1;
int neg = 0;
if( j>=n ) break;
if( zIn[j]=='-' ){
neg = 1;
j++;
}else if( zIn[j]=='+' ){
j++;
}
while( j<n && iExp<1000000 ){
if( zIn[j]>='0' && zIn[j]<='9' ){
iExp = iExp*10 + zIn[j] - '0';
}
j++;
}
if( neg ) iExp = -iExp;
break;
}
i++;
}
if( p->nFrac ){
p->nFrac = p->nDigit - (p->nFrac - 1);
}
if( iExp>0 ){
if( p->nFrac>0 ){
if( iExp<=p->nFrac ){
p->nFrac -= iExp;
iExp = 0;
}else{
iExp -= p->nFrac;
p->nFrac = 0;
}
}
if( iExp>0 ){
p->a = sqlite3_realloc64(p->a, p->nDigit + iExp + 1 );
if( p->a==0 ) goto new_from_text_failed;
memset(p->a+p->nDigit, 0, iExp);
p->nDigit += iExp;
}
}else if( iExp<0 ){
int nExtra;
iExp = -iExp;
nExtra = p->nDigit - p->nFrac - 1;
if( nExtra ){
if( nExtra>=iExp ){
p->nFrac += iExp;
iExp = 0;
}else{
iExp -= nExtra;
p->nFrac = p->nDigit - 1;
}
}
if( iExp>0 ){
p->a = sqlite3_realloc64(p->a, p->nDigit + iExp + 1 );
if( p->a==0 ) goto new_from_text_failed;
memmove(p->a+iExp, p->a, p->nDigit);
memset(p->a, 0, iExp);
p->nDigit += iExp;
p->nFrac += iExp;
}
}
return p;
new_from_text_failed:
if( p ){
if( p->a ) sqlite3_free(p->a);
sqlite3_free(p);
}
return 0;
}
/* Forward reference */
static Decimal *decimalFromDouble(double);
/*
** Allocate a new Decimal object from an sqlite3_value. Return a pointer
** to the new object, or NULL if there is an error. If the pCtx argument
** is not NULL, then errors are reported on it as well.
**
** If the pIn argument is SQLITE_TEXT or SQLITE_INTEGER, it is converted
** directly into a Decimal. For SQLITE_FLOAT or for SQLITE_BLOB of length
** 8 bytes, the resulting double value is expanded into its decimal equivalent.
** If pIn is NULL or if it is a BLOB that is not exactly 8 bytes in length,
** then NULL is returned.
*/
static Decimal *decimal_new(
sqlite3_context *pCtx, /* Report error here, if not null */
sqlite3_value *pIn, /* Construct the decimal object from this */
int bTextOnly /* Always interpret pIn as text if true */
){
Decimal *p = 0;
int eType = sqlite3_value_type(pIn);
if( bTextOnly && (eType==SQLITE_FLOAT || eType==SQLITE_BLOB) ){
eType = SQLITE_TEXT;
}
switch( eType ){
case SQLITE_TEXT:
case SQLITE_INTEGER: {
const char *zIn = (const char*)sqlite3_value_text(pIn);
int n = sqlite3_value_bytes(pIn);
p = decimalNewFromText(zIn, n);
if( p==0 ) goto new_failed;
break;
}
case SQLITE_FLOAT: {
p = decimalFromDouble(sqlite3_value_double(pIn));
break;
}
case SQLITE_BLOB: {
const unsigned char *x;
unsigned int i;
sqlite3_uint64 v = 0;
double r;
if( sqlite3_value_bytes(pIn)!=sizeof(r) ) break;
x = sqlite3_value_blob(pIn);
for(i=0; i<sizeof(r); i++){
v = (v<<8) | x[i];
}
memcpy(&r, &v, sizeof(r));
p = decimalFromDouble(r);
break;
}
case SQLITE_NULL: {
break;
}
}
return p;
new_failed:
if( pCtx ) sqlite3_result_error_nomem(pCtx);
sqlite3_free(p);
return 0;
}
/*
** Make the given Decimal the result.
*/
static void decimal_result(sqlite3_context *pCtx, Decimal *p){
char *z;
int i, j;
int n;
if( p==0 || p->oom ){
sqlite3_result_error_nomem(pCtx);
return;
}
if( p->isNull ){
sqlite3_result_null(pCtx);
return;
}
z = sqlite3_malloc( p->nDigit+4 );
if( z==0 ){
sqlite3_result_error_nomem(pCtx);
return;
}
i = 0;
if( p->nDigit==0 || (p->nDigit==1 && p->a[0]==0) ){
p->sign = 0;
}
if( p->sign ){
z[0] = '-';
i = 1;
}
n = p->nDigit - p->nFrac;
if( n<=0 ){
z[i++] = '0';
}
j = 0;
while( n>1 && p->a[j]==0 ){
j++;
n--;
}
while( n>0 ){
z[i++] = p->a[j] + '0';
j++;
n--;
}
if( p->nFrac ){
z[i++] = '.';
do{
z[i++] = p->a[j] + '0';
j++;
}while( j<p->nDigit );
}
z[i] = 0;
sqlite3_result_text(pCtx, z, i, sqlite3_free);
}
/*
** Make the given Decimal the result in an format similar to '%+#e'.
** In other words, show exponential notation with leading and trailing
** zeros omitted.
*/
static void decimal_result_sci(sqlite3_context *pCtx, Decimal *p){
char *z; /* The output buffer */
int i; /* Loop counter */
int nZero; /* Number of leading zeros */
int nDigit; /* Number of digits not counting trailing zeros */
int nFrac; /* Digits to the right of the decimal point */
int exp; /* Exponent value */
signed char zero; /* Zero value */
signed char *a; /* Array of digits */
if( p==0 || p->oom ){
sqlite3_result_error_nomem(pCtx);
return;
}
if( p->isNull ){
sqlite3_result_null(pCtx);
return;
}
for(nDigit=p->nDigit; nDigit>0 && p->a[nDigit-1]==0; nDigit--){}
for(nZero=0; nZero<nDigit && p->a[nZero]==0; nZero++){}
nFrac = p->nFrac + (nDigit - p->nDigit);
nDigit -= nZero;
z = sqlite3_malloc( nDigit+20 );
if( z==0 ){
sqlite3_result_error_nomem(pCtx);
return;
}
if( nDigit==0 ){
zero = 0;
a = &zero;
nDigit = 1;
nFrac = 0;
}else{
a = &p->a[nZero];
}
if( p->sign && nDigit>0 ){
z[0] = '-';
}else{
z[0] = '+';
}
z[1] = a[0]+'0';
z[2] = '.';
if( nDigit==1 ){
z[3] = '0';
i = 4;
}else{
for(i=1; i<nDigit; i++){
z[2+i] = a[i]+'0';
}
i = nDigit+2;
}
exp = nDigit - nFrac - 1;
sqlite3_snprintf(nDigit+20-i, &z[i], "e%+03d", exp);
sqlite3_result_text(pCtx, z, -1, sqlite3_free);
}
/*
** Compare to Decimal objects. Return negative, 0, or positive if the
** first object is less than, equal to, or greater than the second.
**
** Preconditions for this routine:
**
** pA!=0
** pA->isNull==0
** pB!=0
** pB->isNull==0
*/
static int decimal_cmp(const Decimal *pA, const Decimal *pB){
int nASig, nBSig, rc, n;
if( pA->sign!=pB->sign ){
return pA->sign ? -1 : +1;
}
if( pA->sign ){
const Decimal *pTemp = pA;
pA = pB;
pB = pTemp;
}
nASig = pA->nDigit - pA->nFrac;
nBSig = pB->nDigit - pB->nFrac;
if( nASig!=nBSig ){
return nASig - nBSig;
}
n = pA->nDigit;
if( n>pB->nDigit ) n = pB->nDigit;
rc = memcmp(pA->a, pB->a, n);
if( rc==0 ){
rc = pA->nDigit - pB->nDigit;
}
return rc;
}
/*
** SQL Function: decimal_cmp(X, Y)
**
** Return negative, zero, or positive if X is less then, equal to, or
** greater than Y.
*/
static void decimalCmpFunc(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
Decimal *pA = 0, *pB = 0;
int rc;
UNUSED_PARAMETER(argc);
pA = decimal_new(context, argv[0], 1);
if( pA==0 || pA->isNull ) goto cmp_done;
pB = decimal_new(context, argv[1], 1);
if( pB==0 || pB->isNull ) goto cmp_done;
rc = decimal_cmp(pA, pB);
if( rc<0 ) rc = -1;
else if( rc>0 ) rc = +1;
sqlite3_result_int(context, rc);
cmp_done:
decimal_free(pA);
decimal_free(pB);
}
/*
** Expand the Decimal so that it has a least nDigit digits and nFrac
** digits to the right of the decimal point.
*/
static void decimal_expand(Decimal *p, int nDigit, int nFrac){
int nAddSig;
int nAddFrac;
if( p==0 ) return;
nAddFrac = nFrac - p->nFrac;
nAddSig = (nDigit - p->nDigit) - nAddFrac;
if( nAddFrac==0 && nAddSig==0 ) return;
p->a = sqlite3_realloc64(p->a, nDigit+1);
if( p->a==0 ){
p->oom = 1;
return;
}
if( nAddSig ){
memmove(p->a+nAddSig, p->a, p->nDigit);
memset(p->a, 0, nAddSig);
p->nDigit += nAddSig;
}
if( nAddFrac ){
memset(p->a+p->nDigit, 0, nAddFrac);
p->nDigit += nAddFrac;
p->nFrac += nAddFrac;
}
}
/*
** Add the value pB into pA. A := A + B.
**
** Both pA and pB might become denormalized by this routine.
*/
static void decimal_add(Decimal *pA, Decimal *pB){
int nSig, nFrac, nDigit;
int i, rc;
if( pA==0 ){
return;
}
if( pA->oom || pB==0 || pB->oom ){
pA->oom = 1;
return;
}
if( pA->isNull || pB->isNull ){
pA->isNull = 1;
return;
}
nSig = pA->nDigit - pA->nFrac;
if( nSig && pA->a[0]==0 ) nSig--;
if( nSig<pB->nDigit-pB->nFrac ){
nSig = pB->nDigit - pB->nFrac;
}
nFrac = pA->nFrac;
if( nFrac<pB->nFrac ) nFrac = pB->nFrac;
nDigit = nSig + nFrac + 1;
decimal_expand(pA, nDigit, nFrac);
decimal_expand(pB, nDigit, nFrac);
if( pA->oom || pB->oom ){
pA->oom = 1;
}else{
if( pA->sign==pB->sign ){
int carry = 0;
for(i=nDigit-1; i>=0; i--){
int x = pA->a[i] + pB->a[i] + carry;
if( x>=10 ){
carry = 1;
pA->a[i] = x - 10;
}else{
carry = 0;
pA->a[i] = x;
}
}
}else{
signed char *aA, *aB;
int borrow = 0;
rc = memcmp(pA->a, pB->a, nDigit);
if( rc<0 ){
aA = pB->a;
aB = pA->a;
pA->sign = !pA->sign;
}else{
aA = pA->a;
aB = pB->a;
}
for(i=nDigit-1; i>=0; i--){
int x = aA[i] - aB[i] - borrow;
if( x<0 ){
pA->a[i] = x+10;
borrow = 1;
}else{
pA->a[i] = x;
borrow = 0;
}
}
}
}
}
/*
** Multiply A by B. A := A * B
**
** All significant digits after the decimal point are retained.
** Trailing zeros after the decimal point are omitted as long as
** the number of digits after the decimal point is no less than
** either the number of digits in either input.
*/
static void decimalMul(Decimal *pA, Decimal *pB){
signed char *acc = 0;
int i, j, k;
int minFrac;
if( pA==0 || pA->oom || pA->isNull
|| pB==0 || pB->oom || pB->isNull
){
goto mul_end;
}
acc = sqlite3_malloc64( pA->nDigit + pB->nDigit + 2 );
if( acc==0 ){
pA->oom = 1;
goto mul_end;
}
memset(acc, 0, pA->nDigit + pB->nDigit + 2);
minFrac = pA->nFrac;
if( pB->nFrac<minFrac ) minFrac = pB->nFrac;
for(i=pA->nDigit-1; i>=0; i--){
signed char f = pA->a[i];
int carry = 0, x;
for(j=pB->nDigit-1, k=i+j+3; j>=0; j--, k--){
x = acc[k] + f*pB->a[j] + carry;
acc[k] = x%10;
carry = x/10;
}
x = acc[k] + carry;
acc[k] = x%10;
acc[k-1] += x/10;
}
sqlite3_free(pA->a);
pA->a = acc;
acc = 0;
pA->nDigit += pB->nDigit + 2;
pA->nFrac += pB->nFrac;
pA->sign ^= pB->sign;
while( pA->nFrac>minFrac && pA->a[pA->nDigit-1]==0 ){
pA->nFrac--;
pA->nDigit--;
}
mul_end:
sqlite3_free(acc);
}
/*
** Create a new Decimal object that contains an integer power of 2.
*/
static Decimal *decimalPow2(int N){
Decimal *pA = 0; /* The result to be returned */
Decimal *pX = 0; /* Multiplier */
if( N<-20000 || N>20000 ) goto pow2_fault;
pA = decimalNewFromText("1.0", 3);
if( pA==0 || pA->oom ) goto pow2_fault;
if( N==0 ) return pA;
if( N>0 ){
pX = decimalNewFromText("2.0", 3);
}else{
N = -N;
pX = decimalNewFromText("0.5", 3);
}
if( pX==0 || pX->oom ) goto pow2_fault;
while( 1 /* Exit by break */ ){
if( N & 1 ){
decimalMul(pA, pX);
if( pA->oom ) goto pow2_fault;
}
N >>= 1;
if( N==0 ) break;
decimalMul(pX, pX);
}
decimal_free(pX);
return pA;
pow2_fault:
decimal_free(pA);
decimal_free(pX);
return 0;
}
/*
** Use an IEEE754 binary64 ("double") to generate a new Decimal object.
*/
static Decimal *decimalFromDouble(double r){
sqlite3_int64 m, a;
int e;
int isNeg;
Decimal *pA;
Decimal *pX;
char zNum[100];
if( r<0.0 ){
isNeg = 1;
r = -r;
}else{
isNeg = 0;
}
memcpy(&a,&r,sizeof(a));
if( a==0 ){
e = 0;
m = 0;
}else{
e = a>>52;
m = a & ((((sqlite3_int64)1)<<52)-1);
if( e==0 ){
m <<= 1;
}else{
m |= ((sqlite3_int64)1)<<52;
}
while( e<1075 && m>0 && (m&1)==0 ){
m >>= 1;
e++;
}
if( isNeg ) m = -m;
e = e - 1075;
if( e>971 ){
return 0; /* A NaN or an Infinity */
}
}
/* At this point m is the integer significand and e is the exponent */
sqlite3_snprintf(sizeof(zNum), zNum, "%lld", m);
pA = decimalNewFromText(zNum, (int)strlen(zNum));
pX = decimalPow2(e);
decimalMul(pA, pX);
decimal_free(pX);
return pA;
}
/*
** SQL Function: decimal(X)
** OR: decimal_exp(X)
**
** Convert input X into decimal and then back into text.
**
** If X is originally a float, then a full decimal expansion of that floating
** point value is done. Or if X is an 8-byte blob, it is interpreted
** as a float and similarly expanded.
**
** The decimal_exp(X) function returns the result in exponential notation.
** decimal(X) returns a complete decimal, without the e+NNN at the end.
*/
static void decimalFunc(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
Decimal *p = decimal_new(context, argv[0], 0);
UNUSED_PARAMETER(argc);
if( p ){
if( sqlite3_user_data(context)!=0 ){
decimal_result_sci(context, p);
}else{
decimal_result(context, p);
}
decimal_free(p);
}
}
/*
** Compare text in decimal order.
*/
static int decimalCollFunc(
void *notUsed,
int nKey1, const void *pKey1,
int nKey2, const void *pKey2
){
const unsigned char *zA = (const unsigned char*)pKey1;
const unsigned char *zB = (const unsigned char*)pKey2;
Decimal *pA = decimalNewFromText((const char*)zA, nKey1);
Decimal *pB = decimalNewFromText((const char*)zB, nKey2);
int rc;
UNUSED_PARAMETER(notUsed);
if( pA==0 || pB==0 ){
rc = 0;
}else{
rc = decimal_cmp(pA, pB);
}
decimal_free(pA);
decimal_free(pB);
return rc;
}
/*
** SQL Function: decimal_add(X, Y)
** decimal_sub(X, Y)
**
** Return the sum or difference of X and Y.
*/
static void decimalAddFunc(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
Decimal *pA = decimal_new(context, argv[0], 1);
Decimal *pB = decimal_new(context, argv[1], 1);
UNUSED_PARAMETER(argc);
decimal_add(pA, pB);
decimal_result(context, pA);
decimal_free(pA);
decimal_free(pB);
}
static void decimalSubFunc(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
Decimal *pA = decimal_new(context, argv[0], 1);
Decimal *pB = decimal_new(context, argv[1], 1);
UNUSED_PARAMETER(argc);
if( pB ){
pB->sign = !pB->sign;
decimal_add(pA, pB);
decimal_result(context, pA);
}
decimal_free(pA);
decimal_free(pB);
}
/* Aggregate funcion: decimal_sum(X)
**
** Works like sum() except that it uses decimal arithmetic for unlimited
** precision.
*/
static void decimalSumStep(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
Decimal *p;
Decimal *pArg;
UNUSED_PARAMETER(argc);
p = sqlite3_aggregate_context(context, sizeof(*p));
if( p==0 ) return;
if( !p->isInit ){
p->isInit = 1;
p->a = sqlite3_malloc(2);
if( p->a==0 ){
p->oom = 1;
}else{
p->a[0] = 0;
}
p->nDigit = 1;
p->nFrac = 0;
}
if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
pArg = decimal_new(context, argv[0], 1);
decimal_add(p, pArg);
decimal_free(pArg);
}
static void decimalSumInverse(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
Decimal *p;
Decimal *pArg;
UNUSED_PARAMETER(argc);
p = sqlite3_aggregate_context(context, sizeof(*p));
if( p==0 ) return;
if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
pArg = decimal_new(context, argv[0], 1);
if( pArg ) pArg->sign = !pArg->sign;
decimal_add(p, pArg);
decimal_free(pArg);
}
static void decimalSumValue(sqlite3_context *context){
Decimal *p = sqlite3_aggregate_context(context, 0);
if( p==0 ) return;
decimal_result(context, p);
}
static void decimalSumFinalize(sqlite3_context *context){
Decimal *p = sqlite3_aggregate_context(context, 0);
if( p==0 ) return;
decimal_result(context, p);
decimal_clear(p);
}
/*
** SQL Function: decimal_mul(X, Y)
**
** Return the product of X and Y.
*/
static void decimalMulFunc(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
Decimal *pA = decimal_new(context, argv[0], 1);
Decimal *pB = decimal_new(context, argv[1], 1);
UNUSED_PARAMETER(argc);
if( pA==0 || pA->oom || pA->isNull
|| pB==0 || pB->oom || pB->isNull
){
goto mul_end;
}
decimalMul(pA, pB);
if( pA->oom ){
goto mul_end;
}
decimal_result(context, pA);
mul_end:
decimal_free(pA);
decimal_free(pB);
}
/*
** SQL Function: decimal_pow2(N)
**
** Return the N-th power of 2. N must be an integer.
*/
static void decimalPow2Func(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
UNUSED_PARAMETER(argc);
if( sqlite3_value_type(argv[0])==SQLITE_INTEGER ){
Decimal *pA = decimalPow2(sqlite3_value_int(argv[0]));
decimal_result_sci(context, pA);
decimal_free(pA);
}
}
#ifdef _WIN32
#endif
int sqlite3_decimal_init(
sqlite3 *db,
char **pzErrMsg,
const sqlite3_api_routines *pApi
){
int rc = SQLITE_OK;
static const struct {
const char *zFuncName;
int nArg;
int iArg;
void (*xFunc)(sqlite3_context*,int,sqlite3_value**);
} aFunc[] = {
{ "decimal", 1, 0, decimalFunc },
{ "decimal_exp", 1, 1, decimalFunc },
{ "decimal_cmp", 2, 0, decimalCmpFunc },
{ "decimal_add", 2, 0, decimalAddFunc },
{ "decimal_sub", 2, 0, decimalSubFunc },
{ "decimal_mul", 2, 0, decimalMulFunc },
{ "decimal_pow2", 1, 0, decimalPow2Func },
};
unsigned int i;
(void)pzErrMsg; /* Unused parameter */
SQLITE_EXTENSION_INIT2(pApi);
for(i=0; i<(int)(sizeof(aFunc)/sizeof(aFunc[0])) && rc==SQLITE_OK; i++){
rc = sqlite3_create_function(db, aFunc[i].zFuncName, aFunc[i].nArg,
SQLITE_UTF8|SQLITE_INNOCUOUS|SQLITE_DETERMINISTIC,
aFunc[i].iArg ? db : 0, aFunc[i].xFunc, 0, 0);
}
if( rc==SQLITE_OK ){
rc = sqlite3_create_window_function(db, "decimal_sum", 1,
SQLITE_UTF8|SQLITE_INNOCUOUS|SQLITE_DETERMINISTIC, 0,
decimalSumStep, decimalSumFinalize,
decimalSumValue, decimalSumInverse, 0);
}
if( rc==SQLITE_OK ){
rc = sqlite3_create_collation(db, "decimal", SQLITE_UTF8,
0, decimalCollFunc);
}
return rc;
}
/************************* End ../ext/misc/decimal.c ********************/
/************************* Begin ../ext/misc/percentile.c ******************/
/*
** 2013-05-28
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
******************************************************************************
**
** This file contains code to implement the percentile(Y,P) SQL function
** and similar as described below:
**
** (1) The percentile(Y,P) function is an aggregate function taking
** exactly two arguments.
**
** (2) If the P argument to percentile(Y,P) is not the same for every
** row in the aggregate then an error is thrown. The word "same"
** in the previous sentence means that the value differ by less
** than 0.001.
**
** (3) If the P argument to percentile(Y,P) evaluates to anything other
** than a number in the range of 0.0 to 100.0 inclusive then an
** error is thrown.
**
** (4) If any Y argument to percentile(Y,P) evaluates to a value that
** is not NULL and is not numeric then an error is thrown.
**
** (5) If any Y argument to percentile(Y,P) evaluates to plus or minus
** infinity then an error is thrown. (SQLite always interprets NaN
** values as NULL.)
**
** (6) Both Y and P in percentile(Y,P) can be arbitrary expressions,
** including CASE WHEN expressions.
**
** (7) The percentile(Y,P) aggregate is able to handle inputs of at least
** one million (1,000,000) rows.
**
** (8) If there are no non-NULL values for Y, then percentile(Y,P)
** returns NULL.
**
** (9) If there is exactly one non-NULL value for Y, the percentile(Y,P)
** returns the one Y value.
**
** (10) If there N non-NULL values of Y where N is two or more and
** the Y values are ordered from least to greatest and a graph is
** drawn from 0 to N-1 such that the height of the graph at J is
** the J-th Y value and such that straight lines are drawn between
** adjacent Y values, then the percentile(Y,P) function returns
** the height of the graph at P*(N-1)/100.
**
** (11) The percentile(Y,P) function always returns either a floating
** point number or NULL.
**
** (12) The percentile(Y,P) is implemented as a single C99 source-code
** file that compiles into a shared-library or DLL that can be loaded
** into SQLite using the sqlite3_load_extension() interface.
**
** (13) A separate median(Y) function is the equivalent percentile(Y,50).
**
** (14) A separate percentile_cont(Y,P) function is equivalent to
** percentile(Y,P/100.0). In other words, the fraction value in
** the second argument is in the range of 0 to 1 instead of 0 to 100.
**
** (15) A separate percentile_disc(Y,P) function is like
** percentile_cont(Y,P) except that instead of returning the weighted
** average of the nearest two input values, it returns the next lower
** value. So the percentile_disc(Y,P) will always return a value
** that was one of the inputs.
**
** (16) All of median(), percentile(Y,P), percentile_cont(Y,P) and
** percentile_disc(Y,P) can be used as window functions.
**
** Differences from standard SQL:
**
** * The percentile_cont(X,P) function is equivalent to the following in
** standard SQL:
**
** (percentile_cont(P) WITHIN GROUP (ORDER BY X))
**
** The SQLite syntax is much more compact. The standard SQL syntax
** is also supported if SQLite is compiled with the
** -DSQLITE_ENABLE_ORDERED_SET_AGGREGATES option.
**
** * No median(X) function exists in the SQL standard. App developers
** are expected to write "percentile_cont(0.5)WITHIN GROUP(ORDER BY X)".
**
** * No percentile(Y,P) function exists in the SQL standard. Instead of
** percential(Y,P), developers must write this:
** "percentile_cont(P/100.0) WITHIN GROUP (ORDER BY Y)". Note that
** the fraction parameter to percentile() goes from 0 to 100 whereas
** the fraction parameter in SQL standard percentile_cont() goes from
** 0 to 1.
**
** Implementation notes as of 2024-08-31:
**
** * The regular aggregate-function versions of these routines work
** by accumulating all values in an array of doubles, then sorting
** that array using quicksort before computing the answer. Thus
** the runtime is O(NlogN) where N is the number of rows of input.
**
** * For the window-function versions of these routines, the array of
** inputs is sorted as soon as the first value is computed. Thereafter,
** the array is kept in sorted order using an insert-sort. This
** results in O(N*K) performance where K is the size of the window.
** One can imagine alternative implementations that give O(N*logN*logK)
** performance, but they require more complex logic and data structures.
** The developers have elected to keep the asymptotically slower
** algorithm for now, for simplicity, under the theory that window
** functions are seldom used and when they are, the window size K is
** often small. The developers might revisit that decision later,
** should the need arise.
*/
#if defined(SQLITE3_H)
/* no-op */
#elif defined(SQLITE_STATIC_PERCENTILE)
/* # include "sqlite3.h" */
#else
/* # include "sqlite3ext.h" */
SQLITE_EXTENSION_INIT1
#endif
#include <assert.h>
#include <string.h>
#include <stdlib.h>
/* The following object is the group context for a single percentile()
** aggregate. Remember all input Y values until the very end.
** Those values are accumulated in the Percentile.a[] array.
*/
typedef struct Percentile Percentile;
struct Percentile {
unsigned nAlloc; /* Number of slots allocated for a[] */
unsigned nUsed; /* Number of slots actually used in a[] */
char bSorted; /* True if a[] is already in sorted order */
char bKeepSorted; /* True if advantageous to keep a[] sorted */
char bPctValid; /* True if rPct is valid */
double rPct; /* Fraction. 0.0 to 1.0 */
double *a; /* Array of Y values */
};
/* Details of each function in the percentile family */
typedef struct PercentileFunc PercentileFunc;
struct PercentileFunc {
const char *zName; /* Function name */
char nArg; /* Number of arguments */
char mxFrac; /* Maximum value of the "fraction" input */
char bDiscrete; /* True for percentile_disc() */
};
static const PercentileFunc aPercentFunc[] = {
{ "median", 1, 1, 0 },
{ "percentile", 2, 100, 0 },
{ "percentile_cont", 2, 1, 0 },
{ "percentile_disc", 2, 1, 1 },
};
/*
** Return TRUE if the input floating-point number is an infinity.
*/
static int percentIsInfinity(double r){
sqlite3_uint64 u;
assert( sizeof(u)==sizeof(r) );
memcpy(&u, &r, sizeof(u));
return ((u>>52)&0x7ff)==0x7ff;
}
/*
** Return TRUE if two doubles differ by 0.001 or less.
*/
static int percentSameValue(double a, double b){
a -= b;
return a>=-0.001 && a<=0.001;
}
/*
** Search p (which must have p->bSorted) looking for an entry with
** value y. Return the index of that entry.
**
** If bExact is true, return -1 if the entry is not found.
**
** If bExact is false, return the index at which a new entry with
** value y should be insert in order to keep the values in sorted
** order. The smallest return value in this case will be 0, and
** the largest return value will be p->nUsed.
*/
static int percentBinarySearch(Percentile *p, double y, int bExact){
int iFirst = 0; /* First element of search range */
int iLast = p->nUsed - 1; /* Last element of search range */
while( iLast>=iFirst ){
int iMid = (iFirst+iLast)/2;
double x = p->a[iMid];
if( x<y ){
iFirst = iMid + 1;
}else if( x>y ){
iLast = iMid - 1;
}else{
return iMid;
}
}
if( bExact ) return -1;
return iFirst;
}
/*
** Generate an error for a percentile function.
**
** The error format string must have exactly one occurrance of "%%s()"
** (with two '%' characters). That substring will be replaced by the name
** of the function.
*/
static void percentError(sqlite3_context *pCtx, const char *zFormat, ...){
PercentileFunc *pFunc = (PercentileFunc*)sqlite3_user_data(pCtx);
char *zMsg1;
char *zMsg2;
va_list ap;
va_start(ap, zFormat);
zMsg1 = sqlite3_vmprintf(zFormat, ap);
va_end(ap);
zMsg2 = zMsg1 ? sqlite3_mprintf(zMsg1, pFunc->zName) : 0;
sqlite3_result_error(pCtx, zMsg2, -1);
sqlite3_free(zMsg1);
sqlite3_free(zMsg2);
}
/*
** The "step" function for percentile(Y,P) is called once for each
** input row.
*/
static void percentStep(sqlite3_context *pCtx, int argc, sqlite3_value **argv){
Percentile *p;
double rPct;
int eType;
double y;
assert( argc==2 || argc==1 );
if( argc==1 ){
/* Requirement 13: median(Y) is the same as percentile(Y,50). */
rPct = 0.5;
}else{
/* Requirement 3: P must be a number between 0 and 100 */
PercentileFunc *pFunc = (PercentileFunc*)sqlite3_user_data(pCtx);
eType = sqlite3_value_numeric_type(argv[1]);
rPct = sqlite3_value_double(argv[1])/(double)pFunc->mxFrac;
if( (eType!=SQLITE_INTEGER && eType!=SQLITE_FLOAT)
|| rPct<0.0 || rPct>1.0
){
percentError(pCtx, "the fraction argument to %%s()"
" is not between 0.0 and %.1f",
(double)pFunc->mxFrac);
return;
}
}
/* Allocate the session context. */
p = (Percentile*)sqlite3_aggregate_context(pCtx, sizeof(*p));
if( p==0 ) return;
/* Remember the P value. Throw an error if the P value is different
** from any prior row, per Requirement (2). */
if( !p->bPctValid ){
p->rPct = rPct;
p->bPctValid = 1;
}else if( !percentSameValue(p->rPct,rPct) ){
percentError(pCtx, "the fraction argument to %%s()"
" is not the same for all input rows");
return;
}
/* Ignore rows for which Y is NULL */
eType = sqlite3_value_type(argv[0]);
if( eType==SQLITE_NULL ) return;
/* If not NULL, then Y must be numeric. Otherwise throw an error.
** Requirement 4 */
if( eType!=SQLITE_INTEGER && eType!=SQLITE_FLOAT ){
percentError(pCtx, "input to %%s() is not numeric");
return;
}
/* Throw an error if the Y value is infinity or NaN */
y = sqlite3_value_double(argv[0]);
if( percentIsInfinity(y) ){
percentError(pCtx, "Inf input to %%s()");
return;
}
/* Allocate and store the Y */
if( p->nUsed>=p->nAlloc ){
unsigned n = p->nAlloc*2 + 250;
double *a = sqlite3_realloc64(p->a, sizeof(double)*n);
if( a==0 ){
sqlite3_free(p->a);
memset(p, 0, sizeof(*p));
sqlite3_result_error_nomem(pCtx);
return;
}
p->nAlloc = n;
p->a = a;
}
if( p->nUsed==0 ){
p->a[p->nUsed++] = y;
p->bSorted = 1;
}else if( !p->bSorted || y>=p->a[p->nUsed-1] ){
p->a[p->nUsed++] = y;
}else if( p->bKeepSorted ){
int i;
i = percentBinarySearch(p, y, 0);
if( i<(int)p->nUsed ){
memmove(&p->a[i+1], &p->a[i], (p->nUsed-i)*sizeof(p->a[0]));
}
p->a[i] = y;
p->nUsed++;
}else{
p->a[p->nUsed++] = y;
p->bSorted = 0;
}
}
/*
** Interchange two doubles.
*/
#define SWAP_DOUBLE(X,Y) {double ttt=(X);(X)=(Y);(Y)=ttt;}
/*
** Sort an array of doubles.
**
** Algorithm: quicksort
**
** This is implemented separately rather than using the qsort() routine
** from the standard library because:
**
** (1) To avoid a dependency on qsort()
** (2) To avoid the function call to the comparison routine for each
** comparison.
*/
static void percentSort(double *a, unsigned int n){
int iLt; /* Entries before a[iLt] are less than rPivot */
int iGt; /* Entries at or after a[iGt] are greater than rPivot */
int i; /* Loop counter */
double rPivot; /* The pivot value */
assert( n>=2 );
if( a[0]>a[n-1] ){
SWAP_DOUBLE(a[0],a[n-1])
}
if( n==2 ) return;
iGt = n-1;
i = n/2;
if( a[0]>a[i] ){
SWAP_DOUBLE(a[0],a[i])
}else if( a[i]>a[iGt] ){
SWAP_DOUBLE(a[i],a[iGt])
}
if( n==3 ) return;
rPivot = a[i];
iLt = i = 1;
do{
if( a[i]<rPivot ){
if( i>iLt ) SWAP_DOUBLE(a[i],a[iLt])
iLt++;
i++;
}else if( a[i]>rPivot ){
do{
iGt--;
}while( iGt>i && a[iGt]>rPivot );
SWAP_DOUBLE(a[i],a[iGt])
}else{
i++;
}
}while( i<iGt );
if( iLt>=2 ) percentSort(a, iLt);
if( n-iGt>=2 ) percentSort(a+iGt, n-iGt);
/* Uncomment for testing */
#if 0
for(i=0; i<n-1; i++){
assert( a[i]<=a[i+1] );
}
#endif
}
/*
** The "inverse" function for percentile(Y,P) is called to remove a
** row that was previously inserted by "step".
*/
static void percentInverse(sqlite3_context *pCtx,int argc,sqlite3_value **argv){
Percentile *p;
int eType;
double y;
int i;
assert( argc==2 || argc==1 );
/* Allocate the session context. */
p = (Percentile*)sqlite3_aggregate_context(pCtx, sizeof(*p));
assert( p!=0 );
/* Ignore rows for which Y is NULL */
eType = sqlite3_value_type(argv[0]);
if( eType==SQLITE_NULL ) return;
/* If not NULL, then Y must be numeric. Otherwise throw an error.
** Requirement 4 */
if( eType!=SQLITE_INTEGER && eType!=SQLITE_FLOAT ){
return;
}
/* Ignore the Y value if it is infinity or NaN */
y = sqlite3_value_double(argv[0]);
if( percentIsInfinity(y) ){
return;
}
if( p->bSorted==0 ){
assert( p->nUsed>1 );
percentSort(p->a, p->nUsed);
p->bSorted = 1;
}
p->bKeepSorted = 1;
/* Find and remove the row */
i = percentBinarySearch(p, y, 1);
if( i>=0 ){
p->nUsed--;
if( i<(int)p->nUsed ){
memmove(&p->a[i], &p->a[i+1], (p->nUsed - i)*sizeof(p->a[0]));
}
}
}
/*
** Compute the final output of percentile(). Clean up all allocated
** memory if and only if bIsFinal is true.
*/
static void percentCompute(sqlite3_context *pCtx, int bIsFinal){
Percentile *p;
PercentileFunc *pFunc = (PercentileFunc*)sqlite3_user_data(pCtx);
unsigned i1, i2;
double v1, v2;
double ix, vx;
p = (Percentile*)sqlite3_aggregate_context(pCtx, 0);
if( p==0 ) return;
if( p->a==0 ) return;
if( p->nUsed ){
if( p->bSorted==0 ){
assert( p->nUsed>1 );
percentSort(p->a, p->nUsed);
p->bSorted = 1;
}
ix = p->rPct*(p->nUsed-1);
i1 = (unsigned)ix;
if( pFunc->bDiscrete ){
vx = p->a[i1];
}else{
i2 = ix==(double)i1 || i1==p->nUsed-1 ? i1 : i1+1;
v1 = p->a[i1];
v2 = p->a[i2];
vx = v1 + (v2-v1)*(ix-i1);
}
sqlite3_result_double(pCtx, vx);
}
if( bIsFinal ){
sqlite3_free(p->a);
memset(p, 0, sizeof(*p));
}else{
p->bKeepSorted = 1;
}
}
static void percentFinal(sqlite3_context *pCtx){
percentCompute(pCtx, 1);
}
static void percentValue(sqlite3_context *pCtx){
percentCompute(pCtx, 0);
}
#if defined(_WIN32) && !defined(SQLITE3_H) && !defined(SQLITE_STATIC_PERCENTILE)
#endif
int sqlite3_percentile_init(
sqlite3 *db,
char **pzErrMsg,
const sqlite3_api_routines *pApi
){
int rc = SQLITE_OK;
unsigned int i;
#ifdef SQLITE3EXT_H
SQLITE_EXTENSION_INIT2(pApi);
#else
(void)pApi; /* Unused parameter */
#endif
(void)pzErrMsg; /* Unused parameter */
for(i=0; i<sizeof(aPercentFunc)/sizeof(aPercentFunc[0]); i++){
rc = sqlite3_create_window_function(db,
aPercentFunc[i].zName,
aPercentFunc[i].nArg,
SQLITE_UTF8|SQLITE_INNOCUOUS|SQLITE_SELFORDER1,
(void*)&aPercentFunc[i],
percentStep, percentFinal, percentValue, percentInverse, 0);
if( rc ) break;
}
return rc;
}
/************************* End ../ext/misc/percentile.c ********************/
#undef sqlite3_base_init
#define sqlite3_base_init sqlite3_base64_init
/************************* Begin ../ext/misc/base64.c ******************/
/*
** 2022-11-18
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
**
** This is a SQLite extension for converting in either direction
** between a (binary) blob and base64 text. Base64 can transit a
** sane USASCII channel unmolested. It also plays nicely in CSV or
** written as TCL brace-enclosed literals or SQL string literals,
** and can be used unmodified in XML-like documents.
**
** This is an independent implementation of conversions specified in
** RFC 4648, done on the above date by the author (Larry Brasfield)
** who thereby has the right to put this into the public domain.
**
** The conversions meet RFC 4648 requirements, provided that this
** C source specifies that line-feeds are included in the encoded
** data to limit visible line lengths to 72 characters and to
** terminate any encoded blob having non-zero length.
**
** Length limitations are not imposed except that the runtime
** SQLite string or blob length limits are respected. Otherwise,
** any length binary sequence can be represented and recovered.
** Generated base64 sequences, with their line-feeds included,
** can be concatenated; the result converted back to binary will
** be the concatenation of the represented binary sequences.
**
** This SQLite3 extension creates a function, base64(x), which
** either: converts text x containing base64 to a returned blob;
** or converts a blob x to returned text containing base64. An
** error will be thrown for other input argument types.
**
** This code relies on UTF-8 encoding only with respect to the
** meaning of the first 128 (7-bit) codes matching that of USASCII.
** It will fail miserably if somehow made to try to convert EBCDIC.
** Because it is table-driven, it could be enhanced to handle that,
** but the world and SQLite have moved on from that anachronism.
**
** To build the extension:
** Set shell variable SQDIR=<your favorite SQLite checkout directory>
** *Nix: gcc -O2 -shared -I$SQDIR -fPIC -o base64.so base64.c
** OSX: gcc -O2 -dynamiclib -fPIC -I$SQDIR -o base64.dylib base64.c
** Win32: gcc -O2 -shared -I%SQDIR% -o base64.dll base64.c
** Win32: cl /Os -I%SQDIR% base64.c -link -dll -out:base64.dll
*/
#include <assert.h>
/* #include "sqlite3ext.h" */
#ifndef deliberate_fall_through
/* Quiet some compilers about some of our intentional code. */
# if GCC_VERSION>=7000000
# define deliberate_fall_through __attribute__((fallthrough));
# else
# define deliberate_fall_through
# endif
#endif
SQLITE_EXTENSION_INIT1;
#define PC 0x80 /* pad character */
#define WS 0x81 /* whitespace */
#define ND 0x82 /* Not above or digit-value */
#define PAD_CHAR '='
#ifndef U8_TYPEDEF
/* typedef unsigned char u8; */
#define U8_TYPEDEF
#endif
/* Decoding table, ASCII (7-bit) value to base 64 digit value or other */
static const u8 b64DigitValues[128] = {
/* HT LF VT FF CR */
ND,ND,ND,ND, ND,ND,ND,ND, ND,WS,WS,WS, WS,WS,ND,ND,
/* US */
ND,ND,ND,ND, ND,ND,ND,ND, ND,ND,ND,ND, ND,ND,ND,ND,
/*sp + / */
WS,ND,ND,ND, ND,ND,ND,ND, ND,ND,ND,62, ND,ND,ND,63,
/* 0 1 5 9 = */
52,53,54,55, 56,57,58,59, 60,61,ND,ND, ND,PC,ND,ND,
/* A O */
ND, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10, 11,12,13,14,
/* P Z */
15,16,17,18, 19,20,21,22, 23,24,25,ND, ND,ND,ND,ND,
/* a o */
ND,26,27,28, 29,30,31,32, 33,34,35,36, 37,38,39,40,
/* p z */
41,42,43,44, 45,46,47,48, 49,50,51,ND, ND,ND,ND,ND
};
static const char b64Numerals[64+1]
= "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
#define BX_DV_PROTO(c) \
((((u8)(c))<0x80)? (u8)(b64DigitValues[(u8)(c)]) : 0x80)
#define IS_BX_DIGIT(bdp) (((u8)(bdp))<0x80)
#define IS_BX_WS(bdp) ((bdp)==WS)
#define IS_BX_PAD(bdp) ((bdp)==PC)
#define BX_NUMERAL(dv) (b64Numerals[(u8)(dv)])
/* Width of base64 lines. Should be an integer multiple of 4. */
#define B64_DARK_MAX 72
/* Encode a byte buffer into base64 text with linefeeds appended to limit
** encoded group lengths to B64_DARK_MAX or to terminate the last group.
*/
static char* toBase64( u8 *pIn, int nbIn, char *pOut ){
int nCol = 0;
while( nbIn >= 3 ){
/* Do the bit-shuffle, exploiting unsigned input to avoid masking. */
pOut[0] = BX_NUMERAL(pIn[0]>>2);
pOut[1] = BX_NUMERAL(((pIn[0]<<4)|(pIn[1]>>4))&0x3f);
pOut[2] = BX_NUMERAL(((pIn[1]&0xf)<<2)|(pIn[2]>>6));
pOut[3] = BX_NUMERAL(pIn[2]&0x3f);
pOut += 4;
nbIn -= 3;
pIn += 3;
if( (nCol += 4)>=B64_DARK_MAX || nbIn<=0 ){
*pOut++ = '\n';
nCol = 0;
}
}
if( nbIn > 0 ){
signed char nco = nbIn+1;
int nbe;
unsigned long qv = *pIn++;
for( nbe=1; nbe<3; ++nbe ){
qv <<= 8;
if( nbe<nbIn ) qv |= *pIn++;
}
for( nbe=3; nbe>=0; --nbe ){
char ce = (nbe<nco)? BX_NUMERAL((u8)(qv & 0x3f)) : PAD_CHAR;
qv >>= 6;
pOut[nbe] = ce;
}
pOut += 4;
*pOut++ = '\n';
}
*pOut = 0;
return pOut;
}
/* Skip over text which is not base64 numeral(s). */
static char * skipNonB64( char *s, int nc ){
char c;
while( nc-- > 0 && (c = *s) && !IS_BX_DIGIT(BX_DV_PROTO(c)) ) ++s;
return s;
}
/* Decode base64 text into a byte buffer. */
static u8* fromBase64( char *pIn, int ncIn, u8 *pOut ){
if( ncIn>0 && pIn[ncIn-1]=='\n' ) --ncIn;
while( ncIn>0 && *pIn!=PAD_CHAR ){
static signed char nboi[] = { 0, 0, 1, 2, 3 };
char *pUse = skipNonB64(pIn, ncIn);
unsigned long qv = 0L;
int nti, nbo, nac;
ncIn -= (pUse - pIn);
pIn = pUse;
nti = (ncIn>4)? 4 : ncIn;
ncIn -= nti;
nbo = nboi[nti];
if( nbo==0 ) break;
for( nac=0; nac<4; ++nac ){
char c = (nac<nti)? *pIn++ : b64Numerals[0];
u8 bdp = BX_DV_PROTO(c);
switch( bdp ){
case ND:
/* Treat dark non-digits as pad, but they terminate decode too. */
ncIn = 0;
deliberate_fall_through; /* FALLTHRU */
case WS:
/* Treat whitespace as pad and terminate this group.*/
nti = nac;
deliberate_fall_through; /* FALLTHRU */
case PC:
bdp = 0;
--nbo;
deliberate_fall_through; /* FALLTHRU */
default: /* bdp is the digit value. */
qv = qv<<6 | bdp;
break;
}
}
switch( nbo ){
case 3:
pOut[2] = (qv) & 0xff;
deliberate_fall_through; /* FALLTHRU */
case 2:
pOut[1] = (qv>>8) & 0xff;
deliberate_fall_through; /* FALLTHRU */
case 1:
pOut[0] = (qv>>16) & 0xff;
deliberate_fall_through; /* FALLTHRU */
}
pOut += nbo;
}
return pOut;
}
/* This function does the work for the SQLite base64(x) UDF. */
static void base64(sqlite3_context *context, int na, sqlite3_value *av[]){
int nb, nc, nv = sqlite3_value_bytes(av[0]);
int nvMax = sqlite3_limit(sqlite3_context_db_handle(context),
SQLITE_LIMIT_LENGTH, -1);
char *cBuf;
u8 *bBuf;
assert(na==1);
switch( sqlite3_value_type(av[0]) ){
case SQLITE_BLOB:
nb = nv;
nc = 4*(nv+2/3); /* quads needed */
nc += (nc+(B64_DARK_MAX-1))/B64_DARK_MAX + 1; /* LFs and a 0-terminator */
if( nvMax < nc ){
sqlite3_result_error(context, "blob expanded to base64 too big", -1);
return;
}
bBuf = (u8*)sqlite3_value_blob(av[0]);
if( !bBuf ){
if( SQLITE_NOMEM==sqlite3_errcode(sqlite3_context_db_handle(context)) ){
goto memFail;
}
sqlite3_result_text(context,"",-1,SQLITE_STATIC);
break;
}
cBuf = sqlite3_malloc(nc);
if( !cBuf ) goto memFail;
nc = (int)(toBase64(bBuf, nb, cBuf) - cBuf);
sqlite3_result_text(context, cBuf, nc, sqlite3_free);
break;
case SQLITE_TEXT:
nc = nv;
nb = 3*((nv+3)/4); /* may overestimate due to LF and padding */
if( nvMax < nb ){
sqlite3_result_error(context, "blob from base64 may be too big", -1);
return;
}else if( nb<1 ){
nb = 1;
}
cBuf = (char *)sqlite3_value_text(av[0]);
if( !cBuf ){
if( SQLITE_NOMEM==sqlite3_errcode(sqlite3_context_db_handle(context)) ){
goto memFail;
}
sqlite3_result_zeroblob(context, 0);
break;
}
bBuf = sqlite3_malloc(nb);
if( !bBuf ) goto memFail;
nb = (int)(fromBase64(cBuf, nc, bBuf) - bBuf);
sqlite3_result_blob(context, bBuf, nb, sqlite3_free);
break;
default:
sqlite3_result_error(context, "base64 accepts only blob or text", -1);
return;
}
return;
memFail:
sqlite3_result_error(context, "base64 OOM", -1);
}
/*
** Establish linkage to running SQLite library.
*/
#ifndef SQLITE_SHELL_EXTFUNCS
#ifdef _WIN32
#endif
int sqlite3_base_init
#else
static int sqlite3_base64_init
#endif
(sqlite3 *db, char **pzErr, const sqlite3_api_routines *pApi){
SQLITE_EXTENSION_INIT2(pApi);
(void)pzErr;
return sqlite3_create_function
(db, "base64", 1,
SQLITE_DETERMINISTIC|SQLITE_INNOCUOUS|SQLITE_DIRECTONLY|SQLITE_UTF8,
0, base64, 0, 0);
}
/*
** Define some macros to allow this extension to be built into the shell
** conveniently, in conjunction with use of SQLITE_SHELL_EXTFUNCS. This
** allows shell.c, as distributed, to have this extension built in.
*/
#define BASE64_INIT(db) sqlite3_base64_init(db, 0, 0)
#define BASE64_EXPOSE(db, pzErr) /* Not needed, ..._init() does this. */
/************************* End ../ext/misc/base64.c ********************/
#undef sqlite3_base_init
#define sqlite3_base_init sqlite3_base85_init
#define OMIT_BASE85_CHECKER
/************************* Begin ../ext/misc/base85.c ******************/
/*
** 2022-11-16
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
**
** This is a utility for converting binary to base85 or vice-versa.
** It can be built as a standalone program or an SQLite3 extension.
**
** Much like base64 representations, base85 can be sent through a
** sane USASCII channel unmolested. It also plays nicely in CSV or
** written as TCL brace-enclosed literals or SQL string literals.
** It is not suited for unmodified use in XML-like documents.
**
** The encoding used resembles Ascii85, but was devised by the author
** (Larry Brasfield) before Mozilla, Adobe, ZMODEM or other Ascii85
** variant sources existed, in the 1984 timeframe on a VAX mainframe.
** Further, this is an independent implementation of a base85 system.
** Hence, the author has rightfully put this into the public domain.
**
** Base85 numerals are taken from the set of 7-bit USASCII codes,
** excluding control characters and Space ! " ' ( ) { | } ~ Del
** in code order representing digit values 0 to 84 (base 10.)
**
** Groups of 4 bytes, interpreted as big-endian 32-bit values,
** are represented as 5-digit base85 numbers with MS to LS digit
** order. Groups of 1-3 bytes are represented with 2-4 digits,
** still big-endian but 8-24 bit values. (Using big-endian yields
** the simplest transition to byte groups smaller than 4 bytes.
** These byte groups can also be considered base-256 numbers.)
** Groups of 0 bytes are represented with 0 digits and vice-versa.
** No pad characters are used; Encoded base85 numeral sequence
** (aka "group") length maps 1-to-1 to the decoded binary length.
**
** Any character not in the base85 numeral set delimits groups.
** When base85 is streamed or stored in containers of indefinite
** size, newline is used to separate it into sub-sequences of no
** more than 80 digits so that fgets() can be used to read it.
**
** Length limitations are not imposed except that the runtime
** SQLite string or blob length limits are respected. Otherwise,
** any length binary sequence can be represented and recovered.
** Base85 sequences can be concatenated by separating them with
** a non-base85 character; the conversion to binary will then
** be the concatenation of the represented binary sequences.
** The standalone program either converts base85 on stdin to create
** a binary file or converts a binary file to base85 on stdout.
** Read or make it blurt its help for invocation details.
**
** The SQLite3 extension creates a function, base85(x), which will
** either convert text base85 to a blob or a blob to text base85
** and return the result (or throw an error for other types.)
** Unless built with OMIT_BASE85_CHECKER defined, it also creates a
** function, is_base85(t), which returns 1 iff the text t contains
** nothing other than base85 numerals and whitespace, or 0 otherwise.
**
** To build the extension:
** Set shell variable SQDIR=<your favorite SQLite checkout directory>
** and variable OPTS to -DOMIT_BASE85_CHECKER if is_base85() unwanted.
** *Nix: gcc -O2 -shared -I$SQDIR $OPTS -fPIC -o base85.so base85.c
** OSX: gcc -O2 -dynamiclib -fPIC -I$SQDIR $OPTS -o base85.dylib base85.c
** Win32: gcc -O2 -shared -I%SQDIR% %OPTS% -o base85.dll base85.c
** Win32: cl /Os -I%SQDIR% %OPTS% base85.c -link -dll -out:base85.dll
**
** To build the standalone program, define PP symbol BASE85_STANDALONE. Eg.
** *Nix or OSX: gcc -O2 -DBASE85_STANDALONE base85.c -o base85
** Win32: gcc -O2 -DBASE85_STANDALONE -o base85.exe base85.c
** Win32: cl /Os /MD -DBASE85_STANDALONE base85.c
*/
#include <stdio.h>
#include <memory.h>
#include <string.h>
#include <assert.h>
#ifndef OMIT_BASE85_CHECKER
# include <ctype.h>
#endif
#ifndef BASE85_STANDALONE
/* # include "sqlite3ext.h" */
SQLITE_EXTENSION_INIT1;
#else
# ifdef _WIN32
# include <io.h>
# include <fcntl.h>
# else
# define setmode(fd,m)
# endif
static char *zHelp =
"Usage: base85 <dirFlag> <binFile>\n"
" <dirFlag> is either -r to read or -w to write <binFile>,\n"
" content to be converted to/from base85 on stdout/stdin.\n"
" <binFile> names a binary file to be rendered or created.\n"
" Or, the name '-' refers to the stdin or stdout stream.\n"
;
static void sayHelp(){
printf("%s", zHelp);
}
#endif
#ifndef U8_TYPEDEF
/* typedef unsigned char u8; */
#define U8_TYPEDEF
#endif
/* Classify c according to interval within USASCII set w.r.t. base85
* Values of 1 and 3 are base85 numerals. Values of 0, 2, or 4 are not.
*/
#define B85_CLASS( c ) (((c)>='#')+((c)>'&')+((c)>='*')+((c)>'z'))
/* Provide digitValue to b85Numeral offset as a function of above class. */
static u8 b85_cOffset[] = { 0, '#', 0, '*'-4, 0 };
#define B85_DNOS( c ) b85_cOffset[B85_CLASS(c)]
/* Say whether c is a base85 numeral. */
#define IS_B85( c ) (B85_CLASS(c) & 1)
#if 0 /* Not used, */
static u8 base85DigitValue( char c ){
u8 dv = (u8)(c - '#');
if( dv>87 ) return 0xff;
return (dv > 3)? dv-3 : dv;
}
#endif
/* Width of base64 lines. Should be an integer multiple of 5. */
#define B85_DARK_MAX 80
static char * skipNonB85( char *s, int nc ){
char c;
while( nc-- > 0 && (c = *s) && !IS_B85(c) ) ++s;
return s;
}
/* Convert small integer, known to be in 0..84 inclusive, to base85 numeral.
* Do not use the macro form with argument expression having a side-effect.*/
#if 0
static char base85Numeral( u8 b ){
return (b < 4)? (char)(b + '#') : (char)(b - 4 + '*');
}
#else
# define base85Numeral( dn )\
((char)(((dn) < 4)? (char)((dn) + '#') : (char)((dn) - 4 + '*')))
#endif
static char *putcs(char *pc, char *s){
char c;
while( (c = *s++)!=0 ) *pc++ = c;
return pc;
}
/* Encode a byte buffer into base85 text. If pSep!=0, it's a C string
** to be appended to encoded groups to limit their length to B85_DARK_MAX
** or to terminate the last group (to aid concatenation.)
*/
static char* toBase85( u8 *pIn, int nbIn, char *pOut, char *pSep ){
int nCol = 0;
while( nbIn >= 4 ){
int nco = 5;
unsigned long qbv = (((unsigned long)pIn[0])<<24) |
(pIn[1]<<16) | (pIn[2]<<8) | pIn[3];
while( nco > 0 ){
unsigned nqv = (unsigned)(qbv/85UL);
unsigned char dv = qbv - 85UL*nqv;
qbv = nqv;
pOut[--nco] = base85Numeral(dv);
}
nbIn -= 4;
pIn += 4;
pOut += 5;
if( pSep && (nCol += 5)>=B85_DARK_MAX ){
pOut = putcs(pOut, pSep);
nCol = 0;
}
}
if( nbIn > 0 ){
int nco = nbIn + 1;
unsigned long qv = *pIn++;
int nbe = 1;
while( nbe++ < nbIn ){
qv = (qv<<8) | *pIn++;
}
nCol += nco;
while( nco > 0 ){
u8 dv = (u8)(qv % 85);
qv /= 85;
pOut[--nco] = base85Numeral(dv);
}
pOut += (nbIn+1);
}
if( pSep && nCol>0 ) pOut = putcs(pOut, pSep);
*pOut = 0;
return pOut;
}
/* Decode base85 text into a byte buffer. */
static u8* fromBase85( char *pIn, int ncIn, u8 *pOut ){
if( ncIn>0 && pIn[ncIn-1]=='\n' ) --ncIn;
while( ncIn>0 ){
static signed char nboi[] = { 0, 0, 1, 2, 3, 4 };
char *pUse = skipNonB85(pIn, ncIn);
unsigned long qv = 0L;
int nti, nbo;
ncIn -= (pUse - pIn);
pIn = pUse;
nti = (ncIn>5)? 5 : ncIn;
nbo = nboi[nti];
if( nbo==0 ) break;
while( nti>0 ){
char c = *pIn++;
u8 cdo = B85_DNOS(c);
--ncIn;
if( cdo==0 ) break;
qv = 85 * qv + (c - cdo);
--nti;
}
nbo -= nti; /* Adjust for early (non-digit) end of group. */
switch( nbo ){
case 4:
*pOut++ = (qv >> 24)&0xff;
/* FALLTHRU */
case 3:
*pOut++ = (qv >> 16)&0xff;
/* FALLTHRU */
case 2:
*pOut++ = (qv >> 8)&0xff;
/* FALLTHRU */
case 1:
*pOut++ = qv&0xff;
/* FALLTHRU */
case 0:
break;
}
}
return pOut;
}
#ifndef OMIT_BASE85_CHECKER
/* Say whether input char sequence is all (base85 and/or whitespace).*/
static int allBase85( char *p, int len ){
char c;
while( len-- > 0 && (c = *p++) != 0 ){
if( !IS_B85(c) && !isspace(c) ) return 0;
}
return 1;
}
#endif
#ifndef BASE85_STANDALONE
# ifndef OMIT_BASE85_CHECKER
/* This function does the work for the SQLite is_base85(t) UDF. */
static void is_base85(sqlite3_context *context, int na, sqlite3_value *av[]){
assert(na==1);
switch( sqlite3_value_type(av[0]) ){
case SQLITE_TEXT:
{
int rv = allBase85( (char *)sqlite3_value_text(av[0]),
sqlite3_value_bytes(av[0]) );
sqlite3_result_int(context, rv);
}
break;
case SQLITE_NULL:
sqlite3_result_null(context);
break;
default:
sqlite3_result_error(context, "is_base85 accepts only text or NULL", -1);
return;
}
}
# endif
/* This function does the work for the SQLite base85(x) UDF. */
static void base85(sqlite3_context *context, int na, sqlite3_value *av[]){
int nb, nc, nv = sqlite3_value_bytes(av[0]);
int nvMax = sqlite3_limit(sqlite3_context_db_handle(context),
SQLITE_LIMIT_LENGTH, -1);
char *cBuf;
u8 *bBuf;
assert(na==1);
switch( sqlite3_value_type(av[0]) ){
case SQLITE_BLOB:
nb = nv;
/* ulongs tail newlines tailenc+nul*/
nc = 5*(nv/4) + nv%4 + nv/64+1 + 2;
if( nvMax < nc ){
sqlite3_result_error(context, "blob expanded to base85 too big", -1);
return;
}
bBuf = (u8*)sqlite3_value_blob(av[0]);
if( !bBuf ){
if( SQLITE_NOMEM==sqlite3_errcode(sqlite3_context_db_handle(context)) ){
goto memFail;
}
sqlite3_result_text(context,"",-1,SQLITE_STATIC);
break;
}
cBuf = sqlite3_malloc(nc);
if( !cBuf ) goto memFail;
nc = (int)(toBase85(bBuf, nb, cBuf, "\n") - cBuf);
sqlite3_result_text(context, cBuf, nc, sqlite3_free);
break;
case SQLITE_TEXT:
nc = nv;
nb = 4*(nv/5) + nv%5; /* may overestimate */
if( nvMax < nb ){
sqlite3_result_error(context, "blob from base85 may be too big", -1);
return;
}else if( nb<1 ){
nb = 1;
}
cBuf = (char *)sqlite3_value_text(av[0]);
if( !cBuf ){
if( SQLITE_NOMEM==sqlite3_errcode(sqlite3_context_db_handle(context)) ){
goto memFail;
}
sqlite3_result_zeroblob(context, 0);
break;
}
bBuf = sqlite3_malloc(nb);
if( !bBuf ) goto memFail;
nb = (int)(fromBase85(cBuf, nc, bBuf) - bBuf);
sqlite3_result_blob(context, bBuf, nb, sqlite3_free);
break;
default:
sqlite3_result_error(context, "base85 accepts only blob or text.", -1);
return;
}
return;
memFail:
sqlite3_result_error(context, "base85 OOM", -1);
}
/*
** Establish linkage to running SQLite library.
*/
#ifndef SQLITE_SHELL_EXTFUNCS
#ifdef _WIN32
#endif
int sqlite3_base_init
#else
static int sqlite3_base85_init
#endif
(sqlite3 *db, char **pzErr, const sqlite3_api_routines *pApi){
SQLITE_EXTENSION_INIT2(pApi);
(void)pzErr;
# ifndef OMIT_BASE85_CHECKER
{
int rc = sqlite3_create_function
(db, "is_base85", 1,
SQLITE_DETERMINISTIC|SQLITE_INNOCUOUS|SQLITE_UTF8,
0, is_base85, 0, 0);
if( rc!=SQLITE_OK ) return rc;
}
# endif
return sqlite3_create_function
(db, "base85", 1,
SQLITE_DETERMINISTIC|SQLITE_INNOCUOUS|SQLITE_DIRECTONLY|SQLITE_UTF8,
0, base85, 0, 0);
}
/*
** Define some macros to allow this extension to be built into the shell
** conveniently, in conjunction with use of SQLITE_SHELL_EXTFUNCS. This
** allows shell.c, as distributed, to have this extension built in.
*/
# define BASE85_INIT(db) sqlite3_base85_init(db, 0, 0)
# define BASE85_EXPOSE(db, pzErr) /* Not needed, ..._init() does this. */
#else /* standalone program */
int main(int na, char *av[]){
int cin;
int rc = 0;
u8 bBuf[4*(B85_DARK_MAX/5)];
char cBuf[5*(sizeof(bBuf)/4)+2];
size_t nio;
# ifndef OMIT_BASE85_CHECKER
int b85Clean = 1;
# endif
char rw;
FILE *fb = 0, *foc = 0;
char fmode[3] = "xb";
if( na < 3 || av[1][0]!='-' || (rw = av[1][1])==0 || (rw!='r' && rw!='w') ){
sayHelp();
return 0;
}
fmode[0] = rw;
if( av[2][0]=='-' && av[2][1]==0 ){
switch( rw ){
case 'r':
fb = stdin;
setmode(fileno(stdin), O_BINARY);
break;
case 'w':
fb = stdout;
setmode(fileno(stdout), O_BINARY);
break;
}
}else{
fb = fopen(av[2], fmode);
foc = fb;
}
if( !fb ){
fprintf(stderr, "Cannot open %s for %c\n", av[2], rw);
rc = 1;
}else{
switch( rw ){
case 'r':
while( (nio = fread( bBuf, 1, sizeof(bBuf), fb))>0 ){
toBase85( bBuf, (int)nio, cBuf, 0 );
fprintf(stdout, "%s\n", cBuf);
}
break;
case 'w':
while( 0 != fgets(cBuf, sizeof(cBuf), stdin) ){
int nc = strlen(cBuf);
size_t nbo = fromBase85( cBuf, nc, bBuf ) - bBuf;
if( 1 != fwrite(bBuf, nbo, 1, fb) ) rc = 1;
# ifndef OMIT_BASE85_CHECKER
b85Clean &= allBase85( cBuf, nc );
# endif
}
break;
default:
sayHelp();
rc = 1;
}
if( foc ) fclose(foc);
}
# ifndef OMIT_BASE85_CHECKER
if( !b85Clean ){
fprintf(stderr, "Base85 input had non-base85 dark or control content.\n");
}
# endif
return rc;
}
#endif
/************************* End ../ext/misc/base85.c ********************/
/************************* Begin ../ext/misc/ieee754.c ******************/
/*
** 2013-04-17
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
******************************************************************************
**
** This SQLite extension implements functions for the exact display
** and input of IEEE754 Binary64 floating-point numbers.
**
** ieee754(X)
** ieee754(Y,Z)
**
** In the first form, the value X should be a floating-point number.
** The function will return a string of the form 'ieee754(Y,Z)' where
** Y and Z are integers such that X==Y*pow(2,Z).
**
** In the second form, Y and Z are integers which are the mantissa and
** base-2 exponent of a new floating point number. The function returns
** a floating-point value equal to Y*pow(2,Z).
**
** Examples:
**
** ieee754(2.0) -> 'ieee754(2,0)'
** ieee754(45.25) -> 'ieee754(181,-2)'
** ieee754(2, 0) -> 2.0
** ieee754(181, -2) -> 45.25
**
** Two additional functions break apart the one-argument ieee754()
** result into separate integer values:
**
** ieee754_mantissa(45.25) -> 181
** ieee754_exponent(45.25) -> -2
**
** These functions convert binary64 numbers into blobs and back again.
**
** ieee754_from_blob(x'3ff0000000000000') -> 1.0
** ieee754_to_blob(1.0) -> x'3ff0000000000000'
**
** In all single-argument functions, if the argument is an 8-byte blob
** then that blob is interpreted as a big-endian binary64 value.
**
**
** EXACT DECIMAL REPRESENTATION OF BINARY64 VALUES
** -----------------------------------------------
**
** This extension in combination with the separate 'decimal' extension
** can be used to compute the exact decimal representation of binary64
** values. To begin, first compute a table of exponent values:
**
** CREATE TABLE pow2(x INTEGER PRIMARY KEY, v TEXT);
** WITH RECURSIVE c(x,v) AS (
** VALUES(0,'1')
** UNION ALL
** SELECT x+1, decimal_mul(v,'2') FROM c WHERE x+1<=971
** ) INSERT INTO pow2(x,v) SELECT x, v FROM c;
** WITH RECURSIVE c(x,v) AS (
** VALUES(-1,'0.5')
** UNION ALL
** SELECT x-1, decimal_mul(v,'0.5') FROM c WHERE x-1>=-1075
** ) INSERT INTO pow2(x,v) SELECT x, v FROM c;
**
** Then, to compute the exact decimal representation of a floating
** point value (the value 47.49 is used in the example) do:
**
** WITH c(n) AS (VALUES(47.49))
** ---------------^^^^^---- Replace with whatever you want
** SELECT decimal_mul(ieee754_mantissa(c.n),pow2.v)
** FROM pow2, c WHERE pow2.x=ieee754_exponent(c.n);
**
** Here is a query to show various boundry values for the binary64
** number format:
**
** WITH c(name,bin) AS (VALUES
** ('minimum positive value', x'0000000000000001'),
** ('maximum subnormal value', x'000fffffffffffff'),
** ('mininum positive nornal value', x'0010000000000000'),
** ('maximum value', x'7fefffffffffffff'))
** SELECT c.name, decimal_mul(ieee754_mantissa(c.bin),pow2.v)
** FROM pow2, c WHERE pow2.x=ieee754_exponent(c.bin);
**
*/
/* #include "sqlite3ext.h" */
SQLITE_EXTENSION_INIT1
#include <assert.h>
#include <string.h>
/* Mark a function parameter as unused, to suppress nuisance compiler
** warnings. */
#ifndef UNUSED_PARAMETER
# define UNUSED_PARAMETER(X) (void)(X)
#endif
/*
** Implementation of the ieee754() function
*/
static void ieee754func(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
if( argc==1 ){
sqlite3_int64 m, a;
double r;
int e;
int isNeg;
char zResult[100];
assert( sizeof(m)==sizeof(r) );
if( sqlite3_value_type(argv[0])==SQLITE_BLOB
&& sqlite3_value_bytes(argv[0])==sizeof(r)
){
const unsigned char *x = sqlite3_value_blob(argv[0]);
unsigned int i;
sqlite3_uint64 v = 0;
for(i=0; i<sizeof(r); i++){
v = (v<<8) | x[i];
}
memcpy(&r, &v, sizeof(r));
}else{
r = sqlite3_value_double(argv[0]);
}
if( r<0.0 ){
isNeg = 1;
r = -r;
}else{
isNeg = 0;
}
memcpy(&a,&r,sizeof(a));
if( a==0 ){
e = 0;
m = 0;
}else{
e = a>>52;
m = a & ((((sqlite3_int64)1)<<52)-1);
if( e==0 ){
m <<= 1;
}else{
m |= ((sqlite3_int64)1)<<52;
}
while( e<1075 && m>0 && (m&1)==0 ){
m >>= 1;
e++;
}
if( isNeg ) m = -m;
}
switch( *(int*)sqlite3_user_data(context) ){
case 0:
sqlite3_snprintf(sizeof(zResult), zResult, "ieee754(%lld,%d)",
m, e-1075);
sqlite3_result_text(context, zResult, -1, SQLITE_TRANSIENT);
break;
case 1:
sqlite3_result_int64(context, m);
break;
case 2:
sqlite3_result_int(context, e-1075);
break;
}
}else{
sqlite3_int64 m, e, a;
double r;
int isNeg = 0;
m = sqlite3_value_int64(argv[0]);
e = sqlite3_value_int64(argv[1]);
/* Limit the range of e. Ticket 22dea1cfdb9151e4 2021-03-02 */
if( e>10000 ){
e = 10000;
}else if( e<-10000 ){
e = -10000;
}
if( m<0 ){
isNeg = 1;
m = -m;
if( m<0 ) return;
}else if( m==0 && e>-1000 && e<1000 ){
sqlite3_result_double(context, 0.0);
return;
}
while( (m>>32)&0xffe00000 ){
m >>= 1;
e++;
}
while( m!=0 && ((m>>32)&0xfff00000)==0 ){
m <<= 1;
e--;
}
e += 1075;
if( e<=0 ){
/* Subnormal */
if( 1-e >= 64 ){
m = 0;
}else{
m >>= 1-e;
}
e = 0;
}else if( e>0x7ff ){
e = 0x7ff;
}
a = m & ((((sqlite3_int64)1)<<52)-1);
a |= e<<52;
if( isNeg ) a |= ((sqlite3_uint64)1)<<63;
memcpy(&r, &a, sizeof(r));
sqlite3_result_double(context, r);
}
}
/*
** Functions to convert between blobs and floats.
*/
static void ieee754func_from_blob(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
UNUSED_PARAMETER(argc);
if( sqlite3_value_type(argv[0])==SQLITE_BLOB
&& sqlite3_value_bytes(argv[0])==sizeof(double)
){
double r;
const unsigned char *x = sqlite3_value_blob(argv[0]);
unsigned int i;
sqlite3_uint64 v = 0;
for(i=0; i<sizeof(r); i++){
v = (v<<8) | x[i];
}
memcpy(&r, &v, sizeof(r));
sqlite3_result_double(context, r);
}
}
static void ieee754func_to_blob(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
UNUSED_PARAMETER(argc);
if( sqlite3_value_type(argv[0])==SQLITE_FLOAT
|| sqlite3_value_type(argv[0])==SQLITE_INTEGER
){
double r = sqlite3_value_double(argv[0]);
sqlite3_uint64 v;
unsigned char a[sizeof(r)];
unsigned int i;
memcpy(&v, &r, sizeof(r));
for(i=1; i<=sizeof(r); i++){
a[sizeof(r)-i] = v&0xff;
v >>= 8;
}
sqlite3_result_blob(context, a, sizeof(r), SQLITE_TRANSIENT);
}
}
/*
** SQL Function: ieee754_inc(r,N)
**
** Move the floating point value r by N quantums and return the new
** values.
**
** Behind the scenes: this routine merely casts r into a 64-bit unsigned
** integer, adds N, then casts the value back into float.
**
** Example: To find the smallest positive number:
**
** SELECT ieee754_inc(0.0,+1);
*/
static void ieee754inc(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
double r;
sqlite3_int64 N;
sqlite3_uint64 m1, m2;
double r2;
UNUSED_PARAMETER(argc);
r = sqlite3_value_double(argv[0]);
N = sqlite3_value_int64(argv[1]);
memcpy(&m1, &r, 8);
m2 = m1 + N;
memcpy(&r2, &m2, 8);
sqlite3_result_double(context, r2);
}
#ifdef _WIN32
#endif
int sqlite3_ieee_init(
sqlite3 *db,
char **pzErrMsg,
const sqlite3_api_routines *pApi
){
static const struct {
char *zFName;
int nArg;
int iAux;
void (*xFunc)(sqlite3_context*,int,sqlite3_value**);
} aFunc[] = {
{ "ieee754", 1, 0, ieee754func },
{ "ieee754", 2, 0, ieee754func },
{ "ieee754_mantissa", 1, 1, ieee754func },
{ "ieee754_exponent", 1, 2, ieee754func },
{ "ieee754_to_blob", 1, 0, ieee754func_to_blob },
{ "ieee754_from_blob", 1, 0, ieee754func_from_blob },
{ "ieee754_inc", 2, 0, ieee754inc },
};
unsigned int i;
int rc = SQLITE_OK;
SQLITE_EXTENSION_INIT2(pApi);
(void)pzErrMsg; /* Unused parameter */
for(i=0; i<sizeof(aFunc)/sizeof(aFunc[0]) && rc==SQLITE_OK; i++){
rc = sqlite3_create_function(db, aFunc[i].zFName, aFunc[i].nArg,
SQLITE_UTF8|SQLITE_INNOCUOUS,
(void*)&aFunc[i].iAux,
aFunc[i].xFunc, 0, 0);
}
return rc;
}
/************************* End ../ext/misc/ieee754.c ********************/
/************************* Begin ../ext/misc/series.c ******************/
/*
** 2015-08-18, 2023-04-28
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
**
** This file demonstrates how to create a table-valued-function using
** a virtual table. This demo implements the generate_series() function
** which gives the same results as the eponymous function in PostgreSQL,
** within the limitation that its arguments are signed 64-bit integers.
**
** Considering its equivalents to generate_series(start,stop,step): A
** value V[n] sequence is produced for integer n ascending from 0 where
** ( V[n] == start + n * step && sgn(V[n] - stop) * sgn(step) >= 0 )
** for each produced value (independent of production time ordering.)
**
** All parameters must be either integer or convertable to integer.
** The start parameter is required.
** The stop parameter defaults to (1<<32)-1 (aka 4294967295 or 0xffffffff)
** The step parameter defaults to 1 and 0 is treated as 1.
**
** Examples:
**
** SELECT * FROM generate_series(0,100,5);
**
** The query above returns integers from 0 through 100 counting by steps
** of 5.
**
** SELECT * FROM generate_series(0,100);
**
** Integers from 0 through 100 with a step size of 1.
**
** SELECT * FROM generate_series(20) LIMIT 10;
**
** Integers 20 through 29.
**
** SELECT * FROM generate_series(0,-100,-5);
**
** Integers 0 -5 -10 ... -100.
**
** SELECT * FROM generate_series(0,-1);
**
** Empty sequence.
**
** HOW IT WORKS
**
** The generate_series "function" is really a virtual table with the
** following schema:
**
** CREATE TABLE generate_series(
** value,
** start HIDDEN,
** stop HIDDEN,
** step HIDDEN
** );
**
** The virtual table also has a rowid, logically equivalent to n+1 where
** "n" is the ascending integer in the aforesaid production definition.
**
** Function arguments in queries against this virtual table are translated
** into equality constraints against successive hidden columns. In other
** words, the following pairs of queries are equivalent to each other:
**
** SELECT * FROM generate_series(0,100,5);
** SELECT * FROM generate_series WHERE start=0 AND stop=100 AND step=5;
**
** SELECT * FROM generate_series(0,100);
** SELECT * FROM generate_series WHERE start=0 AND stop=100;
**
** SELECT * FROM generate_series(20) LIMIT 10;
** SELECT * FROM generate_series WHERE start=20 LIMIT 10;
**
** The generate_series virtual table implementation leaves the xCreate method
** set to NULL. This means that it is not possible to do a CREATE VIRTUAL
** TABLE command with "generate_series" as the USING argument. Instead, there
** is a single generate_series virtual table that is always available without
** having to be created first.
**
** The xBestIndex method looks for equality constraints against the hidden
** start, stop, and step columns, and if present, it uses those constraints
** to bound the sequence of generated values. If the equality constraints
** are missing, it uses 0 for start, 4294967295 for stop, and 1 for step.
** xBestIndex returns a small cost when both start and stop are available,
** and a very large cost if either start or stop are unavailable. This
** encourages the query planner to order joins such that the bounds of the
** series are well-defined.
**
** Update on 2024-08-22:
** xBestIndex now also looks for equality and inequality constraints against
** the value column and uses those constraints as additional bounds against
** the sequence range. Thus, a query like this:
**
** SELECT value FROM generate_series($SA,$EA)
** WHERE value BETWEEN $SB AND $EB;
**
** Is logically the same as:
**
** SELECT value FROM generate_series(max($SA,$SB),min($EA,$EB));
**
** Constraints on the value column can server as substitutes for constraints
** on the hidden start and stop columns. So, the following two queries
** are equivalent:
**
** SELECT value FROM generate_series($S,$E);
** SELECT value FROM generate_series WHERE value BETWEEN $S and $E;
**
*/
/* #include "sqlite3ext.h" */
SQLITE_EXTENSION_INIT1
#include <assert.h>
#include <string.h>
#include <limits.h>
#ifndef SQLITE_OMIT_VIRTUALTABLE
/*
** Return that member of a generate_series(...) sequence whose 0-based
** index is ix. The 0th member is given by smBase. The sequence members
** progress per ix increment by smStep.
*/
static sqlite3_int64 genSeqMember(
sqlite3_int64 smBase,
sqlite3_int64 smStep,
sqlite3_uint64 ix
){
static const sqlite3_uint64 mxI64 =
((sqlite3_uint64)0x7fffffff)<<32 | 0xffffffff;
if( ix>=mxI64 ){
/* Get ix into signed i64 range. */
ix -= mxI64;
/* With 2's complement ALU, this next can be 1 step, but is split into
* 2 for UBSAN's satisfaction (and hypothetical 1's complement ALUs.) */
smBase += (mxI64/2) * smStep;
smBase += (mxI64 - mxI64/2) * smStep;
}
/* Under UBSAN (or on 1's complement machines), must do this last term
* in steps to avoid the dreaded (and harmless) signed multiply overlow. */
if( ix>=2 ){
sqlite3_int64 ix2 = (sqlite3_int64)ix/2;
smBase += ix2*smStep;
ix -= ix2;
}
return smBase + ((sqlite3_int64)ix)*smStep;
}
/* typedef unsigned char u8; */
typedef struct SequenceSpec {
sqlite3_int64 iOBase; /* Original starting value ("start") */
sqlite3_int64 iOTerm; /* Original terminal value ("stop") */
sqlite3_int64 iBase; /* Starting value to actually use */
sqlite3_int64 iTerm; /* Terminal value to actually use */
sqlite3_int64 iStep; /* Increment ("step") */
sqlite3_uint64 uSeqIndexMax; /* maximum sequence index (aka "n") */
sqlite3_uint64 uSeqIndexNow; /* Current index during generation */
sqlite3_int64 iValueNow; /* Current value during generation */
u8 isNotEOF; /* Sequence generation not exhausted */
u8 isReversing; /* Sequence is being reverse generated */
} SequenceSpec;
/*
** Prepare a SequenceSpec for use in generating an integer series
** given initialized iBase, iTerm and iStep values. Sequence is
** initialized per given isReversing. Other members are computed.
*/
static void setupSequence( SequenceSpec *pss ){
int bSameSigns;
pss->uSeqIndexMax = 0;
pss->isNotEOF = 0;
bSameSigns = (pss->iBase < 0)==(pss->iTerm < 0);
if( pss->iTerm < pss->iBase ){
sqlite3_uint64 nuspan = 0;
if( bSameSigns ){
nuspan = (sqlite3_uint64)(pss->iBase - pss->iTerm);
}else{
/* Under UBSAN (or on 1's complement machines), must do this in steps.
* In this clause, iBase>=0 and iTerm<0 . */
nuspan = 1;
nuspan += pss->iBase;
nuspan += -(pss->iTerm+1);
}
if( pss->iStep<0 ){
pss->isNotEOF = 1;
if( nuspan==ULONG_MAX ){
pss->uSeqIndexMax = ( pss->iStep>LLONG_MIN )? nuspan/-pss->iStep : 1;
}else if( pss->iStep>LLONG_MIN ){
pss->uSeqIndexMax = nuspan/-pss->iStep;
}
}
}else if( pss->iTerm > pss->iBase ){
sqlite3_uint64 puspan = 0;
if( bSameSigns ){
puspan = (sqlite3_uint64)(pss->iTerm - pss->iBase);
}else{
/* Under UBSAN (or on 1's complement machines), must do this in steps.
* In this clause, iTerm>=0 and iBase<0 . */
puspan = 1;
puspan += pss->iTerm;
puspan += -(pss->iBase+1);
}
if( pss->iStep>0 ){
pss->isNotEOF = 1;
pss->uSeqIndexMax = puspan/pss->iStep;
}
}else if( pss->iTerm == pss->iBase ){
pss->isNotEOF = 1;
pss->uSeqIndexMax = 0;
}
pss->uSeqIndexNow = (pss->isReversing)? pss->uSeqIndexMax : 0;
pss->iValueNow = (pss->isReversing)
? genSeqMember(pss->iBase, pss->iStep, pss->uSeqIndexMax)
: pss->iBase;
}
/*
** Progress sequence generator to yield next value, if any.
** Leave its state to either yield next value or be at EOF.
** Return whether there is a next value, or 0 at EOF.
*/
static int progressSequence( SequenceSpec *pss ){
if( !pss->isNotEOF ) return 0;
if( pss->isReversing ){
if( pss->uSeqIndexNow > 0 ){
pss->uSeqIndexNow--;
pss->iValueNow -= pss->iStep;
}else{
pss->isNotEOF = 0;
}
}else{
if( pss->uSeqIndexNow < pss->uSeqIndexMax ){
pss->uSeqIndexNow++;
pss->iValueNow += pss->iStep;
}else{
pss->isNotEOF = 0;
}
}
return pss->isNotEOF;
}
/* series_cursor is a subclass of sqlite3_vtab_cursor which will
** serve as the underlying representation of a cursor that scans
** over rows of the result
*/
typedef struct series_cursor series_cursor;
struct series_cursor {
sqlite3_vtab_cursor base; /* Base class - must be first */
SequenceSpec ss; /* (this) Derived class data */
};
/*
** The seriesConnect() method is invoked to create a new
** series_vtab that describes the generate_series virtual table.
**
** Think of this routine as the constructor for series_vtab objects.
**
** All this routine needs to do is:
**
** (1) Allocate the series_vtab object and initialize all fields.
**
** (2) Tell SQLite (via the sqlite3_declare_vtab() interface) what the
** result set of queries against generate_series will look like.
*/
static int seriesConnect(
sqlite3 *db,
void *pUnused,
int argcUnused, const char *const*argvUnused,
sqlite3_vtab **ppVtab,
char **pzErrUnused
){
sqlite3_vtab *pNew;
int rc;
/* Column numbers */
#define SERIES_COLUMN_VALUE 0
#define SERIES_COLUMN_START 1
#define SERIES_COLUMN_STOP 2
#define SERIES_COLUMN_STEP 3
(void)pUnused;
(void)argcUnused;
(void)argvUnused;
(void)pzErrUnused;
rc = sqlite3_declare_vtab(db,
"CREATE TABLE x(value,start hidden,stop hidden,step hidden)");
if( rc==SQLITE_OK ){
pNew = *ppVtab = sqlite3_malloc( sizeof(*pNew) );
if( pNew==0 ) return SQLITE_NOMEM;
memset(pNew, 0, sizeof(*pNew));
sqlite3_vtab_config(db, SQLITE_VTAB_INNOCUOUS);
}
return rc;
}
/*
** This method is the destructor for series_cursor objects.
*/
static int seriesDisconnect(sqlite3_vtab *pVtab){
sqlite3_free(pVtab);
return SQLITE_OK;
}
/*
** Constructor for a new series_cursor object.
*/
static int seriesOpen(sqlite3_vtab *pUnused, sqlite3_vtab_cursor **ppCursor){
series_cursor *pCur;
(void)pUnused;
pCur = sqlite3_malloc( sizeof(*pCur) );
if( pCur==0 ) return SQLITE_NOMEM;
memset(pCur, 0, sizeof(*pCur));
*ppCursor = &pCur->base;
return SQLITE_OK;
}
/*
** Destructor for a series_cursor.
*/
static int seriesClose(sqlite3_vtab_cursor *cur){
sqlite3_free(cur);
return SQLITE_OK;
}
/*
** Advance a series_cursor to its next row of output.
*/
static int seriesNext(sqlite3_vtab_cursor *cur){
series_cursor *pCur = (series_cursor*)cur;
progressSequence( & pCur->ss );
return SQLITE_OK;
}
/*
** Return values of columns for the row at which the series_cursor
** is currently pointing.
*/
static int seriesColumn(
sqlite3_vtab_cursor *cur, /* The cursor */
sqlite3_context *ctx, /* First argument to sqlite3_result_...() */
int i /* Which column to return */
){
series_cursor *pCur = (series_cursor*)cur;
sqlite3_int64 x = 0;
switch( i ){
case SERIES_COLUMN_START: x = pCur->ss.iOBase; break;
case SERIES_COLUMN_STOP: x = pCur->ss.iOTerm; break;
case SERIES_COLUMN_STEP: x = pCur->ss.iStep; break;
default: x = pCur->ss.iValueNow; break;
}
sqlite3_result_int64(ctx, x);
return SQLITE_OK;
}
#ifndef LARGEST_UINT64
#define LARGEST_INT64 (0xffffffff|(((sqlite3_int64)0x7fffffff)<<32))
#define LARGEST_UINT64 (0xffffffff|(((sqlite3_uint64)0xffffffff)<<32))
#define SMALLEST_INT64 (((sqlite3_int64)-1) - LARGEST_INT64)
#endif
/*
** Return the rowid for the current row, logically equivalent to n+1 where
** "n" is the ascending integer in the aforesaid production definition.
*/
static int seriesRowid(sqlite3_vtab_cursor *cur, sqlite_int64 *pRowid){
series_cursor *pCur = (series_cursor*)cur;
sqlite3_uint64 n = pCur->ss.uSeqIndexNow;
*pRowid = (sqlite3_int64)((n<LARGEST_UINT64)? n+1 : 0);
return SQLITE_OK;
}
/*
** Return TRUE if the cursor has been moved off of the last
** row of output.
*/
static int seriesEof(sqlite3_vtab_cursor *cur){
series_cursor *pCur = (series_cursor*)cur;
return !pCur->ss.isNotEOF;
}
/* True to cause run-time checking of the start=, stop=, and/or step=
** parameters. The only reason to do this is for testing the
** constraint checking logic for virtual tables in the SQLite core.
*/
#ifndef SQLITE_SERIES_CONSTRAINT_VERIFY
# define SQLITE_SERIES_CONSTRAINT_VERIFY 0
#endif
/*
** This method is called to "rewind" the series_cursor object back
** to the first row of output. This method is always called at least
** once prior to any call to seriesColumn() or seriesRowid() or
** seriesEof().
**
** The query plan selected by seriesBestIndex is passed in the idxNum
** parameter. (idxStr is not used in this implementation.) idxNum
** is a bitmask showing which constraints are available:
**
** 0x0001: start=VALUE
** 0x0002: stop=VALUE
** 0x0004: step=VALUE
** 0x0008: descending order
** 0x0010: ascending order
** 0x0020: LIMIT VALUE
** 0x0040: OFFSET VALUE
** 0x0080: value=VALUE
** 0x0100: value>=VALUE
** 0x0200: value>VALUE
** 0x1000: value<=VALUE
** 0x2000: value<VALUE
**
** This routine should initialize the cursor and position it so that it
** is pointing at the first row, or pointing off the end of the table
** (so that seriesEof() will return true) if the table is empty.
*/
static int seriesFilter(
sqlite3_vtab_cursor *pVtabCursor,
int idxNum, const char *idxStrUnused,
int argc, sqlite3_value **argv
){
series_cursor *pCur = (series_cursor *)pVtabCursor;
int i = 0;
int returnNoRows = 0;
sqlite3_int64 iMin = SMALLEST_INT64;
sqlite3_int64 iMax = LARGEST_INT64;
sqlite3_int64 iLimit = 0;
sqlite3_int64 iOffset = 0;
(void)idxStrUnused;
if( idxNum & 0x01 ){
pCur->ss.iBase = sqlite3_value_int64(argv[i++]);
}else{
pCur->ss.iBase = 0;
}
if( idxNum & 0x02 ){
pCur->ss.iTerm = sqlite3_value_int64(argv[i++]);
}else{
pCur->ss.iTerm = 0xffffffff;
}
if( idxNum & 0x04 ){
pCur->ss.iStep = sqlite3_value_int64(argv[i++]);
if( pCur->ss.iStep==0 ){
pCur->ss.iStep = 1;
}else if( pCur->ss.iStep<0 ){
if( (idxNum & 0x10)==0 ) idxNum |= 0x08;
}
}else{
pCur->ss.iStep = 1;
}
/* If there are constraints on the value column but there are
** no constraints on the start, stop, and step columns, then
** initialize the default range to be the entire range of 64-bit signed
** integers. This range will contracted by the value column constraints
** further below.
*/
if( (idxNum & 0x05)==0 && (idxNum & 0x0380)!=0 ){
pCur->ss.iBase = SMALLEST_INT64;
}
if( (idxNum & 0x06)==0 && (idxNum & 0x3080)!=0 ){
pCur->ss.iTerm = LARGEST_INT64;
}
pCur->ss.iOBase = pCur->ss.iBase;
pCur->ss.iOTerm = pCur->ss.iTerm;
/* Extract the LIMIT and OFFSET values, but do not apply them yet.
** The range must first be constrained by the limits on value.
*/
if( idxNum & 0x20 ){
iLimit = sqlite3_value_int64(argv[i++]);
if( idxNum & 0x40 ){
iOffset = sqlite3_value_int64(argv[i++]);
}
}
if( idxNum & 0x3380 ){
/* Extract the maximum range of output values determined by
** constraints on the "value" column.
*/
if( idxNum & 0x0080 ){
iMin = iMax = sqlite3_value_int64(argv[i++]);
}else{
if( idxNum & 0x0300 ){
iMin = sqlite3_value_int64(argv[i++]);
if( idxNum & 0x0200 ){
if( iMin==LARGEST_INT64 ){
returnNoRows = 1;
}else{
iMin++;
}
}
}
if( idxNum & 0x3000 ){
iMax = sqlite3_value_int64(argv[i++]);
if( idxNum & 0x2000 ){
if( iMax==SMALLEST_INT64 ){
returnNoRows = 1;
}else{
iMax--;
}
}
}
if( iMin>iMax ){
returnNoRows = 1;
}
}
/* Try to reduce the range of values to be generated based on
** constraints on the "value" column.
*/
if( pCur->ss.iStep>0 ){
sqlite3_int64 szStep = pCur->ss.iStep;
if( pCur->ss.iBase<iMin ){
sqlite3_uint64 d = iMin - pCur->ss.iBase;
pCur->ss.iBase += ((d+szStep-1)/szStep)*szStep;
}
if( pCur->ss.iTerm>iMax ){
sqlite3_uint64 d = pCur->ss.iTerm - iMax;
pCur->ss.iTerm -= ((d+szStep-1)/szStep)*szStep;
}
}else{
sqlite3_int64 szStep = -pCur->ss.iStep;
assert( szStep>0 );
if( pCur->ss.iBase>iMax ){
sqlite3_uint64 d = pCur->ss.iBase - iMax;
pCur->ss.iBase -= ((d+szStep-1)/szStep)*szStep;
}
if( pCur->ss.iTerm<iMin ){
sqlite3_uint64 d = iMin - pCur->ss.iTerm;
pCur->ss.iTerm += ((d+szStep-1)/szStep)*szStep;
}
}
}
/* Apply LIMIT and OFFSET constraints, if any */
if( idxNum & 0x20 ){
if( iOffset>0 ){
pCur->ss.iBase += pCur->ss.iStep*iOffset;
}
if( iLimit>=0 ){
sqlite3_int64 iTerm;
iTerm = pCur->ss.iBase + (iLimit - 1)*pCur->ss.iStep;
if( pCur->ss.iStep<0 ){
if( iTerm>pCur->ss.iTerm ) pCur->ss.iTerm = iTerm;
}else{
if( iTerm<pCur->ss.iTerm ) pCur->ss.iTerm = iTerm;
}
}
}
for(i=0; i<argc; i++){
if( sqlite3_value_type(argv[i])==SQLITE_NULL ){
/* If any of the constraints have a NULL value, then return no rows.
** See ticket https://www.sqlite.org/src/info/fac496b61722daf2 */
returnNoRows = 1;
break;
}
}
if( returnNoRows ){
pCur->ss.iBase = 1;
pCur->ss.iTerm = 0;
pCur->ss.iStep = 1;
}
if( idxNum & 0x08 ){
pCur->ss.isReversing = pCur->ss.iStep > 0;
}else{
pCur->ss.isReversing = pCur->ss.iStep < 0;
}
setupSequence( &pCur->ss );
return SQLITE_OK;
}
/*
** SQLite will invoke this method one or more times while planning a query
** that uses the generate_series virtual table. This routine needs to create
** a query plan for each invocation and compute an estimated cost for that
** plan.
**
** In this implementation idxNum is used to represent the
** query plan. idxStr is unused.
**
** The query plan is represented by bits in idxNum:
**
** 0x0001 start = $num
** 0x0002 stop = $num
** 0x0004 step = $num
** 0x0008 output is in descending order
** 0x0010 output is in ascending order
** 0x0020 LIMIT $num
** 0x0040 OFFSET $num
** 0x0080 value = $num
** 0x0100 value >= $num
** 0x0200 value > $num
** 0x1000 value <= $num
** 0x2000 value < $num
**
** Only one of 0x0100 or 0x0200 will be returned. Similarly, only
** one of 0x1000 or 0x2000 will be returned. If the 0x0080 is set, then
** none of the 0xff00 bits will be set.
**
** The order of parameters passed to xFilter is as follows:
**
** * The argument to start= if bit 0x0001 is in the idxNum mask
** * The argument to stop= if bit 0x0002 is in the idxNum mask
** * The argument to step= if bit 0x0004 is in the idxNum mask
** * The argument to LIMIT if bit 0x0020 is in the idxNum mask
** * The argument to OFFSET if bit 0x0040 is in the idxNum mask
** * The argument to value=, or value>= or value> if any of
** bits 0x0380 are in the idxNum mask
** * The argument to value<= or value< if either of bits 0x3000
** are in the mask
**
*/
static int seriesBestIndex(
sqlite3_vtab *pVTab,
sqlite3_index_info *pIdxInfo
){
int i, j; /* Loop over constraints */
int idxNum = 0; /* The query plan bitmask */
#ifndef ZERO_ARGUMENT_GENERATE_SERIES
int bStartSeen = 0; /* EQ constraint seen on the START column */
#endif
int unusableMask = 0; /* Mask of unusable constraints */
int nArg = 0; /* Number of arguments that seriesFilter() expects */
int aIdx[7]; /* Constraints on start, stop, step, LIMIT, OFFSET,
** and value. aIdx[5] covers value=, value>=, and
** value>, aIdx[6] covers value<= and value< */
const struct sqlite3_index_constraint *pConstraint;
/* This implementation assumes that the start, stop, and step columns
** are the last three columns in the virtual table. */
assert( SERIES_COLUMN_STOP == SERIES_COLUMN_START+1 );
assert( SERIES_COLUMN_STEP == SERIES_COLUMN_START+2 );
aIdx[0] = aIdx[1] = aIdx[2] = aIdx[3] = aIdx[4] = aIdx[5] = aIdx[6] = -1;
pConstraint = pIdxInfo->aConstraint;
for(i=0; i<pIdxInfo->nConstraint; i++, pConstraint++){
int iCol; /* 0 for start, 1 for stop, 2 for step */
int iMask; /* bitmask for those column */
int op = pConstraint->op;
if( op>=SQLITE_INDEX_CONSTRAINT_LIMIT
&& op<=SQLITE_INDEX_CONSTRAINT_OFFSET
){
if( pConstraint->usable==0 ){
/* do nothing */
}else if( op==SQLITE_INDEX_CONSTRAINT_LIMIT ){
aIdx[3] = i;
idxNum |= 0x20;
}else{
assert( op==SQLITE_INDEX_CONSTRAINT_OFFSET );
aIdx[4] = i;
idxNum |= 0x40;
}
continue;
}
if( pConstraint->iColumn<SERIES_COLUMN_START ){
if( pConstraint->iColumn==SERIES_COLUMN_VALUE && pConstraint->usable ){
switch( op ){
case SQLITE_INDEX_CONSTRAINT_EQ:
case SQLITE_INDEX_CONSTRAINT_IS: {
idxNum |= 0x0080;
idxNum &= ~0x3300;
aIdx[5] = i;
aIdx[6] = -1;
#ifndef ZERO_ARGUMENT_GENERATE_SERIES
bStartSeen = 1;
#endif
break;
}
case SQLITE_INDEX_CONSTRAINT_GE: {
if( idxNum & 0x0080 ) break;
idxNum |= 0x0100;
idxNum &= ~0x0200;
aIdx[5] = i;
#ifndef ZERO_ARGUMENT_GENERATE_SERIES
bStartSeen = 1;
#endif
break;
}
case SQLITE_INDEX_CONSTRAINT_GT: {
if( idxNum & 0x0080 ) break;
idxNum |= 0x0200;
idxNum &= ~0x0100;
aIdx[5] = i;
#ifndef ZERO_ARGUMENT_GENERATE_SERIES
bStartSeen = 1;
#endif
break;
}
case SQLITE_INDEX_CONSTRAINT_LE: {
if( idxNum & 0x0080 ) break;
idxNum |= 0x1000;
idxNum &= ~0x2000;
aIdx[6] = i;
break;
}
case SQLITE_INDEX_CONSTRAINT_LT: {
if( idxNum & 0x0080 ) break;
idxNum |= 0x2000;
idxNum &= ~0x1000;
aIdx[6] = i;
break;
}
}
}
continue;
}
iCol = pConstraint->iColumn - SERIES_COLUMN_START;
assert( iCol>=0 && iCol<=2 );
iMask = 1 << iCol;
#ifndef ZERO_ARGUMENT_GENERATE_SERIES
if( iCol==0 && op==SQLITE_INDEX_CONSTRAINT_EQ ){
bStartSeen = 1;
}
#endif
if( pConstraint->usable==0 ){
unusableMask |= iMask;
continue;
}else if( op==SQLITE_INDEX_CONSTRAINT_EQ ){
idxNum |= iMask;
aIdx[iCol] = i;
}
}
if( aIdx[3]==0 ){
/* Ignore OFFSET if LIMIT is omitted */
idxNum &= ~0x60;
aIdx[4] = 0;
}
for(i=0; i<7; i++){
if( (j = aIdx[i])>=0 ){
pIdxInfo->aConstraintUsage[j].argvIndex = ++nArg;
pIdxInfo->aConstraintUsage[j].omit =
!SQLITE_SERIES_CONSTRAINT_VERIFY || i>=3;
}
}
/* The current generate_column() implementation requires at least one
** argument (the START value). Legacy versions assumed START=0 if the
** first argument was omitted. Compile with -DZERO_ARGUMENT_GENERATE_SERIES
** to obtain the legacy behavior */
#ifndef ZERO_ARGUMENT_GENERATE_SERIES
if( !bStartSeen ){
sqlite3_free(pVTab->zErrMsg);
pVTab->zErrMsg = sqlite3_mprintf(
"first argument to \"generate_series()\" missing or unusable");
return SQLITE_ERROR;
}
#endif
if( (unusableMask & ~idxNum)!=0 ){
/* The start, stop, and step columns are inputs. Therefore if there
** are unusable constraints on any of start, stop, or step then
** this plan is unusable */
return SQLITE_CONSTRAINT;
}
if( (idxNum & 0x03)==0x03 ){
/* Both start= and stop= boundaries are available. This is the
** the preferred case */
pIdxInfo->estimatedCost = (double)(2 - ((idxNum&4)!=0));
pIdxInfo->estimatedRows = 1000;
if( pIdxInfo->nOrderBy>=1 && pIdxInfo->aOrderBy[0].iColumn==0 ){
if( pIdxInfo->aOrderBy[0].desc ){
idxNum |= 0x08;
}else{
idxNum |= 0x10;
}
pIdxInfo->orderByConsumed = 1;
}
}else if( (idxNum & 0x21)==0x21 ){
/* We have start= and LIMIT */
pIdxInfo->estimatedRows = 2500;
}else{
/* If either boundary is missing, we have to generate a huge span
** of numbers. Make this case very expensive so that the query
** planner will work hard to avoid it. */
pIdxInfo->estimatedRows = 2147483647;
}
pIdxInfo->idxNum = idxNum;
#ifdef SQLITE_INDEX_SCAN_HEX
pIdxInfo->idxFlags = SQLITE_INDEX_SCAN_HEX;
#endif
return SQLITE_OK;
}
/*
** This following structure defines all the methods for the
** generate_series virtual table.
*/
static sqlite3_module seriesModule = {
0, /* iVersion */
0, /* xCreate */
seriesConnect, /* xConnect */
seriesBestIndex, /* xBestIndex */
seriesDisconnect, /* xDisconnect */
0, /* xDestroy */
seriesOpen, /* xOpen - open a cursor */
seriesClose, /* xClose - close a cursor */
seriesFilter, /* xFilter - configure scan constraints */
seriesNext, /* xNext - advance a cursor */
seriesEof, /* xEof - check for end of scan */
seriesColumn, /* xColumn - read data */
seriesRowid, /* xRowid - read data */
0, /* xUpdate */
0, /* xBegin */
0, /* xSync */
0, /* xCommit */
0, /* xRollback */
0, /* xFindMethod */
0, /* xRename */
0, /* xSavepoint */
0, /* xRelease */
0, /* xRollbackTo */
0, /* xShadowName */
0 /* xIntegrity */
};
#endif /* SQLITE_OMIT_VIRTUALTABLE */
#ifdef _WIN32
#endif
int sqlite3_series_init(
sqlite3 *db,
char **pzErrMsg,
const sqlite3_api_routines *pApi
){
int rc = SQLITE_OK;
SQLITE_EXTENSION_INIT2(pApi);
#ifndef SQLITE_OMIT_VIRTUALTABLE
if( sqlite3_libversion_number()<3008012 && pzErrMsg!=0 ){
*pzErrMsg = sqlite3_mprintf(
"generate_series() requires SQLite 3.8.12 or later");
return SQLITE_ERROR;
}
rc = sqlite3_create_module(db, "generate_series", &seriesModule, 0);
#endif
return rc;
}
/************************* End ../ext/misc/series.c ********************/
/************************* Begin ../ext/misc/regexp.c ******************/
/*
** 2012-11-13
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
******************************************************************************
**
** The code in this file implements a compact but reasonably
** efficient regular-expression matcher for posix extended regular
** expressions against UTF8 text.
**
** This file is an SQLite extension. It registers a single function
** named "regexp(A,B)" where A is the regular expression and B is the
** string to be matched. By registering this function, SQLite will also
** then implement the "B regexp A" operator. Note that with the function
** the regular expression comes first, but with the operator it comes
** second.
**
** The following regular expression syntax is supported:
**
** X* zero or more occurrences of X
** X+ one or more occurrences of X
** X? zero or one occurrences of X
** X{p,q} between p and q occurrences of X
** (X) match X
** X|Y X or Y
** ^X X occurring at the beginning of the string
** X$ X occurring at the end of the string
** . Match any single character
** \c Character c where c is one of \{}()[]|*+?.
** \c C-language escapes for c in afnrtv. ex: \t or \n
** \uXXXX Where XXXX is exactly 4 hex digits, unicode value XXXX
** \xXX Where XX is exactly 2 hex digits, unicode value XX
** [abc] Any single character from the set abc
** [^abc] Any single character not in the set abc
** [a-z] Any single character in the range a-z
** [^a-z] Any single character not in the range a-z
** \b Word boundary
** \w Word character. [A-Za-z0-9_]
** \W Non-word character
** \d Digit
** \D Non-digit
** \s Whitespace character
** \S Non-whitespace character
**
** A nondeterministic finite automaton (NFA) is used for matching, so the
** performance is bounded by O(N*M) where N is the size of the regular
** expression and M is the size of the input string. The matcher never
** exhibits exponential behavior. Note that the X{p,q} operator expands
** to p copies of X following by q-p copies of X? and that the size of the
** regular expression in the O(N*M) performance bound is computed after
** this expansion.
*/
#include <string.h>
#include <stdlib.h>
/* #include "sqlite3ext.h" */
SQLITE_EXTENSION_INIT1
/*
** The following #defines change the names of some functions implemented in
** this file to prevent name collisions with C-library functions of the
** same name.
*/
#define re_match sqlite3re_match
#define re_compile sqlite3re_compile
#define re_free sqlite3re_free
/* The end-of-input character */
#define RE_EOF 0 /* End of input */
#define RE_START 0xfffffff /* Start of input - larger than an UTF-8 */
/* The NFA is implemented as sequence of opcodes taken from the following
** set. Each opcode has a single integer argument.
*/
#define RE_OP_MATCH 1 /* Match the one character in the argument */
#define RE_OP_ANY 2 /* Match any one character. (Implements ".") */
#define RE_OP_ANYSTAR 3 /* Special optimized version of .* */
#define RE_OP_FORK 4 /* Continue to both next and opcode at iArg */
#define RE_OP_GOTO 5 /* Jump to opcode at iArg */
#define RE_OP_ACCEPT 6 /* Halt and indicate a successful match */
#define RE_OP_CC_INC 7 /* Beginning of a [...] character class */
#define RE_OP_CC_EXC 8 /* Beginning of a [^...] character class */
#define RE_OP_CC_VALUE 9 /* Single value in a character class */
#define RE_OP_CC_RANGE 10 /* Range of values in a character class */
#define RE_OP_WORD 11 /* Perl word character [A-Za-z0-9_] */
#define RE_OP_NOTWORD 12 /* Not a perl word character */
#define RE_OP_DIGIT 13 /* digit: [0-9] */
#define RE_OP_NOTDIGIT 14 /* Not a digit */
#define RE_OP_SPACE 15 /* space: [ \t\n\r\v\f] */
#define RE_OP_NOTSPACE 16 /* Not a digit */
#define RE_OP_BOUNDARY 17 /* Boundary between word and non-word */
#define RE_OP_ATSTART 18 /* Currently at the start of the string */
#if defined(SQLITE_DEBUG)
/* Opcode names used for symbolic debugging */
static const char *ReOpName[] = {
"EOF",
"MATCH",
"ANY",
"ANYSTAR",
"FORK",
"GOTO",
"ACCEPT",
"CC_INC",
"CC_EXC",
"CC_VALUE",
"CC_RANGE",
"WORD",
"NOTWORD",
"DIGIT",
"NOTDIGIT",
"SPACE",
"NOTSPACE",
"BOUNDARY",
"ATSTART",
};
#endif /* SQLITE_DEBUG */
/* Each opcode is a "state" in the NFA */
typedef unsigned short ReStateNumber;
/* Because this is an NFA and not a DFA, multiple states can be active at
** once. An instance of the following object records all active states in
** the NFA. The implementation is optimized for the common case where the
** number of actives states is small.
*/
typedef struct ReStateSet {
unsigned nState; /* Number of current states */
ReStateNumber *aState; /* Current states */
} ReStateSet;
/* An input string read one character at a time.
*/
typedef struct ReInput ReInput;
struct ReInput {
const unsigned char *z; /* All text */
int i; /* Next byte to read */
int mx; /* EOF when i>=mx */
};
/* A compiled NFA (or an NFA that is in the process of being compiled) is
** an instance of the following object.
*/
typedef struct ReCompiled ReCompiled;
struct ReCompiled {
ReInput sIn; /* Regular expression text */
const char *zErr; /* Error message to return */
char *aOp; /* Operators for the virtual machine */
int *aArg; /* Arguments to each operator */
unsigned (*xNextChar)(ReInput*); /* Next character function */
unsigned char zInit[12]; /* Initial text to match */
int nInit; /* Number of bytes in zInit */
unsigned nState; /* Number of entries in aOp[] and aArg[] */
unsigned nAlloc; /* Slots allocated for aOp[] and aArg[] */
};
/* Add a state to the given state set if it is not already there */
static void re_add_state(ReStateSet *pSet, int newState){
unsigned i;
for(i=0; i<pSet->nState; i++) if( pSet->aState[i]==newState ) return;
pSet->aState[pSet->nState++] = (ReStateNumber)newState;
}
/* Extract the next unicode character from *pzIn and return it. Advance
** *pzIn to the first byte past the end of the character returned. To
** be clear: this routine converts utf8 to unicode. This routine is
** optimized for the common case where the next character is a single byte.
*/
static unsigned re_next_char(ReInput *p){
unsigned c;
if( p->i>=p->mx ) return 0;
c = p->z[p->i++];
if( c>=0x80 ){
if( (c&0xe0)==0xc0 && p->i<p->mx && (p->z[p->i]&0xc0)==0x80 ){
c = (c&0x1f)<<6 | (p->z[p->i++]&0x3f);
if( c<0x80 ) c = 0xfffd;
}else if( (c&0xf0)==0xe0 && p->i+1<p->mx && (p->z[p->i]&0xc0)==0x80
&& (p->z[p->i+1]&0xc0)==0x80 ){
c = (c&0x0f)<<12 | ((p->z[p->i]&0x3f)<<6) | (p->z[p->i+1]&0x3f);
p->i += 2;
if( c<=0x7ff || (c>=0xd800 && c<=0xdfff) ) c = 0xfffd;
}else if( (c&0xf8)==0xf0 && p->i+2<p->mx && (p->z[p->i]&0xc0)==0x80
&& (p->z[p->i+1]&0xc0)==0x80 && (p->z[p->i+2]&0xc0)==0x80 ){
c = (c&0x07)<<18 | ((p->z[p->i]&0x3f)<<12) | ((p->z[p->i+1]&0x3f)<<6)
| (p->z[p->i+2]&0x3f);
p->i += 3;
if( c<=0xffff || c>0x10ffff ) c = 0xfffd;
}else{
c = 0xfffd;
}
}
return c;
}
static unsigned re_next_char_nocase(ReInput *p){
unsigned c = re_next_char(p);
if( c>='A' && c<='Z' ) c += 'a' - 'A';
return c;
}
/* Return true if c is a perl "word" character: [A-Za-z0-9_] */
static int re_word_char(int c){
return (c>='0' && c<='9') || (c>='a' && c<='z')
|| (c>='A' && c<='Z') || c=='_';
}
/* Return true if c is a "digit" character: [0-9] */
static int re_digit_char(int c){
return (c>='0' && c<='9');
}
/* Return true if c is a perl "space" character: [ \t\r\n\v\f] */
static int re_space_char(int c){
return c==' ' || c=='\t' || c=='\n' || c=='\r' || c=='\v' || c=='\f';
}
/* Run a compiled regular expression on the zero-terminated input
** string zIn[]. Return true on a match and false if there is no match.
*/
static int re_match(ReCompiled *pRe, const unsigned char *zIn, int nIn){
ReStateSet aStateSet[2], *pThis, *pNext;
ReStateNumber aSpace[100];
ReStateNumber *pToFree;
unsigned int i = 0;
unsigned int iSwap = 0;
int c = RE_START;
int cPrev = 0;
int rc = 0;
ReInput in;
in.z = zIn;
in.i = 0;
in.mx = nIn>=0 ? nIn : (int)strlen((char const*)zIn);
/* Look for the initial prefix match, if there is one. */
if( pRe->nInit ){
unsigned char x = pRe->zInit[0];
while( in.i+pRe->nInit<=in.mx
&& (zIn[in.i]!=x ||
strncmp((const char*)zIn+in.i, (const char*)pRe->zInit, pRe->nInit)!=0)
){
in.i++;
}
if( in.i+pRe->nInit>in.mx ) return 0;
c = RE_START-1;
}
if( pRe->nState<=(sizeof(aSpace)/(sizeof(aSpace[0])*2)) ){
pToFree = 0;
aStateSet[0].aState = aSpace;
}else{
pToFree = sqlite3_malloc64( sizeof(ReStateNumber)*2*pRe->nState );
if( pToFree==0 ) return -1;
aStateSet[0].aState = pToFree;
}
aStateSet[1].aState = &aStateSet[0].aState[pRe->nState];
pNext = &aStateSet[1];
pNext->nState = 0;
re_add_state(pNext, 0);
while( c!=RE_EOF && pNext->nState>0 ){
cPrev = c;
c = pRe->xNextChar(&in);
pThis = pNext;
pNext = &aStateSet[iSwap];
iSwap = 1 - iSwap;
pNext->nState = 0;
for(i=0; i<pThis->nState; i++){
int x = pThis->aState[i];
switch( pRe->aOp[x] ){
case RE_OP_MATCH: {
if( pRe->aArg[x]==c ) re_add_state(pNext, x+1);
break;
}
case RE_OP_ATSTART: {
if( cPrev==RE_START ) re_add_state(pThis, x+1);
break;
}
case RE_OP_ANY: {
if( c!=0 ) re_add_state(pNext, x+1);
break;
}
case RE_OP_WORD: {
if( re_word_char(c) ) re_add_state(pNext, x+1);
break;
}
case RE_OP_NOTWORD: {
if( !re_word_char(c) && c!=0 ) re_add_state(pNext, x+1);
break;
}
case RE_OP_DIGIT: {
if( re_digit_char(c) ) re_add_state(pNext, x+1);
break;
}
case RE_OP_NOTDIGIT: {
if( !re_digit_char(c) && c!=0 ) re_add_state(pNext, x+1);
break;
}
case RE_OP_SPACE: {
if( re_space_char(c) ) re_add_state(pNext, x+1);
break;
}
case RE_OP_NOTSPACE: {
if( !re_space_char(c) && c!=0 ) re_add_state(pNext, x+1);
break;
}
case RE_OP_BOUNDARY: {
if( re_word_char(c)!=re_word_char(cPrev) ) re_add_state(pThis, x+1);
break;
}
case RE_OP_ANYSTAR: {
re_add_state(pNext, x);
re_add_state(pThis, x+1);
break;
}
case RE_OP_FORK: {
re_add_state(pThis, x+pRe->aArg[x]);
re_add_state(pThis, x+1);
break;
}
case RE_OP_GOTO: {
re_add_state(pThis, x+pRe->aArg[x]);
break;
}
case RE_OP_ACCEPT: {
rc = 1;
goto re_match_end;
}
case RE_OP_CC_EXC: {
if( c==0 ) break;
/* fall-through */ goto re_op_cc_inc;
}
case RE_OP_CC_INC: re_op_cc_inc: {
int j = 1;
int n = pRe->aArg[x];
int hit = 0;
for(j=1; j>0 && j<n; j++){
if( pRe->aOp[x+j]==RE_OP_CC_VALUE ){
if( pRe->aArg[x+j]==c ){
hit = 1;
j = -1;
}
}else{
if( pRe->aArg[x+j]<=c && pRe->aArg[x+j+1]>=c ){
hit = 1;
j = -1;
}else{
j++;
}
}
}
if( pRe->aOp[x]==RE_OP_CC_EXC ) hit = !hit;
if( hit ) re_add_state(pNext, x+n);
break;
}
}
}
}
for(i=0; i<pNext->nState; i++){
int x = pNext->aState[i];
while( pRe->aOp[x]==RE_OP_GOTO ) x += pRe->aArg[x];
if( pRe->aOp[x]==RE_OP_ACCEPT ){ rc = 1; break; }
}
re_match_end:
sqlite3_free(pToFree);
return rc;
}
/* Resize the opcode and argument arrays for an RE under construction.
*/
static int re_resize(ReCompiled *p, int N){
char *aOp;
int *aArg;
aOp = sqlite3_realloc64(p->aOp, N*sizeof(p->aOp[0]));
if( aOp==0 ) return 1;
p->aOp = aOp;
aArg = sqlite3_realloc64(p->aArg, N*sizeof(p->aArg[0]));
if( aArg==0 ) return 1;
p->aArg = aArg;
p->nAlloc = N;
return 0;
}
/* Insert a new opcode and argument into an RE under construction. The
** insertion point is just prior to existing opcode iBefore.
*/
static int re_insert(ReCompiled *p, int iBefore, int op, int arg){
int i;
if( p->nAlloc<=p->nState && re_resize(p, p->nAlloc*2) ) return 0;
for(i=p->nState; i>iBefore; i--){
p->aOp[i] = p->aOp[i-1];
p->aArg[i] = p->aArg[i-1];
}
p->nState++;
p->aOp[iBefore] = (char)op;
p->aArg[iBefore] = arg;
return iBefore;
}
/* Append a new opcode and argument to the end of the RE under construction.
*/
static int re_append(ReCompiled *p, int op, int arg){
return re_insert(p, p->nState, op, arg);
}
/* Make a copy of N opcodes starting at iStart onto the end of the RE
** under construction.
*/
static void re_copy(ReCompiled *p, int iStart, int N){
if( p->nState+N>=p->nAlloc && re_resize(p, p->nAlloc*2+N) ) return;
memcpy(&p->aOp[p->nState], &p->aOp[iStart], N*sizeof(p->aOp[0]));
memcpy(&p->aArg[p->nState], &p->aArg[iStart], N*sizeof(p->aArg[0]));
p->nState += N;
}
/* Return true if c is a hexadecimal digit character: [0-9a-fA-F]
** If c is a hex digit, also set *pV = (*pV)*16 + valueof(c). If
** c is not a hex digit *pV is unchanged.
*/
static int re_hex(int c, int *pV){
if( c>='0' && c<='9' ){
c -= '0';
}else if( c>='a' && c<='f' ){
c -= 'a' - 10;
}else if( c>='A' && c<='F' ){
c -= 'A' - 10;
}else{
return 0;
}
*pV = (*pV)*16 + (c & 0xff);
return 1;
}
/* A backslash character has been seen, read the next character and
** return its interpretation.
*/
static unsigned re_esc_char(ReCompiled *p){
static const char zEsc[] = "afnrtv\\()*.+?[$^{|}]";
static const char zTrans[] = "\a\f\n\r\t\v";
int i, v = 0;
char c;
if( p->sIn.i>=p->sIn.mx ) return 0;
c = p->sIn.z[p->sIn.i];
if( c=='u' && p->sIn.i+4<p->sIn.mx ){
const unsigned char *zIn = p->sIn.z + p->sIn.i;
if( re_hex(zIn[1],&v)
&& re_hex(zIn[2],&v)
&& re_hex(zIn[3],&v)
&& re_hex(zIn[4],&v)
){
p->sIn.i += 5;
return v;
}
}
if( c=='x' && p->sIn.i+2<p->sIn.mx ){
const unsigned char *zIn = p->sIn.z + p->sIn.i;
if( re_hex(zIn[1],&v)
&& re_hex(zIn[2],&v)
){
p->sIn.i += 3;
return v;
}
}
for(i=0; zEsc[i] && zEsc[i]!=c; i++){}
if( zEsc[i] ){
if( i<6 ) c = zTrans[i];
p->sIn.i++;
}else{
p->zErr = "unknown \\ escape";
}
return c;
}
/* Forward declaration */
static const char *re_subcompile_string(ReCompiled*);
/* Peek at the next byte of input */
static unsigned char rePeek(ReCompiled *p){
return p->sIn.i<p->sIn.mx ? p->sIn.z[p->sIn.i] : 0;
}
/* Compile RE text into a sequence of opcodes. Continue up to the
** first unmatched ")" character, then return. If an error is found,
** return a pointer to the error message string.
*/
static const char *re_subcompile_re(ReCompiled *p){
const char *zErr;
int iStart, iEnd, iGoto;
iStart = p->nState;
zErr = re_subcompile_string(p);
if( zErr ) return zErr;
while( rePeek(p)=='|' ){
iEnd = p->nState;
re_insert(p, iStart, RE_OP_FORK, iEnd + 2 - iStart);
iGoto = re_append(p, RE_OP_GOTO, 0);
p->sIn.i++;
zErr = re_subcompile_string(p);
if( zErr ) return zErr;
p->aArg[iGoto] = p->nState - iGoto;
}
return 0;
}
/* Compile an element of regular expression text (anything that can be
** an operand to the "|" operator). Return NULL on success or a pointer
** to the error message if there is a problem.
*/
static const char *re_subcompile_string(ReCompiled *p){
int iPrev = -1;
int iStart;
unsigned c;
const char *zErr;
while( (c = p->xNextChar(&p->sIn))!=0 ){
iStart = p->nState;
switch( c ){
case '|':
case ')': {
p->sIn.i--;
return 0;
}
case '(': {
zErr = re_subcompile_re(p);
if( zErr ) return zErr;
if( rePeek(p)!=')' ) return "unmatched '('";
p->sIn.i++;
break;
}
case '.': {
if( rePeek(p)=='*' ){
re_append(p, RE_OP_ANYSTAR, 0);
p->sIn.i++;
}else{
re_append(p, RE_OP_ANY, 0);
}
break;
}
case '*': {
if( iPrev<0 ) return "'*' without operand";
re_insert(p, iPrev, RE_OP_GOTO, p->nState - iPrev + 1);
re_append(p, RE_OP_FORK, iPrev - p->nState + 1);
break;
}
case '+': {
if( iPrev<0 ) return "'+' without operand";
re_append(p, RE_OP_FORK, iPrev - p->nState);
break;
}
case '?': {
if( iPrev<0 ) return "'?' without operand";
re_insert(p, iPrev, RE_OP_FORK, p->nState - iPrev+1);
break;
}
case '$': {
re_append(p, RE_OP_MATCH, RE_EOF);
break;
}
case '^': {
re_append(p, RE_OP_ATSTART, 0);
break;
}
case '{': {
int m = 0, n = 0;
int sz, j;
if( iPrev<0 ) return "'{m,n}' without operand";
while( (c=rePeek(p))>='0' && c<='9' ){ m = m*10 + c - '0'; p->sIn.i++; }
n = m;
if( c==',' ){
p->sIn.i++;
n = 0;
while( (c=rePeek(p))>='0' && c<='9' ){ n = n*10 + c-'0'; p->sIn.i++; }
}
if( c!='}' ) return "unmatched '{'";
if( n>0 && n<m ) return "n less than m in '{m,n}'";
p->sIn.i++;
sz = p->nState - iPrev;
if( m==0 ){
if( n==0 ) return "both m and n are zero in '{m,n}'";
re_insert(p, iPrev, RE_OP_FORK, sz+1);
iPrev++;
n--;
}else{
for(j=1; j<m; j++) re_copy(p, iPrev, sz);
}
for(j=m; j<n; j++){
re_append(p, RE_OP_FORK, sz+1);
re_copy(p, iPrev, sz);
}
if( n==0 && m>0 ){
re_append(p, RE_OP_FORK, -sz);
}
break;
}
case '[': {
unsigned int iFirst = p->nState;
if( rePeek(p)=='^' ){
re_append(p, RE_OP_CC_EXC, 0);
p->sIn.i++;
}else{
re_append(p, RE_OP_CC_INC, 0);
}
while( (c = p->xNextChar(&p->sIn))!=0 ){
if( c=='[' && rePeek(p)==':' ){
return "POSIX character classes not supported";
}
if( c=='\\' ) c = re_esc_char(p);
if( rePeek(p)=='-' ){
re_append(p, RE_OP_CC_RANGE, c);
p->sIn.i++;
c = p->xNextChar(&p->sIn);
if( c=='\\' ) c = re_esc_char(p);
re_append(p, RE_OP_CC_RANGE, c);
}else{
re_append(p, RE_OP_CC_VALUE, c);
}
if( rePeek(p)==']' ){ p->sIn.i++; break; }
}
if( c==0 ) return "unclosed '['";
if( p->nState>iFirst ) p->aArg[iFirst] = p->nState - iFirst;
break;
}
case '\\': {
int specialOp = 0;
switch( rePeek(p) ){
case 'b': specialOp = RE_OP_BOUNDARY; break;
case 'd': specialOp = RE_OP_DIGIT; break;
case 'D': specialOp = RE_OP_NOTDIGIT; break;
case 's': specialOp = RE_OP_SPACE; break;
case 'S': specialOp = RE_OP_NOTSPACE; break;
case 'w': specialOp = RE_OP_WORD; break;
case 'W': specialOp = RE_OP_NOTWORD; break;
}
if( specialOp ){
p->sIn.i++;
re_append(p, specialOp, 0);
}else{
c = re_esc_char(p);
re_append(p, RE_OP_MATCH, c);
}
break;
}
default: {
re_append(p, RE_OP_MATCH, c);
break;
}
}
iPrev = iStart;
}
return 0;
}
/* Free and reclaim all the memory used by a previously compiled
** regular expression. Applications should invoke this routine once
** for every call to re_compile() to avoid memory leaks.
*/
static void re_free(void *p){
ReCompiled *pRe = (ReCompiled*)p;
if( pRe ){
sqlite3_free(pRe->aOp);
sqlite3_free(pRe->aArg);
sqlite3_free(pRe);
}
}
/*
** Compile a textual regular expression in zIn[] into a compiled regular
** expression suitable for us by re_match() and return a pointer to the
** compiled regular expression in *ppRe. Return NULL on success or an
** error message if something goes wrong.
*/
static const char *re_compile(ReCompiled **ppRe, const char *zIn, int noCase){
ReCompiled *pRe;
const char *zErr;
int i, j;
*ppRe = 0;
pRe = sqlite3_malloc( sizeof(*pRe) );
if( pRe==0 ){
return "out of memory";
}
memset(pRe, 0, sizeof(*pRe));
pRe->xNextChar = noCase ? re_next_char_nocase : re_next_char;
if( re_resize(pRe, 30) ){
re_free(pRe);
return "out of memory";
}
if( zIn[0]=='^' ){
zIn++;
}else{
re_append(pRe, RE_OP_ANYSTAR, 0);
}
pRe->sIn.z = (unsigned char*)zIn;
pRe->sIn.i = 0;
pRe->sIn.mx = (int)strlen(zIn);
zErr = re_subcompile_re(pRe);
if( zErr ){
re_free(pRe);
return zErr;
}
if( pRe->sIn.i>=pRe->sIn.mx ){
re_append(pRe, RE_OP_ACCEPT, 0);
*ppRe = pRe;
}else{
re_free(pRe);
return "unrecognized character";
}
/* The following is a performance optimization. If the regex begins with
** ".*" (if the input regex lacks an initial "^") and afterwards there are
** one or more matching characters, enter those matching characters into
** zInit[]. The re_match() routine can then search ahead in the input
** string looking for the initial match without having to run the whole
** regex engine over the string. Do not worry about trying to match
** unicode characters beyond plane 0 - those are very rare and this is
** just an optimization. */
if( pRe->aOp[0]==RE_OP_ANYSTAR && !noCase ){
for(j=0, i=1; j<(int)sizeof(pRe->zInit)-2 && pRe->aOp[i]==RE_OP_MATCH; i++){
unsigned x = pRe->aArg[i];
if( x<=0x7f ){
pRe->zInit[j++] = (unsigned char)x;
}else if( x<=0x7ff ){
pRe->zInit[j++] = (unsigned char)(0xc0 | (x>>6));
pRe->zInit[j++] = 0x80 | (x&0x3f);
}else if( x<=0xffff ){
pRe->zInit[j++] = (unsigned char)(0xe0 | (x>>12));
pRe->zInit[j++] = 0x80 | ((x>>6)&0x3f);
pRe->zInit[j++] = 0x80 | (x&0x3f);
}else{
break;
}
}
if( j>0 && pRe->zInit[j-1]==0 ) j--;
pRe->nInit = j;
}
return pRe->zErr;
}
/*
** Implementation of the regexp() SQL function. This function implements
** the build-in REGEXP operator. The first argument to the function is the
** pattern and the second argument is the string. So, the SQL statements:
**
** A REGEXP B
**
** is implemented as regexp(B,A).
*/
static void re_sql_func(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
ReCompiled *pRe; /* Compiled regular expression */
const char *zPattern; /* The regular expression */
const unsigned char *zStr;/* String being searched */
const char *zErr; /* Compile error message */
int setAux = 0; /* True to invoke sqlite3_set_auxdata() */
(void)argc; /* Unused */
pRe = sqlite3_get_auxdata(context, 0);
if( pRe==0 ){
zPattern = (const char*)sqlite3_value_text(argv[0]);
if( zPattern==0 ) return;
zErr = re_compile(&pRe, zPattern, sqlite3_user_data(context)!=0);
if( zErr ){
re_free(pRe);
sqlite3_result_error(context, zErr, -1);
return;
}
if( pRe==0 ){
sqlite3_result_error_nomem(context);
return;
}
setAux = 1;
}
zStr = (const unsigned char*)sqlite3_value_text(argv[1]);
if( zStr!=0 ){
sqlite3_result_int(context, re_match(pRe, zStr, -1));
}
if( setAux ){
sqlite3_set_auxdata(context, 0, pRe, (void(*)(void*))re_free);
}
}
#if defined(SQLITE_DEBUG)
/*
** This function is used for testing and debugging only. It is only available
** if the SQLITE_DEBUG compile-time option is used.
**
** Compile a regular expression and then convert the compiled expression into
** text and return that text.
*/
static void re_bytecode_func(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
const char *zPattern;
const char *zErr;
ReCompiled *pRe;
sqlite3_str *pStr;
int i;
int n;
char *z;
(void)argc;
zPattern = (const char*)sqlite3_value_text(argv[0]);
if( zPattern==0 ) return;
zErr = re_compile(&pRe, zPattern, sqlite3_user_data(context)!=0);
if( zErr ){
re_free(pRe);
sqlite3_result_error(context, zErr, -1);
return;
}
if( pRe==0 ){
sqlite3_result_error_nomem(context);
return;
}
pStr = sqlite3_str_new(0);
if( pStr==0 ) goto re_bytecode_func_err;
if( pRe->nInit>0 ){
sqlite3_str_appendf(pStr, "INIT ");
for(i=0; i<pRe->nInit; i++){
sqlite3_str_appendf(pStr, "%02x", pRe->zInit[i]);
}
sqlite3_str_appendf(pStr, "\n");
}
for(i=0; (unsigned)i<pRe->nState; i++){
sqlite3_str_appendf(pStr, "%-8s %4d\n",
ReOpName[(unsigned char)pRe->aOp[i]], pRe->aArg[i]);
}
n = sqlite3_str_length(pStr);
z = sqlite3_str_finish(pStr);
if( n==0 ){
sqlite3_free(z);
}else{
sqlite3_result_text(context, z, n-1, sqlite3_free);
}
re_bytecode_func_err:
re_free(pRe);
}
#endif /* SQLITE_DEBUG */
/*
** Invoke this routine to register the regexp() function with the
** SQLite database connection.
*/
#ifdef _WIN32
#endif
int sqlite3_regexp_init(
sqlite3 *db,
char **pzErrMsg,
const sqlite3_api_routines *pApi
){
int rc = SQLITE_OK;
SQLITE_EXTENSION_INIT2(pApi);
(void)pzErrMsg; /* Unused */
rc = sqlite3_create_function(db, "regexp", 2,
SQLITE_UTF8|SQLITE_INNOCUOUS|SQLITE_DETERMINISTIC,
0, re_sql_func, 0, 0);
if( rc==SQLITE_OK ){
/* The regexpi(PATTERN,STRING) function is a case-insensitive version
** of regexp(PATTERN,STRING). */
rc = sqlite3_create_function(db, "regexpi", 2,
SQLITE_UTF8|SQLITE_INNOCUOUS|SQLITE_DETERMINISTIC,
(void*)db, re_sql_func, 0, 0);
#if defined(SQLITE_DEBUG)
if( rc==SQLITE_OK ){
rc = sqlite3_create_function(db, "regexp_bytecode", 1,
SQLITE_UTF8|SQLITE_INNOCUOUS|SQLITE_DETERMINISTIC,
0, re_bytecode_func, 0, 0);
}
#endif /* SQLITE_DEBUG */
}
return rc;
}
/************************* End ../ext/misc/regexp.c ********************/
#ifndef SQLITE_SHELL_FIDDLE
/************************* Begin ../ext/misc/fileio.c ******************/
/*
** 2014-06-13
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
******************************************************************************
**
** This SQLite extension implements SQL functions readfile() and
** writefile(), and eponymous virtual type "fsdir".
**
** WRITEFILE(FILE, DATA [, MODE [, MTIME]]):
**
** If neither of the optional arguments is present, then this UDF
** function writes blob DATA to file FILE. If successful, the number
** of bytes written is returned. If an error occurs, NULL is returned.
**
** If the first option argument - MODE - is present, then it must
** be passed an integer value that corresponds to a POSIX mode
** value (file type + permissions, as returned in the stat.st_mode
** field by the stat() system call). Three types of files may
** be written/created:
**
** regular files: (mode & 0170000)==0100000
** symbolic links: (mode & 0170000)==0120000
** directories: (mode & 0170000)==0040000
**
** For a directory, the DATA is ignored. For a symbolic link, it is
** interpreted as text and used as the target of the link. For a
** regular file, it is interpreted as a blob and written into the
** named file. Regardless of the type of file, its permissions are
** set to (mode & 0777) before returning.
**
** If the optional MTIME argument is present, then it is interpreted
** as an integer - the number of seconds since the unix epoch. The
** modification-time of the target file is set to this value before
** returning.
**
** If five or more arguments are passed to this function and an
** error is encountered, an exception is raised.
**
** READFILE(FILE):
**
** Read and return the contents of file FILE (type blob) from disk.
**
** FSDIR:
**
** Used as follows:
**
** SELECT * FROM fsdir($path [, $dir]);
**
** Parameter $path is an absolute or relative pathname. If the file that it
** refers to does not exist, it is an error. If the path refers to a regular
** file or symbolic link, it returns a single row. Or, if the path refers
** to a directory, it returns one row for the directory, and one row for each
** file within the hierarchy rooted at $path.
**
** Each row has the following columns:
**
** name: Path to file or directory (text value).
** mode: Value of stat.st_mode for directory entry (an integer).
** mtime: Value of stat.st_mtime for directory entry (an integer).
** data: For a regular file, a blob containing the file data. For a
** symlink, a text value containing the text of the link. For a
** directory, NULL.
**
** If a non-NULL value is specified for the optional $dir parameter and
** $path is a relative path, then $path is interpreted relative to $dir.
** And the paths returned in the "name" column of the table are also
** relative to directory $dir.
**
** Notes on building this extension for Windows:
** Unless linked statically with the SQLite library, a preprocessor
** symbol, FILEIO_WIN32_DLL, must be #define'd to create a stand-alone
** DLL form of this extension for WIN32. See its use below for details.
*/
/* #include "sqlite3ext.h" */
SQLITE_EXTENSION_INIT1
#include <stdio.h>
#include <string.h>
#include <assert.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#if !defined(_WIN32) && !defined(WIN32)
# include <unistd.h>
# include <dirent.h>
# include <utime.h>
# include <sys/time.h>
#else
# include "windows.h"
# include <io.h>
# include <direct.h>
/* # include "test_windirent.h" */
# define dirent DIRENT
# ifndef chmod
# define chmod _chmod
# endif
# ifndef stat
# define stat _stat
# endif
# define mkdir(path,mode) _mkdir(path)
# define lstat(path,buf) stat(path,buf)
#endif
#include <time.h>
#include <errno.h>
/* When used as part of the CLI, the sqlite3_stdio.h module will have
** been included before this one. In that case use the sqlite3_stdio.h
** #defines. If not, create our own for fopen().
*/
#ifndef _SQLITE3_STDIO_H_
# define sqlite3_fopen fopen
#endif
/*
** Structure of the fsdir() table-valued function
*/
/* 0 1 2 3 4 5 */
#define FSDIR_SCHEMA "(name,mode,mtime,data,path HIDDEN,dir HIDDEN)"
#define FSDIR_COLUMN_NAME 0 /* Name of the file */
#define FSDIR_COLUMN_MODE 1 /* Access mode */
#define FSDIR_COLUMN_MTIME 2 /* Last modification time */
#define FSDIR_COLUMN_DATA 3 /* File content */
#define FSDIR_COLUMN_PATH 4 /* Path to top of search */
#define FSDIR_COLUMN_DIR 5 /* Path is relative to this directory */
/*
** Set the result stored by context ctx to a blob containing the
** contents of file zName. Or, leave the result unchanged (NULL)
** if the file does not exist or is unreadable.
**
** If the file exceeds the SQLite blob size limit, through an
** SQLITE_TOOBIG error.
**
** Throw an SQLITE_IOERR if there are difficulties pulling the file
** off of disk.
*/
static void readFileContents(sqlite3_context *ctx, const char *zName){
FILE *in;
sqlite3_int64 nIn;
void *pBuf;
sqlite3 *db;
int mxBlob;
in = sqlite3_fopen(zName, "rb");
if( in==0 ){
/* File does not exist or is unreadable. Leave the result set to NULL. */
return;
}
fseek(in, 0, SEEK_END);
nIn = ftell(in);
rewind(in);
db = sqlite3_context_db_handle(ctx);
mxBlob = sqlite3_limit(db, SQLITE_LIMIT_LENGTH, -1);
if( nIn>mxBlob ){
sqlite3_result_error_code(ctx, SQLITE_TOOBIG);
fclose(in);
return;
}
pBuf = sqlite3_malloc64( nIn ? nIn : 1 );
if( pBuf==0 ){
sqlite3_result_error_nomem(ctx);
fclose(in);
return;
}
if( nIn==(sqlite3_int64)fread(pBuf, 1, (size_t)nIn, in) ){
sqlite3_result_blob64(ctx, pBuf, nIn, sqlite3_free);
}else{
sqlite3_result_error_code(ctx, SQLITE_IOERR);
sqlite3_free(pBuf);
}
fclose(in);
}
/*
** Implementation of the "readfile(X)" SQL function. The entire content
** of the file named X is read and returned as a BLOB. NULL is returned
** if the file does not exist or is unreadable.
*/
static void readfileFunc(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
const char *zName;
(void)(argc); /* Unused parameter */
zName = (const char*)sqlite3_value_text(argv[0]);
if( zName==0 ) return;
readFileContents(context, zName);
}
/*
** Set the error message contained in context ctx to the results of
** vprintf(zFmt, ...).
*/
static void ctxErrorMsg(sqlite3_context *ctx, const char *zFmt, ...){
char *zMsg = 0;
va_list ap;
va_start(ap, zFmt);
zMsg = sqlite3_vmprintf(zFmt, ap);
sqlite3_result_error(ctx, zMsg, -1);
sqlite3_free(zMsg);
va_end(ap);
}
#if defined(_WIN32)
/*
** This function is designed to convert a Win32 FILETIME structure into the
** number of seconds since the Unix Epoch (1970-01-01 00:00:00 UTC).
*/
static sqlite3_uint64 fileTimeToUnixTime(
LPFILETIME pFileTime
){
SYSTEMTIME epochSystemTime;
ULARGE_INTEGER epochIntervals;
FILETIME epochFileTime;
ULARGE_INTEGER fileIntervals;
memset(&epochSystemTime, 0, sizeof(SYSTEMTIME));
epochSystemTime.wYear = 1970;
epochSystemTime.wMonth = 1;
epochSystemTime.wDay = 1;
SystemTimeToFileTime(&epochSystemTime, &epochFileTime);
epochIntervals.LowPart = epochFileTime.dwLowDateTime;
epochIntervals.HighPart = epochFileTime.dwHighDateTime;
fileIntervals.LowPart = pFileTime->dwLowDateTime;
fileIntervals.HighPart = pFileTime->dwHighDateTime;
return (fileIntervals.QuadPart - epochIntervals.QuadPart) / 10000000;
}
#if defined(FILEIO_WIN32_DLL) && (defined(_WIN32) || defined(WIN32))
# /* To allow a standalone DLL, use this next replacement function: */
# undef sqlite3_win32_utf8_to_unicode
# define sqlite3_win32_utf8_to_unicode utf8_to_utf16
#
LPWSTR utf8_to_utf16(const char *z){
int nAllot = MultiByteToWideChar(CP_UTF8, 0, z, -1, NULL, 0);
LPWSTR rv = sqlite3_malloc(nAllot * sizeof(WCHAR));
if( rv!=0 && 0 < MultiByteToWideChar(CP_UTF8, 0, z, -1, rv, nAllot) )
return rv;
sqlite3_free(rv);
return 0;
}
#endif
/*
** This function attempts to normalize the time values found in the stat()
** buffer to UTC. This is necessary on Win32, where the runtime library
** appears to return these values as local times.
*/
static void statTimesToUtc(
const char *zPath,
struct stat *pStatBuf
){
HANDLE hFindFile;
WIN32_FIND_DATAW fd;
LPWSTR zUnicodeName;
extern LPWSTR sqlite3_win32_utf8_to_unicode(const char*);
zUnicodeName = sqlite3_win32_utf8_to_unicode(zPath);
if( zUnicodeName ){
memset(&fd, 0, sizeof(WIN32_FIND_DATAW));
hFindFile = FindFirstFileW(zUnicodeName, &fd);
if( hFindFile!=NULL ){
pStatBuf->st_ctime = (time_t)fileTimeToUnixTime(&fd.ftCreationTime);
pStatBuf->st_atime = (time_t)fileTimeToUnixTime(&fd.ftLastAccessTime);
pStatBuf->st_mtime = (time_t)fileTimeToUnixTime(&fd.ftLastWriteTime);
FindClose(hFindFile);
}
sqlite3_free(zUnicodeName);
}
}
#endif
/*
** This function is used in place of stat(). On Windows, special handling
** is required in order for the included time to be returned as UTC. On all
** other systems, this function simply calls stat().
*/
static int fileStat(
const char *zPath,
struct stat *pStatBuf
){
#if defined(_WIN32)
int rc = stat(zPath, pStatBuf);
if( rc==0 ) statTimesToUtc(zPath, pStatBuf);
return rc;
#else
return stat(zPath, pStatBuf);
#endif
}
/*
** This function is used in place of lstat(). On Windows, special handling
** is required in order for the included time to be returned as UTC. On all
** other systems, this function simply calls lstat().
*/
static int fileLinkStat(
const char *zPath,
struct stat *pStatBuf
){
#if defined(_WIN32)
int rc = lstat(zPath, pStatBuf);
if( rc==0 ) statTimesToUtc(zPath, pStatBuf);
return rc;
#else
return lstat(zPath, pStatBuf);
#endif
}
/*
** Argument zFile is the name of a file that will be created and/or written
** by SQL function writefile(). This function ensures that the directory
** zFile will be written to exists, creating it if required. The permissions
** for any path components created by this function are set in accordance
** with the current umask.
**
** If an OOM condition is encountered, SQLITE_NOMEM is returned. Otherwise,
** SQLITE_OK is returned if the directory is successfully created, or
** SQLITE_ERROR otherwise.
*/
static int makeDirectory(
const char *zFile
){
char *zCopy = sqlite3_mprintf("%s", zFile);
int rc = SQLITE_OK;
if( zCopy==0 ){
rc = SQLITE_NOMEM;
}else{
int nCopy = (int)strlen(zCopy);
int i = 1;
while( rc==SQLITE_OK ){
struct stat sStat;
int rc2;
for(; zCopy[i]!='/' && i<nCopy; i++);
if( i==nCopy ) break;
zCopy[i] = '\0';
rc2 = fileStat(zCopy, &sStat);
if( rc2!=0 ){
if( mkdir(zCopy, 0777) ) rc = SQLITE_ERROR;
}else{
if( !S_ISDIR(sStat.st_mode) ) rc = SQLITE_ERROR;
}
zCopy[i] = '/';
i++;
}
sqlite3_free(zCopy);
}
return rc;
}
/*
** This function does the work for the writefile() UDF. Refer to
** header comments at the top of this file for details.
*/
static int writeFile(
sqlite3_context *pCtx, /* Context to return bytes written in */
const char *zFile, /* File to write */
sqlite3_value *pData, /* Data to write */
mode_t mode, /* MODE parameter passed to writefile() */
sqlite3_int64 mtime /* MTIME parameter (or -1 to not set time) */
){
if( zFile==0 ) return 1;
#if !defined(_WIN32) && !defined(WIN32)
if( S_ISLNK(mode) ){
const char *zTo = (const char*)sqlite3_value_text(pData);
if( zTo==0 ) return 1;
unlink(zFile);
if( symlink(zTo, zFile)<0 ) return 1;
}else
#endif
{
if( S_ISDIR(mode) ){
if( mkdir(zFile, mode) ){
/* The mkdir() call to create the directory failed. This might not
** be an error though - if there is already a directory at the same
** path and either the permissions already match or can be changed
** to do so using chmod(), it is not an error. */
struct stat sStat;
if( errno!=EEXIST
|| 0!=fileStat(zFile, &sStat)
|| !S_ISDIR(sStat.st_mode)
|| ((sStat.st_mode&0777)!=(mode&0777) && 0!=chmod(zFile, mode&0777))
){
return 1;
}
}
}else{
sqlite3_int64 nWrite = 0;
const char *z;
int rc = 0;
FILE *out = sqlite3_fopen(zFile, "wb");
if( out==0 ) return 1;
z = (const char*)sqlite3_value_blob(pData);
if( z ){
sqlite3_int64 n = fwrite(z, 1, sqlite3_value_bytes(pData), out);
nWrite = sqlite3_value_bytes(pData);
if( nWrite!=n ){
rc = 1;
}
}
fclose(out);
if( rc==0 && mode && chmod(zFile, mode & 0777) ){
rc = 1;
}
if( rc ) return 2;
sqlite3_result_int64(pCtx, nWrite);
}
}
if( mtime>=0 ){
#if defined(_WIN32)
#if !SQLITE_OS_WINRT
/* Windows */
FILETIME lastAccess;
FILETIME lastWrite;
SYSTEMTIME currentTime;
LONGLONG intervals;
HANDLE hFile;
LPWSTR zUnicodeName;
extern LPWSTR sqlite3_win32_utf8_to_unicode(const char*);
GetSystemTime(&currentTime);
SystemTimeToFileTime(&currentTime, &lastAccess);
intervals = (mtime*10000000) + 116444736000000000;
lastWrite.dwLowDateTime = (DWORD)intervals;
lastWrite.dwHighDateTime = intervals >> 32;
zUnicodeName = sqlite3_win32_utf8_to_unicode(zFile);
if( zUnicodeName==0 ){
return 1;
}
hFile = CreateFileW(
zUnicodeName, FILE_WRITE_ATTRIBUTES, 0, NULL, OPEN_EXISTING,
FILE_FLAG_BACKUP_SEMANTICS, NULL
);
sqlite3_free(zUnicodeName);
if( hFile!=INVALID_HANDLE_VALUE ){
BOOL bResult = SetFileTime(hFile, NULL, &lastAccess, &lastWrite);
CloseHandle(hFile);
return !bResult;
}else{
return 1;
}
#endif
#elif defined(AT_FDCWD) && 0 /* utimensat() is not universally available */
/* Recent unix */
struct timespec times[2];
times[0].tv_nsec = times[1].tv_nsec = 0;
times[0].tv_sec = time(0);
times[1].tv_sec = mtime;
if( utimensat(AT_FDCWD, zFile, times, AT_SYMLINK_NOFOLLOW) ){
return 1;
}
#else
/* Legacy unix.
**
** Do not use utimes() on a symbolic link - it sees through the link and
** modifies the timestamps on the target. Or fails if the target does
** not exist. */
if( 0==S_ISLNK(mode) ){
struct timeval times[2];
times[0].tv_usec = times[1].tv_usec = 0;
times[0].tv_sec = time(0);
times[1].tv_sec = mtime;
if( utimes(zFile, times) ){
return 1;
}
}
#endif
}
return 0;
}
/*
** Implementation of the "writefile(W,X[,Y[,Z]]])" SQL function.
** Refer to header comments at the top of this file for details.
*/
static void writefileFunc(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
const char *zFile;
mode_t mode = 0;
int res;
sqlite3_int64 mtime = -1;
if( argc<2 || argc>4 ){
sqlite3_result_error(context,
"wrong number of arguments to function writefile()", -1
);
return;
}
zFile = (const char*)sqlite3_value_text(argv[0]);
if( zFile==0 ) return;
if( argc>=3 ){
mode = (mode_t)sqlite3_value_int(argv[2]);
}
if( argc==4 ){
mtime = sqlite3_value_int64(argv[3]);
}
res = writeFile(context, zFile, argv[1], mode, mtime);
if( res==1 && errno==ENOENT ){
if( makeDirectory(zFile)==SQLITE_OK ){
res = writeFile(context, zFile, argv[1], mode, mtime);
}
}
if( argc>2 && res!=0 ){
if( S_ISLNK(mode) ){
ctxErrorMsg(context, "failed to create symlink: %s", zFile);
}else if( S_ISDIR(mode) ){
ctxErrorMsg(context, "failed to create directory: %s", zFile);
}else{
ctxErrorMsg(context, "failed to write file: %s", zFile);
}
}
}
/*
** SQL function: lsmode(MODE)
**
** Given a numberic st_mode from stat(), convert it into a human-readable
** text string in the style of "ls -l".
*/
static void lsModeFunc(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
int i;
int iMode = sqlite3_value_int(argv[0]);
char z[16];
(void)argc;
if( S_ISLNK(iMode) ){
z[0] = 'l';
}else if( S_ISREG(iMode) ){
z[0] = '-';
}else if( S_ISDIR(iMode) ){
z[0] = 'd';
}else{
z[0] = '?';
}
for(i=0; i<3; i++){
int m = (iMode >> ((2-i)*3));
char *a = &z[1 + i*3];
a[0] = (m & 0x4) ? 'r' : '-';
a[1] = (m & 0x2) ? 'w' : '-';
a[2] = (m & 0x1) ? 'x' : '-';
}
z[10] = '\0';
sqlite3_result_text(context, z, -1, SQLITE_TRANSIENT);
}
#ifndef SQLITE_OMIT_VIRTUALTABLE
/*
** Cursor type for recursively iterating through a directory structure.
*/
typedef struct fsdir_cursor fsdir_cursor;
typedef struct FsdirLevel FsdirLevel;
struct FsdirLevel {
DIR *pDir; /* From opendir() */
char *zDir; /* Name of directory (nul-terminated) */
};
struct fsdir_cursor {
sqlite3_vtab_cursor base; /* Base class - must be first */
int nLvl; /* Number of entries in aLvl[] array */
int iLvl; /* Index of current entry */
FsdirLevel *aLvl; /* Hierarchy of directories being traversed */
const char *zBase;
int nBase;
struct stat sStat; /* Current lstat() results */
char *zPath; /* Path to current entry */
sqlite3_int64 iRowid; /* Current rowid */
};
typedef struct fsdir_tab fsdir_tab;
struct fsdir_tab {
sqlite3_vtab base; /* Base class - must be first */
};
/*
** Construct a new fsdir virtual table object.
*/
static int fsdirConnect(
sqlite3 *db,
void *pAux,
int argc, const char *const*argv,
sqlite3_vtab **ppVtab,
char **pzErr
){
fsdir_tab *pNew = 0;
int rc;
(void)pAux;
(void)argc;
(void)argv;
(void)pzErr;
rc = sqlite3_declare_vtab(db, "CREATE TABLE x" FSDIR_SCHEMA);
if( rc==SQLITE_OK ){
pNew = (fsdir_tab*)sqlite3_malloc( sizeof(*pNew) );
if( pNew==0 ) return SQLITE_NOMEM;
memset(pNew, 0, sizeof(*pNew));
sqlite3_vtab_config(db, SQLITE_VTAB_DIRECTONLY);
}
*ppVtab = (sqlite3_vtab*)pNew;
return rc;
}
/*
** This method is the destructor for fsdir vtab objects.
*/
static int fsdirDisconnect(sqlite3_vtab *pVtab){
sqlite3_free(pVtab);
return SQLITE_OK;
}
/*
** Constructor for a new fsdir_cursor object.
*/
static int fsdirOpen(sqlite3_vtab *p, sqlite3_vtab_cursor **ppCursor){
fsdir_cursor *pCur;
(void)p;
pCur = sqlite3_malloc( sizeof(*pCur) );
if( pCur==0 ) return SQLITE_NOMEM;
memset(pCur, 0, sizeof(*pCur));
pCur->iLvl = -1;
*ppCursor = &pCur->base;
return SQLITE_OK;
}
/*
** Reset a cursor back to the state it was in when first returned
** by fsdirOpen().
*/
static void fsdirResetCursor(fsdir_cursor *pCur){
int i;
for(i=0; i<=pCur->iLvl; i++){
FsdirLevel *pLvl = &pCur->aLvl[i];
if( pLvl->pDir ) closedir(pLvl->pDir);
sqlite3_free(pLvl->zDir);
}
sqlite3_free(pCur->zPath);
sqlite3_free(pCur->aLvl);
pCur->aLvl = 0;
pCur->zPath = 0;
pCur->zBase = 0;
pCur->nBase = 0;
pCur->nLvl = 0;
pCur->iLvl = -1;
pCur->iRowid = 1;
}
/*
** Destructor for an fsdir_cursor.
*/
static int fsdirClose(sqlite3_vtab_cursor *cur){
fsdir_cursor *pCur = (fsdir_cursor*)cur;
fsdirResetCursor(pCur);
sqlite3_free(pCur);
return SQLITE_OK;
}
/*
** Set the error message for the virtual table associated with cursor
** pCur to the results of vprintf(zFmt, ...).
*/
static void fsdirSetErrmsg(fsdir_cursor *pCur, const char *zFmt, ...){
va_list ap;
va_start(ap, zFmt);
pCur->base.pVtab->zErrMsg = sqlite3_vmprintf(zFmt, ap);
va_end(ap);
}
/*
** Advance an fsdir_cursor to its next row of output.
*/
static int fsdirNext(sqlite3_vtab_cursor *cur){
fsdir_cursor *pCur = (fsdir_cursor*)cur;
mode_t m = pCur->sStat.st_mode;
pCur->iRowid++;
if( S_ISDIR(m) ){
/* Descend into this directory */
int iNew = pCur->iLvl + 1;
FsdirLevel *pLvl;
if( iNew>=pCur->nLvl ){
int nNew = iNew+1;
sqlite3_int64 nByte = nNew*sizeof(FsdirLevel);
FsdirLevel *aNew = (FsdirLevel*)sqlite3_realloc64(pCur->aLvl, nByte);
if( aNew==0 ) return SQLITE_NOMEM;
memset(&aNew[pCur->nLvl], 0, sizeof(FsdirLevel)*(nNew-pCur->nLvl));
pCur->aLvl = aNew;
pCur->nLvl = nNew;
}
pCur->iLvl = iNew;
pLvl = &pCur->aLvl[iNew];
pLvl->zDir = pCur->zPath;
pCur->zPath = 0;
pLvl->pDir = opendir(pLvl->zDir);
if( pLvl->pDir==0 ){
fsdirSetErrmsg(pCur, "cannot read directory: %s", pCur->zPath);
return SQLITE_ERROR;
}
}
while( pCur->iLvl>=0 ){
FsdirLevel *pLvl = &pCur->aLvl[pCur->iLvl];
struct dirent *pEntry = readdir(pLvl->pDir);
if( pEntry ){
if( pEntry->d_name[0]=='.' ){
if( pEntry->d_name[1]=='.' && pEntry->d_name[2]=='\0' ) continue;
if( pEntry->d_name[1]=='\0' ) continue;
}
sqlite3_free(pCur->zPath);
pCur->zPath = sqlite3_mprintf("%s/%s", pLvl->zDir, pEntry->d_name);
if( pCur->zPath==0 ) return SQLITE_NOMEM;
if( fileLinkStat(pCur->zPath, &pCur->sStat) ){
fsdirSetErrmsg(pCur, "cannot stat file: %s", pCur->zPath);
return SQLITE_ERROR;
}
return SQLITE_OK;
}
closedir(pLvl->pDir);
sqlite3_free(pLvl->zDir);
pLvl->pDir = 0;
pLvl->zDir = 0;
pCur->iLvl--;
}
/* EOF */
sqlite3_free(pCur->zPath);
pCur->zPath = 0;
return SQLITE_OK;
}
/*
** Return values of columns for the row at which the series_cursor
** is currently pointing.
*/
static int fsdirColumn(
sqlite3_vtab_cursor *cur, /* The cursor */
sqlite3_context *ctx, /* First argument to sqlite3_result_...() */
int i /* Which column to return */
){
fsdir_cursor *pCur = (fsdir_cursor*)cur;
switch( i ){
case FSDIR_COLUMN_NAME: {
sqlite3_result_text(ctx, &pCur->zPath[pCur->nBase], -1, SQLITE_TRANSIENT);
break;
}
case FSDIR_COLUMN_MODE:
sqlite3_result_int64(ctx, pCur->sStat.st_mode);
break;
case FSDIR_COLUMN_MTIME:
sqlite3_result_int64(ctx, pCur->sStat.st_mtime);
break;
case FSDIR_COLUMN_DATA: {
mode_t m = pCur->sStat.st_mode;
if( S_ISDIR(m) ){
sqlite3_result_null(ctx);
#if !defined(_WIN32) && !defined(WIN32)
}else if( S_ISLNK(m) ){
char aStatic[64];
char *aBuf = aStatic;
sqlite3_int64 nBuf = 64;
int n;
while( 1 ){
n = readlink(pCur->zPath, aBuf, nBuf);
if( n<nBuf ) break;
if( aBuf!=aStatic ) sqlite3_free(aBuf);
nBuf = nBuf*2;
aBuf = sqlite3_malloc64(nBuf);
if( aBuf==0 ){
sqlite3_result_error_nomem(ctx);
return SQLITE_NOMEM;
}
}
sqlite3_result_text(ctx, aBuf, n, SQLITE_TRANSIENT);
if( aBuf!=aStatic ) sqlite3_free(aBuf);
#endif
}else{
readFileContents(ctx, pCur->zPath);
}
}
case FSDIR_COLUMN_PATH:
default: {
/* The FSDIR_COLUMN_PATH and FSDIR_COLUMN_DIR are input parameters.
** always return their values as NULL */
break;
}
}
return SQLITE_OK;
}
/*
** Return the rowid for the current row. In this implementation, the
** first row returned is assigned rowid value 1, and each subsequent
** row a value 1 more than that of the previous.
*/
static int fsdirRowid(sqlite3_vtab_cursor *cur, sqlite_int64 *pRowid){
fsdir_cursor *pCur = (fsdir_cursor*)cur;
*pRowid = pCur->iRowid;
return SQLITE_OK;
}
/*
** Return TRUE if the cursor has been moved off of the last
** row of output.
*/
static int fsdirEof(sqlite3_vtab_cursor *cur){
fsdir_cursor *pCur = (fsdir_cursor*)cur;
return (pCur->zPath==0);
}
/*
** xFilter callback.
**
** idxNum==1 PATH parameter only
** idxNum==2 Both PATH and DIR supplied
*/
static int fsdirFilter(
sqlite3_vtab_cursor *cur,
int idxNum, const char *idxStr,
int argc, sqlite3_value **argv
){
const char *zDir = 0;
fsdir_cursor *pCur = (fsdir_cursor*)cur;
(void)idxStr;
fsdirResetCursor(pCur);
if( idxNum==0 ){
fsdirSetErrmsg(pCur, "table function fsdir requires an argument");
return SQLITE_ERROR;
}
assert( argc==idxNum && (argc==1 || argc==2) );
zDir = (const char*)sqlite3_value_text(argv[0]);
if( zDir==0 ){
fsdirSetErrmsg(pCur, "table function fsdir requires a non-NULL argument");
return SQLITE_ERROR;
}
if( argc==2 ){
pCur->zBase = (const char*)sqlite3_value_text(argv[1]);
}
if( pCur->zBase ){
pCur->nBase = (int)strlen(pCur->zBase)+1;
pCur->zPath = sqlite3_mprintf("%s/%s", pCur->zBase, zDir);
}else{
pCur->zPath = sqlite3_mprintf("%s", zDir);
}
if( pCur->zPath==0 ){
return SQLITE_NOMEM;
}
if( fileLinkStat(pCur->zPath, &pCur->sStat) ){
fsdirSetErrmsg(pCur, "cannot stat file: %s", pCur->zPath);
return SQLITE_ERROR;
}
return SQLITE_OK;
}
/*
** SQLite will invoke this method one or more times while planning a query
** that uses the generate_series virtual table. This routine needs to create
** a query plan for each invocation and compute an estimated cost for that
** plan.
**
** In this implementation idxNum is used to represent the
** query plan. idxStr is unused.
**
** The query plan is represented by values of idxNum:
**
** (1) The path value is supplied by argv[0]
** (2) Path is in argv[0] and dir is in argv[1]
*/
static int fsdirBestIndex(
sqlite3_vtab *tab,
sqlite3_index_info *pIdxInfo
){
int i; /* Loop over constraints */
int idxPath = -1; /* Index in pIdxInfo->aConstraint of PATH= */
int idxDir = -1; /* Index in pIdxInfo->aConstraint of DIR= */
int seenPath = 0; /* True if an unusable PATH= constraint is seen */
int seenDir = 0; /* True if an unusable DIR= constraint is seen */
const struct sqlite3_index_constraint *pConstraint;
(void)tab;
pConstraint = pIdxInfo->aConstraint;
for(i=0; i<pIdxInfo->nConstraint; i++, pConstraint++){
if( pConstraint->op!=SQLITE_INDEX_CONSTRAINT_EQ ) continue;
switch( pConstraint->iColumn ){
case FSDIR_COLUMN_PATH: {
if( pConstraint->usable ){
idxPath = i;
seenPath = 0;
}else if( idxPath<0 ){
seenPath = 1;
}
break;
}
case FSDIR_COLUMN_DIR: {
if( pConstraint->usable ){
idxDir = i;
seenDir = 0;
}else if( idxDir<0 ){
seenDir = 1;
}
break;
}
}
}
if( seenPath || seenDir ){
/* If input parameters are unusable, disallow this plan */
return SQLITE_CONSTRAINT;
}
if( idxPath<0 ){
pIdxInfo->idxNum = 0;
/* The pIdxInfo->estimatedCost should have been initialized to a huge
** number. Leave it unchanged. */
pIdxInfo->estimatedRows = 0x7fffffff;
}else{
pIdxInfo->aConstraintUsage[idxPath].omit = 1;
pIdxInfo->aConstraintUsage[idxPath].argvIndex = 1;
if( idxDir>=0 ){
pIdxInfo->aConstraintUsage[idxDir].omit = 1;
pIdxInfo->aConstraintUsage[idxDir].argvIndex = 2;
pIdxInfo->idxNum = 2;
pIdxInfo->estimatedCost = 10.0;
}else{
pIdxInfo->idxNum = 1;
pIdxInfo->estimatedCost = 100.0;
}
}
return SQLITE_OK;
}
/*
** Register the "fsdir" virtual table.
*/
static int fsdirRegister(sqlite3 *db){
static sqlite3_module fsdirModule = {
0, /* iVersion */
0, /* xCreate */
fsdirConnect, /* xConnect */
fsdirBestIndex, /* xBestIndex */
fsdirDisconnect, /* xDisconnect */
0, /* xDestroy */
fsdirOpen, /* xOpen - open a cursor */
fsdirClose, /* xClose - close a cursor */
fsdirFilter, /* xFilter - configure scan constraints */
fsdirNext, /* xNext - advance a cursor */
fsdirEof, /* xEof - check for end of scan */
fsdirColumn, /* xColumn - read data */
fsdirRowid, /* xRowid - read data */
0, /* xUpdate */
0, /* xBegin */
0, /* xSync */
0, /* xCommit */
0, /* xRollback */
0, /* xFindMethod */
0, /* xRename */
0, /* xSavepoint */
0, /* xRelease */
0, /* xRollbackTo */
0, /* xShadowName */
0 /* xIntegrity */
};
int rc = sqlite3_create_module(db, "fsdir", &fsdirModule, 0);
return rc;
}
#else /* SQLITE_OMIT_VIRTUALTABLE */
# define fsdirRegister(x) SQLITE_OK
#endif
#ifdef _WIN32
#endif
int sqlite3_fileio_init(
sqlite3 *db,
char **pzErrMsg,
const sqlite3_api_routines *pApi
){
int rc = SQLITE_OK;
SQLITE_EXTENSION_INIT2(pApi);
(void)pzErrMsg; /* Unused parameter */
rc = sqlite3_create_function(db, "readfile", 1,
SQLITE_UTF8|SQLITE_DIRECTONLY, 0,
readfileFunc, 0, 0);
if( rc==SQLITE_OK ){
rc = sqlite3_create_function(db, "writefile", -1,
SQLITE_UTF8|SQLITE_DIRECTONLY, 0,
writefileFunc, 0, 0);
}
if( rc==SQLITE_OK ){
rc = sqlite3_create_function(db, "lsmode", 1, SQLITE_UTF8, 0,
lsModeFunc, 0, 0);
}
if( rc==SQLITE_OK ){
rc = fsdirRegister(db);
}
return rc;
}
#if defined(FILEIO_WIN32_DLL) && (defined(_WIN32) || defined(WIN32))
/* To allow a standalone DLL, make test_windirent.c use the same
* redefined SQLite API calls as the above extension code does.
* Just pull in this .c to accomplish this. As a beneficial side
* effect, this extension becomes a single translation unit. */
# include "test_windirent.c"
#endif
/************************* End ../ext/misc/fileio.c ********************/
/************************* Begin ../ext/misc/completion.c ******************/
/*
** 2017-07-10
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
**
** This file implements an eponymous virtual table that returns suggested
** completions for a partial SQL input.
**
** Suggested usage:
**
** SELECT DISTINCT candidate COLLATE nocase
** FROM completion($prefix,$wholeline)
** ORDER BY 1;
**
** The two query parameters are optional. $prefix is the text of the
** current word being typed and that is to be completed. $wholeline is
** the complete input line, used for context.
**
** The raw completion() table might return the same candidate multiple
** times, for example if the same column name is used to two or more
** tables. And the candidates are returned in an arbitrary order. Hence,
** the DISTINCT and ORDER BY are recommended.
**
** This virtual table operates at the speed of human typing, and so there
** is no attempt to make it fast. Even a slow implementation will be much
** faster than any human can type.
**
*/
/* #include "sqlite3ext.h" */
SQLITE_EXTENSION_INIT1
#include <assert.h>
#include <string.h>
#include <ctype.h>
#ifndef SQLITE_OMIT_VIRTUALTABLE
/* completion_vtab is a subclass of sqlite3_vtab which will
** serve as the underlying representation of a completion virtual table
*/
typedef struct completion_vtab completion_vtab;
struct completion_vtab {
sqlite3_vtab base; /* Base class - must be first */
sqlite3 *db; /* Database connection for this completion vtab */
};
/* completion_cursor is a subclass of sqlite3_vtab_cursor which will
** serve as the underlying representation of a cursor that scans
** over rows of the result
*/
typedef struct completion_cursor completion_cursor;
struct completion_cursor {
sqlite3_vtab_cursor base; /* Base class - must be first */
sqlite3 *db; /* Database connection for this cursor */
int nPrefix, nLine; /* Number of bytes in zPrefix and zLine */
char *zPrefix; /* The prefix for the word we want to complete */
char *zLine; /* The whole that we want to complete */
const char *zCurrentRow; /* Current output row */
int szRow; /* Length of the zCurrentRow string */
sqlite3_stmt *pStmt; /* Current statement */
sqlite3_int64 iRowid; /* The rowid */
int ePhase; /* Current phase */
int j; /* inter-phase counter */
};
/* Values for ePhase:
*/
#define COMPLETION_FIRST_PHASE 1
#define COMPLETION_KEYWORDS 1
#define COMPLETION_PRAGMAS 2
#define COMPLETION_FUNCTIONS 3
#define COMPLETION_COLLATIONS 4
#define COMPLETION_INDEXES 5
#define COMPLETION_TRIGGERS 6
#define COMPLETION_DATABASES 7
#define COMPLETION_TABLES 8 /* Also VIEWs and TRIGGERs */
#define COMPLETION_COLUMNS 9
#define COMPLETION_MODULES 10
#define COMPLETION_EOF 11
/*
** The completionConnect() method is invoked to create a new
** completion_vtab that describes the completion virtual table.
**
** Think of this routine as the constructor for completion_vtab objects.
**
** All this routine needs to do is:
**
** (1) Allocate the completion_vtab object and initialize all fields.
**
** (2) Tell SQLite (via the sqlite3_declare_vtab() interface) what the
** result set of queries against completion will look like.
*/
static int completionConnect(
sqlite3 *db,
void *pAux,
int argc, const char *const*argv,
sqlite3_vtab **ppVtab,
char **pzErr
){
completion_vtab *pNew;
int rc;
(void)(pAux); /* Unused parameter */
(void)(argc); /* Unused parameter */
(void)(argv); /* Unused parameter */
(void)(pzErr); /* Unused parameter */
/* Column numbers */
#define COMPLETION_COLUMN_CANDIDATE 0 /* Suggested completion of the input */
#define COMPLETION_COLUMN_PREFIX 1 /* Prefix of the word to be completed */
#define COMPLETION_COLUMN_WHOLELINE 2 /* Entire line seen so far */
#define COMPLETION_COLUMN_PHASE 3 /* ePhase - used for debugging only */
sqlite3_vtab_config(db, SQLITE_VTAB_INNOCUOUS);
rc = sqlite3_declare_vtab(db,
"CREATE TABLE x("
" candidate TEXT,"
" prefix TEXT HIDDEN,"
" wholeline TEXT HIDDEN,"
" phase INT HIDDEN" /* Used for debugging only */
")");
if( rc==SQLITE_OK ){
pNew = sqlite3_malloc( sizeof(*pNew) );
*ppVtab = (sqlite3_vtab*)pNew;
if( pNew==0 ) return SQLITE_NOMEM;
memset(pNew, 0, sizeof(*pNew));
pNew->db = db;
}
return rc;
}
/*
** This method is the destructor for completion_cursor objects.
*/
static int completionDisconnect(sqlite3_vtab *pVtab){
sqlite3_free(pVtab);
return SQLITE_OK;
}
/*
** Constructor for a new completion_cursor object.
*/
static int completionOpen(sqlite3_vtab *p, sqlite3_vtab_cursor **ppCursor){
completion_cursor *pCur;
pCur = sqlite3_malloc( sizeof(*pCur) );
if( pCur==0 ) return SQLITE_NOMEM;
memset(pCur, 0, sizeof(*pCur));
pCur->db = ((completion_vtab*)p)->db;
*ppCursor = &pCur->base;
return SQLITE_OK;
}
/*
** Reset the completion_cursor.
*/
static void completionCursorReset(completion_cursor *pCur){
sqlite3_free(pCur->zPrefix); pCur->zPrefix = 0; pCur->nPrefix = 0;
sqlite3_free(pCur->zLine); pCur->zLine = 0; pCur->nLine = 0;
sqlite3_finalize(pCur->pStmt); pCur->pStmt = 0;
pCur->j = 0;
}
/*
** Destructor for a completion_cursor.
*/
static int completionClose(sqlite3_vtab_cursor *cur){
completionCursorReset((completion_cursor*)cur);
sqlite3_free(cur);
return SQLITE_OK;
}
/*
** Advance a completion_cursor to its next row of output.
**
** The ->ePhase, ->j, and ->pStmt fields of the completion_cursor object
** record the current state of the scan. This routine sets ->zCurrentRow
** to the current row of output and then returns. If no more rows remain,
** then ->ePhase is set to COMPLETION_EOF which will signal the virtual
** table that has reached the end of its scan.
**
** The current implementation just lists potential identifiers and
** keywords and filters them by zPrefix. Future enhancements should
** take zLine into account to try to restrict the set of identifiers and
** keywords based on what would be legal at the current point of input.
*/
static int completionNext(sqlite3_vtab_cursor *cur){
completion_cursor *pCur = (completion_cursor*)cur;
int eNextPhase = 0; /* Next phase to try if current phase reaches end */
int iCol = -1; /* If >=0, step pCur->pStmt and use the i-th column */
pCur->iRowid++;
while( pCur->ePhase!=COMPLETION_EOF ){
switch( pCur->ePhase ){
case COMPLETION_KEYWORDS: {
if( pCur->j >= sqlite3_keyword_count() ){
pCur->zCurrentRow = 0;
pCur->ePhase = COMPLETION_DATABASES;
}else{
sqlite3_keyword_name(pCur->j++, &pCur->zCurrentRow, &pCur->szRow);
}
iCol = -1;
break;
}
case COMPLETION_DATABASES: {
if( pCur->pStmt==0 ){
sqlite3_prepare_v2(pCur->db, "PRAGMA database_list", -1,
&pCur->pStmt, 0);
}
iCol = 1;
eNextPhase = COMPLETION_TABLES;
break;
}
case COMPLETION_TABLES: {
if( pCur->pStmt==0 ){
sqlite3_stmt *pS2;
char *zSql = 0;
const char *zSep = "";
sqlite3_prepare_v2(pCur->db, "PRAGMA database_list", -1, &pS2, 0);
while( sqlite3_step(pS2)==SQLITE_ROW ){
const char *zDb = (const char*)sqlite3_column_text(pS2, 1);
zSql = sqlite3_mprintf(
"%z%s"
"SELECT name FROM \"%w\".sqlite_schema",
zSql, zSep, zDb
);
if( zSql==0 ) return SQLITE_NOMEM;
zSep = " UNION ";
}
sqlite3_finalize(pS2);
sqlite3_prepare_v2(pCur->db, zSql, -1, &pCur->pStmt, 0);
sqlite3_free(zSql);
}
iCol = 0;
eNextPhase = COMPLETION_COLUMNS;
break;
}
case COMPLETION_COLUMNS: {
if( pCur->pStmt==0 ){
sqlite3_stmt *pS2;
char *zSql = 0;
const char *zSep = "";
sqlite3_prepare_v2(pCur->db, "PRAGMA database_list", -1, &pS2, 0);
while( sqlite3_step(pS2)==SQLITE_ROW ){
const char *zDb = (const char*)sqlite3_column_text(pS2, 1);
zSql = sqlite3_mprintf(
"%z%s"
"SELECT pti.name FROM \"%w\".sqlite_schema AS sm"
" JOIN pragma_table_xinfo(sm.name,%Q) AS pti"
" WHERE sm.type='table'",
zSql, zSep, zDb, zDb
);
if( zSql==0 ) return SQLITE_NOMEM;
zSep = " UNION ";
}
sqlite3_finalize(pS2);
sqlite3_prepare_v2(pCur->db, zSql, -1, &pCur->pStmt, 0);
sqlite3_free(zSql);
}
iCol = 0;
eNextPhase = COMPLETION_EOF;
break;
}
}
if( iCol<0 ){
/* This case is when the phase presets zCurrentRow */
if( pCur->zCurrentRow==0 ) continue;
}else{
if( sqlite3_step(pCur->pStmt)==SQLITE_ROW ){
/* Extract the next row of content */
pCur->zCurrentRow = (const char*)sqlite3_column_text(pCur->pStmt, iCol);
pCur->szRow = sqlite3_column_bytes(pCur->pStmt, iCol);
}else{
/* When all rows are finished, advance to the next phase */
sqlite3_finalize(pCur->pStmt);
pCur->pStmt = 0;
pCur->ePhase = eNextPhase;
continue;
}
}
if( pCur->nPrefix==0 ) break;
if( pCur->nPrefix<=pCur->szRow
&& sqlite3_strnicmp(pCur->zPrefix, pCur->zCurrentRow, pCur->nPrefix)==0
){
break;
}
}
return SQLITE_OK;
}
/*
** Return values of columns for the row at which the completion_cursor
** is currently pointing.
*/
static int completionColumn(
sqlite3_vtab_cursor *cur, /* The cursor */
sqlite3_context *ctx, /* First argument to sqlite3_result_...() */
int i /* Which column to return */
){
completion_cursor *pCur = (completion_cursor*)cur;
switch( i ){
case COMPLETION_COLUMN_CANDIDATE: {
sqlite3_result_text(ctx, pCur->zCurrentRow, pCur->szRow,SQLITE_TRANSIENT);
break;
}
case COMPLETION_COLUMN_PREFIX: {
sqlite3_result_text(ctx, pCur->zPrefix, -1, SQLITE_TRANSIENT);
break;
}
case COMPLETION_COLUMN_WHOLELINE: {
sqlite3_result_text(ctx, pCur->zLine, -1, SQLITE_TRANSIENT);
break;
}
case COMPLETION_COLUMN_PHASE: {
sqlite3_result_int(ctx, pCur->ePhase);
break;
}
}
return SQLITE_OK;
}
/*
** Return the rowid for the current row. In this implementation, the
** rowid is the same as the output value.
*/
static int completionRowid(sqlite3_vtab_cursor *cur, sqlite_int64 *pRowid){
completion_cursor *pCur = (completion_cursor*)cur;
*pRowid = pCur->iRowid;
return SQLITE_OK;
}
/*
** Return TRUE if the cursor has been moved off of the last
** row of output.
*/
static int completionEof(sqlite3_vtab_cursor *cur){
completion_cursor *pCur = (completion_cursor*)cur;
return pCur->ePhase >= COMPLETION_EOF;
}
/*
** This method is called to "rewind" the completion_cursor object back
** to the first row of output. This method is always called at least
** once prior to any call to completionColumn() or completionRowid() or
** completionEof().
*/
static int completionFilter(
sqlite3_vtab_cursor *pVtabCursor,
int idxNum, const char *idxStr,
int argc, sqlite3_value **argv
){
completion_cursor *pCur = (completion_cursor *)pVtabCursor;
int iArg = 0;
(void)(idxStr); /* Unused parameter */
(void)(argc); /* Unused parameter */
completionCursorReset(pCur);
if( idxNum & 1 ){
pCur->nPrefix = sqlite3_value_bytes(argv[iArg]);
if( pCur->nPrefix>0 ){
pCur->zPrefix = sqlite3_mprintf("%s", sqlite3_value_text(argv[iArg]));
if( pCur->zPrefix==0 ) return SQLITE_NOMEM;
}
iArg = 1;
}
if( idxNum & 2 ){
pCur->nLine = sqlite3_value_bytes(argv[iArg]);
if( pCur->nLine>0 ){
pCur->zLine = sqlite3_mprintf("%s", sqlite3_value_text(argv[iArg]));
if( pCur->zLine==0 ) return SQLITE_NOMEM;
}
}
if( pCur->zLine!=0 && pCur->zPrefix==0 ){
int i = pCur->nLine;
while( i>0 && (isalnum(pCur->zLine[i-1]) || pCur->zLine[i-1]=='_') ){
i--;
}
pCur->nPrefix = pCur->nLine - i;
if( pCur->nPrefix>0 ){
pCur->zPrefix = sqlite3_mprintf("%.*s", pCur->nPrefix, pCur->zLine + i);
if( pCur->zPrefix==0 ) return SQLITE_NOMEM;
}
}
pCur->iRowid = 0;
pCur->ePhase = COMPLETION_FIRST_PHASE;
return completionNext(pVtabCursor);
}
/*
** SQLite will invoke this method one or more times while planning a query
** that uses the completion virtual table. This routine needs to create
** a query plan for each invocation and compute an estimated cost for that
** plan.
**
** There are two hidden parameters that act as arguments to the table-valued
** function: "prefix" and "wholeline". Bit 0 of idxNum is set if "prefix"
** is available and bit 1 is set if "wholeline" is available.
*/
static int completionBestIndex(
sqlite3_vtab *tab,
sqlite3_index_info *pIdxInfo
){
int i; /* Loop over constraints */
int idxNum = 0; /* The query plan bitmask */
int prefixIdx = -1; /* Index of the start= constraint, or -1 if none */
int wholelineIdx = -1; /* Index of the stop= constraint, or -1 if none */
int nArg = 0; /* Number of arguments that completeFilter() expects */
const struct sqlite3_index_constraint *pConstraint;
(void)(tab); /* Unused parameter */
pConstraint = pIdxInfo->aConstraint;
for(i=0; i<pIdxInfo->nConstraint; i++, pConstraint++){
if( pConstraint->usable==0 ) continue;
if( pConstraint->op!=SQLITE_INDEX_CONSTRAINT_EQ ) continue;
switch( pConstraint->iColumn ){
case COMPLETION_COLUMN_PREFIX:
prefixIdx = i;
idxNum |= 1;
break;
case COMPLETION_COLUMN_WHOLELINE:
wholelineIdx = i;
idxNum |= 2;
break;
}
}
if( prefixIdx>=0 ){
pIdxInfo->aConstraintUsage[prefixIdx].argvIndex = ++nArg;
pIdxInfo->aConstraintUsage[prefixIdx].omit = 1;
}
if( wholelineIdx>=0 ){
pIdxInfo->aConstraintUsage[wholelineIdx].argvIndex = ++nArg;
pIdxInfo->aConstraintUsage[wholelineIdx].omit = 1;
}
pIdxInfo->idxNum = idxNum;
pIdxInfo->estimatedCost = (double)5000 - 1000*nArg;
pIdxInfo->estimatedRows = 500 - 100*nArg;
return SQLITE_OK;
}
/*
** This following structure defines all the methods for the
** completion virtual table.
*/
static sqlite3_module completionModule = {
0, /* iVersion */
0, /* xCreate */
completionConnect, /* xConnect */
completionBestIndex, /* xBestIndex */
completionDisconnect, /* xDisconnect */
0, /* xDestroy */
completionOpen, /* xOpen - open a cursor */
completionClose, /* xClose - close a cursor */
completionFilter, /* xFilter - configure scan constraints */
completionNext, /* xNext - advance a cursor */
completionEof, /* xEof - check for end of scan */
completionColumn, /* xColumn - read data */
completionRowid, /* xRowid - read data */
0, /* xUpdate */
0, /* xBegin */
0, /* xSync */
0, /* xCommit */
0, /* xRollback */
0, /* xFindMethod */
0, /* xRename */
0, /* xSavepoint */
0, /* xRelease */
0, /* xRollbackTo */
0, /* xShadowName */
0 /* xIntegrity */
};
#endif /* SQLITE_OMIT_VIRTUALTABLE */
int sqlite3CompletionVtabInit(sqlite3 *db){
int rc = SQLITE_OK;
#ifndef SQLITE_OMIT_VIRTUALTABLE
rc = sqlite3_create_module(db, "completion", &completionModule, 0);
#endif
return rc;
}
#ifdef _WIN32
#endif
int sqlite3_completion_init(
sqlite3 *db,
char **pzErrMsg,
const sqlite3_api_routines *pApi
){
int rc = SQLITE_OK;
SQLITE_EXTENSION_INIT2(pApi);
(void)(pzErrMsg); /* Unused parameter */
#ifndef SQLITE_OMIT_VIRTUALTABLE
rc = sqlite3CompletionVtabInit(db);
#endif
return rc;
}
/************************* End ../ext/misc/completion.c ********************/
/************************* Begin ../ext/misc/appendvfs.c ******************/
/*
** 2017-10-20
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
******************************************************************************
**
** This file implements a VFS shim that allows an SQLite database to be
** appended onto the end of some other file, such as an executable.
**
** A special record must appear at the end of the file that identifies the
** file as an appended database and provides the offset to the first page
** of the exposed content. (Or, it is the length of the content prefix.)
** For best performance page 1 should be located at a disk page boundary,
** though that is not required.
**
** When opening a database using this VFS, the connection might treat
** the file as an ordinary SQLite database, or it might treat it as a
** database appended onto some other file. The decision is made by
** applying the following rules in order:
**
** (1) An empty file is an ordinary database.
**
** (2) If the file ends with the appendvfs trailer string
** "Start-Of-SQLite3-NNNNNNNN" that file is an appended database.
**
** (3) If the file begins with the standard SQLite prefix string
** "SQLite format 3", that file is an ordinary database.
**
** (4) If none of the above apply and the SQLITE_OPEN_CREATE flag is
** set, then a new database is appended to the already existing file.
**
** (5) Otherwise, SQLITE_CANTOPEN is returned.
**
** To avoid unnecessary complications with the PENDING_BYTE, the size of
** the file containing the database is limited to 1GiB. (1073741824 bytes)
** This VFS will not read or write past the 1GiB mark. This restriction
** might be lifted in future versions. For now, if you need a larger
** database, then keep it in a separate file.
**
** If the file being opened is a plain database (not an appended one), then
** this shim is a pass-through into the default underlying VFS. (rule 3)
**/
/* #include "sqlite3ext.h" */
SQLITE_EXTENSION_INIT1
#include <string.h>
#include <assert.h>
/* The append mark at the end of the database is:
**
** Start-Of-SQLite3-NNNNNNNN
** 123456789 123456789 12345
**
** The NNNNNNNN represents a 64-bit big-endian unsigned integer which is
** the offset to page 1, and also the length of the prefix content.
*/
#define APND_MARK_PREFIX "Start-Of-SQLite3-"
#define APND_MARK_PREFIX_SZ 17
#define APND_MARK_FOS_SZ 8
#define APND_MARK_SIZE (APND_MARK_PREFIX_SZ+APND_MARK_FOS_SZ)
/*
** Maximum size of the combined prefix + database + append-mark. This
** must be less than 0x40000000 to avoid locking issues on Windows.
*/
#define APND_MAX_SIZE (0x40000000)
/*
** Try to align the database to an even multiple of APND_ROUNDUP bytes.
*/
#ifndef APND_ROUNDUP
#define APND_ROUNDUP 4096
#endif
#define APND_ALIGN_MASK ((sqlite3_int64)(APND_ROUNDUP-1))
#define APND_START_ROUNDUP(fsz) (((fsz)+APND_ALIGN_MASK) & ~APND_ALIGN_MASK)
/*
** Forward declaration of objects used by this utility
*/
typedef struct sqlite3_vfs ApndVfs;
typedef struct ApndFile ApndFile;
/* Access to a lower-level VFS that (might) implement dynamic loading,
** access to randomness, etc.
*/
#define ORIGVFS(p) ((sqlite3_vfs*)((p)->pAppData))
#define ORIGFILE(p) ((sqlite3_file*)(((ApndFile*)(p))+1))
/* An open appendvfs file
**
** An instance of this structure describes the appended database file.
** A separate sqlite3_file object is always appended. The appended
** sqlite3_file object (which can be accessed using ORIGFILE()) describes
** the entire file, including the prefix, the database, and the
** append-mark.
**
** The structure of an AppendVFS database is like this:
**
** +-------------+---------+----------+-------------+
** | prefix-file | padding | database | append-mark |
** +-------------+---------+----------+-------------+
** ^ ^
** | |
** iPgOne iMark
**
**
** "prefix file" - file onto which the database has been appended.
** "padding" - zero or more bytes inserted so that "database"
** starts on an APND_ROUNDUP boundary
** "database" - The SQLite database file
** "append-mark" - The 25-byte "Start-Of-SQLite3-NNNNNNNN" that indicates
** the offset from the start of prefix-file to the start
** of "database".
**
** The size of the database is iMark - iPgOne.
**
** The NNNNNNNN in the "Start-Of-SQLite3-NNNNNNNN" suffix is the value
** of iPgOne stored as a big-ending 64-bit integer.
**
** iMark will be the size of the underlying file minus 25 (APND_MARKSIZE).
** Or, iMark is -1 to indicate that it has not yet been written.
*/
struct ApndFile {
sqlite3_file base; /* Subclass. MUST BE FIRST! */
sqlite3_int64 iPgOne; /* Offset to the start of the database */
sqlite3_int64 iMark; /* Offset of the append mark. -1 if unwritten */
/* Always followed by another sqlite3_file that describes the whole file */
};
/*
** Methods for ApndFile
*/
static int apndClose(sqlite3_file*);
static int apndRead(sqlite3_file*, void*, int iAmt, sqlite3_int64 iOfst);
static int apndWrite(sqlite3_file*,const void*,int iAmt, sqlite3_int64 iOfst);
static int apndTruncate(sqlite3_file*, sqlite3_int64 size);
static int apndSync(sqlite3_file*, int flags);
static int apndFileSize(sqlite3_file*, sqlite3_int64 *pSize);
static int apndLock(sqlite3_file*, int);
static int apndUnlock(sqlite3_file*, int);
static int apndCheckReservedLock(sqlite3_file*, int *pResOut);
static int apndFileControl(sqlite3_file*, int op, void *pArg);
static int apndSectorSize(sqlite3_file*);
static int apndDeviceCharacteristics(sqlite3_file*);
static int apndShmMap(sqlite3_file*, int iPg, int pgsz, int, void volatile**);
static int apndShmLock(sqlite3_file*, int offset, int n, int flags);
static void apndShmBarrier(sqlite3_file*);
static int apndShmUnmap(sqlite3_file*, int deleteFlag);
static int apndFetch(sqlite3_file*, sqlite3_int64 iOfst, int iAmt, void **pp);
static int apndUnfetch(sqlite3_file*, sqlite3_int64 iOfst, void *p);
/*
** Methods for ApndVfs
*/
static int apndOpen(sqlite3_vfs*, const char *, sqlite3_file*, int , int *);
static int apndDelete(sqlite3_vfs*, const char *zName, int syncDir);
static int apndAccess(sqlite3_vfs*, const char *zName, int flags, int *);
static int apndFullPathname(sqlite3_vfs*, const char *zName, int, char *zOut);
static void *apndDlOpen(sqlite3_vfs*, const char *zFilename);
static void apndDlError(sqlite3_vfs*, int nByte, char *zErrMsg);
static void (*apndDlSym(sqlite3_vfs *pVfs, void *p, const char*zSym))(void);
static void apndDlClose(sqlite3_vfs*, void*);
static int apndRandomness(sqlite3_vfs*, int nByte, char *zOut);
static int apndSleep(sqlite3_vfs*, int microseconds);
static int apndCurrentTime(sqlite3_vfs*, double*);
static int apndGetLastError(sqlite3_vfs*, int, char *);
static int apndCurrentTimeInt64(sqlite3_vfs*, sqlite3_int64*);
static int apndSetSystemCall(sqlite3_vfs*, const char*,sqlite3_syscall_ptr);
static sqlite3_syscall_ptr apndGetSystemCall(sqlite3_vfs*, const char *z);
static const char *apndNextSystemCall(sqlite3_vfs*, const char *zName);
static sqlite3_vfs apnd_vfs = {
3, /* iVersion (set when registered) */
0, /* szOsFile (set when registered) */
1024, /* mxPathname */
0, /* pNext */
"apndvfs", /* zName */
0, /* pAppData (set when registered) */
apndOpen, /* xOpen */
apndDelete, /* xDelete */
apndAccess, /* xAccess */
apndFullPathname, /* xFullPathname */
apndDlOpen, /* xDlOpen */
apndDlError, /* xDlError */
apndDlSym, /* xDlSym */
apndDlClose, /* xDlClose */
apndRandomness, /* xRandomness */
apndSleep, /* xSleep */
apndCurrentTime, /* xCurrentTime */
apndGetLastError, /* xGetLastError */
apndCurrentTimeInt64, /* xCurrentTimeInt64 */
apndSetSystemCall, /* xSetSystemCall */
apndGetSystemCall, /* xGetSystemCall */
apndNextSystemCall /* xNextSystemCall */
};
static const sqlite3_io_methods apnd_io_methods = {
3, /* iVersion */
apndClose, /* xClose */
apndRead, /* xRead */
apndWrite, /* xWrite */
apndTruncate, /* xTruncate */
apndSync, /* xSync */
apndFileSize, /* xFileSize */
apndLock, /* xLock */
apndUnlock, /* xUnlock */
apndCheckReservedLock, /* xCheckReservedLock */
apndFileControl, /* xFileControl */
apndSectorSize, /* xSectorSize */
apndDeviceCharacteristics, /* xDeviceCharacteristics */
apndShmMap, /* xShmMap */
apndShmLock, /* xShmLock */
apndShmBarrier, /* xShmBarrier */
apndShmUnmap, /* xShmUnmap */
apndFetch, /* xFetch */
apndUnfetch /* xUnfetch */
};
/*
** Close an apnd-file.
*/
static int apndClose(sqlite3_file *pFile){
pFile = ORIGFILE(pFile);
return pFile->pMethods->xClose(pFile);
}
/*
** Read data from an apnd-file.
*/
static int apndRead(
sqlite3_file *pFile,
void *zBuf,
int iAmt,
sqlite_int64 iOfst
){
ApndFile *paf = (ApndFile *)pFile;
pFile = ORIGFILE(pFile);
return pFile->pMethods->xRead(pFile, zBuf, iAmt, paf->iPgOne+iOfst);
}
/*
** Add the append-mark onto what should become the end of the file.
* If and only if this succeeds, internal ApndFile.iMark is updated.
* Parameter iWriteEnd is the appendvfs-relative offset of the new mark.
*/
static int apndWriteMark(
ApndFile *paf,
sqlite3_file *pFile,
sqlite_int64 iWriteEnd
){
sqlite_int64 iPgOne = paf->iPgOne;
unsigned char a[APND_MARK_SIZE];
int i = APND_MARK_FOS_SZ;
int rc;
assert(pFile == ORIGFILE(paf));
memcpy(a, APND_MARK_PREFIX, APND_MARK_PREFIX_SZ);
while( --i >= 0 ){
a[APND_MARK_PREFIX_SZ+i] = (unsigned char)(iPgOne & 0xff);
iPgOne >>= 8;
}
iWriteEnd += paf->iPgOne;
if( SQLITE_OK==(rc = pFile->pMethods->xWrite
(pFile, a, APND_MARK_SIZE, iWriteEnd)) ){
paf->iMark = iWriteEnd;
}
return rc;
}
/*
** Write data to an apnd-file.
*/
static int apndWrite(
sqlite3_file *pFile,
const void *zBuf,
int iAmt,
sqlite_int64 iOfst
){
ApndFile *paf = (ApndFile *)pFile;
sqlite_int64 iWriteEnd = iOfst + iAmt;
if( iWriteEnd>=APND_MAX_SIZE ) return SQLITE_FULL;
pFile = ORIGFILE(pFile);
/* If append-mark is absent or will be overwritten, write it. */
if( paf->iMark < 0 || paf->iPgOne + iWriteEnd > paf->iMark ){
int rc = apndWriteMark(paf, pFile, iWriteEnd);
if( SQLITE_OK!=rc ) return rc;
}
return pFile->pMethods->xWrite(pFile, zBuf, iAmt, paf->iPgOne+iOfst);
}
/*
** Truncate an apnd-file.
*/
static int apndTruncate(sqlite3_file *pFile, sqlite_int64 size){
ApndFile *paf = (ApndFile *)pFile;
pFile = ORIGFILE(pFile);
/* The append mark goes out first so truncate failure does not lose it. */
if( SQLITE_OK!=apndWriteMark(paf, pFile, size) ) return SQLITE_IOERR;
/* Truncate underlying file just past append mark */
return pFile->pMethods->xTruncate(pFile, paf->iMark+APND_MARK_SIZE);
}
/*
** Sync an apnd-file.
*/
static int apndSync(sqlite3_file *pFile, int flags){
pFile = ORIGFILE(pFile);
return pFile->pMethods->xSync(pFile, flags);
}
/*
** Return the current file-size of an apnd-file.
** If the append mark is not yet there, the file-size is 0.
*/
static int apndFileSize(sqlite3_file *pFile, sqlite_int64 *pSize){
ApndFile *paf = (ApndFile *)pFile;
*pSize = ( paf->iMark >= 0 )? (paf->iMark - paf->iPgOne) : 0;
return SQLITE_OK;
}
/*
** Lock an apnd-file.
*/
static int apndLock(sqlite3_file *pFile, int eLock){
pFile = ORIGFILE(pFile);
return pFile->pMethods->xLock(pFile, eLock);
}
/*
** Unlock an apnd-file.
*/
static int apndUnlock(sqlite3_file *pFile, int eLock){
pFile = ORIGFILE(pFile);
return pFile->pMethods->xUnlock(pFile, eLock);
}
/*
** Check if another file-handle holds a RESERVED lock on an apnd-file.
*/
static int apndCheckReservedLock(sqlite3_file *pFile, int *pResOut){
pFile = ORIGFILE(pFile);
return pFile->pMethods->xCheckReservedLock(pFile, pResOut);
}
/*
** File control method. For custom operations on an apnd-file.
*/
static int apndFileControl(sqlite3_file *pFile, int op, void *pArg){
ApndFile *paf = (ApndFile *)pFile;
int rc;
pFile = ORIGFILE(pFile);
if( op==SQLITE_FCNTL_SIZE_HINT ) *(sqlite3_int64*)pArg += paf->iPgOne;
rc = pFile->pMethods->xFileControl(pFile, op, pArg);
if( rc==SQLITE_OK && op==SQLITE_FCNTL_VFSNAME ){
*(char**)pArg = sqlite3_mprintf("apnd(%lld)/%z", paf->iPgOne,*(char**)pArg);
}
return rc;
}
/*
** Return the sector-size in bytes for an apnd-file.
*/
static int apndSectorSize(sqlite3_file *pFile){
pFile = ORIGFILE(pFile);
return pFile->pMethods->xSectorSize(pFile);
}
/*
** Return the device characteristic flags supported by an apnd-file.
*/
static int apndDeviceCharacteristics(sqlite3_file *pFile){
pFile = ORIGFILE(pFile);
return pFile->pMethods->xDeviceCharacteristics(pFile);
}
/* Create a shared memory file mapping */
static int apndShmMap(
sqlite3_file *pFile,
int iPg,
int pgsz,
int bExtend,
void volatile **pp
){
pFile = ORIGFILE(pFile);
return pFile->pMethods->xShmMap(pFile,iPg,pgsz,bExtend,pp);
}
/* Perform locking on a shared-memory segment */
static int apndShmLock(sqlite3_file *pFile, int offset, int n, int flags){
pFile = ORIGFILE(pFile);
return pFile->pMethods->xShmLock(pFile,offset,n,flags);
}
/* Memory barrier operation on shared memory */
static void apndShmBarrier(sqlite3_file *pFile){
pFile = ORIGFILE(pFile);
pFile->pMethods->xShmBarrier(pFile);
}
/* Unmap a shared memory segment */
static int apndShmUnmap(sqlite3_file *pFile, int deleteFlag){
pFile = ORIGFILE(pFile);
return pFile->pMethods->xShmUnmap(pFile,deleteFlag);
}
/* Fetch a page of a memory-mapped file */
static int apndFetch(
sqlite3_file *pFile,
sqlite3_int64 iOfst,
int iAmt,
void **pp
){
ApndFile *p = (ApndFile *)pFile;
if( p->iMark < 0 || iOfst+iAmt > p->iMark ){
return SQLITE_IOERR; /* Cannot read what is not yet there. */
}
pFile = ORIGFILE(pFile);
return pFile->pMethods->xFetch(pFile, iOfst+p->iPgOne, iAmt, pp);
}
/* Release a memory-mapped page */
static int apndUnfetch(sqlite3_file *pFile, sqlite3_int64 iOfst, void *pPage){
ApndFile *p = (ApndFile *)pFile;
pFile = ORIGFILE(pFile);
return pFile->pMethods->xUnfetch(pFile, iOfst+p->iPgOne, pPage);
}
/*
** Try to read the append-mark off the end of a file. Return the
** start of the appended database if the append-mark is present.
** If there is no valid append-mark, return -1;
**
** An append-mark is only valid if the NNNNNNNN start-of-database offset
** indicates that the appended database contains at least one page. The
** start-of-database value must be a multiple of 512.
*/
static sqlite3_int64 apndReadMark(sqlite3_int64 sz, sqlite3_file *pFile){
int rc, i;
sqlite3_int64 iMark;
int msbs = 8 * (APND_MARK_FOS_SZ-1);
unsigned char a[APND_MARK_SIZE];
if( APND_MARK_SIZE!=(sz & 0x1ff) ) return -1;
rc = pFile->pMethods->xRead(pFile, a, APND_MARK_SIZE, sz-APND_MARK_SIZE);
if( rc ) return -1;
if( memcmp(a, APND_MARK_PREFIX, APND_MARK_PREFIX_SZ)!=0 ) return -1;
iMark = ((sqlite3_int64)(a[APND_MARK_PREFIX_SZ] & 0x7f)) << msbs;
for(i=1; i<8; i++){
msbs -= 8;
iMark |= (sqlite3_int64)a[APND_MARK_PREFIX_SZ+i]<<msbs;
}
if( iMark > (sz - APND_MARK_SIZE - 512) ) return -1;
if( iMark & 0x1ff ) return -1;
return iMark;
}
static const char apvfsSqliteHdr[] = "SQLite format 3";
/*
** Check to see if the file is an appendvfs SQLite database file.
** Return true iff it is such. Parameter sz is the file's size.
*/
static int apndIsAppendvfsDatabase(sqlite3_int64 sz, sqlite3_file *pFile){
int rc;
char zHdr[16];
sqlite3_int64 iMark = apndReadMark(sz, pFile);
if( iMark>=0 ){
/* If file has the correct end-marker, the expected odd size, and the
** SQLite DB type marker where the end-marker puts it, then it
** is an appendvfs database.
*/
rc = pFile->pMethods->xRead(pFile, zHdr, sizeof(zHdr), iMark);
if( SQLITE_OK==rc
&& memcmp(zHdr, apvfsSqliteHdr, sizeof(zHdr))==0
&& (sz & 0x1ff) == APND_MARK_SIZE
&& sz>=512+APND_MARK_SIZE
){
return 1; /* It's an appendvfs database */
}
}
return 0;
}
/*
** Check to see if the file is an ordinary SQLite database file.
** Return true iff so. Parameter sz is the file's size.
*/
static int apndIsOrdinaryDatabaseFile(sqlite3_int64 sz, sqlite3_file *pFile){
char zHdr[16];
if( apndIsAppendvfsDatabase(sz, pFile) /* rule 2 */
|| (sz & 0x1ff) != 0
|| SQLITE_OK!=pFile->pMethods->xRead(pFile, zHdr, sizeof(zHdr), 0)
|| memcmp(zHdr, apvfsSqliteHdr, sizeof(zHdr))!=0
){
return 0;
}else{
return 1;
}
}
/*
** Open an apnd file handle.
*/
static int apndOpen(
sqlite3_vfs *pApndVfs,
const char *zName,
sqlite3_file *pFile,
int flags,
int *pOutFlags
){
ApndFile *pApndFile = (ApndFile*)pFile;
sqlite3_file *pBaseFile = ORIGFILE(pFile);
sqlite3_vfs *pBaseVfs = ORIGVFS(pApndVfs);
int rc;
sqlite3_int64 sz = 0;
if( (flags & SQLITE_OPEN_MAIN_DB)==0 ){
/* The appendvfs is not to be used for transient or temporary databases.
** Just use the base VFS open to initialize the given file object and
** open the underlying file. (Appendvfs is then unused for this file.)
*/
return pBaseVfs->xOpen(pBaseVfs, zName, pFile, flags, pOutFlags);
}
memset(pApndFile, 0, sizeof(ApndFile));
pFile->pMethods = &apnd_io_methods;
pApndFile->iMark = -1; /* Append mark not yet written */
rc = pBaseVfs->xOpen(pBaseVfs, zName, pBaseFile, flags, pOutFlags);
if( rc==SQLITE_OK ){
rc = pBaseFile->pMethods->xFileSize(pBaseFile, &sz);
if( rc ){
pBaseFile->pMethods->xClose(pBaseFile);
}
}
if( rc ){
pFile->pMethods = 0;
return rc;
}
if( apndIsOrdinaryDatabaseFile(sz, pBaseFile) ){
/* The file being opened appears to be just an ordinary DB. Copy
** the base dispatch-table so this instance mimics the base VFS.
*/
memmove(pApndFile, pBaseFile, pBaseVfs->szOsFile);
return SQLITE_OK;
}
pApndFile->iPgOne = apndReadMark(sz, pFile);
if( pApndFile->iPgOne>=0 ){
pApndFile->iMark = sz - APND_MARK_SIZE; /* Append mark found */
return SQLITE_OK;
}
if( (flags & SQLITE_OPEN_CREATE)==0 ){
pBaseFile->pMethods->xClose(pBaseFile);
rc = SQLITE_CANTOPEN;
pFile->pMethods = 0;
}else{
/* Round newly added appendvfs location to #define'd page boundary.
** Note that nothing has yet been written to the underlying file.
** The append mark will be written along with first content write.
** Until then, paf->iMark value indicates it is not yet written.
*/
pApndFile->iPgOne = APND_START_ROUNDUP(sz);
}
return rc;
}
/*
** Delete an apnd file.
** For an appendvfs, this could mean delete the appendvfs portion,
** leaving the appendee as it was before it gained an appendvfs.
** For now, this code deletes the underlying file too.
*/
static int apndDelete(sqlite3_vfs *pVfs, const char *zPath, int dirSync){
return ORIGVFS(pVfs)->xDelete(ORIGVFS(pVfs), zPath, dirSync);
}
/*
** All other VFS methods are pass-thrus.
*/
static int apndAccess(
sqlite3_vfs *pVfs,
const char *zPath,
int flags,
int *pResOut
){
return ORIGVFS(pVfs)->xAccess(ORIGVFS(pVfs), zPath, flags, pResOut);
}
static int apndFullPathname(
sqlite3_vfs *pVfs,
const char *zPath,
int nOut,
char *zOut
){
return ORIGVFS(pVfs)->xFullPathname(ORIGVFS(pVfs),zPath,nOut,zOut);
}
static void *apndDlOpen(sqlite3_vfs *pVfs, const char *zPath){
return ORIGVFS(pVfs)->xDlOpen(ORIGVFS(pVfs), zPath);
}
static void apndDlError(sqlite3_vfs *pVfs, int nByte, char *zErrMsg){
ORIGVFS(pVfs)->xDlError(ORIGVFS(pVfs), nByte, zErrMsg);
}
static void (*apndDlSym(sqlite3_vfs *pVfs, void *p, const char *zSym))(void){
return ORIGVFS(pVfs)->xDlSym(ORIGVFS(pVfs), p, zSym);
}
static void apndDlClose(sqlite3_vfs *pVfs, void *pHandle){
ORIGVFS(pVfs)->xDlClose(ORIGVFS(pVfs), pHandle);
}
static int apndRandomness(sqlite3_vfs *pVfs, int nByte, char *zBufOut){
return ORIGVFS(pVfs)->xRandomness(ORIGVFS(pVfs), nByte, zBufOut);
}
static int apndSleep(sqlite3_vfs *pVfs, int nMicro){
return ORIGVFS(pVfs)->xSleep(ORIGVFS(pVfs), nMicro);
}
static int apndCurrentTime(sqlite3_vfs *pVfs, double *pTimeOut){
return ORIGVFS(pVfs)->xCurrentTime(ORIGVFS(pVfs), pTimeOut);
}
static int apndGetLastError(sqlite3_vfs *pVfs, int a, char *b){
return ORIGVFS(pVfs)->xGetLastError(ORIGVFS(pVfs), a, b);
}
static int apndCurrentTimeInt64(sqlite3_vfs *pVfs, sqlite3_int64 *p){
return ORIGVFS(pVfs)->xCurrentTimeInt64(ORIGVFS(pVfs), p);
}
static int apndSetSystemCall(
sqlite3_vfs *pVfs,
const char *zName,
sqlite3_syscall_ptr pCall
){
return ORIGVFS(pVfs)->xSetSystemCall(ORIGVFS(pVfs),zName,pCall);
}
static sqlite3_syscall_ptr apndGetSystemCall(
sqlite3_vfs *pVfs,
const char *zName
){
return ORIGVFS(pVfs)->xGetSystemCall(ORIGVFS(pVfs),zName);
}
static const char *apndNextSystemCall(sqlite3_vfs *pVfs, const char *zName){
return ORIGVFS(pVfs)->xNextSystemCall(ORIGVFS(pVfs), zName);
}
#ifdef _WIN32
#endif
/*
** This routine is called when the extension is loaded.
** Register the new VFS.
*/
int sqlite3_appendvfs_init(
sqlite3 *db,
char **pzErrMsg,
const sqlite3_api_routines *pApi
){
int rc = SQLITE_OK;
sqlite3_vfs *pOrig;
SQLITE_EXTENSION_INIT2(pApi);
(void)pzErrMsg;
(void)db;
pOrig = sqlite3_vfs_find(0);
if( pOrig==0 ) return SQLITE_ERROR;
apnd_vfs.iVersion = pOrig->iVersion;
apnd_vfs.pAppData = pOrig;
apnd_vfs.szOsFile = pOrig->szOsFile + sizeof(ApndFile);
rc = sqlite3_vfs_register(&apnd_vfs, 0);
#ifdef APPENDVFS_TEST
if( rc==SQLITE_OK ){
rc = sqlite3_auto_extension((void(*)(void))apndvfsRegister);
}
#endif
if( rc==SQLITE_OK ) rc = SQLITE_OK_LOAD_PERMANENTLY;
return rc;
}
/************************* End ../ext/misc/appendvfs.c ********************/
#endif
#ifdef SQLITE_HAVE_ZLIB
/************************* Begin ../ext/misc/zipfile.c ******************/
/*
** 2017-12-26
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
******************************************************************************
**
** This file implements a virtual table for reading and writing ZIP archive
** files.
**
** Usage example:
**
** SELECT name, sz, datetime(mtime,'unixepoch') FROM zipfile($filename);
**
** Current limitations:
**
** * No support for encryption
** * No support for ZIP archives spanning multiple files
** * No support for zip64 extensions
** * Only the "inflate/deflate" (zlib) compression method is supported
*/
/* #include "sqlite3ext.h" */
SQLITE_EXTENSION_INIT1
#include <stdio.h>
#include <string.h>
#include <assert.h>
#ifndef SQLITE_NO_STDINT
# include <stdint.h>
#endif
#include <zlib.h>
/* When used as part of the CLI, the sqlite3_stdio.h module will have
** been included before this one. In that case use the sqlite3_stdio.h
** #defines. If not, create our own for fopen().
*/
#ifndef _SQLITE3_STDIO_H_
# define sqlite3_fopen fopen
#endif
#ifndef SQLITE_OMIT_VIRTUALTABLE
#ifndef SQLITE_AMALGAMATION
#ifndef UINT32_TYPE
# ifdef HAVE_UINT32_T
# define UINT32_TYPE uint32_t
# else
# define UINT32_TYPE unsigned int
# endif
#endif
#ifndef UINT16_TYPE
# ifdef HAVE_UINT16_T
# define UINT16_TYPE uint16_t
# else
# define UINT16_TYPE unsigned short int
# endif
#endif
/* typedef sqlite3_int64 i64; */
/* typedef unsigned char u8; */
/* typedef UINT32_TYPE u32; // 4-byte unsigned integer // */
/* typedef UINT16_TYPE u16; // 2-byte unsigned integer // */
#define MIN(a,b) ((a)<(b) ? (a) : (b))
#if defined(SQLITE_COVERAGE_TEST) || defined(SQLITE_MUTATION_TEST)
# define SQLITE_OMIT_AUXILIARY_SAFETY_CHECKS 1
#endif
#if defined(SQLITE_OMIT_AUXILIARY_SAFETY_CHECKS)
# define ALWAYS(X) (1)
# define NEVER(X) (0)
#elif !defined(NDEBUG)
# define ALWAYS(X) ((X)?1:(assert(0),0))
# define NEVER(X) ((X)?(assert(0),1):0)
#else
# define ALWAYS(X) (X)
# define NEVER(X) (X)
#endif
#endif /* SQLITE_AMALGAMATION */
/*
** Definitions for mode bitmasks S_IFDIR, S_IFREG and S_IFLNK.
**
** In some ways it would be better to obtain these values from system
** header files. But, the dependency is undesirable and (a) these
** have been stable for decades, (b) the values are part of POSIX and
** are also made explicit in [man stat], and (c) are part of the
** file format for zip archives.
*/
#ifndef S_IFDIR
# define S_IFDIR 0040000
#endif
#ifndef S_IFREG
# define S_IFREG 0100000
#endif
#ifndef S_IFLNK
# define S_IFLNK 0120000
#endif
static const char ZIPFILE_SCHEMA[] =
"CREATE TABLE y("
"name PRIMARY KEY," /* 0: Name of file in zip archive */
"mode," /* 1: POSIX mode for file */
"mtime," /* 2: Last modification time (secs since 1970)*/
"sz," /* 3: Size of object */
"rawdata," /* 4: Raw data */
"data," /* 5: Uncompressed data */
"method," /* 6: Compression method (integer) */
"z HIDDEN" /* 7: Name of zip file */
") WITHOUT ROWID;";
#define ZIPFILE_F_COLUMN_IDX 7 /* Index of column "file" in the above */
#define ZIPFILE_BUFFER_SIZE (64*1024)
/*
** Magic numbers used to read and write zip files.
**
** ZIPFILE_NEWENTRY_MADEBY:
** Use this value for the "version-made-by" field in new zip file
** entries. The upper byte indicates "unix", and the lower byte
** indicates that the zip file matches pkzip specification 3.0.
** This is what info-zip seems to do.
**
** ZIPFILE_NEWENTRY_REQUIRED:
** Value for "version-required-to-extract" field of new entries.
** Version 2.0 is required to support folders and deflate compression.
**
** ZIPFILE_NEWENTRY_FLAGS:
** Value for "general-purpose-bit-flags" field of new entries. Bit
** 11 means "utf-8 filename and comment".
**
** ZIPFILE_SIGNATURE_CDS:
** First 4 bytes of a valid CDS record.
**
** ZIPFILE_SIGNATURE_LFH:
** First 4 bytes of a valid LFH record.
**
** ZIPFILE_SIGNATURE_EOCD
** First 4 bytes of a valid EOCD record.
*/
#define ZIPFILE_EXTRA_TIMESTAMP 0x5455
#define ZIPFILE_NEWENTRY_MADEBY ((3<<8) + 30)
#define ZIPFILE_NEWENTRY_REQUIRED 20
#define ZIPFILE_NEWENTRY_FLAGS 0x800
#define ZIPFILE_SIGNATURE_CDS 0x02014b50
#define ZIPFILE_SIGNATURE_LFH 0x04034b50
#define ZIPFILE_SIGNATURE_EOCD 0x06054b50
/*
** The sizes of the fixed-size part of each of the three main data
** structures in a zip archive.
*/
#define ZIPFILE_LFH_FIXED_SZ 30
#define ZIPFILE_EOCD_FIXED_SZ 22
#define ZIPFILE_CDS_FIXED_SZ 46
/*
*** 4.3.16 End of central directory record:
***
*** end of central dir signature 4 bytes (0x06054b50)
*** number of this disk 2 bytes
*** number of the disk with the
*** start of the central directory 2 bytes
*** total number of entries in the
*** central directory on this disk 2 bytes
*** total number of entries in
*** the central directory 2 bytes
*** size of the central directory 4 bytes
*** offset of start of central
*** directory with respect to
*** the starting disk number 4 bytes
*** .ZIP file comment length 2 bytes
*** .ZIP file comment (variable size)
*/
typedef struct ZipfileEOCD ZipfileEOCD;
struct ZipfileEOCD {
u16 iDisk;
u16 iFirstDisk;
u16 nEntry;
u16 nEntryTotal;
u32 nSize;
u32 iOffset;
};
/*
*** 4.3.12 Central directory structure:
***
*** ...
***
*** central file header signature 4 bytes (0x02014b50)
*** version made by 2 bytes
*** version needed to extract 2 bytes
*** general purpose bit flag 2 bytes
*** compression method 2 bytes
*** last mod file time 2 bytes
*** last mod file date 2 bytes
*** crc-32 4 bytes
*** compressed size 4 bytes
*** uncompressed size 4 bytes
*** file name length 2 bytes
*** extra field length 2 bytes
*** file comment length 2 bytes
*** disk number start 2 bytes
*** internal file attributes 2 bytes
*** external file attributes 4 bytes
*** relative offset of local header 4 bytes
*/
typedef struct ZipfileCDS ZipfileCDS;
struct ZipfileCDS {
u16 iVersionMadeBy;
u16 iVersionExtract;
u16 flags;
u16 iCompression;
u16 mTime;
u16 mDate;
u32 crc32;
u32 szCompressed;
u32 szUncompressed;
u16 nFile;
u16 nExtra;
u16 nComment;
u16 iDiskStart;
u16 iInternalAttr;
u32 iExternalAttr;
u32 iOffset;
char *zFile; /* Filename (sqlite3_malloc()) */
};
/*
*** 4.3.7 Local file header:
***
*** local file header signature 4 bytes (0x04034b50)
*** version needed to extract 2 bytes
*** general purpose bit flag 2 bytes
*** compression method 2 bytes
*** last mod file time 2 bytes
*** last mod file date 2 bytes
*** crc-32 4 bytes
*** compressed size 4 bytes
*** uncompressed size 4 bytes
*** file name length 2 bytes
*** extra field length 2 bytes
***
*/
typedef struct ZipfileLFH ZipfileLFH;
struct ZipfileLFH {
u16 iVersionExtract;
u16 flags;
u16 iCompression;
u16 mTime;
u16 mDate;
u32 crc32;
u32 szCompressed;
u32 szUncompressed;
u16 nFile;
u16 nExtra;
};
typedef struct ZipfileEntry ZipfileEntry;
struct ZipfileEntry {
ZipfileCDS cds; /* Parsed CDS record */
u32 mUnixTime; /* Modification time, in UNIX format */
u8 *aExtra; /* cds.nExtra+cds.nComment bytes of extra data */
i64 iDataOff; /* Offset to data in file (if aData==0) */
u8 *aData; /* cds.szCompressed bytes of compressed data */
ZipfileEntry *pNext; /* Next element in in-memory CDS */
};
/*
** Cursor type for zipfile tables.
*/
typedef struct ZipfileCsr ZipfileCsr;
struct ZipfileCsr {
sqlite3_vtab_cursor base; /* Base class - must be first */
i64 iId; /* Cursor ID */
u8 bEof; /* True when at EOF */
u8 bNoop; /* If next xNext() call is no-op */
/* Used outside of write transactions */
FILE *pFile; /* Zip file */
i64 iNextOff; /* Offset of next record in central directory */
ZipfileEOCD eocd; /* Parse of central directory record */
ZipfileEntry *pFreeEntry; /* Free this list when cursor is closed or reset */
ZipfileEntry *pCurrent; /* Current entry */
ZipfileCsr *pCsrNext; /* Next cursor on same virtual table */
};
typedef struct ZipfileTab ZipfileTab;
struct ZipfileTab {
sqlite3_vtab base; /* Base class - must be first */
char *zFile; /* Zip file this table accesses (may be NULL) */
sqlite3 *db; /* Host database connection */
u8 *aBuffer; /* Temporary buffer used for various tasks */
ZipfileCsr *pCsrList; /* List of cursors */
i64 iNextCsrid;
/* The following are used by write transactions only */
ZipfileEntry *pFirstEntry; /* Linked list of all files (if pWriteFd!=0) */
ZipfileEntry *pLastEntry; /* Last element in pFirstEntry list */
FILE *pWriteFd; /* File handle open on zip archive */
i64 szCurrent; /* Current size of zip archive */
i64 szOrig; /* Size of archive at start of transaction */
};
/*
** Set the error message contained in context ctx to the results of
** vprintf(zFmt, ...).
*/
static void zipfileCtxErrorMsg(sqlite3_context *ctx, const char *zFmt, ...){
char *zMsg = 0;
va_list ap;
va_start(ap, zFmt);
zMsg = sqlite3_vmprintf(zFmt, ap);
sqlite3_result_error(ctx, zMsg, -1);
sqlite3_free(zMsg);
va_end(ap);
}
/*
** If string zIn is quoted, dequote it in place. Otherwise, if the string
** is not quoted, do nothing.
*/
static void zipfileDequote(char *zIn){
char q = zIn[0];
if( q=='"' || q=='\'' || q=='`' || q=='[' ){
int iIn = 1;
int iOut = 0;
if( q=='[' ) q = ']';
while( ALWAYS(zIn[iIn]) ){
char c = zIn[iIn++];
if( c==q && zIn[iIn++]!=q ) break;
zIn[iOut++] = c;
}
zIn[iOut] = '\0';
}
}
/*
** Construct a new ZipfileTab virtual table object.
**
** argv[0] -> module name ("zipfile")
** argv[1] -> database name
** argv[2] -> table name
** argv[...] -> "column name" and other module argument fields.
*/
static int zipfileConnect(
sqlite3 *db,
void *pAux,
int argc, const char *const*argv,
sqlite3_vtab **ppVtab,
char **pzErr
){
int nByte = sizeof(ZipfileTab) + ZIPFILE_BUFFER_SIZE;
int nFile = 0;
const char *zFile = 0;
ZipfileTab *pNew = 0;
int rc;
(void)pAux;
/* If the table name is not "zipfile", require that the argument be
** specified. This stops zipfile tables from being created as:
**
** CREATE VIRTUAL TABLE zzz USING zipfile();
**
** It does not prevent:
**
** CREATE VIRTUAL TABLE zipfile USING zipfile();
*/
assert( 0==sqlite3_stricmp(argv[0], "zipfile") );
if( (0!=sqlite3_stricmp(argv[2], "zipfile") && argc<4) || argc>4 ){
*pzErr = sqlite3_mprintf("zipfile constructor requires one argument");
return SQLITE_ERROR;
}
if( argc>3 ){
zFile = argv[3];
nFile = (int)strlen(zFile)+1;
}
rc = sqlite3_declare_vtab(db, ZIPFILE_SCHEMA);
if( rc==SQLITE_OK ){
pNew = (ZipfileTab*)sqlite3_malloc64((sqlite3_int64)nByte+nFile);
if( pNew==0 ) return SQLITE_NOMEM;
memset(pNew, 0, nByte+nFile);
pNew->db = db;
pNew->aBuffer = (u8*)&pNew[1];
if( zFile ){
pNew->zFile = (char*)&pNew->aBuffer[ZIPFILE_BUFFER_SIZE];
memcpy(pNew->zFile, zFile, nFile);
zipfileDequote(pNew->zFile);
}
}
sqlite3_vtab_config(db, SQLITE_VTAB_DIRECTONLY);
*ppVtab = (sqlite3_vtab*)pNew;
return rc;
}
/*
** Free the ZipfileEntry structure indicated by the only argument.
*/
static void zipfileEntryFree(ZipfileEntry *p){
if( p ){
sqlite3_free(p->cds.zFile);
sqlite3_free(p);
}
}
/*
** Release resources that should be freed at the end of a write
** transaction.
*/
static void zipfileCleanupTransaction(ZipfileTab *pTab){
ZipfileEntry *pEntry;
ZipfileEntry *pNext;
if( pTab->pWriteFd ){
fclose(pTab->pWriteFd);
pTab->pWriteFd = 0;
}
for(pEntry=pTab->pFirstEntry; pEntry; pEntry=pNext){
pNext = pEntry->pNext;
zipfileEntryFree(pEntry);
}
pTab->pFirstEntry = 0;
pTab->pLastEntry = 0;
pTab->szCurrent = 0;
pTab->szOrig = 0;
}
/*
** This method is the destructor for zipfile vtab objects.
*/
static int zipfileDisconnect(sqlite3_vtab *pVtab){
zipfileCleanupTransaction((ZipfileTab*)pVtab);
sqlite3_free(pVtab);
return SQLITE_OK;
}
/*
** Constructor for a new ZipfileCsr object.
*/
static int zipfileOpen(sqlite3_vtab *p, sqlite3_vtab_cursor **ppCsr){
ZipfileTab *pTab = (ZipfileTab*)p;
ZipfileCsr *pCsr;
pCsr = sqlite3_malloc(sizeof(*pCsr));
*ppCsr = (sqlite3_vtab_cursor*)pCsr;
if( pCsr==0 ){
return SQLITE_NOMEM;
}
memset(pCsr, 0, sizeof(*pCsr));
pCsr->iId = ++pTab->iNextCsrid;
pCsr->pCsrNext = pTab->pCsrList;
pTab->pCsrList = pCsr;
return SQLITE_OK;
}
/*
** Reset a cursor back to the state it was in when first returned
** by zipfileOpen().
*/
static void zipfileResetCursor(ZipfileCsr *pCsr){
ZipfileEntry *p;
ZipfileEntry *pNext;
pCsr->bEof = 0;
if( pCsr->pFile ){
fclose(pCsr->pFile);
pCsr->pFile = 0;
zipfileEntryFree(pCsr->pCurrent);
pCsr->pCurrent = 0;
}
for(p=pCsr->pFreeEntry; p; p=pNext){
pNext = p->pNext;
zipfileEntryFree(p);
}
}
/*
** Destructor for an ZipfileCsr.
*/
static int zipfileClose(sqlite3_vtab_cursor *cur){
ZipfileCsr *pCsr = (ZipfileCsr*)cur;
ZipfileTab *pTab = (ZipfileTab*)(pCsr->base.pVtab);
ZipfileCsr **pp;
zipfileResetCursor(pCsr);
/* Remove this cursor from the ZipfileTab.pCsrList list. */
for(pp=&pTab->pCsrList; *pp!=pCsr; pp=&((*pp)->pCsrNext));
*pp = pCsr->pCsrNext;
sqlite3_free(pCsr);
return SQLITE_OK;
}
/*
** Set the error message for the virtual table associated with cursor
** pCsr to the results of vprintf(zFmt, ...).
*/
static void zipfileTableErr(ZipfileTab *pTab, const char *zFmt, ...){
va_list ap;
va_start(ap, zFmt);
sqlite3_free(pTab->base.zErrMsg);
pTab->base.zErrMsg = sqlite3_vmprintf(zFmt, ap);
va_end(ap);
}
static void zipfileCursorErr(ZipfileCsr *pCsr, const char *zFmt, ...){
va_list ap;
va_start(ap, zFmt);
sqlite3_free(pCsr->base.pVtab->zErrMsg);
pCsr->base.pVtab->zErrMsg = sqlite3_vmprintf(zFmt, ap);
va_end(ap);
}
/*
** Read nRead bytes of data from offset iOff of file pFile into buffer
** aRead[]. Return SQLITE_OK if successful, or an SQLite error code
** otherwise.
**
** If an error does occur, output variable (*pzErrmsg) may be set to point
** to an English language error message. It is the responsibility of the
** caller to eventually free this buffer using
** sqlite3_free().
*/
static int zipfileReadData(
FILE *pFile, /* Read from this file */
u8 *aRead, /* Read into this buffer */
int nRead, /* Number of bytes to read */
i64 iOff, /* Offset to read from */
char **pzErrmsg /* OUT: Error message (from sqlite3_malloc) */
){
size_t n;
fseek(pFile, (long)iOff, SEEK_SET);
n = fread(aRead, 1, nRead, pFile);
if( (int)n!=nRead ){
*pzErrmsg = sqlite3_mprintf("error in fread()");
return SQLITE_ERROR;
}
return SQLITE_OK;
}
static int zipfileAppendData(
ZipfileTab *pTab,
const u8 *aWrite,
int nWrite
){
if( nWrite>0 ){
size_t n = nWrite;
fseek(pTab->pWriteFd, (long)pTab->szCurrent, SEEK_SET);
n = fwrite(aWrite, 1, nWrite, pTab->pWriteFd);
if( (int)n!=nWrite ){
pTab->base.zErrMsg = sqlite3_mprintf("error in fwrite()");
return SQLITE_ERROR;
}
pTab->szCurrent += nWrite;
}
return SQLITE_OK;
}
/*
** Read and return a 16-bit little-endian unsigned integer from buffer aBuf.
*/
static u16 zipfileGetU16(const u8 *aBuf){
return (aBuf[1] << 8) + aBuf[0];
}
/*
** Read and return a 32-bit little-endian unsigned integer from buffer aBuf.
*/
static u32 zipfileGetU32(const u8 *aBuf){
if( aBuf==0 ) return 0;
return ((u32)(aBuf[3]) << 24)
+ ((u32)(aBuf[2]) << 16)
+ ((u32)(aBuf[1]) << 8)
+ ((u32)(aBuf[0]) << 0);
}
/*
** Write a 16-bit little endiate integer into buffer aBuf.
*/
static void zipfilePutU16(u8 *aBuf, u16 val){
aBuf[0] = val & 0xFF;
aBuf[1] = (val>>8) & 0xFF;
}
/*
** Write a 32-bit little endiate integer into buffer aBuf.
*/
static void zipfilePutU32(u8 *aBuf, u32 val){
aBuf[0] = val & 0xFF;
aBuf[1] = (val>>8) & 0xFF;
aBuf[2] = (val>>16) & 0xFF;
aBuf[3] = (val>>24) & 0xFF;
}
#define zipfileRead32(aBuf) ( aBuf+=4, zipfileGetU32(aBuf-4) )
#define zipfileRead16(aBuf) ( aBuf+=2, zipfileGetU16(aBuf-2) )
#define zipfileWrite32(aBuf,val) { zipfilePutU32(aBuf,val); aBuf+=4; }
#define zipfileWrite16(aBuf,val) { zipfilePutU16(aBuf,val); aBuf+=2; }
/*
** Magic numbers used to read CDS records.
*/
#define ZIPFILE_CDS_NFILE_OFF 28
#define ZIPFILE_CDS_SZCOMPRESSED_OFF 20
/*
** Decode the CDS record in buffer aBuf into (*pCDS). Return SQLITE_ERROR
** if the record is not well-formed, or SQLITE_OK otherwise.
*/
static int zipfileReadCDS(u8 *aBuf, ZipfileCDS *pCDS){
u8 *aRead = aBuf;
u32 sig = zipfileRead32(aRead);
int rc = SQLITE_OK;
if( sig!=ZIPFILE_SIGNATURE_CDS ){
rc = SQLITE_ERROR;
}else{
pCDS->iVersionMadeBy = zipfileRead16(aRead);
pCDS->iVersionExtract = zipfileRead16(aRead);
pCDS->flags = zipfileRead16(aRead);
pCDS->iCompression = zipfileRead16(aRead);
pCDS->mTime = zipfileRead16(aRead);
pCDS->mDate = zipfileRead16(aRead);
pCDS->crc32 = zipfileRead32(aRead);
pCDS->szCompressed = zipfileRead32(aRead);
pCDS->szUncompressed = zipfileRead32(aRead);
assert( aRead==&aBuf[ZIPFILE_CDS_NFILE_OFF] );
pCDS->nFile = zipfileRead16(aRead);
pCDS->nExtra = zipfileRead16(aRead);
pCDS->nComment = zipfileRead16(aRead);
pCDS->iDiskStart = zipfileRead16(aRead);
pCDS->iInternalAttr = zipfileRead16(aRead);
pCDS->iExternalAttr = zipfileRead32(aRead);
pCDS->iOffset = zipfileRead32(aRead);
assert( aRead==&aBuf[ZIPFILE_CDS_FIXED_SZ] );
}
return rc;
}
/*
** Decode the LFH record in buffer aBuf into (*pLFH). Return SQLITE_ERROR
** if the record is not well-formed, or SQLITE_OK otherwise.
*/
static int zipfileReadLFH(
u8 *aBuffer,
ZipfileLFH *pLFH
){
u8 *aRead = aBuffer;
int rc = SQLITE_OK;
u32 sig = zipfileRead32(aRead);
if( sig!=ZIPFILE_SIGNATURE_LFH ){
rc = SQLITE_ERROR;
}else{
pLFH->iVersionExtract = zipfileRead16(aRead);
pLFH->flags = zipfileRead16(aRead);
pLFH->iCompression = zipfileRead16(aRead);
pLFH->mTime = zipfileRead16(aRead);
pLFH->mDate = zipfileRead16(aRead);
pLFH->crc32 = zipfileRead32(aRead);
pLFH->szCompressed = zipfileRead32(aRead);
pLFH->szUncompressed = zipfileRead32(aRead);
pLFH->nFile = zipfileRead16(aRead);
pLFH->nExtra = zipfileRead16(aRead);
}
return rc;
}
/*
** Buffer aExtra (size nExtra bytes) contains zip archive "extra" fields.
** Scan through this buffer to find an "extra-timestamp" field. If one
** exists, extract the 32-bit modification-timestamp from it and store
** the value in output parameter *pmTime.
**
** Zero is returned if no extra-timestamp record could be found (and so
** *pmTime is left unchanged), or non-zero otherwise.
**
** The general format of an extra field is:
**
** Header ID 2 bytes
** Data Size 2 bytes
** Data N bytes
*/
static int zipfileScanExtra(u8 *aExtra, int nExtra, u32 *pmTime){
int ret = 0;
u8 *p = aExtra;
u8 *pEnd = &aExtra[nExtra];
while( p<pEnd ){
u16 id = zipfileRead16(p);
u16 nByte = zipfileRead16(p);
switch( id ){
case ZIPFILE_EXTRA_TIMESTAMP: {
u8 b = p[0];
if( b & 0x01 ){ /* 0x01 -> modtime is present */
*pmTime = zipfileGetU32(&p[1]);
ret = 1;
}
break;
}
}
p += nByte;
}
return ret;
}
/*
** Convert the standard MS-DOS timestamp stored in the mTime and mDate
** fields of the CDS structure passed as the only argument to a 32-bit
** UNIX seconds-since-the-epoch timestamp. Return the result.
**
** "Standard" MS-DOS time format:
**
** File modification time:
** Bits 00-04: seconds divided by 2
** Bits 05-10: minute
** Bits 11-15: hour
** File modification date:
** Bits 00-04: day
** Bits 05-08: month (1-12)
** Bits 09-15: years from 1980
**
** https://msdn.microsoft.com/en-us/library/9kkf9tah.aspx
*/
static u32 zipfileMtime(ZipfileCDS *pCDS){
int Y,M,D,X1,X2,A,B,sec,min,hr;
i64 JDsec;
Y = (1980 + ((pCDS->mDate >> 9) & 0x7F));
M = ((pCDS->mDate >> 5) & 0x0F);
D = (pCDS->mDate & 0x1F);
sec = (pCDS->mTime & 0x1F)*2;
min = (pCDS->mTime >> 5) & 0x3F;
hr = (pCDS->mTime >> 11) & 0x1F;
if( M<=2 ){
Y--;
M += 12;
}
X1 = 36525*(Y+4716)/100;
X2 = 306001*(M+1)/10000;
A = Y/100;
B = 2 - A + (A/4);
JDsec = (i64)((X1 + X2 + D + B - 1524.5)*86400) + hr*3600 + min*60 + sec;
return (u32)(JDsec - (i64)24405875*(i64)8640);
}
/*
** The opposite of zipfileMtime(). This function populates the mTime and
** mDate fields of the CDS structure passed as the first argument according
** to the UNIX timestamp value passed as the second.
*/
static void zipfileMtimeToDos(ZipfileCDS *pCds, u32 mUnixTime){
/* Convert unix timestamp to JD (2440588 is noon on 1/1/1970) */
i64 JD = (i64)2440588 + mUnixTime / (24*60*60);
int A, B, C, D, E;
int yr, mon, day;
int hr, min, sec;
A = (int)((JD - 1867216.25)/36524.25);
A = (int)(JD + 1 + A - (A/4));
B = A + 1524;
C = (int)((B - 122.1)/365.25);
D = (36525*(C&32767))/100;
E = (int)((B-D)/30.6001);
day = B - D - (int)(30.6001*E);
mon = (E<14 ? E-1 : E-13);
yr = mon>2 ? C-4716 : C-4715;
hr = (mUnixTime % (24*60*60)) / (60*60);
min = (mUnixTime % (60*60)) / 60;
sec = (mUnixTime % 60);
if( yr>=1980 ){
pCds->mDate = (u16)(day + (mon << 5) + ((yr-1980) << 9));
pCds->mTime = (u16)(sec/2 + (min<<5) + (hr<<11));
}else{
pCds->mDate = pCds->mTime = 0;
}
assert( mUnixTime<315507600
|| mUnixTime==zipfileMtime(pCds)
|| ((mUnixTime % 2) && mUnixTime-1==zipfileMtime(pCds))
/* || (mUnixTime % 2) */
);
}
/*
** If aBlob is not NULL, then it is a pointer to a buffer (nBlob bytes in
** size) containing an entire zip archive image. Or, if aBlob is NULL,
** then pFile is a file-handle open on a zip file. In either case, this
** function creates a ZipfileEntry object based on the zip archive entry
** for which the CDS record is at offset iOff.
**
** If successful, SQLITE_OK is returned and (*ppEntry) set to point to
** the new object. Otherwise, an SQLite error code is returned and the
** final value of (*ppEntry) undefined.
*/
static int zipfileGetEntry(
ZipfileTab *pTab, /* Store any error message here */
const u8 *aBlob, /* Pointer to in-memory file image */
int nBlob, /* Size of aBlob[] in bytes */
FILE *pFile, /* If aBlob==0, read from this file */
i64 iOff, /* Offset of CDS record */
ZipfileEntry **ppEntry /* OUT: Pointer to new object */
){
u8 *aRead;
char **pzErr = &pTab->base.zErrMsg;
int rc = SQLITE_OK;
(void)nBlob;
if( aBlob==0 ){
aRead = pTab->aBuffer;
rc = zipfileReadData(pFile, aRead, ZIPFILE_CDS_FIXED_SZ, iOff, pzErr);
}else{
aRead = (u8*)&aBlob[iOff];
}
if( rc==SQLITE_OK ){
sqlite3_int64 nAlloc;
ZipfileEntry *pNew;
int nFile = zipfileGetU16(&aRead[ZIPFILE_CDS_NFILE_OFF]);
int nExtra = zipfileGetU16(&aRead[ZIPFILE_CDS_NFILE_OFF+2]);
nExtra += zipfileGetU16(&aRead[ZIPFILE_CDS_NFILE_OFF+4]);
nAlloc = sizeof(ZipfileEntry) + nExtra;
if( aBlob ){
nAlloc += zipfileGetU32(&aRead[ZIPFILE_CDS_SZCOMPRESSED_OFF]);
}
pNew = (ZipfileEntry*)sqlite3_malloc64(nAlloc);
if( pNew==0 ){
rc = SQLITE_NOMEM;
}else{
memset(pNew, 0, sizeof(ZipfileEntry));
rc = zipfileReadCDS(aRead, &pNew->cds);
if( rc!=SQLITE_OK ){
*pzErr = sqlite3_mprintf("failed to read CDS at offset %lld", iOff);
}else if( aBlob==0 ){
rc = zipfileReadData(
pFile, aRead, nExtra+nFile, iOff+ZIPFILE_CDS_FIXED_SZ, pzErr
);
}else{
aRead = (u8*)&aBlob[iOff + ZIPFILE_CDS_FIXED_SZ];
}
}
if( rc==SQLITE_OK ){
u32 *pt = &pNew->mUnixTime;
pNew->cds.zFile = sqlite3_mprintf("%.*s", nFile, aRead);
pNew->aExtra = (u8*)&pNew[1];
memcpy(pNew->aExtra, &aRead[nFile], nExtra);
if( pNew->cds.zFile==0 ){
rc = SQLITE_NOMEM;
}else if( 0==zipfileScanExtra(&aRead[nFile], pNew->cds.nExtra, pt) ){
pNew->mUnixTime = zipfileMtime(&pNew->cds);
}
}
if( rc==SQLITE_OK ){
static const int szFix = ZIPFILE_LFH_FIXED_SZ;
ZipfileLFH lfh;
if( pFile ){
rc = zipfileReadData(pFile, aRead, szFix, pNew->cds.iOffset, pzErr);
}else{
aRead = (u8*)&aBlob[pNew->cds.iOffset];
}
if( rc==SQLITE_OK ) rc = zipfileReadLFH(aRead, &lfh);
if( rc==SQLITE_OK ){
pNew->iDataOff = pNew->cds.iOffset + ZIPFILE_LFH_FIXED_SZ;
pNew->iDataOff += lfh.nFile + lfh.nExtra;
if( aBlob && pNew->cds.szCompressed ){
pNew->aData = &pNew->aExtra[nExtra];
memcpy(pNew->aData, &aBlob[pNew->iDataOff], pNew->cds.szCompressed);
}
}else{
*pzErr = sqlite3_mprintf("failed to read LFH at offset %d",
(int)pNew->cds.iOffset
);
}
}
if( rc!=SQLITE_OK ){
zipfileEntryFree(pNew);
}else{
*ppEntry = pNew;
}
}
return rc;
}
/*
** Advance an ZipfileCsr to its next row of output.
*/
static int zipfileNext(sqlite3_vtab_cursor *cur){
ZipfileCsr *pCsr = (ZipfileCsr*)cur;
int rc = SQLITE_OK;
if( pCsr->pFile ){
i64 iEof = pCsr->eocd.iOffset + pCsr->eocd.nSize;
zipfileEntryFree(pCsr->pCurrent);
pCsr->pCurrent = 0;
if( pCsr->iNextOff>=iEof ){
pCsr->bEof = 1;
}else{
ZipfileEntry *p = 0;
ZipfileTab *pTab = (ZipfileTab*)(cur->pVtab);
rc = zipfileGetEntry(pTab, 0, 0, pCsr->pFile, pCsr->iNextOff, &p);
if( rc==SQLITE_OK ){
pCsr->iNextOff += ZIPFILE_CDS_FIXED_SZ;
pCsr->iNextOff += (int)p->cds.nExtra + p->cds.nFile + p->cds.nComment;
}
pCsr->pCurrent = p;
}
}else{
if( !pCsr->bNoop ){
pCsr->pCurrent = pCsr->pCurrent->pNext;
}
if( pCsr->pCurrent==0 ){
pCsr->bEof = 1;
}
}
pCsr->bNoop = 0;
return rc;
}
static void zipfileFree(void *p) {
sqlite3_free(p);
}
/*
** Buffer aIn (size nIn bytes) contains compressed data. Uncompressed, the
** size is nOut bytes. This function uncompresses the data and sets the
** return value in context pCtx to the result (a blob).
**
** If an error occurs, an error code is left in pCtx instead.
*/
static void zipfileInflate(
sqlite3_context *pCtx, /* Store result here */
const u8 *aIn, /* Compressed data */
int nIn, /* Size of buffer aIn[] in bytes */
int nOut /* Expected output size */
){
u8 *aRes = sqlite3_malloc(nOut);
if( aRes==0 ){
sqlite3_result_error_nomem(pCtx);
}else{
int err;
z_stream str;
memset(&str, 0, sizeof(str));
str.next_in = (Byte*)aIn;
str.avail_in = nIn;
str.next_out = (Byte*)aRes;
str.avail_out = nOut;
err = inflateInit2(&str, -15);
if( err!=Z_OK ){
zipfileCtxErrorMsg(pCtx, "inflateInit2() failed (%d)", err);
}else{
err = inflate(&str, Z_NO_FLUSH);
if( err!=Z_STREAM_END ){
zipfileCtxErrorMsg(pCtx, "inflate() failed (%d)", err);
}else{
sqlite3_result_blob(pCtx, aRes, nOut, zipfileFree);
aRes = 0;
}
}
sqlite3_free(aRes);
inflateEnd(&str);
}
}
/*
** Buffer aIn (size nIn bytes) contains uncompressed data. This function
** compresses it and sets (*ppOut) to point to a buffer containing the
** compressed data. The caller is responsible for eventually calling
** sqlite3_free() to release buffer (*ppOut). Before returning, (*pnOut)
** is set to the size of buffer (*ppOut) in bytes.
**
** If no error occurs, SQLITE_OK is returned. Otherwise, an SQLite error
** code is returned and an error message left in virtual-table handle
** pTab. The values of (*ppOut) and (*pnOut) are left unchanged in this
** case.
*/
static int zipfileDeflate(
const u8 *aIn, int nIn, /* Input */
u8 **ppOut, int *pnOut, /* Output */
char **pzErr /* OUT: Error message */
){
int rc = SQLITE_OK;
sqlite3_int64 nAlloc;
z_stream str;
u8 *aOut;
memset(&str, 0, sizeof(str));
str.next_in = (Bytef*)aIn;
str.avail_in = nIn;
deflateInit2(&str, 9, Z_DEFLATED, -15, 8, Z_DEFAULT_STRATEGY);
nAlloc = deflateBound(&str, nIn);
aOut = (u8*)sqlite3_malloc64(nAlloc);
if( aOut==0 ){
rc = SQLITE_NOMEM;
}else{
int res;
str.next_out = aOut;
str.avail_out = nAlloc;
res = deflate(&str, Z_FINISH);
if( res==Z_STREAM_END ){
*ppOut = aOut;
*pnOut = (int)str.total_out;
}else{
sqlite3_free(aOut);
*pzErr = sqlite3_mprintf("zipfile: deflate() error");
rc = SQLITE_ERROR;
}
deflateEnd(&str);
}
return rc;
}
/*
** Return values of columns for the row at which the series_cursor
** is currently pointing.
*/
static int zipfileColumn(
sqlite3_vtab_cursor *cur, /* The cursor */
sqlite3_context *ctx, /* First argument to sqlite3_result_...() */
int i /* Which column to return */
){
ZipfileCsr *pCsr = (ZipfileCsr*)cur;
ZipfileCDS *pCDS = &pCsr->pCurrent->cds;
int rc = SQLITE_OK;
switch( i ){
case 0: /* name */
sqlite3_result_text(ctx, pCDS->zFile, -1, SQLITE_TRANSIENT);
break;
case 1: /* mode */
/* TODO: Whether or not the following is correct surely depends on
** the platform on which the archive was created. */
sqlite3_result_int(ctx, pCDS->iExternalAttr >> 16);
break;
case 2: { /* mtime */
sqlite3_result_int64(ctx, pCsr->pCurrent->mUnixTime);
break;
}
case 3: { /* sz */
if( sqlite3_vtab_nochange(ctx)==0 ){
sqlite3_result_int64(ctx, pCDS->szUncompressed);
}
break;
}
case 4: /* rawdata */
if( sqlite3_vtab_nochange(ctx) ) break;
case 5: { /* data */
if( i==4 || pCDS->iCompression==0 || pCDS->iCompression==8 ){
int sz = pCDS->szCompressed;
int szFinal = pCDS->szUncompressed;
if( szFinal>0 ){
u8 *aBuf;
u8 *aFree = 0;
if( pCsr->pCurrent->aData ){
aBuf = pCsr->pCurrent->aData;
}else{
aBuf = aFree = sqlite3_malloc64(sz);
if( aBuf==0 ){
rc = SQLITE_NOMEM;
}else{
FILE *pFile = pCsr->pFile;
if( pFile==0 ){
pFile = ((ZipfileTab*)(pCsr->base.pVtab))->pWriteFd;
}
rc = zipfileReadData(pFile, aBuf, sz, pCsr->pCurrent->iDataOff,
&pCsr->base.pVtab->zErrMsg
);
}
}
if( rc==SQLITE_OK ){
if( i==5 && pCDS->iCompression ){
zipfileInflate(ctx, aBuf, sz, szFinal);
}else{
sqlite3_result_blob(ctx, aBuf, sz, SQLITE_TRANSIENT);
}
}
sqlite3_free(aFree);
}else{
/* Figure out if this is a directory or a zero-sized file. Consider
** it to be a directory either if the mode suggests so, or if
** the final character in the name is '/'. */
u32 mode = pCDS->iExternalAttr >> 16;
if( !(mode & S_IFDIR)
&& pCDS->nFile>=1
&& pCDS->zFile[pCDS->nFile-1]!='/'
){
sqlite3_result_blob(ctx, "", 0, SQLITE_STATIC);
}
}
}
break;
}
case 6: /* method */
sqlite3_result_int(ctx, pCDS->iCompression);
break;
default: /* z */
assert( i==7 );
sqlite3_result_int64(ctx, pCsr->iId);
break;
}
return rc;
}
/*
** Return TRUE if the cursor is at EOF.
*/
static int zipfileEof(sqlite3_vtab_cursor *cur){
ZipfileCsr *pCsr = (ZipfileCsr*)cur;
return pCsr->bEof;
}
/*
** If aBlob is not NULL, then it points to a buffer nBlob bytes in size
** containing an entire zip archive image. Or, if aBlob is NULL, then pFile
** is guaranteed to be a file-handle open on a zip file.
**
** This function attempts to locate the EOCD record within the zip archive
** and populate *pEOCD with the results of decoding it. SQLITE_OK is
** returned if successful. Otherwise, an SQLite error code is returned and
** an English language error message may be left in virtual-table pTab.
*/
static int zipfileReadEOCD(
ZipfileTab *pTab, /* Return errors here */
const u8 *aBlob, /* Pointer to in-memory file image */
int nBlob, /* Size of aBlob[] in bytes */
FILE *pFile, /* Read from this file if aBlob==0 */
ZipfileEOCD *pEOCD /* Object to populate */
){
u8 *aRead = pTab->aBuffer; /* Temporary buffer */
int nRead; /* Bytes to read from file */
int rc = SQLITE_OK;
memset(pEOCD, 0, sizeof(ZipfileEOCD));
if( aBlob==0 ){
i64 iOff; /* Offset to read from */
i64 szFile; /* Total size of file in bytes */
fseek(pFile, 0, SEEK_END);
szFile = (i64)ftell(pFile);
if( szFile==0 ){
return SQLITE_OK;
}
nRead = (int)(MIN(szFile, ZIPFILE_BUFFER_SIZE));
iOff = szFile - nRead;
rc = zipfileReadData(pFile, aRead, nRead, iOff, &pTab->base.zErrMsg);
}else{
nRead = (int)(MIN(nBlob, ZIPFILE_BUFFER_SIZE));
aRead = (u8*)&aBlob[nBlob-nRead];
}
if( rc==SQLITE_OK ){
int i;
/* Scan backwards looking for the signature bytes */
for(i=nRead-20; i>=0; i--){
if( aRead[i]==0x50 && aRead[i+1]==0x4b
&& aRead[i+2]==0x05 && aRead[i+3]==0x06
){
break;
}
}
if( i<0 ){
pTab->base.zErrMsg = sqlite3_mprintf(
"cannot find end of central directory record"
);
return SQLITE_ERROR;
}
aRead += i+4;
pEOCD->iDisk = zipfileRead16(aRead);
pEOCD->iFirstDisk = zipfileRead16(aRead);
pEOCD->nEntry = zipfileRead16(aRead);
pEOCD->nEntryTotal = zipfileRead16(aRead);
pEOCD->nSize = zipfileRead32(aRead);
pEOCD->iOffset = zipfileRead32(aRead);
}
return rc;
}
/*
** Add object pNew to the linked list that begins at ZipfileTab.pFirstEntry
** and ends with pLastEntry. If argument pBefore is NULL, then pNew is added
** to the end of the list. Otherwise, it is added to the list immediately
** before pBefore (which is guaranteed to be a part of said list).
*/
static void zipfileAddEntry(
ZipfileTab *pTab,
ZipfileEntry *pBefore,
ZipfileEntry *pNew
){
assert( (pTab->pFirstEntry==0)==(pTab->pLastEntry==0) );
assert( pNew->pNext==0 );
if( pBefore==0 ){
if( pTab->pFirstEntry==0 ){
pTab->pFirstEntry = pTab->pLastEntry = pNew;
}else{
assert( pTab->pLastEntry->pNext==0 );
pTab->pLastEntry->pNext = pNew;
pTab->pLastEntry = pNew;
}
}else{
ZipfileEntry **pp;
for(pp=&pTab->pFirstEntry; *pp!=pBefore; pp=&((*pp)->pNext));
pNew->pNext = pBefore;
*pp = pNew;
}
}
static int zipfileLoadDirectory(ZipfileTab *pTab, const u8 *aBlob, int nBlob){
ZipfileEOCD eocd;
int rc;
int i;
i64 iOff;
rc = zipfileReadEOCD(pTab, aBlob, nBlob, pTab->pWriteFd, &eocd);
iOff = eocd.iOffset;
for(i=0; rc==SQLITE_OK && i<eocd.nEntry; i++){
ZipfileEntry *pNew = 0;
rc = zipfileGetEntry(pTab, aBlob, nBlob, pTab->pWriteFd, iOff, &pNew);
if( rc==SQLITE_OK ){
zipfileAddEntry(pTab, 0, pNew);
iOff += ZIPFILE_CDS_FIXED_SZ;
iOff += (int)pNew->cds.nExtra + pNew->cds.nFile + pNew->cds.nComment;
}
}
return rc;
}
/*
** xFilter callback.
*/
static int zipfileFilter(
sqlite3_vtab_cursor *cur,
int idxNum, const char *idxStr,
int argc, sqlite3_value **argv
){
ZipfileTab *pTab = (ZipfileTab*)cur->pVtab;
ZipfileCsr *pCsr = (ZipfileCsr*)cur;
const char *zFile = 0; /* Zip file to scan */
int rc = SQLITE_OK; /* Return Code */
int bInMemory = 0; /* True for an in-memory zipfile */
(void)idxStr;
(void)argc;
zipfileResetCursor(pCsr);
if( pTab->zFile ){
zFile = pTab->zFile;
}else if( idxNum==0 ){
zipfileCursorErr(pCsr, "zipfile() function requires an argument");
return SQLITE_ERROR;
}else if( sqlite3_value_type(argv[0])==SQLITE_BLOB ){
static const u8 aEmptyBlob = 0;
const u8 *aBlob = (const u8*)sqlite3_value_blob(argv[0]);
int nBlob = sqlite3_value_bytes(argv[0]);
assert( pTab->pFirstEntry==0 );
if( aBlob==0 ){
aBlob = &aEmptyBlob;
nBlob = 0;
}
rc = zipfileLoadDirectory(pTab, aBlob, nBlob);
pCsr->pFreeEntry = pTab->pFirstEntry;
pTab->pFirstEntry = pTab->pLastEntry = 0;
if( rc!=SQLITE_OK ) return rc;
bInMemory = 1;
}else{
zFile = (const char*)sqlite3_value_text(argv[0]);
}
if( 0==pTab->pWriteFd && 0==bInMemory ){
pCsr->pFile = zFile ? sqlite3_fopen(zFile, "rb") : 0;
if( pCsr->pFile==0 ){
zipfileCursorErr(pCsr, "cannot open file: %s", zFile);
rc = SQLITE_ERROR;
}else{
rc = zipfileReadEOCD(pTab, 0, 0, pCsr->pFile, &pCsr->eocd);
if( rc==SQLITE_OK ){
if( pCsr->eocd.nEntry==0 ){
pCsr->bEof = 1;
}else{
pCsr->iNextOff = pCsr->eocd.iOffset;
rc = zipfileNext(cur);
}
}
}
}else{
pCsr->bNoop = 1;
pCsr->pCurrent = pCsr->pFreeEntry ? pCsr->pFreeEntry : pTab->pFirstEntry;
rc = zipfileNext(cur);
}
return rc;
}
/*
** xBestIndex callback.
*/
static int zipfileBestIndex(
sqlite3_vtab *tab,
sqlite3_index_info *pIdxInfo
){
int i;
int idx = -1;
int unusable = 0;
(void)tab;
for(i=0; i<pIdxInfo->nConstraint; i++){
const struct sqlite3_index_constraint *pCons = &pIdxInfo->aConstraint[i];
if( pCons->iColumn!=ZIPFILE_F_COLUMN_IDX ) continue;
if( pCons->usable==0 ){
unusable = 1;
}else if( pCons->op==SQLITE_INDEX_CONSTRAINT_EQ ){
idx = i;
}
}
pIdxInfo->estimatedCost = 1000.0;
if( idx>=0 ){
pIdxInfo->aConstraintUsage[idx].argvIndex = 1;
pIdxInfo->aConstraintUsage[idx].omit = 1;
pIdxInfo->idxNum = 1;
}else if( unusable ){
return SQLITE_CONSTRAINT;
}
return SQLITE_OK;
}
static ZipfileEntry *zipfileNewEntry(const char *zPath){
ZipfileEntry *pNew;
pNew = sqlite3_malloc(sizeof(ZipfileEntry));
if( pNew ){
memset(pNew, 0, sizeof(ZipfileEntry));
pNew->cds.zFile = sqlite3_mprintf("%s", zPath);
if( pNew->cds.zFile==0 ){
sqlite3_free(pNew);
pNew = 0;
}
}
return pNew;
}
static int zipfileSerializeLFH(ZipfileEntry *pEntry, u8 *aBuf){
ZipfileCDS *pCds = &pEntry->cds;
u8 *a = aBuf;
pCds->nExtra = 9;
/* Write the LFH itself */
zipfileWrite32(a, ZIPFILE_SIGNATURE_LFH);
zipfileWrite16(a, pCds->iVersionExtract);
zipfileWrite16(a, pCds->flags);
zipfileWrite16(a, pCds->iCompression);
zipfileWrite16(a, pCds->mTime);
zipfileWrite16(a, pCds->mDate);
zipfileWrite32(a, pCds->crc32);
zipfileWrite32(a, pCds->szCompressed);
zipfileWrite32(a, pCds->szUncompressed);
zipfileWrite16(a, (u16)pCds->nFile);
zipfileWrite16(a, pCds->nExtra);
assert( a==&aBuf[ZIPFILE_LFH_FIXED_SZ] );
/* Add the file name */
memcpy(a, pCds->zFile, (int)pCds->nFile);
a += (int)pCds->nFile;
/* The "extra" data */
zipfileWrite16(a, ZIPFILE_EXTRA_TIMESTAMP);
zipfileWrite16(a, 5);
*a++ = 0x01;
zipfileWrite32(a, pEntry->mUnixTime);
return a-aBuf;
}
static int zipfileAppendEntry(
ZipfileTab *pTab,
ZipfileEntry *pEntry,
const u8 *pData,
int nData
){
u8 *aBuf = pTab->aBuffer;
int nBuf;
int rc;
nBuf = zipfileSerializeLFH(pEntry, aBuf);
rc = zipfileAppendData(pTab, aBuf, nBuf);
if( rc==SQLITE_OK ){
pEntry->iDataOff = pTab->szCurrent;
rc = zipfileAppendData(pTab, pData, nData);
}
return rc;
}
static int zipfileGetMode(
sqlite3_value *pVal,
int bIsDir, /* If true, default to directory */
u32 *pMode, /* OUT: Mode value */
char **pzErr /* OUT: Error message */
){
const char *z = (const char*)sqlite3_value_text(pVal);
u32 mode = 0;
if( z==0 ){
mode = (bIsDir ? (S_IFDIR + 0755) : (S_IFREG + 0644));
}else if( z[0]>='0' && z[0]<='9' ){
mode = (unsigned int)sqlite3_value_int(pVal);
}else{
const char zTemplate[11] = "-rwxrwxrwx";
int i;
if( strlen(z)!=10 ) goto parse_error;
switch( z[0] ){
case '-': mode |= S_IFREG; break;
case 'd': mode |= S_IFDIR; break;
case 'l': mode |= S_IFLNK; break;
default: goto parse_error;
}
for(i=1; i<10; i++){
if( z[i]==zTemplate[i] ) mode |= 1 << (9-i);
else if( z[i]!='-' ) goto parse_error;
}
}
if( ((mode & S_IFDIR)==0)==bIsDir ){
/* The "mode" attribute is a directory, but data has been specified.
** Or vice-versa - no data but "mode" is a file or symlink. */
*pzErr = sqlite3_mprintf("zipfile: mode does not match data");
return SQLITE_CONSTRAINT;
}
*pMode = mode;
return SQLITE_OK;
parse_error:
*pzErr = sqlite3_mprintf("zipfile: parse error in mode: %s", z);
return SQLITE_ERROR;
}
/*
** Both (const char*) arguments point to nul-terminated strings. Argument
** nB is the value of strlen(zB). This function returns 0 if the strings are
** identical, ignoring any trailing '/' character in either path. */
static int zipfileComparePath(const char *zA, const char *zB, int nB){
int nA = (int)strlen(zA);
if( nA>0 && zA[nA-1]=='/' ) nA--;
if( nB>0 && zB[nB-1]=='/' ) nB--;
if( nA==nB && memcmp(zA, zB, nA)==0 ) return 0;
return 1;
}
static int zipfileBegin(sqlite3_vtab *pVtab){
ZipfileTab *pTab = (ZipfileTab*)pVtab;
int rc = SQLITE_OK;
assert( pTab->pWriteFd==0 );
if( pTab->zFile==0 || pTab->zFile[0]==0 ){
pTab->base.zErrMsg = sqlite3_mprintf("zipfile: missing filename");
return SQLITE_ERROR;
}
/* Open a write fd on the file. Also load the entire central directory
** structure into memory. During the transaction any new file data is
** appended to the archive file, but the central directory is accumulated
** in main-memory until the transaction is committed. */
pTab->pWriteFd = sqlite3_fopen(pTab->zFile, "ab+");
if( pTab->pWriteFd==0 ){
pTab->base.zErrMsg = sqlite3_mprintf(
"zipfile: failed to open file %s for writing", pTab->zFile
);
rc = SQLITE_ERROR;
}else{
fseek(pTab->pWriteFd, 0, SEEK_END);
pTab->szCurrent = pTab->szOrig = (i64)ftell(pTab->pWriteFd);
rc = zipfileLoadDirectory(pTab, 0, 0);
}
if( rc!=SQLITE_OK ){
zipfileCleanupTransaction(pTab);
}
return rc;
}
/*
** Return the current time as a 32-bit timestamp in UNIX epoch format (like
** time(2)).
*/
static u32 zipfileTime(void){
sqlite3_vfs *pVfs = sqlite3_vfs_find(0);
u32 ret;
if( pVfs==0 ) return 0;
if( pVfs->iVersion>=2 && pVfs->xCurrentTimeInt64 ){
i64 ms;
pVfs->xCurrentTimeInt64(pVfs, &ms);
ret = (u32)((ms/1000) - ((i64)24405875 * 8640));
}else{
double day;
pVfs->xCurrentTime(pVfs, &day);
ret = (u32)((day - 2440587.5) * 86400);
}
return ret;
}
/*
** Return a 32-bit timestamp in UNIX epoch format.
**
** If the value passed as the only argument is either NULL or an SQL NULL,
** return the current time. Otherwise, return the value stored in (*pVal)
** cast to a 32-bit unsigned integer.
*/
static u32 zipfileGetTime(sqlite3_value *pVal){
if( pVal==0 || sqlite3_value_type(pVal)==SQLITE_NULL ){
return zipfileTime();
}
return (u32)sqlite3_value_int64(pVal);
}
/*
** Unless it is NULL, entry pOld is currently part of the pTab->pFirstEntry
** linked list. Remove it from the list and free the object.
*/
static void zipfileRemoveEntryFromList(ZipfileTab *pTab, ZipfileEntry *pOld){
if( pOld ){
if( pTab->pFirstEntry==pOld ){
pTab->pFirstEntry = pOld->pNext;
if( pTab->pLastEntry==pOld ) pTab->pLastEntry = 0;
}else{
ZipfileEntry *p;
for(p=pTab->pFirstEntry; p; p=p->pNext){
if( p->pNext==pOld ){
p->pNext = pOld->pNext;
if( pTab->pLastEntry==pOld ) pTab->pLastEntry = p;
break;
}
}
}
zipfileEntryFree(pOld);
}
}
/*
** xUpdate method.
*/
static int zipfileUpdate(
sqlite3_vtab *pVtab,
int nVal,
sqlite3_value **apVal,
sqlite_int64 *pRowid
){
ZipfileTab *pTab = (ZipfileTab*)pVtab;
int rc = SQLITE_OK; /* Return Code */
ZipfileEntry *pNew = 0; /* New in-memory CDS entry */
u32 mode = 0; /* Mode for new entry */
u32 mTime = 0; /* Modification time for new entry */
i64 sz = 0; /* Uncompressed size */
const char *zPath = 0; /* Path for new entry */
int nPath = 0; /* strlen(zPath) */
const u8 *pData = 0; /* Pointer to buffer containing content */
int nData = 0; /* Size of pData buffer in bytes */
int iMethod = 0; /* Compression method for new entry */
u8 *pFree = 0; /* Free this */
char *zFree = 0; /* Also free this */
ZipfileEntry *pOld = 0;
ZipfileEntry *pOld2 = 0;
int bUpdate = 0; /* True for an update that modifies "name" */
int bIsDir = 0;
u32 iCrc32 = 0;
(void)pRowid;
if( pTab->pWriteFd==0 ){
rc = zipfileBegin(pVtab);
if( rc!=SQLITE_OK ) return rc;
}
/* If this is a DELETE or UPDATE, find the archive entry to delete. */
if( sqlite3_value_type(apVal[0])!=SQLITE_NULL ){
const char *zDelete = (const char*)sqlite3_value_text(apVal[0]);
int nDelete = (int)strlen(zDelete);
if( nVal>1 ){
const char *zUpdate = (const char*)sqlite3_value_text(apVal[1]);
if( zUpdate && zipfileComparePath(zUpdate, zDelete, nDelete)!=0 ){
bUpdate = 1;
}
}
for(pOld=pTab->pFirstEntry; 1; pOld=pOld->pNext){
if( zipfileComparePath(pOld->cds.zFile, zDelete, nDelete)==0 ){
break;
}
assert( pOld->pNext );
}
}
if( nVal>1 ){
/* Check that "sz" and "rawdata" are both NULL: */
if( sqlite3_value_type(apVal[5])!=SQLITE_NULL ){
zipfileTableErr(pTab, "sz must be NULL");
rc = SQLITE_CONSTRAINT;
}
if( sqlite3_value_type(apVal[6])!=SQLITE_NULL ){
zipfileTableErr(pTab, "rawdata must be NULL");
rc = SQLITE_CONSTRAINT;
}
if( rc==SQLITE_OK ){
if( sqlite3_value_type(apVal[7])==SQLITE_NULL ){
/* data=NULL. A directory */
bIsDir = 1;
}else{
/* Value specified for "data", and possibly "method". This must be
** a regular file or a symlink. */
const u8 *aIn = sqlite3_value_blob(apVal[7]);
int nIn = sqlite3_value_bytes(apVal[7]);
int bAuto = sqlite3_value_type(apVal[8])==SQLITE_NULL;
iMethod = sqlite3_value_int(apVal[8]);
sz = nIn;
pData = aIn;
nData = nIn;
if( iMethod!=0 && iMethod!=8 ){
zipfileTableErr(pTab, "unknown compression method: %d", iMethod);
rc = SQLITE_CONSTRAINT;
}else{
if( bAuto || iMethod ){
int nCmp;
rc = zipfileDeflate(aIn, nIn, &pFree, &nCmp, &pTab->base.zErrMsg);
if( rc==SQLITE_OK ){
if( iMethod || nCmp<nIn ){
iMethod = 8;
pData = pFree;
nData = nCmp;
}
}
}
iCrc32 = crc32(0, aIn, nIn);
}
}
}
if( rc==SQLITE_OK ){
rc = zipfileGetMode(apVal[3], bIsDir, &mode, &pTab->base.zErrMsg);
}
if( rc==SQLITE_OK ){
zPath = (const char*)sqlite3_value_text(apVal[2]);
if( zPath==0 ) zPath = "";
nPath = (int)strlen(zPath);
mTime = zipfileGetTime(apVal[4]);
}
if( rc==SQLITE_OK && bIsDir ){
/* For a directory, check that the last character in the path is a
** '/'. This appears to be required for compatibility with info-zip
** (the unzip command on unix). It does not create directories
** otherwise. */
if( nPath<=0 || zPath[nPath-1]!='/' ){
zFree = sqlite3_mprintf("%s/", zPath);
zPath = (const char*)zFree;
if( zFree==0 ){
rc = SQLITE_NOMEM;
nPath = 0;
}else{
nPath = (int)strlen(zPath);
}
}
}
/* Check that we're not inserting a duplicate entry -OR- updating an
** entry with a path, thereby making it into a duplicate. */
if( (pOld==0 || bUpdate) && rc==SQLITE_OK ){
ZipfileEntry *p;
for(p=pTab->pFirstEntry; p; p=p->pNext){
if( zipfileComparePath(p->cds.zFile, zPath, nPath)==0 ){
switch( sqlite3_vtab_on_conflict(pTab->db) ){
case SQLITE_IGNORE: {
goto zipfile_update_done;
}
case SQLITE_REPLACE: {
pOld2 = p;
break;
}
default: {
zipfileTableErr(pTab, "duplicate name: \"%s\"", zPath);
rc = SQLITE_CONSTRAINT;
break;
}
}
break;
}
}
}
if( rc==SQLITE_OK ){
/* Create the new CDS record. */
pNew = zipfileNewEntry(zPath);
if( pNew==0 ){
rc = SQLITE_NOMEM;
}else{
pNew->cds.iVersionMadeBy = ZIPFILE_NEWENTRY_MADEBY;
pNew->cds.iVersionExtract = ZIPFILE_NEWENTRY_REQUIRED;
pNew->cds.flags = ZIPFILE_NEWENTRY_FLAGS;
pNew->cds.iCompression = (u16)iMethod;
zipfileMtimeToDos(&pNew->cds, mTime);
pNew->cds.crc32 = iCrc32;
pNew->cds.szCompressed = nData;
pNew->cds.szUncompressed = (u32)sz;
pNew->cds.iExternalAttr = (mode<<16);
pNew->cds.iOffset = (u32)pTab->szCurrent;
pNew->cds.nFile = (u16)nPath;
pNew->mUnixTime = (u32)mTime;
rc = zipfileAppendEntry(pTab, pNew, pData, nData);
zipfileAddEntry(pTab, pOld, pNew);
}
}
}
if( rc==SQLITE_OK && (pOld || pOld2) ){
ZipfileCsr *pCsr;
for(pCsr=pTab->pCsrList; pCsr; pCsr=pCsr->pCsrNext){
if( pCsr->pCurrent && (pCsr->pCurrent==pOld || pCsr->pCurrent==pOld2) ){
pCsr->pCurrent = pCsr->pCurrent->pNext;
pCsr->bNoop = 1;
}
}
zipfileRemoveEntryFromList(pTab, pOld);
zipfileRemoveEntryFromList(pTab, pOld2);
}
zipfile_update_done:
sqlite3_free(pFree);
sqlite3_free(zFree);
return rc;
}
static int zipfileSerializeEOCD(ZipfileEOCD *p, u8 *aBuf){
u8 *a = aBuf;
zipfileWrite32(a, ZIPFILE_SIGNATURE_EOCD);
zipfileWrite16(a, p->iDisk);
zipfileWrite16(a, p->iFirstDisk);
zipfileWrite16(a, p->nEntry);
zipfileWrite16(a, p->nEntryTotal);
zipfileWrite32(a, p->nSize);
zipfileWrite32(a, p->iOffset);
zipfileWrite16(a, 0); /* Size of trailing comment in bytes*/
return a-aBuf;
}
static int zipfileAppendEOCD(ZipfileTab *pTab, ZipfileEOCD *p){
int nBuf = zipfileSerializeEOCD(p, pTab->aBuffer);
assert( nBuf==ZIPFILE_EOCD_FIXED_SZ );
return zipfileAppendData(pTab, pTab->aBuffer, nBuf);
}
/*
** Serialize the CDS structure into buffer aBuf[]. Return the number
** of bytes written.
*/
static int zipfileSerializeCDS(ZipfileEntry *pEntry, u8 *aBuf){
u8 *a = aBuf;
ZipfileCDS *pCDS = &pEntry->cds;
if( pEntry->aExtra==0 ){
pCDS->nExtra = 9;
}
zipfileWrite32(a, ZIPFILE_SIGNATURE_CDS);
zipfileWrite16(a, pCDS->iVersionMadeBy);
zipfileWrite16(a, pCDS->iVersionExtract);
zipfileWrite16(a, pCDS->flags);
zipfileWrite16(a, pCDS->iCompression);
zipfileWrite16(a, pCDS->mTime);
zipfileWrite16(a, pCDS->mDate);
zipfileWrite32(a, pCDS->crc32);
zipfileWrite32(a, pCDS->szCompressed);
zipfileWrite32(a, pCDS->szUncompressed);
assert( a==&aBuf[ZIPFILE_CDS_NFILE_OFF] );
zipfileWrite16(a, pCDS->nFile);
zipfileWrite16(a, pCDS->nExtra);
zipfileWrite16(a, pCDS->nComment);
zipfileWrite16(a, pCDS->iDiskStart);
zipfileWrite16(a, pCDS->iInternalAttr);
zipfileWrite32(a, pCDS->iExternalAttr);
zipfileWrite32(a, pCDS->iOffset);
memcpy(a, pCDS->zFile, pCDS->nFile);
a += pCDS->nFile;
if( pEntry->aExtra ){
int n = (int)pCDS->nExtra + (int)pCDS->nComment;
memcpy(a, pEntry->aExtra, n);
a += n;
}else{
assert( pCDS->nExtra==9 );
zipfileWrite16(a, ZIPFILE_EXTRA_TIMESTAMP);
zipfileWrite16(a, 5);
*a++ = 0x01;
zipfileWrite32(a, pEntry->mUnixTime);
}
return a-aBuf;
}
static int zipfileCommit(sqlite3_vtab *pVtab){
ZipfileTab *pTab = (ZipfileTab*)pVtab;
int rc = SQLITE_OK;
if( pTab->pWriteFd ){
i64 iOffset = pTab->szCurrent;
ZipfileEntry *p;
ZipfileEOCD eocd;
int nEntry = 0;
/* Write out all entries */
for(p=pTab->pFirstEntry; rc==SQLITE_OK && p; p=p->pNext){
int n = zipfileSerializeCDS(p, pTab->aBuffer);
rc = zipfileAppendData(pTab, pTab->aBuffer, n);
nEntry++;
}
/* Write out the EOCD record */
eocd.iDisk = 0;
eocd.iFirstDisk = 0;
eocd.nEntry = (u16)nEntry;
eocd.nEntryTotal = (u16)nEntry;
eocd.nSize = (u32)(pTab->szCurrent - iOffset);
eocd.iOffset = (u32)iOffset;
rc = zipfileAppendEOCD(pTab, &eocd);
zipfileCleanupTransaction(pTab);
}
return rc;
}
static int zipfileRollback(sqlite3_vtab *pVtab){
return zipfileCommit(pVtab);
}
static ZipfileCsr *zipfileFindCursor(ZipfileTab *pTab, i64 iId){
ZipfileCsr *pCsr;
for(pCsr=pTab->pCsrList; pCsr; pCsr=pCsr->pCsrNext){
if( iId==pCsr->iId ) break;
}
return pCsr;
}
static void zipfileFunctionCds(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
ZipfileCsr *pCsr;
ZipfileTab *pTab = (ZipfileTab*)sqlite3_user_data(context);
assert( argc>0 );
pCsr = zipfileFindCursor(pTab, sqlite3_value_int64(argv[0]));
if( pCsr ){
ZipfileCDS *p = &pCsr->pCurrent->cds;
char *zRes = sqlite3_mprintf("{"
"\"version-made-by\" : %u, "
"\"version-to-extract\" : %u, "
"\"flags\" : %u, "
"\"compression\" : %u, "
"\"time\" : %u, "
"\"date\" : %u, "
"\"crc32\" : %u, "
"\"compressed-size\" : %u, "
"\"uncompressed-size\" : %u, "
"\"file-name-length\" : %u, "
"\"extra-field-length\" : %u, "
"\"file-comment-length\" : %u, "
"\"disk-number-start\" : %u, "
"\"internal-attr\" : %u, "
"\"external-attr\" : %u, "
"\"offset\" : %u }",
(u32)p->iVersionMadeBy, (u32)p->iVersionExtract,
(u32)p->flags, (u32)p->iCompression,
(u32)p->mTime, (u32)p->mDate,
(u32)p->crc32, (u32)p->szCompressed,
(u32)p->szUncompressed, (u32)p->nFile,
(u32)p->nExtra, (u32)p->nComment,
(u32)p->iDiskStart, (u32)p->iInternalAttr,
(u32)p->iExternalAttr, (u32)p->iOffset
);
if( zRes==0 ){
sqlite3_result_error_nomem(context);
}else{
sqlite3_result_text(context, zRes, -1, SQLITE_TRANSIENT);
sqlite3_free(zRes);
}
}
}
/*
** xFindFunction method.
*/
static int zipfileFindFunction(
sqlite3_vtab *pVtab, /* Virtual table handle */
int nArg, /* Number of SQL function arguments */
const char *zName, /* Name of SQL function */
void (**pxFunc)(sqlite3_context*,int,sqlite3_value**), /* OUT: Result */
void **ppArg /* OUT: User data for *pxFunc */
){
(void)nArg;
if( sqlite3_stricmp("zipfile_cds", zName)==0 ){
*pxFunc = zipfileFunctionCds;
*ppArg = (void*)pVtab;
return 1;
}
return 0;
}
typedef struct ZipfileBuffer ZipfileBuffer;
struct ZipfileBuffer {
u8 *a; /* Pointer to buffer */
int n; /* Size of buffer in bytes */
int nAlloc; /* Byte allocated at a[] */
};
typedef struct ZipfileCtx ZipfileCtx;
struct ZipfileCtx {
int nEntry;
ZipfileBuffer body;
ZipfileBuffer cds;
};
static int zipfileBufferGrow(ZipfileBuffer *pBuf, int nByte){
if( pBuf->n+nByte>pBuf->nAlloc ){
u8 *aNew;
sqlite3_int64 nNew = pBuf->n ? pBuf->n*2 : 512;
int nReq = pBuf->n + nByte;
while( nNew<nReq ) nNew = nNew*2;
aNew = sqlite3_realloc64(pBuf->a, nNew);
if( aNew==0 ) return SQLITE_NOMEM;
pBuf->a = aNew;
pBuf->nAlloc = (int)nNew;
}
return SQLITE_OK;
}
/*
** xStep() callback for the zipfile() aggregate. This can be called in
** any of the following ways:
**
** SELECT zipfile(name,data) ...
** SELECT zipfile(name,mode,mtime,data) ...
** SELECT zipfile(name,mode,mtime,data,method) ...
*/
static void zipfileStep(sqlite3_context *pCtx, int nVal, sqlite3_value **apVal){
ZipfileCtx *p; /* Aggregate function context */
ZipfileEntry e; /* New entry to add to zip archive */
sqlite3_value *pName = 0;
sqlite3_value *pMode = 0;
sqlite3_value *pMtime = 0;
sqlite3_value *pData = 0;
sqlite3_value *pMethod = 0;
int bIsDir = 0;
u32 mode;
int rc = SQLITE_OK;
char *zErr = 0;
int iMethod = -1; /* Compression method to use (0 or 8) */
const u8 *aData = 0; /* Possibly compressed data for new entry */
int nData = 0; /* Size of aData[] in bytes */
int szUncompressed = 0; /* Size of data before compression */
u8 *aFree = 0; /* Free this before returning */
u32 iCrc32 = 0; /* crc32 of uncompressed data */
char *zName = 0; /* Path (name) of new entry */
int nName = 0; /* Size of zName in bytes */
char *zFree = 0; /* Free this before returning */
int nByte;
memset(&e, 0, sizeof(e));
p = (ZipfileCtx*)sqlite3_aggregate_context(pCtx, sizeof(ZipfileCtx));
if( p==0 ) return;
/* Martial the arguments into stack variables */
if( nVal!=2 && nVal!=4 && nVal!=5 ){
zErr = sqlite3_mprintf("wrong number of arguments to function zipfile()");
rc = SQLITE_ERROR;
goto zipfile_step_out;
}
pName = apVal[0];
if( nVal==2 ){
pData = apVal[1];
}else{
pMode = apVal[1];
pMtime = apVal[2];
pData = apVal[3];
if( nVal==5 ){
pMethod = apVal[4];
}
}
/* Check that the 'name' parameter looks ok. */
zName = (char*)sqlite3_value_text(pName);
nName = sqlite3_value_bytes(pName);
if( zName==0 ){
zErr = sqlite3_mprintf("first argument to zipfile() must be non-NULL");
rc = SQLITE_ERROR;
goto zipfile_step_out;
}
/* Inspect the 'method' parameter. This must be either 0 (store), 8 (use
** deflate compression) or NULL (choose automatically). */
if( pMethod && SQLITE_NULL!=sqlite3_value_type(pMethod) ){
iMethod = (int)sqlite3_value_int64(pMethod);
if( iMethod!=0 && iMethod!=8 ){
zErr = sqlite3_mprintf("illegal method value: %d", iMethod);
rc = SQLITE_ERROR;
goto zipfile_step_out;
}
}
/* Now inspect the data. If this is NULL, then the new entry must be a
** directory. Otherwise, figure out whether or not the data should
** be deflated or simply stored in the zip archive. */
if( sqlite3_value_type(pData)==SQLITE_NULL ){
bIsDir = 1;
iMethod = 0;
}else{
aData = sqlite3_value_blob(pData);
szUncompressed = nData = sqlite3_value_bytes(pData);
iCrc32 = crc32(0, aData, nData);
if( iMethod<0 || iMethod==8 ){
int nOut = 0;
rc = zipfileDeflate(aData, nData, &aFree, &nOut, &zErr);
if( rc!=SQLITE_OK ){
goto zipfile_step_out;
}
if( iMethod==8 || nOut<nData ){
aData = aFree;
nData = nOut;
iMethod = 8;
}else{
iMethod = 0;
}
}
}
/* Decode the "mode" argument. */
rc = zipfileGetMode(pMode, bIsDir, &mode, &zErr);
if( rc ) goto zipfile_step_out;
/* Decode the "mtime" argument. */
e.mUnixTime = zipfileGetTime(pMtime);
/* If this is a directory entry, ensure that there is exactly one '/'
** at the end of the path. Or, if this is not a directory and the path
** ends in '/' it is an error. */
if( bIsDir==0 ){
if( nName>0 && zName[nName-1]=='/' ){
zErr = sqlite3_mprintf("non-directory name must not end with /");
rc = SQLITE_ERROR;
goto zipfile_step_out;
}
}else{
if( nName==0 || zName[nName-1]!='/' ){
zName = zFree = sqlite3_mprintf("%s/", zName);
if( zName==0 ){
rc = SQLITE_NOMEM;
goto zipfile_step_out;
}
nName = (int)strlen(zName);
}else{
while( nName>1 && zName[nName-2]=='/' ) nName--;
}
}
/* Assemble the ZipfileEntry object for the new zip archive entry */
e.cds.iVersionMadeBy = ZIPFILE_NEWENTRY_MADEBY;
e.cds.iVersionExtract = ZIPFILE_NEWENTRY_REQUIRED;
e.cds.flags = ZIPFILE_NEWENTRY_FLAGS;
e.cds.iCompression = (u16)iMethod;
zipfileMtimeToDos(&e.cds, (u32)e.mUnixTime);
e.cds.crc32 = iCrc32;
e.cds.szCompressed = nData;
e.cds.szUncompressed = szUncompressed;
e.cds.iExternalAttr = (mode<<16);
e.cds.iOffset = p->body.n;
e.cds.nFile = (u16)nName;
e.cds.zFile = zName;
/* Append the LFH to the body of the new archive */
nByte = ZIPFILE_LFH_FIXED_SZ + e.cds.nFile + 9;
if( (rc = zipfileBufferGrow(&p->body, nByte)) ) goto zipfile_step_out;
p->body.n += zipfileSerializeLFH(&e, &p->body.a[p->body.n]);
/* Append the data to the body of the new archive */
if( nData>0 ){
if( (rc = zipfileBufferGrow(&p->body, nData)) ) goto zipfile_step_out;
memcpy(&p->body.a[p->body.n], aData, nData);
p->body.n += nData;
}
/* Append the CDS record to the directory of the new archive */
nByte = ZIPFILE_CDS_FIXED_SZ + e.cds.nFile + 9;
if( (rc = zipfileBufferGrow(&p->cds, nByte)) ) goto zipfile_step_out;
p->cds.n += zipfileSerializeCDS(&e, &p->cds.a[p->cds.n]);
/* Increment the count of entries in the archive */
p->nEntry++;
zipfile_step_out:
sqlite3_free(aFree);
sqlite3_free(zFree);
if( rc ){
if( zErr ){
sqlite3_result_error(pCtx, zErr, -1);
}else{
sqlite3_result_error_code(pCtx, rc);
}
}
sqlite3_free(zErr);
}
/*
** xFinalize() callback for zipfile aggregate function.
*/
static void zipfileFinal(sqlite3_context *pCtx){
ZipfileCtx *p;
ZipfileEOCD eocd;
sqlite3_int64 nZip;
u8 *aZip;
p = (ZipfileCtx*)sqlite3_aggregate_context(pCtx, sizeof(ZipfileCtx));
if( p==0 ) return;
if( p->nEntry>0 ){
memset(&eocd, 0, sizeof(eocd));
eocd.nEntry = (u16)p->nEntry;
eocd.nEntryTotal = (u16)p->nEntry;
eocd.nSize = p->cds.n;
eocd.iOffset = p->body.n;
nZip = p->body.n + p->cds.n + ZIPFILE_EOCD_FIXED_SZ;
aZip = (u8*)sqlite3_malloc64(nZip);
if( aZip==0 ){
sqlite3_result_error_nomem(pCtx);
}else{
memcpy(aZip, p->body.a, p->body.n);
memcpy(&aZip[p->body.n], p->cds.a, p->cds.n);
zipfileSerializeEOCD(&eocd, &aZip[p->body.n + p->cds.n]);
sqlite3_result_blob(pCtx, aZip, (int)nZip, zipfileFree);
}
}
sqlite3_free(p->body.a);
sqlite3_free(p->cds.a);
}
/*
** Register the "zipfile" virtual table.
*/
static int zipfileRegister(sqlite3 *db){
static sqlite3_module zipfileModule = {
1, /* iVersion */
zipfileConnect, /* xCreate */
zipfileConnect, /* xConnect */
zipfileBestIndex, /* xBestIndex */
zipfileDisconnect, /* xDisconnect */
zipfileDisconnect, /* xDestroy */
zipfileOpen, /* xOpen - open a cursor */
zipfileClose, /* xClose - close a cursor */
zipfileFilter, /* xFilter - configure scan constraints */
zipfileNext, /* xNext - advance a cursor */
zipfileEof, /* xEof - check for end of scan */
zipfileColumn, /* xColumn - read data */
0, /* xRowid - read data */
zipfileUpdate, /* xUpdate */
zipfileBegin, /* xBegin */
0, /* xSync */
zipfileCommit, /* xCommit */
zipfileRollback, /* xRollback */
zipfileFindFunction, /* xFindMethod */
0, /* xRename */
0, /* xSavepoint */
0, /* xRelease */
0, /* xRollback */
0, /* xShadowName */
0 /* xIntegrity */
};
int rc = sqlite3_create_module(db, "zipfile" , &zipfileModule, 0);
if( rc==SQLITE_OK ) rc = sqlite3_overload_function(db, "zipfile_cds", -1);
if( rc==SQLITE_OK ){
rc = sqlite3_create_function(db, "zipfile", -1, SQLITE_UTF8, 0, 0,
zipfileStep, zipfileFinal
);
}
assert( sizeof(i64)==8 );
assert( sizeof(u32)==4 );
assert( sizeof(u16)==2 );
assert( sizeof(u8)==1 );
return rc;
}
#else /* SQLITE_OMIT_VIRTUALTABLE */
# define zipfileRegister(x) SQLITE_OK
#endif
#ifdef _WIN32
#endif
int sqlite3_zipfile_init(
sqlite3 *db,
char **pzErrMsg,
const sqlite3_api_routines *pApi
){
SQLITE_EXTENSION_INIT2(pApi);
(void)pzErrMsg; /* Unused parameter */
return zipfileRegister(db);
}
/************************* End ../ext/misc/zipfile.c ********************/
/************************* Begin ../ext/misc/sqlar.c ******************/
/*
** 2017-12-17
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
******************************************************************************
**
** Utility functions sqlar_compress() and sqlar_uncompress(). Useful
** for working with sqlar archives and used by the shell tool's built-in
** sqlar support.
*/
/* #include "sqlite3ext.h" */
SQLITE_EXTENSION_INIT1
#include <zlib.h>
#include <assert.h>
/*
** Implementation of the "sqlar_compress(X)" SQL function.
**
** If the type of X is SQLITE_BLOB, and compressing that blob using
** zlib utility function compress() yields a smaller blob, return the
** compressed blob. Otherwise, return a copy of X.
**
** SQLar uses the "zlib format" for compressed content. The zlib format
** contains a two-byte identification header and a four-byte checksum at
** the end. This is different from ZIP which uses the raw deflate format.
**
** Future enhancements to SQLar might add support for new compression formats.
** If so, those new formats will be identified by alternative headers in the
** compressed data.
*/
static void sqlarCompressFunc(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
assert( argc==1 );
if( sqlite3_value_type(argv[0])==SQLITE_BLOB ){
const Bytef *pData = sqlite3_value_blob(argv[0]);
uLong nData = sqlite3_value_bytes(argv[0]);
uLongf nOut = compressBound(nData);
Bytef *pOut;
pOut = (Bytef*)sqlite3_malloc(nOut);
if( pOut==0 ){
sqlite3_result_error_nomem(context);
return;
}else{
if( Z_OK!=compress(pOut, &nOut, pData, nData) ){
sqlite3_result_error(context, "error in compress()", -1);
}else if( nOut<nData ){
sqlite3_result_blob(context, pOut, nOut, SQLITE_TRANSIENT);
}else{
sqlite3_result_value(context, argv[0]);
}
sqlite3_free(pOut);
}
}else{
sqlite3_result_value(context, argv[0]);
}
}
/*
** Implementation of the "sqlar_uncompress(X,SZ)" SQL function
**
** Parameter SZ is interpreted as an integer. If it is less than or
** equal to zero, then this function returns a copy of X. Or, if
** SZ is equal to the size of X when interpreted as a blob, also
** return a copy of X. Otherwise, decompress blob X using zlib
** utility function uncompress() and return the results (another
** blob).
*/
static void sqlarUncompressFunc(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
uLong nData;
sqlite3_int64 sz;
assert( argc==2 );
sz = sqlite3_value_int(argv[1]);
if( sz<=0 || sz==(nData = sqlite3_value_bytes(argv[0])) ){
sqlite3_result_value(context, argv[0]);
}else{
uLongf szf = sz;
const Bytef *pData= sqlite3_value_blob(argv[0]);
Bytef *pOut = sqlite3_malloc(sz);
if( pOut==0 ){
sqlite3_result_error_nomem(context);
}else if( Z_OK!=uncompress(pOut, &szf, pData, nData) ){
sqlite3_result_error(context, "error in uncompress()", -1);
}else{
sqlite3_result_blob(context, pOut, szf, SQLITE_TRANSIENT);
}
sqlite3_free(pOut);
}
}
#ifdef _WIN32
#endif
int sqlite3_sqlar_init(
sqlite3 *db,
char **pzErrMsg,
const sqlite3_api_routines *pApi
){
int rc = SQLITE_OK;
SQLITE_EXTENSION_INIT2(pApi);
(void)pzErrMsg; /* Unused parameter */
rc = sqlite3_create_function(db, "sqlar_compress", 1,
SQLITE_UTF8|SQLITE_INNOCUOUS, 0,
sqlarCompressFunc, 0, 0);
if( rc==SQLITE_OK ){
rc = sqlite3_create_function(db, "sqlar_uncompress", 2,
SQLITE_UTF8|SQLITE_INNOCUOUS, 0,
sqlarUncompressFunc, 0, 0);
}
return rc;
}
/************************* End ../ext/misc/sqlar.c ********************/
#endif
/************************* Begin ../ext/expert/sqlite3expert.h ******************/
/*
** 2017 April 07
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
*/
#if !defined(SQLITEEXPERT_H)
#define SQLITEEXPERT_H 1
/* #include "sqlite3.h" */
typedef struct sqlite3expert sqlite3expert;
/*
** Create a new sqlite3expert object.
**
** If successful, a pointer to the new object is returned and (*pzErr) set
** to NULL. Or, if an error occurs, NULL is returned and (*pzErr) set to
** an English-language error message. In this case it is the responsibility
** of the caller to eventually free the error message buffer using
** sqlite3_free().
*/
sqlite3expert *sqlite3_expert_new(sqlite3 *db, char **pzErr);
/*
** Configure an sqlite3expert object.
**
** EXPERT_CONFIG_SAMPLE:
** By default, sqlite3_expert_analyze() generates sqlite_stat1 data for
** each candidate index. This involves scanning and sorting the entire
** contents of each user database table once for each candidate index
** associated with the table. For large databases, this can be
** prohibitively slow. This option allows the sqlite3expert object to
** be configured so that sqlite_stat1 data is instead generated based on a
** subset of each table, or so that no sqlite_stat1 data is used at all.
**
** A single integer argument is passed to this option. If the value is less
** than or equal to zero, then no sqlite_stat1 data is generated or used by
** the analysis - indexes are recommended based on the database schema only.
** Or, if the value is 100 or greater, complete sqlite_stat1 data is
** generated for each candidate index (this is the default). Finally, if the
** value falls between 0 and 100, then it represents the percentage of user
** table rows that should be considered when generating sqlite_stat1 data.
**
** Examples:
**
** // Do not generate any sqlite_stat1 data
** sqlite3_expert_config(pExpert, EXPERT_CONFIG_SAMPLE, 0);
**
** // Generate sqlite_stat1 data based on 10% of the rows in each table.
** sqlite3_expert_config(pExpert, EXPERT_CONFIG_SAMPLE, 10);
*/
int sqlite3_expert_config(sqlite3expert *p, int op, ...);
#define EXPERT_CONFIG_SAMPLE 1 /* int */
/*
** Specify zero or more SQL statements to be included in the analysis.
**
** Buffer zSql must contain zero or more complete SQL statements. This
** function parses all statements contained in the buffer and adds them
** to the internal list of statements to analyze. If successful, SQLITE_OK
** is returned and (*pzErr) set to NULL. Or, if an error occurs - for example
** due to a error in the SQL - an SQLite error code is returned and (*pzErr)
** may be set to point to an English language error message. In this case
** the caller is responsible for eventually freeing the error message buffer
** using sqlite3_free().
**
** If an error does occur while processing one of the statements in the
** buffer passed as the second argument, none of the statements in the
** buffer are added to the analysis.
**
** This function must be called before sqlite3_expert_analyze(). If a call
** to this function is made on an sqlite3expert object that has already
** been passed to sqlite3_expert_analyze() SQLITE_MISUSE is returned
** immediately and no statements are added to the analysis.
*/
int sqlite3_expert_sql(
sqlite3expert *p, /* From a successful sqlite3_expert_new() */
const char *zSql, /* SQL statement(s) to add */
char **pzErr /* OUT: Error message (if any) */
);
/*
** This function is called after the sqlite3expert object has been configured
** with all SQL statements using sqlite3_expert_sql() to actually perform
** the analysis. Once this function has been called, it is not possible to
** add further SQL statements to the analysis.
**
** If successful, SQLITE_OK is returned and (*pzErr) is set to NULL. Or, if
** an error occurs, an SQLite error code is returned and (*pzErr) set to
** point to a buffer containing an English language error message. In this
** case it is the responsibility of the caller to eventually free the buffer
** using sqlite3_free().
**
** If an error does occur within this function, the sqlite3expert object
** is no longer useful for any purpose. At that point it is no longer
** possible to add further SQL statements to the object or to re-attempt
** the analysis. The sqlite3expert object must still be freed using a call
** sqlite3_expert_destroy().
*/
int sqlite3_expert_analyze(sqlite3expert *p, char **pzErr);
/*
** Return the total number of statements loaded using sqlite3_expert_sql().
** The total number of SQL statements may be different from the total number
** to calls to sqlite3_expert_sql().
*/
int sqlite3_expert_count(sqlite3expert*);
/*
** Return a component of the report.
**
** This function is called after sqlite3_expert_analyze() to extract the
** results of the analysis. Each call to this function returns either a
** NULL pointer or a pointer to a buffer containing a nul-terminated string.
** The value passed as the third argument must be one of the EXPERT_REPORT_*
** #define constants defined below.
**
** For some EXPERT_REPORT_* parameters, the buffer returned contains
** information relating to a specific SQL statement. In these cases that
** SQL statement is identified by the value passed as the second argument.
** SQL statements are numbered from 0 in the order in which they are parsed.
** If an out-of-range value (less than zero or equal to or greater than the
** value returned by sqlite3_expert_count()) is passed as the second argument
** along with such an EXPERT_REPORT_* parameter, NULL is always returned.
**
** EXPERT_REPORT_SQL:
** Return the text of SQL statement iStmt.
**
** EXPERT_REPORT_INDEXES:
** Return a buffer containing the CREATE INDEX statements for all recommended
** indexes for statement iStmt. If there are no new recommeded indexes, NULL
** is returned.
**
** EXPERT_REPORT_PLAN:
** Return a buffer containing the EXPLAIN QUERY PLAN output for SQL query
** iStmt after the proposed indexes have been added to the database schema.
**
** EXPERT_REPORT_CANDIDATES:
** Return a pointer to a buffer containing the CREATE INDEX statements
** for all indexes that were tested (for all SQL statements). The iStmt
** parameter is ignored for EXPERT_REPORT_CANDIDATES calls.
*/
const char *sqlite3_expert_report(sqlite3expert*, int iStmt, int eReport);
/*
** Values for the third argument passed to sqlite3_expert_report().
*/
#define EXPERT_REPORT_SQL 1
#define EXPERT_REPORT_INDEXES 2
#define EXPERT_REPORT_PLAN 3
#define EXPERT_REPORT_CANDIDATES 4
/*
** Free an (sqlite3expert*) handle and all associated resources. There
** should be one call to this function for each successful call to
** sqlite3-expert_new().
*/
void sqlite3_expert_destroy(sqlite3expert*);
#endif /* !defined(SQLITEEXPERT_H) */
/************************* End ../ext/expert/sqlite3expert.h ********************/
/************************* Begin ../ext/expert/sqlite3expert.c ******************/
/*
** 2017 April 09
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
*/
/* #include "sqlite3expert.h" */
#include <assert.h>
#include <string.h>
#include <stdio.h>
#if !defined(SQLITE_AMALGAMATION)
#if defined(SQLITE_COVERAGE_TEST) || defined(SQLITE_MUTATION_TEST)
# define SQLITE_OMIT_AUXILIARY_SAFETY_CHECKS 1
#endif
#if defined(SQLITE_OMIT_AUXILIARY_SAFETY_CHECKS)
# define ALWAYS(X) (1)
# define NEVER(X) (0)
#elif !defined(NDEBUG)
# define ALWAYS(X) ((X)?1:(assert(0),0))
# define NEVER(X) ((X)?(assert(0),1):0)
#else
# define ALWAYS(X) (X)
# define NEVER(X) (X)
#endif
#endif /* !defined(SQLITE_AMALGAMATION) */
#ifndef SQLITE_OMIT_VIRTUALTABLE
/* typedef sqlite3_int64 i64; */
/* typedef sqlite3_uint64 u64; */
typedef struct IdxColumn IdxColumn;
typedef struct IdxConstraint IdxConstraint;
typedef struct IdxScan IdxScan;
typedef struct IdxStatement IdxStatement;
typedef struct IdxTable IdxTable;
typedef struct IdxWrite IdxWrite;
#define STRLEN (int)strlen
/*
** A temp table name that we assume no user database will actually use.
** If this assumption proves incorrect triggers on the table with the
** conflicting name will be ignored.
*/
#define UNIQUE_TABLE_NAME "t592690916721053953805701627921227776"
/*
** A single constraint. Equivalent to either "col = ?" or "col < ?" (or
** any other type of single-ended range constraint on a column).
**
** pLink:
** Used to temporarily link IdxConstraint objects into lists while
** creating candidate indexes.
*/
struct IdxConstraint {
char *zColl; /* Collation sequence */
int bRange; /* True for range, false for eq */
int iCol; /* Constrained table column */
int bFlag; /* Used by idxFindCompatible() */
int bDesc; /* True if ORDER BY <expr> DESC */
IdxConstraint *pNext; /* Next constraint in pEq or pRange list */
IdxConstraint *pLink; /* See above */
};
/*
** A single scan of a single table.
*/
struct IdxScan {
IdxTable *pTab; /* Associated table object */
int iDb; /* Database containing table zTable */
i64 covering; /* Mask of columns required for cov. index */
IdxConstraint *pOrder; /* ORDER BY columns */
IdxConstraint *pEq; /* List of == constraints */
IdxConstraint *pRange; /* List of < constraints */
IdxScan *pNextScan; /* Next IdxScan object for same analysis */
};
/*
** Information regarding a single database table. Extracted from
** "PRAGMA table_info" by function idxGetTableInfo().
*/
struct IdxColumn {
char *zName;
char *zColl;
int iPk;
};
struct IdxTable {
int nCol;
char *zName; /* Table name */
IdxColumn *aCol;
IdxTable *pNext; /* Next table in linked list of all tables */
};
/*
** An object of the following type is created for each unique table/write-op
** seen. The objects are stored in a singly-linked list beginning at
** sqlite3expert.pWrite.
*/
struct IdxWrite {
IdxTable *pTab;
int eOp; /* SQLITE_UPDATE, DELETE or INSERT */
IdxWrite *pNext;
};
/*
** Each statement being analyzed is represented by an instance of this
** structure.
*/
struct IdxStatement {
int iId; /* Statement number */
char *zSql; /* SQL statement */
char *zIdx; /* Indexes */
char *zEQP; /* Plan */
IdxStatement *pNext;
};
/*
** A hash table for storing strings. With space for a payload string
** with each entry. Methods are:
**
** idxHashInit()
** idxHashClear()
** idxHashAdd()
** idxHashSearch()
*/
#define IDX_HASH_SIZE 1023
typedef struct IdxHashEntry IdxHashEntry;
typedef struct IdxHash IdxHash;
struct IdxHashEntry {
char *zKey; /* nul-terminated key */
char *zVal; /* nul-terminated value string */
char *zVal2; /* nul-terminated value string 2 */
IdxHashEntry *pHashNext; /* Next entry in same hash bucket */
IdxHashEntry *pNext; /* Next entry in hash */
};
struct IdxHash {
IdxHashEntry *pFirst;
IdxHashEntry *aHash[IDX_HASH_SIZE];
};
/*
** sqlite3expert object.
*/
struct sqlite3expert {
int iSample; /* Percentage of tables to sample for stat1 */
sqlite3 *db; /* User database */
sqlite3 *dbm; /* In-memory db for this analysis */
sqlite3 *dbv; /* Vtab schema for this analysis */
IdxTable *pTable; /* List of all IdxTable objects */
IdxScan *pScan; /* List of scan objects */
IdxWrite *pWrite; /* List of write objects */
IdxStatement *pStatement; /* List of IdxStatement objects */
int bRun; /* True once analysis has run */
char **pzErrmsg;
int rc; /* Error code from whereinfo hook */
IdxHash hIdx; /* Hash containing all candidate indexes */
char *zCandidates; /* For EXPERT_REPORT_CANDIDATES */
};
/*
** Allocate and return nByte bytes of zeroed memory using sqlite3_malloc().
** If the allocation fails, set *pRc to SQLITE_NOMEM and return NULL.
*/
static void *idxMalloc(int *pRc, int nByte){
void *pRet;
assert( *pRc==SQLITE_OK );
assert( nByte>0 );
pRet = sqlite3_malloc(nByte);
if( pRet ){
memset(pRet, 0, nByte);
}else{
*pRc = SQLITE_NOMEM;
}
return pRet;
}
/*
** Initialize an IdxHash hash table.
*/
static void idxHashInit(IdxHash *pHash){
memset(pHash, 0, sizeof(IdxHash));
}
/*
** Reset an IdxHash hash table.
*/
static void idxHashClear(IdxHash *pHash){
int i;
for(i=0; i<IDX_HASH_SIZE; i++){
IdxHashEntry *pEntry;
IdxHashEntry *pNext;
for(pEntry=pHash->aHash[i]; pEntry; pEntry=pNext){
pNext = pEntry->pHashNext;
sqlite3_free(pEntry->zVal2);
sqlite3_free(pEntry);
}
}
memset(pHash, 0, sizeof(IdxHash));
}
/*
** Return the index of the hash bucket that the string specified by the
** arguments to this function belongs.
*/
static int idxHashString(const char *z, int n){
unsigned int ret = 0;
int i;
for(i=0; i<n; i++){
ret += (ret<<3) + (unsigned char)(z[i]);
}
return (int)(ret % IDX_HASH_SIZE);
}
/*
** If zKey is already present in the hash table, return non-zero and do
** nothing. Otherwise, add an entry with key zKey and payload string zVal to
** the hash table passed as the second argument.
*/
static int idxHashAdd(
int *pRc,
IdxHash *pHash,
const char *zKey,
const char *zVal
){
int nKey = STRLEN(zKey);
int iHash = idxHashString(zKey, nKey);
int nVal = (zVal ? STRLEN(zVal) : 0);
IdxHashEntry *pEntry;
assert( iHash>=0 );
for(pEntry=pHash->aHash[iHash]; pEntry; pEntry=pEntry->pHashNext){
if( STRLEN(pEntry->zKey)==nKey && 0==memcmp(pEntry->zKey, zKey, nKey) ){
return 1;
}
}
pEntry = idxMalloc(pRc, sizeof(IdxHashEntry) + nKey+1 + nVal+1);
if( pEntry ){
pEntry->zKey = (char*)&pEntry[1];
memcpy(pEntry->zKey, zKey, nKey);
if( zVal ){
pEntry->zVal = &pEntry->zKey[nKey+1];
memcpy(pEntry->zVal, zVal, nVal);
}
pEntry->pHashNext = pHash->aHash[iHash];
pHash->aHash[iHash] = pEntry;
pEntry->pNext = pHash->pFirst;
pHash->pFirst = pEntry;
}
return 0;
}
/*
** If zKey/nKey is present in the hash table, return a pointer to the
** hash-entry object.
*/
static IdxHashEntry *idxHashFind(IdxHash *pHash, const char *zKey, int nKey){
int iHash;
IdxHashEntry *pEntry;
if( nKey<0 ) nKey = STRLEN(zKey);
iHash = idxHashString(zKey, nKey);
assert( iHash>=0 );
for(pEntry=pHash->aHash[iHash]; pEntry; pEntry=pEntry->pHashNext){
if( STRLEN(pEntry->zKey)==nKey && 0==memcmp(pEntry->zKey, zKey, nKey) ){
return pEntry;
}
}
return 0;
}
/*
** If the hash table contains an entry with a key equal to the string
** passed as the final two arguments to this function, return a pointer
** to the payload string. Otherwise, if zKey/nKey is not present in the
** hash table, return NULL.
*/
static const char *idxHashSearch(IdxHash *pHash, const char *zKey, int nKey){
IdxHashEntry *pEntry = idxHashFind(pHash, zKey, nKey);
if( pEntry ) return pEntry->zVal;
return 0;
}
/*
** Allocate and return a new IdxConstraint object. Set the IdxConstraint.zColl
** variable to point to a copy of nul-terminated string zColl.
*/
static IdxConstraint *idxNewConstraint(int *pRc, const char *zColl){
IdxConstraint *pNew;
int nColl = STRLEN(zColl);
assert( *pRc==SQLITE_OK );
pNew = (IdxConstraint*)idxMalloc(pRc, sizeof(IdxConstraint) * nColl + 1);
if( pNew ){
pNew->zColl = (char*)&pNew[1];
memcpy(pNew->zColl, zColl, nColl+1);
}
return pNew;
}
/*
** An error associated with database handle db has just occurred. Pass
** the error message to callback function xOut.
*/
static void idxDatabaseError(
sqlite3 *db, /* Database handle */
char **pzErrmsg /* Write error here */
){
*pzErrmsg = sqlite3_mprintf("%s", sqlite3_errmsg(db));
}
/*
** Prepare an SQL statement.
*/
static int idxPrepareStmt(
sqlite3 *db, /* Database handle to compile against */
sqlite3_stmt **ppStmt, /* OUT: Compiled SQL statement */
char **pzErrmsg, /* OUT: sqlite3_malloc()ed error message */
const char *zSql /* SQL statement to compile */
){
int rc = sqlite3_prepare_v2(db, zSql, -1, ppStmt, 0);
if( rc!=SQLITE_OK ){
*ppStmt = 0;
idxDatabaseError(db, pzErrmsg);
}
return rc;
}
/*
** Prepare an SQL statement using the results of a printf() formatting.
*/
static int idxPrintfPrepareStmt(
sqlite3 *db, /* Database handle to compile against */
sqlite3_stmt **ppStmt, /* OUT: Compiled SQL statement */
char **pzErrmsg, /* OUT: sqlite3_malloc()ed error message */
const char *zFmt, /* printf() format of SQL statement */
... /* Trailing printf() arguments */
){
va_list ap;
int rc;
char *zSql;
va_start(ap, zFmt);
zSql = sqlite3_vmprintf(zFmt, ap);
if( zSql==0 ){
rc = SQLITE_NOMEM;
}else{
rc = idxPrepareStmt(db, ppStmt, pzErrmsg, zSql);
sqlite3_free(zSql);
}
va_end(ap);
return rc;
}
/*************************************************************************
** Beginning of virtual table implementation.
*/
typedef struct ExpertVtab ExpertVtab;
struct ExpertVtab {
sqlite3_vtab base;
IdxTable *pTab;
sqlite3expert *pExpert;
};
typedef struct ExpertCsr ExpertCsr;
struct ExpertCsr {
sqlite3_vtab_cursor base;
sqlite3_stmt *pData;
};
static char *expertDequote(const char *zIn){
int n = STRLEN(zIn);
char *zRet = sqlite3_malloc(n);
assert( zIn[0]=='\'' );
assert( zIn[n-1]=='\'' );
if( zRet ){
int iOut = 0;
int iIn = 0;
for(iIn=1; iIn<(n-1); iIn++){
if( zIn[iIn]=='\'' ){
assert( zIn[iIn+1]=='\'' );
iIn++;
}
zRet[iOut++] = zIn[iIn];
}
zRet[iOut] = '\0';
}
return zRet;
}
/*
** This function is the implementation of both the xConnect and xCreate
** methods of the r-tree virtual table.
**
** argv[0] -> module name
** argv[1] -> database name
** argv[2] -> table name
** argv[...] -> column names...
*/
static int expertConnect(
sqlite3 *db,
void *pAux,
int argc, const char *const*argv,
sqlite3_vtab **ppVtab,
char **pzErr
){
sqlite3expert *pExpert = (sqlite3expert*)pAux;
ExpertVtab *p = 0;
int rc;
if( argc!=4 ){
*pzErr = sqlite3_mprintf("internal error!");
rc = SQLITE_ERROR;
}else{
char *zCreateTable = expertDequote(argv[3]);
if( zCreateTable ){
rc = sqlite3_declare_vtab(db, zCreateTable);
if( rc==SQLITE_OK ){
p = idxMalloc(&rc, sizeof(ExpertVtab));
}
if( rc==SQLITE_OK ){
p->pExpert = pExpert;
p->pTab = pExpert->pTable;
assert( sqlite3_stricmp(p->pTab->zName, argv[2])==0 );
}
sqlite3_free(zCreateTable);
}else{
rc = SQLITE_NOMEM;
}
}
*ppVtab = (sqlite3_vtab*)p;
return rc;
}
static int expertDisconnect(sqlite3_vtab *pVtab){
ExpertVtab *p = (ExpertVtab*)pVtab;
sqlite3_free(p);
return SQLITE_OK;
}
static int expertBestIndex(sqlite3_vtab *pVtab, sqlite3_index_info *pIdxInfo){
ExpertVtab *p = (ExpertVtab*)pVtab;
int rc = SQLITE_OK;
int n = 0;
IdxScan *pScan;
const int opmask =
SQLITE_INDEX_CONSTRAINT_EQ | SQLITE_INDEX_CONSTRAINT_GT |
SQLITE_INDEX_CONSTRAINT_LT | SQLITE_INDEX_CONSTRAINT_GE |
SQLITE_INDEX_CONSTRAINT_LE;
pScan = idxMalloc(&rc, sizeof(IdxScan));
if( pScan ){
int i;
/* Link the new scan object into the list */
pScan->pTab = p->pTab;
pScan->pNextScan = p->pExpert->pScan;
p->pExpert->pScan = pScan;
/* Add the constraints to the IdxScan object */
for(i=0; i<pIdxInfo->nConstraint; i++){
struct sqlite3_index_constraint *pCons = &pIdxInfo->aConstraint[i];
if( pCons->usable
&& pCons->iColumn>=0
&& p->pTab->aCol[pCons->iColumn].iPk==0
&& (pCons->op & opmask)
){
IdxConstraint *pNew;
const char *zColl = sqlite3_vtab_collation(pIdxInfo, i);
pNew = idxNewConstraint(&rc, zColl);
if( pNew ){
pNew->iCol = pCons->iColumn;
if( pCons->op==SQLITE_INDEX_CONSTRAINT_EQ ){
pNew->pNext = pScan->pEq;
pScan->pEq = pNew;
}else{
pNew->bRange = 1;
pNew->pNext = pScan->pRange;
pScan->pRange = pNew;
}
}
n++;
pIdxInfo->aConstraintUsage[i].argvIndex = n;
}
}
/* Add the ORDER BY to the IdxScan object */
for(i=pIdxInfo->nOrderBy-1; i>=0; i--){
int iCol = pIdxInfo->aOrderBy[i].iColumn;
if( iCol>=0 ){
IdxConstraint *pNew = idxNewConstraint(&rc, p->pTab->aCol[iCol].zColl);
if( pNew ){
pNew->iCol = iCol;
pNew->bDesc = pIdxInfo->aOrderBy[i].desc;
pNew->pNext = pScan->pOrder;
pNew->pLink = pScan->pOrder;
pScan->pOrder = pNew;
n++;
}
}
}
}
pIdxInfo->estimatedCost = 1000000.0 / (n+1);
return rc;
}
static int expertUpdate(
sqlite3_vtab *pVtab,
int nData,
sqlite3_value **azData,
sqlite_int64 *pRowid
){
(void)pVtab;
(void)nData;
(void)azData;
(void)pRowid;
return SQLITE_OK;
}
/*
** Virtual table module xOpen method.
*/
static int expertOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){
int rc = SQLITE_OK;
ExpertCsr *pCsr;
(void)pVTab;
pCsr = idxMalloc(&rc, sizeof(ExpertCsr));
*ppCursor = (sqlite3_vtab_cursor*)pCsr;
return rc;
}
/*
** Virtual table module xClose method.
*/
static int expertClose(sqlite3_vtab_cursor *cur){
ExpertCsr *pCsr = (ExpertCsr*)cur;
sqlite3_finalize(pCsr->pData);
sqlite3_free(pCsr);
return SQLITE_OK;
}
/*
** Virtual table module xEof method.
**
** Return non-zero if the cursor does not currently point to a valid
** record (i.e if the scan has finished), or zero otherwise.
*/
static int expertEof(sqlite3_vtab_cursor *cur){
ExpertCsr *pCsr = (ExpertCsr*)cur;
return pCsr->pData==0;
}
/*
** Virtual table module xNext method.
*/
static int expertNext(sqlite3_vtab_cursor *cur){
ExpertCsr *pCsr = (ExpertCsr*)cur;
int rc = SQLITE_OK;
assert( pCsr->pData );
rc = sqlite3_step(pCsr->pData);
if( rc!=SQLITE_ROW ){
rc = sqlite3_finalize(pCsr->pData);
pCsr->pData = 0;
}else{
rc = SQLITE_OK;
}
return rc;
}
/*
** Virtual table module xRowid method.
*/
static int expertRowid(sqlite3_vtab_cursor *cur, sqlite_int64 *pRowid){
(void)cur;
*pRowid = 0;
return SQLITE_OK;
}
/*
** Virtual table module xColumn method.
*/
static int expertColumn(sqlite3_vtab_cursor *cur, sqlite3_context *ctx, int i){
ExpertCsr *pCsr = (ExpertCsr*)cur;
sqlite3_value *pVal;
pVal = sqlite3_column_value(pCsr->pData, i);
if( pVal ){
sqlite3_result_value(ctx, pVal);
}
return SQLITE_OK;
}
/*
** Virtual table module xFilter method.
*/
static int expertFilter(
sqlite3_vtab_cursor *cur,
int idxNum, const char *idxStr,
int argc, sqlite3_value **argv
){
ExpertCsr *pCsr = (ExpertCsr*)cur;
ExpertVtab *pVtab = (ExpertVtab*)(cur->pVtab);
sqlite3expert *pExpert = pVtab->pExpert;
int rc;
(void)idxNum;
(void)idxStr;
(void)argc;
(void)argv;
rc = sqlite3_finalize(pCsr->pData);
pCsr->pData = 0;
if( rc==SQLITE_OK ){
rc = idxPrintfPrepareStmt(pExpert->db, &pCsr->pData, &pVtab->base.zErrMsg,
"SELECT * FROM main.%Q WHERE sqlite_expert_sample()", pVtab->pTab->zName
);
}
if( rc==SQLITE_OK ){
rc = expertNext(cur);
}
return rc;
}
static int idxRegisterVtab(sqlite3expert *p){
static sqlite3_module expertModule = {
2, /* iVersion */
expertConnect, /* xCreate - create a table */
expertConnect, /* xConnect - connect to an existing table */
expertBestIndex, /* xBestIndex - Determine search strategy */
expertDisconnect, /* xDisconnect - Disconnect from a table */
expertDisconnect, /* xDestroy - Drop a table */
expertOpen, /* xOpen - open a cursor */
expertClose, /* xClose - close a cursor */
expertFilter, /* xFilter - configure scan constraints */
expertNext, /* xNext - advance a cursor */
expertEof, /* xEof */
expertColumn, /* xColumn - read data */
expertRowid, /* xRowid - read data */
expertUpdate, /* xUpdate - write data */
0, /* xBegin - begin transaction */
0, /* xSync - sync transaction */
0, /* xCommit - commit transaction */
0, /* xRollback - rollback transaction */
0, /* xFindFunction - function overloading */
0, /* xRename - rename the table */
0, /* xSavepoint */
0, /* xRelease */
0, /* xRollbackTo */
0, /* xShadowName */
0, /* xIntegrity */
};
return sqlite3_create_module(p->dbv, "expert", &expertModule, (void*)p);
}
/*
** End of virtual table implementation.
*************************************************************************/
/*
** Finalize SQL statement pStmt. If (*pRc) is SQLITE_OK when this function
** is called, set it to the return value of sqlite3_finalize() before
** returning. Otherwise, discard the sqlite3_finalize() return value.
*/
static void idxFinalize(int *pRc, sqlite3_stmt *pStmt){
int rc = sqlite3_finalize(pStmt);
if( *pRc==SQLITE_OK ) *pRc = rc;
}
/*
** Attempt to allocate an IdxTable structure corresponding to table zTab
** in the main database of connection db. If successful, set (*ppOut) to
** point to the new object and return SQLITE_OK. Otherwise, return an
** SQLite error code and set (*ppOut) to NULL. In this case *pzErrmsg may be
** set to point to an error string.
**
** It is the responsibility of the caller to eventually free either the
** IdxTable object or error message using sqlite3_free().
*/
static int idxGetTableInfo(
sqlite3 *db, /* Database connection to read details from */
const char *zTab, /* Table name */
IdxTable **ppOut, /* OUT: New object (if successful) */
char **pzErrmsg /* OUT: Error message (if not) */
){
sqlite3_stmt *p1 = 0;
int nCol = 0;
int nTab;
int nByte;
IdxTable *pNew = 0;
int rc, rc2;
char *pCsr = 0;
int nPk = 0;
*ppOut = 0;
if( zTab==0 ) return SQLITE_ERROR;
nTab = STRLEN(zTab);
nByte = sizeof(IdxTable) + nTab + 1;
rc = idxPrintfPrepareStmt(db, &p1, pzErrmsg, "PRAGMA table_xinfo=%Q", zTab);
while( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(p1) ){
const char *zCol = (const char*)sqlite3_column_text(p1, 1);
const char *zColSeq = 0;
if( zCol==0 ){
rc = SQLITE_ERROR;
break;
}
nByte += 1 + STRLEN(zCol);
rc = sqlite3_table_column_metadata(
db, "main", zTab, zCol, 0, &zColSeq, 0, 0, 0
);
if( zColSeq==0 ) zColSeq = "binary";
nByte += 1 + STRLEN(zColSeq);
nCol++;
nPk += (sqlite3_column_int(p1, 5)>0);
}
rc2 = sqlite3_reset(p1);
if( rc==SQLITE_OK ) rc = rc2;
nByte += sizeof(IdxColumn) * nCol;
if( rc==SQLITE_OK ){
pNew = idxMalloc(&rc, nByte);
}
if( rc==SQLITE_OK ){
pNew->aCol = (IdxColumn*)&pNew[1];
pNew->nCol = nCol;
pCsr = (char*)&pNew->aCol[nCol];
}
nCol = 0;
while( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(p1) ){
const char *zCol = (const char*)sqlite3_column_text(p1, 1);
const char *zColSeq = 0;
int nCopy;
if( zCol==0 ) continue;
nCopy = STRLEN(zCol) + 1;
pNew->aCol[nCol].zName = pCsr;
pNew->aCol[nCol].iPk = (sqlite3_column_int(p1, 5)==1 && nPk==1);
memcpy(pCsr, zCol, nCopy);
pCsr += nCopy;
rc = sqlite3_table_column_metadata(
db, "main", zTab, zCol, 0, &zColSeq, 0, 0, 0
);
if( rc==SQLITE_OK ){
if( zColSeq==0 ) zColSeq = "binary";
nCopy = STRLEN(zColSeq) + 1;
pNew->aCol[nCol].zColl = pCsr;
memcpy(pCsr, zColSeq, nCopy);
pCsr += nCopy;
}
nCol++;
}
idxFinalize(&rc, p1);
if( rc!=SQLITE_OK ){
sqlite3_free(pNew);
pNew = 0;
}else if( ALWAYS(pNew!=0) ){
pNew->zName = pCsr;
if( ALWAYS(pNew->zName!=0) ) memcpy(pNew->zName, zTab, nTab+1);
}
*ppOut = pNew;
return rc;
}
/*
** This function is a no-op if *pRc is set to anything other than
** SQLITE_OK when it is called.
**
** If *pRc is initially set to SQLITE_OK, then the text specified by
** the printf() style arguments is appended to zIn and the result returned
** in a buffer allocated by sqlite3_malloc(). sqlite3_free() is called on
** zIn before returning.
*/
static char *idxAppendText(int *pRc, char *zIn, const char *zFmt, ...){
va_list ap;
char *zAppend = 0;
char *zRet = 0;
int nIn = zIn ? STRLEN(zIn) : 0;
int nAppend = 0;
va_start(ap, zFmt);
if( *pRc==SQLITE_OK ){
zAppend = sqlite3_vmprintf(zFmt, ap);
if( zAppend ){
nAppend = STRLEN(zAppend);
zRet = (char*)sqlite3_malloc(nIn + nAppend + 1);
}
if( zAppend && zRet ){
if( nIn ) memcpy(zRet, zIn, nIn);
memcpy(&zRet[nIn], zAppend, nAppend+1);
}else{
sqlite3_free(zRet);
zRet = 0;
*pRc = SQLITE_NOMEM;
}
sqlite3_free(zAppend);
sqlite3_free(zIn);
}
va_end(ap);
return zRet;
}
/*
** Return true if zId must be quoted in order to use it as an SQL
** identifier, or false otherwise.
*/
static int idxIdentifierRequiresQuotes(const char *zId){
int i;
int nId = STRLEN(zId);
if( sqlite3_keyword_check(zId, nId) ) return 1;
for(i=0; zId[i]; i++){
if( !(zId[i]=='_')
&& !(zId[i]>='0' && zId[i]<='9')
&& !(zId[i]>='a' && zId[i]<='z')
&& !(zId[i]>='A' && zId[i]<='Z')
){
return 1;
}
}
return 0;
}
/*
** This function appends an index column definition suitable for constraint
** pCons to the string passed as zIn and returns the result.
*/
static char *idxAppendColDefn(
int *pRc, /* IN/OUT: Error code */
char *zIn, /* Column defn accumulated so far */
IdxTable *pTab, /* Table index will be created on */
IdxConstraint *pCons
){
char *zRet = zIn;
IdxColumn *p = &pTab->aCol[pCons->iCol];
if( zRet ) zRet = idxAppendText(pRc, zRet, ", ");
if( idxIdentifierRequiresQuotes(p->zName) ){
zRet = idxAppendText(pRc, zRet, "%Q", p->zName);
}else{
zRet = idxAppendText(pRc, zRet, "%s", p->zName);
}
if( sqlite3_stricmp(p->zColl, pCons->zColl) ){
if( idxIdentifierRequiresQuotes(pCons->zColl) ){
zRet = idxAppendText(pRc, zRet, " COLLATE %Q", pCons->zColl);
}else{
zRet = idxAppendText(pRc, zRet, " COLLATE %s", pCons->zColl);
}
}
if( pCons->bDesc ){
zRet = idxAppendText(pRc, zRet, " DESC");
}
return zRet;
}
/*
** Search database dbm for an index compatible with the one idxCreateFromCons()
** would create from arguments pScan, pEq and pTail. If no error occurs and
** such an index is found, return non-zero. Or, if no such index is found,
** return zero.
**
** If an error occurs, set *pRc to an SQLite error code and return zero.
*/
static int idxFindCompatible(
int *pRc, /* OUT: Error code */
sqlite3* dbm, /* Database to search */
IdxScan *pScan, /* Scan for table to search for index on */
IdxConstraint *pEq, /* List of == constraints */
IdxConstraint *pTail /* List of range constraints */
){
const char *zTbl = pScan->pTab->zName;
sqlite3_stmt *pIdxList = 0;
IdxConstraint *pIter;
int nEq = 0; /* Number of elements in pEq */
int rc;
/* Count the elements in list pEq */
for(pIter=pEq; pIter; pIter=pIter->pLink) nEq++;
rc = idxPrintfPrepareStmt(dbm, &pIdxList, 0, "PRAGMA index_list=%Q", zTbl);
while( rc==SQLITE_OK && sqlite3_step(pIdxList)==SQLITE_ROW ){
int bMatch = 1;
IdxConstraint *pT = pTail;
sqlite3_stmt *pInfo = 0;
const char *zIdx = (const char*)sqlite3_column_text(pIdxList, 1);
if( zIdx==0 ) continue;
/* Zero the IdxConstraint.bFlag values in the pEq list */
for(pIter=pEq; pIter; pIter=pIter->pLink) pIter->bFlag = 0;
rc = idxPrintfPrepareStmt(dbm, &pInfo, 0, "PRAGMA index_xInfo=%Q", zIdx);
while( rc==SQLITE_OK && sqlite3_step(pInfo)==SQLITE_ROW ){
int iIdx = sqlite3_column_int(pInfo, 0);
int iCol = sqlite3_column_int(pInfo, 1);
const char *zColl = (const char*)sqlite3_column_text(pInfo, 4);
if( iIdx<nEq ){
for(pIter=pEq; pIter; pIter=pIter->pLink){
if( pIter->bFlag ) continue;
if( pIter->iCol!=iCol ) continue;
if( sqlite3_stricmp(pIter->zColl, zColl) ) continue;
pIter->bFlag = 1;
break;
}
if( pIter==0 ){
bMatch = 0;
break;
}
}else{
if( pT ){
if( pT->iCol!=iCol || sqlite3_stricmp(pT->zColl, zColl) ){
bMatch = 0;
break;
}
pT = pT->pLink;
}
}
}
idxFinalize(&rc, pInfo);
if( rc==SQLITE_OK && bMatch ){
sqlite3_finalize(pIdxList);
return 1;
}
}
idxFinalize(&rc, pIdxList);
*pRc = rc;
return 0;
}
/* Callback for sqlite3_exec() with query with leading count(*) column.
* The first argument is expected to be an int*, referent to be incremented
* if that leading column is not exactly '0'.
*/
static int countNonzeros(void* pCount, int nc,
char* azResults[], char* azColumns[]){
(void)azColumns; /* Suppress unused parameter warning */
if( nc>0 && (azResults[0][0]!='0' || azResults[0][1]!=0) ){
*((int *)pCount) += 1;
}
return 0;
}
static int idxCreateFromCons(
sqlite3expert *p,
IdxScan *pScan,
IdxConstraint *pEq,
IdxConstraint *pTail
){
sqlite3 *dbm = p->dbm;
int rc = SQLITE_OK;
if( (pEq || pTail) && 0==idxFindCompatible(&rc, dbm, pScan, pEq, pTail) ){
IdxTable *pTab = pScan->pTab;
char *zCols = 0;
char *zIdx = 0;
IdxConstraint *pCons;
unsigned int h = 0;
const char *zFmt;
for(pCons=pEq; pCons; pCons=pCons->pLink){
zCols = idxAppendColDefn(&rc, zCols, pTab, pCons);
}
for(pCons=pTail; pCons; pCons=pCons->pLink){
zCols = idxAppendColDefn(&rc, zCols, pTab, pCons);
}
if( rc==SQLITE_OK ){
/* Hash the list of columns to come up with a name for the index */
const char *zTable = pScan->pTab->zName;
int quoteTable = idxIdentifierRequiresQuotes(zTable);
char *zName = 0; /* Index name */
int collisions = 0;
do{
int i;
char *zFind;
for(i=0; zCols[i]; i++){
h += ((h<<3) + zCols[i]);
}
sqlite3_free(zName);
zName = sqlite3_mprintf("%s_idx_%08x", zTable, h);
if( zName==0 ) break;
/* Is is unique among table, view and index names? */
zFmt = "SELECT count(*) FROM sqlite_schema WHERE name=%Q"
" AND type in ('index','table','view')";
zFind = sqlite3_mprintf(zFmt, zName);
i = 0;
rc = sqlite3_exec(dbm, zFind, countNonzeros, &i, 0);
assert(rc==SQLITE_OK);
sqlite3_free(zFind);
if( i==0 ){
collisions = 0;
break;
}
++collisions;
}while( collisions<50 && zName!=0 );
if( collisions ){
/* This return means "Gave up trying to find a unique index name." */
rc = SQLITE_BUSY_TIMEOUT;
}else if( zName==0 ){
rc = SQLITE_NOMEM;
}else{
if( quoteTable ){
zFmt = "CREATE INDEX \"%w\" ON \"%w\"(%s)";
}else{
zFmt = "CREATE INDEX %s ON %s(%s)";
}
zIdx = sqlite3_mprintf(zFmt, zName, zTable, zCols);
if( !zIdx ){
rc = SQLITE_NOMEM;
}else{
rc = sqlite3_exec(dbm, zIdx, 0, 0, p->pzErrmsg);
if( rc!=SQLITE_OK ){
rc = SQLITE_BUSY_TIMEOUT;
}else{
idxHashAdd(&rc, &p->hIdx, zName, zIdx);
}
}
sqlite3_free(zName);
sqlite3_free(zIdx);
}
}
sqlite3_free(zCols);
}
return rc;
}
/*
** Return true if list pList (linked by IdxConstraint.pLink) contains
** a constraint compatible with *p. Otherwise return false.
*/
static int idxFindConstraint(IdxConstraint *pList, IdxConstraint *p){
IdxConstraint *pCmp;
for(pCmp=pList; pCmp; pCmp=pCmp->pLink){
if( p->iCol==pCmp->iCol ) return 1;
}
return 0;
}
static int idxCreateFromWhere(
sqlite3expert *p,
IdxScan *pScan, /* Create indexes for this scan */
IdxConstraint *pTail /* range/ORDER BY constraints for inclusion */
){
IdxConstraint *p1 = 0;
IdxConstraint *pCon;
int rc;
/* Gather up all the == constraints. */
for(pCon=pScan->pEq; pCon; pCon=pCon->pNext){
if( !idxFindConstraint(p1, pCon) && !idxFindConstraint(pTail, pCon) ){
pCon->pLink = p1;
p1 = pCon;
}
}
/* Create an index using the == constraints collected above. And the
** range constraint/ORDER BY terms passed in by the caller, if any. */
rc = idxCreateFromCons(p, pScan, p1, pTail);
/* If no range/ORDER BY passed by the caller, create a version of the
** index for each range constraint. */
if( pTail==0 ){
for(pCon=pScan->pRange; rc==SQLITE_OK && pCon; pCon=pCon->pNext){
assert( pCon->pLink==0 );
if( !idxFindConstraint(p1, pCon) && !idxFindConstraint(pTail, pCon) ){
rc = idxCreateFromCons(p, pScan, p1, pCon);
}
}
}
return rc;
}
/*
** Create candidate indexes in database [dbm] based on the data in
** linked-list pScan.
*/
static int idxCreateCandidates(sqlite3expert *p){
int rc = SQLITE_OK;
IdxScan *pIter;
for(pIter=p->pScan; pIter && rc==SQLITE_OK; pIter=pIter->pNextScan){
rc = idxCreateFromWhere(p, pIter, 0);
if( rc==SQLITE_OK && pIter->pOrder ){
rc = idxCreateFromWhere(p, pIter, pIter->pOrder);
}
}
return rc;
}
/*
** Free all elements of the linked list starting at pConstraint.
*/
static void idxConstraintFree(IdxConstraint *pConstraint){
IdxConstraint *pNext;
IdxConstraint *p;
for(p=pConstraint; p; p=pNext){
pNext = p->pNext;
sqlite3_free(p);
}
}
/*
** Free all elements of the linked list starting from pScan up until pLast
** (pLast is not freed).
*/
static void idxScanFree(IdxScan *pScan, IdxScan *pLast){
IdxScan *p;
IdxScan *pNext;
for(p=pScan; p!=pLast; p=pNext){
pNext = p->pNextScan;
idxConstraintFree(p->pOrder);
idxConstraintFree(p->pEq);
idxConstraintFree(p->pRange);
sqlite3_free(p);
}
}
/*
** Free all elements of the linked list starting from pStatement up
** until pLast (pLast is not freed).
*/
static void idxStatementFree(IdxStatement *pStatement, IdxStatement *pLast){
IdxStatement *p;
IdxStatement *pNext;
for(p=pStatement; p!=pLast; p=pNext){
pNext = p->pNext;
sqlite3_free(p->zEQP);
sqlite3_free(p->zIdx);
sqlite3_free(p);
}
}
/*
** Free the linked list of IdxTable objects starting at pTab.
*/
static void idxTableFree(IdxTable *pTab){
IdxTable *pIter;
IdxTable *pNext;
for(pIter=pTab; pIter; pIter=pNext){
pNext = pIter->pNext;
sqlite3_free(pIter);
}
}
/*
** Free the linked list of IdxWrite objects starting at pTab.
*/
static void idxWriteFree(IdxWrite *pTab){
IdxWrite *pIter;
IdxWrite *pNext;
for(pIter=pTab; pIter; pIter=pNext){
pNext = pIter->pNext;
sqlite3_free(pIter);
}
}
/*
** This function is called after candidate indexes have been created. It
** runs all the queries to see which indexes they prefer, and populates
** IdxStatement.zIdx and IdxStatement.zEQP with the results.
*/
static int idxFindIndexes(
sqlite3expert *p,
char **pzErr /* OUT: Error message (sqlite3_malloc) */
){
IdxStatement *pStmt;
sqlite3 *dbm = p->dbm;
int rc = SQLITE_OK;
IdxHash hIdx;
idxHashInit(&hIdx);
for(pStmt=p->pStatement; rc==SQLITE_OK && pStmt; pStmt=pStmt->pNext){
IdxHashEntry *pEntry;
sqlite3_stmt *pExplain = 0;
idxHashClear(&hIdx);
rc = idxPrintfPrepareStmt(dbm, &pExplain, pzErr,
"EXPLAIN QUERY PLAN %s", pStmt->zSql
);
while( rc==SQLITE_OK && sqlite3_step(pExplain)==SQLITE_ROW ){
/* int iId = sqlite3_column_int(pExplain, 0); */
/* int iParent = sqlite3_column_int(pExplain, 1); */
/* int iNotUsed = sqlite3_column_int(pExplain, 2); */
const char *zDetail = (const char*)sqlite3_column_text(pExplain, 3);
int nDetail;
int i;
if( !zDetail ) continue;
nDetail = STRLEN(zDetail);
for(i=0; i<nDetail; i++){
const char *zIdx = 0;
if( i+13<nDetail && memcmp(&zDetail[i], " USING INDEX ", 13)==0 ){
zIdx = &zDetail[i+13];
}else if( i+22<nDetail
&& memcmp(&zDetail[i], " USING COVERING INDEX ", 22)==0
){
zIdx = &zDetail[i+22];
}
if( zIdx ){
const char *zSql;
int nIdx = 0;
while( zIdx[nIdx]!='\0' && (zIdx[nIdx]!=' ' || zIdx[nIdx+1]!='(') ){
nIdx++;
}
zSql = idxHashSearch(&p->hIdx, zIdx, nIdx);
if( zSql ){
idxHashAdd(&rc, &hIdx, zSql, 0);
if( rc ) goto find_indexes_out;
}
break;
}
}
if( zDetail[0]!='-' ){
pStmt->zEQP = idxAppendText(&rc, pStmt->zEQP, "%s\n", zDetail);
}
}
for(pEntry=hIdx.pFirst; pEntry; pEntry=pEntry->pNext){
pStmt->zIdx = idxAppendText(&rc, pStmt->zIdx, "%s;\n", pEntry->zKey);
}
idxFinalize(&rc, pExplain);
}
find_indexes_out:
idxHashClear(&hIdx);
return rc;
}
static int idxAuthCallback(
void *pCtx,
int eOp,
const char *z3,
const char *z4,
const char *zDb,
const char *zTrigger
){
int rc = SQLITE_OK;
(void)z4;
(void)zTrigger;
if( eOp==SQLITE_INSERT || eOp==SQLITE_UPDATE || eOp==SQLITE_DELETE ){
if( sqlite3_stricmp(zDb, "main")==0 ){
sqlite3expert *p = (sqlite3expert*)pCtx;
IdxTable *pTab;
for(pTab=p->pTable; pTab; pTab=pTab->pNext){
if( 0==sqlite3_stricmp(z3, pTab->zName) ) break;
}
if( pTab ){
IdxWrite *pWrite;
for(pWrite=p->pWrite; pWrite; pWrite=pWrite->pNext){
if( pWrite->pTab==pTab && pWrite->eOp==eOp ) break;
}
if( pWrite==0 ){
pWrite = idxMalloc(&rc, sizeof(IdxWrite));
if( rc==SQLITE_OK ){
pWrite->pTab = pTab;
pWrite->eOp = eOp;
pWrite->pNext = p->pWrite;
p->pWrite = pWrite;
}
}
}
}
}
return rc;
}
static int idxProcessOneTrigger(
sqlite3expert *p,
IdxWrite *pWrite,
char **pzErr
){
static const char *zInt = UNIQUE_TABLE_NAME;
static const char *zDrop = "DROP TABLE " UNIQUE_TABLE_NAME;
IdxTable *pTab = pWrite->pTab;
const char *zTab = pTab->zName;
const char *zSql =
"SELECT 'CREATE TEMP' || substr(sql, 7) FROM sqlite_schema "
"WHERE tbl_name = %Q AND type IN ('table', 'trigger') "
"ORDER BY type;";
sqlite3_stmt *pSelect = 0;
int rc = SQLITE_OK;
char *zWrite = 0;
/* Create the table and its triggers in the temp schema */
rc = idxPrintfPrepareStmt(p->db, &pSelect, pzErr, zSql, zTab, zTab);
while( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pSelect) ){
const char *zCreate = (const char*)sqlite3_column_text(pSelect, 0);
if( zCreate==0 ) continue;
rc = sqlite3_exec(p->dbv, zCreate, 0, 0, pzErr);
}
idxFinalize(&rc, pSelect);
/* Rename the table in the temp schema to zInt */
if( rc==SQLITE_OK ){
char *z = sqlite3_mprintf("ALTER TABLE temp.%Q RENAME TO %Q", zTab, zInt);
if( z==0 ){
rc = SQLITE_NOMEM;
}else{
rc = sqlite3_exec(p->dbv, z, 0, 0, pzErr);
sqlite3_free(z);
}
}
switch( pWrite->eOp ){
case SQLITE_INSERT: {
int i;
zWrite = idxAppendText(&rc, zWrite, "INSERT INTO %Q VALUES(", zInt);
for(i=0; i<pTab->nCol; i++){
zWrite = idxAppendText(&rc, zWrite, "%s?", i==0 ? "" : ", ");
}
zWrite = idxAppendText(&rc, zWrite, ")");
break;
}
case SQLITE_UPDATE: {
int i;
zWrite = idxAppendText(&rc, zWrite, "UPDATE %Q SET ", zInt);
for(i=0; i<pTab->nCol; i++){
zWrite = idxAppendText(&rc, zWrite, "%s%Q=?", i==0 ? "" : ", ",
pTab->aCol[i].zName
);
}
break;
}
default: {
assert( pWrite->eOp==SQLITE_DELETE );
if( rc==SQLITE_OK ){
zWrite = sqlite3_mprintf("DELETE FROM %Q", zInt);
if( zWrite==0 ) rc = SQLITE_NOMEM;
}
}
}
if( rc==SQLITE_OK ){
sqlite3_stmt *pX = 0;
rc = sqlite3_prepare_v2(p->dbv, zWrite, -1, &pX, 0);
idxFinalize(&rc, pX);
if( rc!=SQLITE_OK ){
idxDatabaseError(p->dbv, pzErr);
}
}
sqlite3_free(zWrite);
if( rc==SQLITE_OK ){
rc = sqlite3_exec(p->dbv, zDrop, 0, 0, pzErr);
}
return rc;
}
static int idxProcessTriggers(sqlite3expert *p, char **pzErr){
int rc = SQLITE_OK;
IdxWrite *pEnd = 0;
IdxWrite *pFirst = p->pWrite;
while( rc==SQLITE_OK && pFirst!=pEnd ){
IdxWrite *pIter;
for(pIter=pFirst; rc==SQLITE_OK && pIter!=pEnd; pIter=pIter->pNext){
rc = idxProcessOneTrigger(p, pIter, pzErr);
}
pEnd = pFirst;
pFirst = p->pWrite;
}
return rc;
}
/*
** This function tests if the schema of the main database of database handle
** db contains an object named zTab. Assuming no error occurs, output parameter
** (*pbContains) is set to true if zTab exists, or false if it does not.
**
** Or, if an error occurs, an SQLite error code is returned. The final value
** of (*pbContains) is undefined in this case.
*/
static int expertDbContainsObject(
sqlite3 *db,
const char *zTab,
int *pbContains /* OUT: True if object exists */
){
const char *zSql = "SELECT 1 FROM sqlite_schema WHERE name = ?";
sqlite3_stmt *pSql = 0;
int rc = SQLITE_OK;
int ret = 0;
rc = sqlite3_prepare_v2(db, zSql, -1, &pSql, 0);
if( rc==SQLITE_OK ){
sqlite3_bind_text(pSql, 1, zTab, -1, SQLITE_STATIC);
if( SQLITE_ROW==sqlite3_step(pSql) ){
ret = 1;
}
rc = sqlite3_finalize(pSql);
}
*pbContains = ret;
return rc;
}
/*
** Execute SQL command zSql using database handle db. If no error occurs,
** set (*pzErr) to NULL and return SQLITE_OK.
**
** If an error does occur, return an SQLite error code and set (*pzErr) to
** point to a buffer containing an English language error message. Except,
** if the error message begins with "no such module:", then ignore the
** error and return as if the SQL statement had succeeded.
**
** This is used to copy as much of the database schema as possible while
** ignoring any errors related to missing virtual table modules.
*/
static int expertSchemaSql(sqlite3 *db, const char *zSql, char **pzErr){
int rc = SQLITE_OK;
char *zErr = 0;
rc = sqlite3_exec(db, zSql, 0, 0, &zErr);
if( rc!=SQLITE_OK && zErr ){
int nErr = STRLEN(zErr);
if( nErr>=15 && memcmp(zErr, "no such module:", 15)==0 ){
sqlite3_free(zErr);
rc = SQLITE_OK;
zErr = 0;
}
}
*pzErr = zErr;
return rc;
}
static int idxCreateVtabSchema(sqlite3expert *p, char **pzErrmsg){
int rc = idxRegisterVtab(p);
sqlite3_stmt *pSchema = 0;
/* For each table in the main db schema:
**
** 1) Add an entry to the p->pTable list, and
** 2) Create the equivalent virtual table in dbv.
*/
rc = idxPrepareStmt(p->db, &pSchema, pzErrmsg,
"SELECT type, name, sql, 1, "
" substr(sql,1,14)=='create virtual' COLLATE nocase "
"FROM sqlite_schema "
"WHERE type IN ('table','view') AND "
" substr(name,1,7)!='sqlite_' COLLATE nocase "
" UNION ALL "
"SELECT type, name, sql, 2, 0 FROM sqlite_schema "
"WHERE type = 'trigger'"
" AND tbl_name IN(SELECT name FROM sqlite_schema WHERE type = 'view') "
"ORDER BY 4, 5 DESC, 1"
);
while( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pSchema) ){
const char *zType = (const char*)sqlite3_column_text(pSchema, 0);
const char *zName = (const char*)sqlite3_column_text(pSchema, 1);
const char *zSql = (const char*)sqlite3_column_text(pSchema, 2);
int bVirtual = sqlite3_column_int(pSchema, 4);
int bExists = 0;
if( zType==0 || zName==0 ) continue;
rc = expertDbContainsObject(p->dbv, zName, &bExists);
if( rc || bExists ) continue;
if( zType[0]=='v' || zType[1]=='r' || bVirtual ){
/* A view. Or a trigger on a view. */
if( zSql ) rc = expertSchemaSql(p->dbv, zSql, pzErrmsg);
}else{
IdxTable *pTab;
rc = idxGetTableInfo(p->db, zName, &pTab, pzErrmsg);
if( rc==SQLITE_OK && ALWAYS(pTab!=0) ){
int i;
char *zInner = 0;
char *zOuter = 0;
pTab->pNext = p->pTable;
p->pTable = pTab;
/* The statement the vtab will pass to sqlite3_declare_vtab() */
zInner = idxAppendText(&rc, 0, "CREATE TABLE x(");
for(i=0; i<pTab->nCol; i++){
zInner = idxAppendText(&rc, zInner, "%s%Q COLLATE %s",
(i==0 ? "" : ", "), pTab->aCol[i].zName, pTab->aCol[i].zColl
);
}
zInner = idxAppendText(&rc, zInner, ")");
/* The CVT statement to create the vtab */
zOuter = idxAppendText(&rc, 0,
"CREATE VIRTUAL TABLE %Q USING expert(%Q)", zName, zInner
);
if( rc==SQLITE_OK ){
rc = sqlite3_exec(p->dbv, zOuter, 0, 0, pzErrmsg);
}
sqlite3_free(zInner);
sqlite3_free(zOuter);
}
}
}
idxFinalize(&rc, pSchema);
return rc;
}
struct IdxSampleCtx {
int iTarget;
double target; /* Target nRet/nRow value */
double nRow; /* Number of rows seen */
double nRet; /* Number of rows returned */
};
static void idxSampleFunc(
sqlite3_context *pCtx,
int argc,
sqlite3_value **argv
){
struct IdxSampleCtx *p = (struct IdxSampleCtx*)sqlite3_user_data(pCtx);
int bRet;
(void)argv;
assert( argc==0 );
if( p->nRow==0.0 ){
bRet = 1;
}else{
bRet = (p->nRet / p->nRow) <= p->target;
if( bRet==0 ){
unsigned short rnd;
sqlite3_randomness(2, (void*)&rnd);
bRet = ((int)rnd % 100) <= p->iTarget;
}
}
sqlite3_result_int(pCtx, bRet);
p->nRow += 1.0;
p->nRet += (double)bRet;
}
struct IdxRemCtx {
int nSlot;
struct IdxRemSlot {
int eType; /* SQLITE_NULL, INTEGER, REAL, TEXT, BLOB */
i64 iVal; /* SQLITE_INTEGER value */
double rVal; /* SQLITE_FLOAT value */
int nByte; /* Bytes of space allocated at z */
int n; /* Size of buffer z */
char *z; /* SQLITE_TEXT/BLOB value */
} aSlot[1];
};
/*
** Implementation of scalar function sqlite_expert_rem().
*/
static void idxRemFunc(
sqlite3_context *pCtx,
int argc,
sqlite3_value **argv
){
struct IdxRemCtx *p = (struct IdxRemCtx*)sqlite3_user_data(pCtx);
struct IdxRemSlot *pSlot;
int iSlot;
assert( argc==2 );
iSlot = sqlite3_value_int(argv[0]);
assert( iSlot<p->nSlot );
pSlot = &p->aSlot[iSlot];
switch( pSlot->eType ){
case SQLITE_NULL:
/* no-op */
break;
case SQLITE_INTEGER:
sqlite3_result_int64(pCtx, pSlot->iVal);
break;
case SQLITE_FLOAT:
sqlite3_result_double(pCtx, pSlot->rVal);
break;
case SQLITE_BLOB:
sqlite3_result_blob(pCtx, pSlot->z, pSlot->n, SQLITE_TRANSIENT);
break;
case SQLITE_TEXT:
sqlite3_result_text(pCtx, pSlot->z, pSlot->n, SQLITE_TRANSIENT);
break;
}
pSlot->eType = sqlite3_value_type(argv[1]);
switch( pSlot->eType ){
case SQLITE_NULL:
/* no-op */
break;
case SQLITE_INTEGER:
pSlot->iVal = sqlite3_value_int64(argv[1]);
break;
case SQLITE_FLOAT:
pSlot->rVal = sqlite3_value_double(argv[1]);
break;
case SQLITE_BLOB:
case SQLITE_TEXT: {
int nByte = sqlite3_value_bytes(argv[1]);
const void *pData = 0;
if( nByte>pSlot->nByte ){
char *zNew = (char*)sqlite3_realloc(pSlot->z, nByte*2);
if( zNew==0 ){
sqlite3_result_error_nomem(pCtx);
return;
}
pSlot->nByte = nByte*2;
pSlot->z = zNew;
}
pSlot->n = nByte;
if( pSlot->eType==SQLITE_BLOB ){
pData = sqlite3_value_blob(argv[1]);
if( pData ) memcpy(pSlot->z, pData, nByte);
}else{
pData = sqlite3_value_text(argv[1]);
memcpy(pSlot->z, pData, nByte);
}
break;
}
}
}
static int idxLargestIndex(sqlite3 *db, int *pnMax, char **pzErr){
int rc = SQLITE_OK;
const char *zMax =
"SELECT max(i.seqno) FROM "
" sqlite_schema AS s, "
" pragma_index_list(s.name) AS l, "
" pragma_index_info(l.name) AS i "
"WHERE s.type = 'table'";
sqlite3_stmt *pMax = 0;
*pnMax = 0;
rc = idxPrepareStmt(db, &pMax, pzErr, zMax);
if( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pMax) ){
*pnMax = sqlite3_column_int(pMax, 0) + 1;
}
idxFinalize(&rc, pMax);
return rc;
}
static int idxPopulateOneStat1(
sqlite3expert *p,
sqlite3_stmt *pIndexXInfo,
sqlite3_stmt *pWriteStat,
const char *zTab,
const char *zIdx,
char **pzErr
){
char *zCols = 0;
char *zOrder = 0;
char *zQuery = 0;
int nCol = 0;
int i;
sqlite3_stmt *pQuery = 0;
int *aStat = 0;
int rc = SQLITE_OK;
assert( p->iSample>0 );
/* Formulate the query text */
sqlite3_bind_text(pIndexXInfo, 1, zIdx, -1, SQLITE_STATIC);
while( SQLITE_OK==rc && SQLITE_ROW==sqlite3_step(pIndexXInfo) ){
const char *zComma = zCols==0 ? "" : ", ";
const char *zName = (const char*)sqlite3_column_text(pIndexXInfo, 0);
const char *zColl = (const char*)sqlite3_column_text(pIndexXInfo, 1);
if( zName==0 ){
/* This index contains an expression. Ignore it. */
sqlite3_free(zCols);
sqlite3_free(zOrder);
return sqlite3_reset(pIndexXInfo);
}
zCols = idxAppendText(&rc, zCols,
"%sx.%Q IS sqlite_expert_rem(%d, x.%Q) COLLATE %s",
zComma, zName, nCol, zName, zColl
);
zOrder = idxAppendText(&rc, zOrder, "%s%d", zComma, ++nCol);
}
sqlite3_reset(pIndexXInfo);
if( rc==SQLITE_OK ){
if( p->iSample==100 ){
zQuery = sqlite3_mprintf(
"SELECT %s FROM %Q x ORDER BY %s", zCols, zTab, zOrder
);
}else{
zQuery = sqlite3_mprintf(
"SELECT %s FROM temp."UNIQUE_TABLE_NAME" x ORDER BY %s", zCols, zOrder
);
}
}
sqlite3_free(zCols);
sqlite3_free(zOrder);
/* Formulate the query text */
if( rc==SQLITE_OK ){
sqlite3 *dbrem = (p->iSample==100 ? p->db : p->dbv);
rc = idxPrepareStmt(dbrem, &pQuery, pzErr, zQuery);
}
sqlite3_free(zQuery);
if( rc==SQLITE_OK ){
aStat = (int*)idxMalloc(&rc, sizeof(int)*(nCol+1));
}
if( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pQuery) ){
IdxHashEntry *pEntry;
char *zStat = 0;
for(i=0; i<=nCol; i++) aStat[i] = 1;
while( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pQuery) ){
aStat[0]++;
for(i=0; i<nCol; i++){
if( sqlite3_column_int(pQuery, i)==0 ) break;
}
for(/*no-op*/; i<nCol; i++){
aStat[i+1]++;
}
}
if( rc==SQLITE_OK ){
int s0 = aStat[0];
zStat = sqlite3_mprintf("%d", s0);
if( zStat==0 ) rc = SQLITE_NOMEM;
for(i=1; rc==SQLITE_OK && i<=nCol; i++){
zStat = idxAppendText(&rc, zStat, " %d", (s0+aStat[i]/2) / aStat[i]);
}
}
if( rc==SQLITE_OK ){
sqlite3_bind_text(pWriteStat, 1, zTab, -1, SQLITE_STATIC);
sqlite3_bind_text(pWriteStat, 2, zIdx, -1, SQLITE_STATIC);
sqlite3_bind_text(pWriteStat, 3, zStat, -1, SQLITE_STATIC);
sqlite3_step(pWriteStat);
rc = sqlite3_reset(pWriteStat);
}
pEntry = idxHashFind(&p->hIdx, zIdx, STRLEN(zIdx));
if( pEntry ){
assert( pEntry->zVal2==0 );
pEntry->zVal2 = zStat;
}else{
sqlite3_free(zStat);
}
}
sqlite3_free(aStat);
idxFinalize(&rc, pQuery);
return rc;
}
static int idxBuildSampleTable(sqlite3expert *p, const char *zTab){
int rc;
char *zSql;
rc = sqlite3_exec(p->dbv,"DROP TABLE IF EXISTS temp."UNIQUE_TABLE_NAME,0,0,0);
if( rc!=SQLITE_OK ) return rc;
zSql = sqlite3_mprintf(
"CREATE TABLE temp." UNIQUE_TABLE_NAME " AS SELECT * FROM %Q", zTab
);
if( zSql==0 ) return SQLITE_NOMEM;
rc = sqlite3_exec(p->dbv, zSql, 0, 0, 0);
sqlite3_free(zSql);
return rc;
}
/*
** This function is called as part of sqlite3_expert_analyze(). Candidate
** indexes have already been created in database sqlite3expert.dbm, this
** function populates sqlite_stat1 table in the same database.
**
** The stat1 data is generated by querying the
*/
static int idxPopulateStat1(sqlite3expert *p, char **pzErr){
int rc = SQLITE_OK;
int nMax =0;
struct IdxRemCtx *pCtx = 0;
struct IdxSampleCtx samplectx;
int i;
i64 iPrev = -100000;
sqlite3_stmt *pAllIndex = 0;
sqlite3_stmt *pIndexXInfo = 0;
sqlite3_stmt *pWrite = 0;
const char *zAllIndex =
"SELECT s.rowid, s.name, l.name FROM "
" sqlite_schema AS s, "
" pragma_index_list(s.name) AS l "
"WHERE s.type = 'table'";
const char *zIndexXInfo =
"SELECT name, coll FROM pragma_index_xinfo(?) WHERE key";
const char *zWrite = "INSERT INTO sqlite_stat1 VALUES(?, ?, ?)";
/* If iSample==0, no sqlite_stat1 data is required. */
if( p->iSample==0 ) return SQLITE_OK;
rc = idxLargestIndex(p->dbm, &nMax, pzErr);
if( nMax<=0 || rc!=SQLITE_OK ) return rc;
rc = sqlite3_exec(p->dbm, "ANALYZE; PRAGMA writable_schema=1", 0, 0, 0);
if( rc==SQLITE_OK ){
int nByte = sizeof(struct IdxRemCtx) + (sizeof(struct IdxRemSlot) * nMax);
pCtx = (struct IdxRemCtx*)idxMalloc(&rc, nByte);
}
if( rc==SQLITE_OK ){
sqlite3 *dbrem = (p->iSample==100 ? p->db : p->dbv);
rc = sqlite3_create_function(dbrem, "sqlite_expert_rem",
2, SQLITE_UTF8, (void*)pCtx, idxRemFunc, 0, 0
);
}
if( rc==SQLITE_OK ){
rc = sqlite3_create_function(p->db, "sqlite_expert_sample",
0, SQLITE_UTF8, (void*)&samplectx, idxSampleFunc, 0, 0
);
}
if( rc==SQLITE_OK ){
pCtx->nSlot = nMax+1;
rc = idxPrepareStmt(p->dbm, &pAllIndex, pzErr, zAllIndex);
}
if( rc==SQLITE_OK ){
rc = idxPrepareStmt(p->dbm, &pIndexXInfo, pzErr, zIndexXInfo);
}
if( rc==SQLITE_OK ){
rc = idxPrepareStmt(p->dbm, &pWrite, pzErr, zWrite);
}
while( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pAllIndex) ){
i64 iRowid = sqlite3_column_int64(pAllIndex, 0);
const char *zTab = (const char*)sqlite3_column_text(pAllIndex, 1);
const char *zIdx = (const char*)sqlite3_column_text(pAllIndex, 2);
if( zTab==0 || zIdx==0 ) continue;
if( p->iSample<100 && iPrev!=iRowid ){
samplectx.target = (double)p->iSample / 100.0;
samplectx.iTarget = p->iSample;
samplectx.nRow = 0.0;
samplectx.nRet = 0.0;
rc = idxBuildSampleTable(p, zTab);
if( rc!=SQLITE_OK ) break;
}
rc = idxPopulateOneStat1(p, pIndexXInfo, pWrite, zTab, zIdx, pzErr);
iPrev = iRowid;
}
if( rc==SQLITE_OK && p->iSample<100 ){
rc = sqlite3_exec(p->dbv,
"DROP TABLE IF EXISTS temp." UNIQUE_TABLE_NAME, 0,0,0
);
}
idxFinalize(&rc, pAllIndex);
idxFinalize(&rc, pIndexXInfo);
idxFinalize(&rc, pWrite);
if( pCtx ){
for(i=0; i<pCtx->nSlot; i++){
sqlite3_free(pCtx->aSlot[i].z);
}
sqlite3_free(pCtx);
}
if( rc==SQLITE_OK ){
rc = sqlite3_exec(p->dbm, "ANALYZE sqlite_schema", 0, 0, 0);
}
sqlite3_create_function(p->db, "sqlite_expert_rem", 2, SQLITE_UTF8, 0,0,0,0);
sqlite3_create_function(p->db, "sqlite_expert_sample", 0,SQLITE_UTF8,0,0,0,0);
sqlite3_exec(p->db, "DROP TABLE IF EXISTS temp."UNIQUE_TABLE_NAME,0,0,0);
return rc;
}
/*
** Define and possibly pretend to use a useless collation sequence.
** This pretense allows expert to accept SQL using custom collations.
*/
int dummyCompare(void *up1, int up2, const void *up3, int up4, const void *up5){
(void)up1;
(void)up2;
(void)up3;
(void)up4;
(void)up5;
assert(0); /* VDBE should never be run. */
return 0;
}
/* And a callback to register above upon actual need */
void useDummyCS(void *up1, sqlite3 *db, int etr, const char *zName){
(void)up1;
sqlite3_create_collation_v2(db, zName, etr, 0, dummyCompare, 0);
}
#if !defined(SQLITE_OMIT_SCHEMA_PRAGMAS) \
&& !defined(SQLITE_OMIT_INTROSPECTION_PRAGMAS)
/*
** dummy functions for no-op implementation of UDFs during expert's work
*/
void dummyUDF(sqlite3_context *up1, int up2, sqlite3_value **up3){
(void)up1;
(void)up2;
(void)up3;
assert(0); /* VDBE should never be run. */
}
void dummyUDFvalue(sqlite3_context *up1){
(void)up1;
assert(0); /* VDBE should never be run. */
}
/*
** Register UDFs from user database with another.
*/
int registerUDFs(sqlite3 *dbSrc, sqlite3 *dbDst){
sqlite3_stmt *pStmt;
int rc = sqlite3_prepare_v2(dbSrc,
"SELECT name,type,enc,narg,flags "
"FROM pragma_function_list() "
"WHERE builtin==0", -1, &pStmt, 0);
if( rc==SQLITE_OK ){
while( SQLITE_ROW==(rc = sqlite3_step(pStmt)) ){
int nargs = sqlite3_column_int(pStmt,3);
int flags = sqlite3_column_int(pStmt,4);
const char *name = (char*)sqlite3_column_text(pStmt,0);
const char *type = (char*)sqlite3_column_text(pStmt,1);
const char *enc = (char*)sqlite3_column_text(pStmt,2);
if( name==0 || type==0 || enc==0 ){
/* no-op. Only happens on OOM */
}else{
int ienc = SQLITE_UTF8;
int rcf = SQLITE_ERROR;
if( strcmp(enc,"utf16le")==0 ) ienc = SQLITE_UTF16LE;
else if( strcmp(enc,"utf16be")==0 ) ienc = SQLITE_UTF16BE;
ienc |= (flags & (SQLITE_DETERMINISTIC|SQLITE_DIRECTONLY));
if( strcmp(type,"w")==0 ){
rcf = sqlite3_create_window_function(dbDst,name,nargs,ienc,0,
dummyUDF,dummyUDFvalue,0,0,0);
}else if( strcmp(type,"a")==0 ){
rcf = sqlite3_create_function(dbDst,name,nargs,ienc,0,
0,dummyUDF,dummyUDFvalue);
}else if( strcmp(type,"s")==0 ){
rcf = sqlite3_create_function(dbDst,name,nargs,ienc,0,
dummyUDF,0,0);
}
if( rcf!=SQLITE_OK ){
rc = rcf;
break;
}
}
}
sqlite3_finalize(pStmt);
if( rc==SQLITE_DONE ) rc = SQLITE_OK;
}
return rc;
}
#endif
/*
** Allocate a new sqlite3expert object.
*/
sqlite3expert *sqlite3_expert_new(sqlite3 *db, char **pzErrmsg){
int rc = SQLITE_OK;
sqlite3expert *pNew;
pNew = (sqlite3expert*)idxMalloc(&rc, sizeof(sqlite3expert));
/* Open two in-memory databases to work with. The "vtab database" (dbv)
** will contain a virtual table corresponding to each real table in
** the user database schema, and a copy of each view. It is used to
** collect information regarding the WHERE, ORDER BY and other clauses
** of the user's query.
*/
if( rc==SQLITE_OK ){
pNew->db = db;
pNew->iSample = 100;
rc = sqlite3_open(":memory:", &pNew->dbv);
}
if( rc==SQLITE_OK ){
rc = sqlite3_open(":memory:", &pNew->dbm);
if( rc==SQLITE_OK ){
sqlite3_db_config(pNew->dbm, SQLITE_DBCONFIG_TRIGGER_EQP, 1, (int*)0);
}
}
/* Allow custom collations to be dealt with through prepare. */
if( rc==SQLITE_OK ) rc = sqlite3_collation_needed(pNew->dbm,0,useDummyCS);
if( rc==SQLITE_OK ) rc = sqlite3_collation_needed(pNew->dbv,0,useDummyCS);
#if !defined(SQLITE_OMIT_SCHEMA_PRAGMAS) \
&& !defined(SQLITE_OMIT_INTROSPECTION_PRAGMAS)
/* Register UDFs from database [db] with [dbm] and [dbv]. */
if( rc==SQLITE_OK ){
rc = registerUDFs(pNew->db, pNew->dbm);
}
if( rc==SQLITE_OK ){
rc = registerUDFs(pNew->db, pNew->dbv);
}
#endif
/* Copy the entire schema of database [db] into [dbm]. */
if( rc==SQLITE_OK ){
sqlite3_stmt *pSql = 0;
rc = idxPrintfPrepareStmt(pNew->db, &pSql, pzErrmsg,
"SELECT sql, name, substr(sql,1,14)=='create virtual' COLLATE nocase"
" FROM sqlite_schema WHERE substr(name,1,7)!='sqlite_' COLLATE nocase"
" ORDER BY 3 DESC, rowid"
);
while( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pSql) ){
const char *zSql = (const char*)sqlite3_column_text(pSql, 0);
const char *zName = (const char*)sqlite3_column_text(pSql, 1);
int bExists = 0;
rc = expertDbContainsObject(pNew->dbm, zName, &bExists);
if( rc==SQLITE_OK && zSql && bExists==0 ){
rc = expertSchemaSql(pNew->dbm, zSql, pzErrmsg);
}
}
idxFinalize(&rc, pSql);
}
/* Create the vtab schema */
if( rc==SQLITE_OK ){
rc = idxCreateVtabSchema(pNew, pzErrmsg);
}
/* Register the auth callback with dbv */
if( rc==SQLITE_OK ){
sqlite3_set_authorizer(pNew->dbv, idxAuthCallback, (void*)pNew);
}
/* If an error has occurred, free the new object and reutrn NULL. Otherwise,
** return the new sqlite3expert handle. */
if( rc!=SQLITE_OK ){
sqlite3_expert_destroy(pNew);
pNew = 0;
}
return pNew;
}
/*
** Configure an sqlite3expert object.
*/
int sqlite3_expert_config(sqlite3expert *p, int op, ...){
int rc = SQLITE_OK;
va_list ap;
va_start(ap, op);
switch( op ){
case EXPERT_CONFIG_SAMPLE: {
int iVal = va_arg(ap, int);
if( iVal<0 ) iVal = 0;
if( iVal>100 ) iVal = 100;
p->iSample = iVal;
break;
}
default:
rc = SQLITE_NOTFOUND;
break;
}
va_end(ap);
return rc;
}
/*
** Add an SQL statement to the analysis.
*/
int sqlite3_expert_sql(
sqlite3expert *p, /* From sqlite3_expert_new() */
const char *zSql, /* SQL statement to add */
char **pzErr /* OUT: Error message (if any) */
){
IdxScan *pScanOrig = p->pScan;
IdxStatement *pStmtOrig = p->pStatement;
int rc = SQLITE_OK;
const char *zStmt = zSql;
if( p->bRun ) return SQLITE_MISUSE;
while( rc==SQLITE_OK && zStmt && zStmt[0] ){
sqlite3_stmt *pStmt = 0;
/* Ensure that the provided statement compiles against user's DB. */
rc = idxPrepareStmt(p->db, &pStmt, pzErr, zStmt);
if( rc!=SQLITE_OK ) break;
sqlite3_finalize(pStmt);
rc = sqlite3_prepare_v2(p->dbv, zStmt, -1, &pStmt, &zStmt);
if( rc==SQLITE_OK ){
if( pStmt ){
IdxStatement *pNew;
const char *z = sqlite3_sql(pStmt);
int n = STRLEN(z);
pNew = (IdxStatement*)idxMalloc(&rc, sizeof(IdxStatement) + n+1);
if( rc==SQLITE_OK ){
pNew->zSql = (char*)&pNew[1];
memcpy(pNew->zSql, z, n+1);
pNew->pNext = p->pStatement;
if( p->pStatement ) pNew->iId = p->pStatement->iId+1;
p->pStatement = pNew;
}
sqlite3_finalize(pStmt);
}
}else{
idxDatabaseError(p->dbv, pzErr);
}
}
if( rc!=SQLITE_OK ){
idxScanFree(p->pScan, pScanOrig);
idxStatementFree(p->pStatement, pStmtOrig);
p->pScan = pScanOrig;
p->pStatement = pStmtOrig;
}
return rc;
}
int sqlite3_expert_analyze(sqlite3expert *p, char **pzErr){
int rc;
IdxHashEntry *pEntry;
/* Do trigger processing to collect any extra IdxScan structures */
rc = idxProcessTriggers(p, pzErr);
/* Create candidate indexes within the in-memory database file */
if( rc==SQLITE_OK ){
rc = idxCreateCandidates(p);
}else if ( rc==SQLITE_BUSY_TIMEOUT ){
if( pzErr )
*pzErr = sqlite3_mprintf("Cannot find a unique index name to propose.");
return rc;
}
/* Generate the stat1 data */
if( rc==SQLITE_OK ){
rc = idxPopulateStat1(p, pzErr);
}
/* Formulate the EXPERT_REPORT_CANDIDATES text */
for(pEntry=p->hIdx.pFirst; pEntry; pEntry=pEntry->pNext){
p->zCandidates = idxAppendText(&rc, p->zCandidates,
"%s;%s%s\n", pEntry->zVal,
pEntry->zVal2 ? " -- stat1: " : "", pEntry->zVal2
);
}
/* Figure out which of the candidate indexes are preferred by the query
** planner and report the results to the user. */
if( rc==SQLITE_OK ){
rc = idxFindIndexes(p, pzErr);
}
if( rc==SQLITE_OK ){
p->bRun = 1;
}
return rc;
}
/*
** Return the total number of statements that have been added to this
** sqlite3expert using sqlite3_expert_sql().
*/
int sqlite3_expert_count(sqlite3expert *p){
int nRet = 0;
if( p->pStatement ) nRet = p->pStatement->iId+1;
return nRet;
}
/*
** Return a component of the report.
*/
const char *sqlite3_expert_report(sqlite3expert *p, int iStmt, int eReport){
const char *zRet = 0;
IdxStatement *pStmt;
if( p->bRun==0 ) return 0;
for(pStmt=p->pStatement; pStmt && pStmt->iId!=iStmt; pStmt=pStmt->pNext);
switch( eReport ){
case EXPERT_REPORT_SQL:
if( pStmt ) zRet = pStmt->zSql;
break;
case EXPERT_REPORT_INDEXES:
if( pStmt ) zRet = pStmt->zIdx;
break;
case EXPERT_REPORT_PLAN:
if( pStmt ) zRet = pStmt->zEQP;
break;
case EXPERT_REPORT_CANDIDATES:
zRet = p->zCandidates;
break;
}
return zRet;
}
/*
** Free an sqlite3expert object.
*/
void sqlite3_expert_destroy(sqlite3expert *p){
if( p ){
sqlite3_close(p->dbm);
sqlite3_close(p->dbv);
idxScanFree(p->pScan, 0);
idxStatementFree(p->pStatement, 0);
idxTableFree(p->pTable);
idxWriteFree(p->pWrite);
idxHashClear(&p->hIdx);
sqlite3_free(p->zCandidates);
sqlite3_free(p);
}
}
#endif /* ifndef SQLITE_OMIT_VIRTUALTABLE */
/************************* End ../ext/expert/sqlite3expert.c ********************/
/************************* Begin ../ext/intck/sqlite3intck.h ******************/
/*
** 2024-02-08
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
*/
/*
** Incremental Integrity-Check Extension
** -------------------------------------
**
** This module contains code to check whether or not an SQLite database
** is well-formed or corrupt. This is the same task as performed by SQLite's
** built-in "PRAGMA integrity_check" command. This module differs from
** "PRAGMA integrity_check" in that:
**
** + It is less thorough - this module does not detect certain types
** of corruption that are detected by the PRAGMA command. However,
** it does detect all kinds of corruption that are likely to cause
** errors in SQLite applications.
**
** + It is slower. Sometimes up to three times slower.
**
** + It allows integrity-check operations to be split into multiple
** transactions, so that the database does not need to be read-locked
** for the duration of the integrity-check.
**
** One way to use the API to run integrity-check on the "main" database
** of handle db is:
**
** int rc = SQLITE_OK;
** sqlite3_intck *p = 0;
**
** sqlite3_intck_open(db, "main", &p);
** while( SQLITE_OK==sqlite3_intck_step(p) ){
** const char *zMsg = sqlite3_intck_message(p);
** if( zMsg ) printf("corruption: %s\n", zMsg);
** }
** rc = sqlite3_intck_error(p, &zErr);
** if( rc!=SQLITE_OK ){
** printf("error occured (rc=%d), (errmsg=%s)\n", rc, zErr);
** }
** sqlite3_intck_close(p);
**
** Usually, the sqlite3_intck object opens a read transaction within the
** first call to sqlite3_intck_step() and holds it open until the
** integrity-check is complete. However, if sqlite3_intck_unlock() is
** called, the read transaction is ended and a new read transaction opened
** by the subsequent call to sqlite3_intck_step().
*/
#ifndef _SQLITE_INTCK_H
#define _SQLITE_INTCK_H
/* #include "sqlite3.h" */
#ifdef __cplusplus
extern "C" {
#endif
/*
** An ongoing incremental integrity-check operation is represented by an
** opaque pointer of the following type.
*/
typedef struct sqlite3_intck sqlite3_intck;
/*
** Open a new incremental integrity-check object. If successful, populate
** output variable (*ppOut) with the new object handle and return SQLITE_OK.
** Or, if an error occurs, set (*ppOut) to NULL and return an SQLite error
** code (e.g. SQLITE_NOMEM).
**
** The integrity-check will be conducted on database zDb (which must be "main",
** "temp", or the name of an attached database) of database handle db. Once
** this function has been called successfully, the caller should not use
** database handle db until the integrity-check object has been destroyed
** using sqlite3_intck_close().
*/
int sqlite3_intck_open(
sqlite3 *db, /* Database handle */
const char *zDb, /* Database name ("main", "temp" etc.) */
sqlite3_intck **ppOut /* OUT: New sqlite3_intck handle */
);
/*
** Close and release all resources associated with a handle opened by an
** earlier call to sqlite3_intck_open(). The results of using an
** integrity-check handle after it has been passed to this function are
** undefined.
*/
void sqlite3_intck_close(sqlite3_intck *pCk);
/*
** Do the next step of the integrity-check operation specified by the handle
** passed as the only argument. This function returns SQLITE_DONE if the
** integrity-check operation is finished, or an SQLite error code if
** an error occurs, or SQLITE_OK if no error occurs but the integrity-check
** is not finished. It is not considered an error if database corruption
** is encountered.
**
** Following a successful call to sqlite3_intck_step() (one that returns
** SQLITE_OK), sqlite3_intck_message() returns a non-NULL value if
** corruption was detected in the db.
**
** If an error occurs and a value other than SQLITE_OK or SQLITE_DONE is
** returned, then the integrity-check handle is placed in an error state.
** In this state all subsequent calls to sqlite3_intck_step() or
** sqlite3_intck_unlock() will immediately return the same error. The
** sqlite3_intck_error() method may be used to obtain an English language
** error message in this case.
*/
int sqlite3_intck_step(sqlite3_intck *pCk);
/*
** If the previous call to sqlite3_intck_step() encountered corruption
** within the database, then this function returns a pointer to a buffer
** containing a nul-terminated string describing the corruption in
** English. If the previous call to sqlite3_intck_step() did not encounter
** corruption, or if there was no previous call, this function returns
** NULL.
*/
const char *sqlite3_intck_message(sqlite3_intck *pCk);
/*
** Close any read-transaction opened by an earlier call to
** sqlite3_intck_step(). Any subsequent call to sqlite3_intck_step() will
** open a new transaction. Return SQLITE_OK if successful, or an SQLite error
** code otherwise.
**
** If an error occurs, then the integrity-check handle is placed in an error
** state. In this state all subsequent calls to sqlite3_intck_step() or
** sqlite3_intck_unlock() will immediately return the same error. The
** sqlite3_intck_error() method may be used to obtain an English language
** error message in this case.
*/
int sqlite3_intck_unlock(sqlite3_intck *pCk);
/*
** If an error has occurred in an earlier call to sqlite3_intck_step()
** or sqlite3_intck_unlock(), then this method returns the associated
** SQLite error code. Additionally, if pzErr is not NULL, then (*pzErr)
** may be set to point to a nul-terminated string containing an English
** language error message. Or, if no error message is available, to
** NULL.
**
** If no error has occurred within sqlite3_intck_step() or
** sqlite_intck_unlock() calls on the handle passed as the first argument,
** then SQLITE_OK is returned and (*pzErr) set to NULL.
*/
int sqlite3_intck_error(sqlite3_intck *pCk, const char **pzErr);
/*
** This API is used for testing only. It returns the full-text of an SQL
** statement used to test object zObj, which may be a table or index.
** The returned buffer is valid until the next call to either this function
** or sqlite3_intck_close() on the same sqlite3_intck handle.
*/
const char *sqlite3_intck_test_sql(sqlite3_intck *pCk, const char *zObj);
#ifdef __cplusplus
} /* end of the 'extern "C"' block */
#endif
#endif /* ifndef _SQLITE_INTCK_H */
/************************* End ../ext/intck/sqlite3intck.h ********************/
/************************* Begin ../ext/intck/sqlite3intck.c ******************/
/*
** 2024-02-08
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
*/
/* #include "sqlite3intck.h" */
#include <string.h>
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
/*
** nKeyVal:
** The number of values that make up the 'key' for the current pCheck
** statement.
**
** rc:
** Error code returned by most recent sqlite3_intck_step() or
** sqlite3_intck_unlock() call. This is set to SQLITE_DONE when
** the integrity-check operation is finished.
**
** zErr:
** If the object has entered the error state, this is the error message.
** Is freed using sqlite3_free() when the object is deleted.
**
** zTestSql:
** The value returned by the most recent call to sqlite3_intck_testsql().
** Each call to testsql() frees the previous zTestSql value (using
** sqlite3_free()) and replaces it with the new value it will return.
*/
struct sqlite3_intck {
sqlite3 *db;
const char *zDb; /* Copy of zDb parameter to _open() */
char *zObj; /* Current object. Or NULL. */
sqlite3_stmt *pCheck; /* Current check statement */
char *zKey;
int nKeyVal;
char *zMessage;
int bCorruptSchema;
int rc; /* Error code */
char *zErr; /* Error message */
char *zTestSql; /* Returned by sqlite3_intck_test_sql() */
};
/*
** Some error has occurred while using database p->db. Save the error message
** and error code currently held by the database handle in p->rc and p->zErr.
*/
static void intckSaveErrmsg(sqlite3_intck *p){
p->rc = sqlite3_errcode(p->db);
sqlite3_free(p->zErr);
p->zErr = sqlite3_mprintf("%s", sqlite3_errmsg(p->db));
}
/*
** If the handle passed as the first argument is already in the error state,
** then this function is a no-op (returns NULL immediately). Otherwise, if an
** error occurs within this function, it leaves an error in said handle.
**
** Otherwise, this function attempts to prepare SQL statement zSql and
** return the resulting statement handle to the user.
*/
static sqlite3_stmt *intckPrepare(sqlite3_intck *p, const char *zSql){
sqlite3_stmt *pRet = 0;
if( p->rc==SQLITE_OK ){
p->rc = sqlite3_prepare_v2(p->db, zSql, -1, &pRet, 0);
if( p->rc!=SQLITE_OK ){
intckSaveErrmsg(p);
assert( pRet==0 );
}
}
return pRet;
}
/*
** If the handle passed as the first argument is already in the error state,
** then this function is a no-op (returns NULL immediately). Otherwise, if an
** error occurs within this function, it leaves an error in said handle.
**
** Otherwise, this function treats argument zFmt as a printf() style format
** string. It formats it according to the trailing arguments and then
** attempts to prepare the results and return the resulting prepared
** statement.
*/
static sqlite3_stmt *intckPrepareFmt(sqlite3_intck *p, const char *zFmt, ...){
sqlite3_stmt *pRet = 0;
va_list ap;
char *zSql = 0;
va_start(ap, zFmt);
zSql = sqlite3_vmprintf(zFmt, ap);
if( p->rc==SQLITE_OK && zSql==0 ){
p->rc = SQLITE_NOMEM;
}
pRet = intckPrepare(p, zSql);
sqlite3_free(zSql);
va_end(ap);
return pRet;
}
/*
** Finalize SQL statement pStmt. If an error occurs and the handle passed
** as the first argument does not already contain an error, store the
** error in the handle.
*/
static void intckFinalize(sqlite3_intck *p, sqlite3_stmt *pStmt){
int rc = sqlite3_finalize(pStmt);
if( p->rc==SQLITE_OK && rc!=SQLITE_OK ){
intckSaveErrmsg(p);
}
}
/*
** If there is already an error in handle p, return it. Otherwise, call
** sqlite3_step() on the statement handle and return that value.
*/
static int intckStep(sqlite3_intck *p, sqlite3_stmt *pStmt){
if( p->rc ) return p->rc;
return sqlite3_step(pStmt);
}
/*
** Execute SQL statement zSql. There is no way to obtain any results
** returned by the statement. This function uses the sqlite3_intck error
** code convention.
*/
static void intckExec(sqlite3_intck *p, const char *zSql){
sqlite3_stmt *pStmt = 0;
pStmt = intckPrepare(p, zSql);
intckStep(p, pStmt);
intckFinalize(p, pStmt);
}
/*
** A wrapper around sqlite3_mprintf() that uses the sqlite3_intck error
** code convention.
*/
static char *intckMprintf(sqlite3_intck *p, const char *zFmt, ...){
va_list ap;
char *zRet = 0;
va_start(ap, zFmt);
zRet = sqlite3_vmprintf(zFmt, ap);
if( p->rc==SQLITE_OK ){
if( zRet==0 ){
p->rc = SQLITE_NOMEM;
}
}else{
sqlite3_free(zRet);
zRet = 0;
}
return zRet;
}
/*
** This is used by sqlite3_intck_unlock() to save the vector key value
** required to restart the current pCheck query as a nul-terminated string
** in p->zKey.
*/
static void intckSaveKey(sqlite3_intck *p){
int ii;
char *zSql = 0;
sqlite3_stmt *pStmt = 0;
sqlite3_stmt *pXinfo = 0;
const char *zDir = 0;
assert( p->pCheck );
assert( p->zKey==0 );
pXinfo = intckPrepareFmt(p,
"SELECT group_concat(desc, '') FROM %Q.sqlite_schema s, "
"pragma_index_xinfo(%Q, %Q) "
"WHERE s.type='index' AND s.name=%Q",
p->zDb, p->zObj, p->zDb, p->zObj
);
if( p->rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pXinfo) ){
zDir = (const char*)sqlite3_column_text(pXinfo, 0);
}
if( zDir==0 ){
/* Object is a table, not an index. This is the easy case,as there are
** no DESC columns or NULL values in a primary key. */
const char *zSep = "SELECT '(' || ";
for(ii=0; ii<p->nKeyVal; ii++){
zSql = intckMprintf(p, "%z%squote(?)", zSql, zSep);
zSep = " || ', ' || ";
}
zSql = intckMprintf(p, "%z || ')'", zSql);
}else{
/* Object is an index. */
assert( p->nKeyVal>1 );
for(ii=p->nKeyVal; ii>0; ii--){
int bLastIsDesc = zDir[ii-1]=='1';
int bLastIsNull = sqlite3_column_type(p->pCheck, ii)==SQLITE_NULL;
const char *zLast = sqlite3_column_name(p->pCheck, ii);
char *zLhs = 0;
char *zRhs = 0;
char *zWhere = 0;
if( bLastIsNull ){
if( bLastIsDesc ) continue;
zWhere = intckMprintf(p, "'%s IS NOT NULL'", zLast);
}else{
const char *zOp = bLastIsDesc ? "<" : ">";
zWhere = intckMprintf(p, "'%s %s ' || quote(?%d)", zLast, zOp, ii);
}
if( ii>1 ){
const char *zLhsSep = "";
const char *zRhsSep = "";
int jj;
for(jj=0; jj<ii-1; jj++){
const char *zAlias = (const char*)sqlite3_column_name(p->pCheck,jj+1);
zLhs = intckMprintf(p, "%z%s%s", zLhs, zLhsSep, zAlias);
zRhs = intckMprintf(p, "%z%squote(?%d)", zRhs, zRhsSep, jj+1);
zLhsSep = ",";
zRhsSep = " || ',' || ";
}
zWhere = intckMprintf(p,
"'(%z) IS (' || %z || ') AND ' || %z",
zLhs, zRhs, zWhere);
}
zWhere = intckMprintf(p, "'WHERE ' || %z", zWhere);
zSql = intckMprintf(p, "%z%s(quote( %z ) )",
zSql,
(zSql==0 ? "VALUES" : ",\n "),
zWhere
);
}
zSql = intckMprintf(p,
"WITH wc(q) AS (\n%z\n)"
"SELECT 'VALUES' || group_concat('(' || q || ')', ',\n ') FROM wc"
, zSql
);
}
pStmt = intckPrepare(p, zSql);
if( p->rc==SQLITE_OK ){
for(ii=0; ii<p->nKeyVal; ii++){
sqlite3_bind_value(pStmt, ii+1, sqlite3_column_value(p->pCheck, ii+1));
}
if( SQLITE_ROW==sqlite3_step(pStmt) ){
p->zKey = intckMprintf(p,"%s",(const char*)sqlite3_column_text(pStmt, 0));
}
intckFinalize(p, pStmt);
}
sqlite3_free(zSql);
intckFinalize(p, pXinfo);
}
/*
** Find the next database object (table or index) to check. If successful,
** set sqlite3_intck.zObj to point to a nul-terminated buffer containing
** the object's name before returning.
*/
static void intckFindObject(sqlite3_intck *p){
sqlite3_stmt *pStmt = 0;
char *zPrev = p->zObj;
p->zObj = 0;
assert( p->rc==SQLITE_OK );
assert( p->pCheck==0 );
pStmt = intckPrepareFmt(p,
"WITH tables(table_name) AS ("
" SELECT name"
" FROM %Q.sqlite_schema WHERE (type='table' OR type='index') AND rootpage"
" UNION ALL "
" SELECT 'sqlite_schema'"
")"
"SELECT table_name FROM tables "
"WHERE ?1 IS NULL OR table_name%s?1 "
"ORDER BY 1"
, p->zDb, (p->zKey ? ">=" : ">")
);
if( p->rc==SQLITE_OK ){
sqlite3_bind_text(pStmt, 1, zPrev, -1, SQLITE_TRANSIENT);
if( sqlite3_step(pStmt)==SQLITE_ROW ){
p->zObj = intckMprintf(p,"%s",(const char*)sqlite3_column_text(pStmt, 0));
}
}
intckFinalize(p, pStmt);
/* If this is a new object, ensure the previous key value is cleared. */
if( sqlite3_stricmp(p->zObj, zPrev) ){
sqlite3_free(p->zKey);
p->zKey = 0;
}
sqlite3_free(zPrev);
}
/*
** Return the size in bytes of the first token in nul-terminated buffer z.
** For the purposes of this call, a token is either:
**
** * a quoted SQL string,
* * a contiguous series of ascii alphabet characters, or
* * any other single byte.
*/
static int intckGetToken(const char *z){
char c = z[0];
int iRet = 1;
if( c=='\'' || c=='"' || c=='`' ){
while( 1 ){
if( z[iRet]==c ){
iRet++;
if( z[iRet]!=c ) break;
}
iRet++;
}
}
else if( c=='[' ){
while( z[iRet++]!=']' && z[iRet] );
}
else if( (c>='A' && c<='Z') || (c>='a' && c<='z') ){
while( (z[iRet]>='A' && z[iRet]<='Z') || (z[iRet]>='a' && z[iRet]<='z') ){
iRet++;
}
}
return iRet;
}
/*
** Return true if argument c is an ascii whitespace character.
*/
static int intckIsSpace(char c){
return (c==' ' || c=='\t' || c=='\n' || c=='\r');
}
/*
** Argument z points to the text of a CREATE INDEX statement. This function
** identifies the part of the text that contains either the index WHERE
** clause (if iCol<0) or the iCol'th column of the index.
**
** If (iCol<0), the identified fragment does not include the "WHERE" keyword,
** only the expression that follows it. If (iCol>=0) then the identified
** fragment does not include any trailing sort-order keywords - "ASC" or
** "DESC".
**
** If the CREATE INDEX statement does not contain the requested field or
** clause, NULL is returned and (*pnByte) is set to 0. Otherwise, a pointer to
** the identified fragment is returned and output parameter (*pnByte) set
** to its size in bytes.
*/
static const char *intckParseCreateIndex(const char *z, int iCol, int *pnByte){
int iOff = 0;
int iThisCol = 0;
int iStart = 0;
int nOpen = 0;
const char *zRet = 0;
int nRet = 0;
int iEndOfCol = 0;
/* Skip forward until the first "(" token */
while( z[iOff]!='(' ){
iOff += intckGetToken(&z[iOff]);
if( z[iOff]=='\0' ) return 0;
}
assert( z[iOff]=='(' );
nOpen = 1;
iOff++;
iStart = iOff;
while( z[iOff] ){
const char *zToken = &z[iOff];
int nToken = 0;
/* Check if this is the end of the current column - either a "," or ")"
** when nOpen==1. */
if( nOpen==1 ){
if( z[iOff]==',' || z[iOff]==')' ){
if( iCol==iThisCol ){
int iEnd = iEndOfCol ? iEndOfCol : iOff;
nRet = (iEnd - iStart);
zRet = &z[iStart];
break;
}
iStart = iOff+1;
while( intckIsSpace(z[iStart]) ) iStart++;
iThisCol++;
}
if( z[iOff]==')' ) break;
}
if( z[iOff]=='(' ) nOpen++;
if( z[iOff]==')' ) nOpen--;
nToken = intckGetToken(zToken);
if( (nToken==3 && 0==sqlite3_strnicmp(zToken, "ASC", nToken))
|| (nToken==4 && 0==sqlite3_strnicmp(zToken, "DESC", nToken))
){
iEndOfCol = iOff;
}else if( 0==intckIsSpace(zToken[0]) ){
iEndOfCol = 0;
}
iOff += nToken;
}
/* iStart is now the byte offset of 1 byte passed the final ')' in the
** CREATE INDEX statement. Try to find a WHERE clause to return. */
while( zRet==0 && z[iOff] ){
int n = intckGetToken(&z[iOff]);
if( n==5 && 0==sqlite3_strnicmp(&z[iOff], "where", 5) ){
zRet = &z[iOff+5];
nRet = (int)strlen(zRet);
}
iOff += n;
}
/* Trim any whitespace from the start and end of the returned string. */
if( zRet ){
while( intckIsSpace(zRet[0]) ){
nRet--;
zRet++;
}
while( nRet>0 && intckIsSpace(zRet[nRet-1]) ) nRet--;
}
*pnByte = nRet;
return zRet;
}
/*
** User-defined SQL function wrapper for intckParseCreateIndex():
**
** SELECT parse_create_index(<sql>, <icol>);
*/
static void intckParseCreateIndexFunc(
sqlite3_context *pCtx,
int nVal,
sqlite3_value **apVal
){
const char *zSql = (const char*)sqlite3_value_text(apVal[0]);
int idx = sqlite3_value_int(apVal[1]);
const char *zRes = 0;
int nRes = 0;
assert( nVal==2 );
if( zSql ){
zRes = intckParseCreateIndex(zSql, idx, &nRes);
}
sqlite3_result_text(pCtx, zRes, nRes, SQLITE_TRANSIENT);
}
/*
** Return true if sqlite3_intck.db has automatic indexes enabled, false
** otherwise.
*/
static int intckGetAutoIndex(sqlite3_intck *p){
int bRet = 0;
sqlite3_stmt *pStmt = 0;
pStmt = intckPrepare(p, "PRAGMA automatic_index");
if( SQLITE_ROW==intckStep(p, pStmt) ){
bRet = sqlite3_column_int(pStmt, 0);
}
intckFinalize(p, pStmt);
return bRet;
}
/*
** Return true if zObj is an index, or false otherwise.
*/
static int intckIsIndex(sqlite3_intck *p, const char *zObj){
int bRet = 0;
sqlite3_stmt *pStmt = 0;
pStmt = intckPrepareFmt(p,
"SELECT 1 FROM %Q.sqlite_schema WHERE name=%Q AND type='index'",
p->zDb, zObj
);
if( p->rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pStmt) ){
bRet = 1;
}
intckFinalize(p, pStmt);
return bRet;
}
/*
** Return a pointer to a nul-terminated buffer containing the SQL statement
** used to check database object zObj (a table or index) for corruption.
** If parameter zPrev is not NULL, then it must be a string containing the
** vector key required to restart the check where it left off last time.
** If pnKeyVal is not NULL, then (*pnKeyVal) is set to the number of
** columns in the vector key value for the specified object.
**
** This function uses the sqlite3_intck error code convention.
*/
static char *intckCheckObjectSql(
sqlite3_intck *p, /* Integrity check object */
const char *zObj, /* Object (table or index) to scan */
const char *zPrev, /* Restart key vector, if any */
int *pnKeyVal /* OUT: Number of key-values for this scan */
){
char *zRet = 0;
sqlite3_stmt *pStmt = 0;
int bAutoIndex = 0;
int bIsIndex = 0;
const char *zCommon =
/* Relation without_rowid also contains just one row. Column "b" is
** set to true if the table being examined is a WITHOUT ROWID table,
** or false otherwise. */
", without_rowid(b) AS ("
" SELECT EXISTS ("
" SELECT 1 FROM tabname, pragma_index_list(tab, db) AS l"
" WHERE origin='pk' "
" AND NOT EXISTS (SELECT 1 FROM sqlite_schema WHERE name=l.name)"
" )"
")"
""
/* Table idx_cols contains 1 row for each column in each index on the
** table being checked. Columns are:
**
** idx_name: Name of the index.
** idx_ispk: True if this index is the PK of a WITHOUT ROWID table.
** col_name: Name of indexed column, or NULL for index on expression.
** col_expr: Indexed expression, including COLLATE clause.
** col_alias: Alias used for column in 'intck_wrapper' table.
*/
", idx_cols(idx_name, idx_ispk, col_name, col_expr, col_alias) AS ("
" SELECT l.name, (l.origin=='pk' AND w.b), i.name, COALESCE(("
" SELECT parse_create_index(sql, i.seqno) FROM "
" sqlite_schema WHERE name = l.name"
" ), format('\"%w\"', i.name) || ' COLLATE ' || quote(i.coll)),"
" 'c' || row_number() OVER ()"
" FROM "
" tabname t,"
" without_rowid w,"
" pragma_index_list(t.tab, t.db) l,"
" pragma_index_xinfo(l.name) i"
" WHERE i.key"
" UNION ALL"
" SELECT '', 1, '_rowid_', '_rowid_', 'r1' FROM without_rowid WHERE b=0"
")"
""
""
/*
** For a PK declared as "PRIMARY KEY(a, b) ... WITHOUT ROWID", where
** the intck_wrapper aliases of "a" and "b" are "c1" and "c2":
**
** o_pk: "o.c1, o.c2"
** i_pk: "i.'a', i.'b'"
** ...
** n_pk: 2
*/
", tabpk(db, tab, idx, o_pk, i_pk, q_pk, eq_pk, ps_pk, pk_pk, n_pk) AS ("
" WITH pkfields(f, a) AS ("
" SELECT i.col_name, i.col_alias FROM idx_cols i WHERE i.idx_ispk"
" )"
" SELECT t.db, t.tab, t.idx, "
" group_concat(a, ', '), "
" group_concat('i.'||quote(f), ', '), "
" group_concat('quote(o.'||a||')', ' || '','' || '), "
" format('(%s)==(%s)',"
" group_concat('o.'||a, ', '), "
" group_concat(format('\"%w\"', f), ', ')"
" ),"
" group_concat('%s', ','),"
" group_concat('quote('||a||')', ', '), "
" count(*)"
" FROM tabname t, pkfields"
")"
""
", idx(name, match_expr, partial, partial_alias, idx_ps, idx_idx) AS ("
" SELECT idx_name,"
" format('(%s,%s) IS (%s,%s)', "
" group_concat(i.col_expr, ', '), i_pk,"
" group_concat('o.'||i.col_alias, ', '), o_pk"
" ), "
" parse_create_index("
" (SELECT sql FROM sqlite_schema WHERE name=idx_name), -1"
" ),"
" 'cond' || row_number() OVER ()"
" , group_concat('%s', ',')"
" , group_concat('quote('||i.col_alias||')', ', ')"
" FROM tabpk t, "
" without_rowid w,"
" idx_cols i"
" WHERE i.idx_ispk==0 "
" GROUP BY idx_name"
")"
""
", wrapper_with(s) AS ("
" SELECT 'intck_wrapper AS (\n SELECT\n ' || ("
" WITH f(a, b) AS ("
" SELECT col_expr, col_alias FROM idx_cols"
" UNION ALL "
" SELECT partial, partial_alias FROM idx WHERE partial IS NOT NULL"
" )"
" SELECT group_concat(format('%s AS %s', a, b), ',\n ') FROM f"
" )"
" || format('\n FROM %Q.%Q ', t.db, t.tab)"
/* If the object being checked is a table, append "NOT INDEXED".
** Otherwise, append "INDEXED BY <index>", and then, if the index
** is a partial index " WHERE <condition>". */
" || CASE WHEN t.idx IS NULL THEN "
" 'NOT INDEXED'"
" ELSE"
" format('INDEXED BY %Q%s', t.idx, ' WHERE '||i.partial)"
" END"
" || '\n)'"
" FROM tabname t LEFT JOIN idx i ON (i.name=t.idx)"
")"
""
;
bAutoIndex = intckGetAutoIndex(p);
if( bAutoIndex ) intckExec(p, "PRAGMA automatic_index = 0");
bIsIndex = intckIsIndex(p, zObj);
if( bIsIndex ){
pStmt = intckPrepareFmt(p,
/* Table idxname contains a single row. The first column, "db", contains
** the name of the db containing the table (e.g. "main") and the second,
** "tab", the name of the table itself. */
"WITH tabname(db, tab, idx) AS ("
" SELECT %Q, (SELECT tbl_name FROM %Q.sqlite_schema WHERE name=%Q), %Q "
")"
""
", whereclause(w_c) AS (%s)"
""
"%s" /* zCommon */
""
", case_statement(c) AS ("
" SELECT "
" 'CASE WHEN (' || group_concat(col_alias, ', ') || ', 1) IS (\n' "
" || ' SELECT ' || group_concat(col_expr, ', ') || ', 1 FROM '"
" || format('%%Q.%%Q NOT INDEXED WHERE %%s\n', t.db, t.tab, p.eq_pk)"
" || ' )\n THEN NULL\n '"
" || 'ELSE format(''surplus entry ('"
" || group_concat('%%s', ',') || ',' || p.ps_pk"
" || ') in index ' || t.idx || ''', ' "
" || group_concat('quote('||i.col_alias||')', ', ') || ', ' || p.pk_pk"
" || ')'"
" || '\n END AS error_message'"
" FROM tabname t, tabpk p, idx_cols i WHERE i.idx_name=t.idx"
")"
""
", thiskey(k, n) AS ("
" SELECT group_concat(i.col_alias, ', ') || ', ' || p.o_pk, "
" count(*) + p.n_pk "
" FROM tabpk p, idx_cols i WHERE i.idx_name=p.idx"
")"
""
", main_select(m, n) AS ("
" SELECT format("
" 'WITH %%s\n' ||"
" ', idx_checker AS (\n' ||"
" ' SELECT %%s,\n' ||"
" ' %%s\n' || "
" ' FROM intck_wrapper AS o\n' ||"
" ')\n',"
" ww.s, c, t.k"
" ), t.n"
" FROM case_statement, wrapper_with ww, thiskey t"
")"
"SELECT m || "
" group_concat('SELECT * FROM idx_checker ' || w_c, ' UNION ALL '), n"
" FROM "
"main_select, whereclause "
, p->zDb, p->zDb, zObj, zObj
, zPrev ? zPrev : "VALUES('')", zCommon
);
}else{
pStmt = intckPrepareFmt(p,
/* Table tabname contains a single row. The first column, "db", contains
** the name of the db containing the table (e.g. "main") and the second,
** "tab", the name of the table itself. */
"WITH tabname(db, tab, idx, prev) AS (SELECT %Q, %Q, NULL, %Q)"
""
"%s" /* zCommon */
/* expr(e) contains one row for each index on table zObj. Value e
** is set to an expression that evaluates to NULL if the required
** entry is present in the index, or an error message otherwise. */
", expr(e, p) AS ("
" SELECT format('CASE WHEN EXISTS \n"
" (SELECT 1 FROM %%Q.%%Q AS i INDEXED BY %%Q WHERE %%s%%s)\n"
" THEN NULL\n"
" ELSE format(''entry (%%s,%%s) missing from index %%s'', %%s, %%s)\n"
" END\n'"
" , t.db, t.tab, i.name, i.match_expr, ' AND (' || partial || ')',"
" i.idx_ps, t.ps_pk, i.name, i.idx_idx, t.pk_pk),"
" CASE WHEN partial IS NULL THEN NULL ELSE i.partial_alias END"
" FROM tabpk t, idx i"
")"
", numbered(ii, cond, e) AS ("
" SELECT 0, 'n.ii=0', 'NULL'"
" UNION ALL "
" SELECT row_number() OVER (),"
" '(n.ii='||row_number() OVER ()||COALESCE(' AND '||p||')', ')'), e"
" FROM expr"
")"
", counter_with(w) AS ("
" SELECT 'WITH intck_counter(ii) AS (\n ' || "
" group_concat('SELECT '||ii, ' UNION ALL\n ') "
" || '\n)' FROM numbered"
")"
""
", case_statement(c) AS ("
" SELECT 'CASE ' || "
" group_concat(format('\n WHEN %%s THEN (%%s)', cond, e), '') ||"
" '\nEND AS error_message'"
" FROM numbered"
")"
""
/* This table contains a single row consisting of a single value -
** the text of an SQL expression that may be used by the main SQL
** statement to output an SQL literal that can be used to resume
** the scan if it is suspended. e.g. for a rowid table, an expression
** like:
**
** format('(%d,%d)', _rowid_, n.ii)
*/
", thiskey(k, n) AS ("
" SELECT o_pk || ', ii', n_pk+1 FROM tabpk"
")"
""
", whereclause(w_c) AS ("
" SELECT CASE WHEN prev!='' THEN "
" '\nWHERE (' || o_pk ||', n.ii) > ' || prev"
" ELSE ''"
" END"
" FROM tabpk, tabname"
")"
""
", main_select(m, n) AS ("
" SELECT format("
" '%%s, %%s\nSELECT %%s,\n%%s\nFROM intck_wrapper AS o"
", intck_counter AS n%%s\nORDER BY %%s', "
" w, ww.s, c, thiskey.k, whereclause.w_c, t.o_pk"
" ), thiskey.n"
" FROM case_statement, tabpk t, counter_with, "
" wrapper_with ww, thiskey, whereclause"
")"
"SELECT m, n FROM main_select",
p->zDb, zObj, zPrev, zCommon
);
}
while( p->rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pStmt) ){
zRet = intckMprintf(p, "%s", (const char*)sqlite3_column_text(pStmt, 0));
if( pnKeyVal ){
*pnKeyVal = sqlite3_column_int(pStmt, 1);
}
}
intckFinalize(p, pStmt);
if( bAutoIndex ) intckExec(p, "PRAGMA automatic_index = 1");
return zRet;
}
/*
** Open a new integrity-check object.
*/
int sqlite3_intck_open(
sqlite3 *db, /* Database handle to operate on */
const char *zDbArg, /* "main", "temp" etc. */
sqlite3_intck **ppOut /* OUT: New integrity-check handle */
){
sqlite3_intck *pNew = 0;
int rc = SQLITE_OK;
const char *zDb = zDbArg ? zDbArg : "main";
int nDb = (int)strlen(zDb);
pNew = (sqlite3_intck*)sqlite3_malloc(sizeof(*pNew) + nDb + 1);
if( pNew==0 ){
rc = SQLITE_NOMEM;
}else{
memset(pNew, 0, sizeof(*pNew));
pNew->db = db;
pNew->zDb = (const char*)&pNew[1];
memcpy(&pNew[1], zDb, nDb+1);
rc = sqlite3_create_function(db, "parse_create_index",
2, SQLITE_UTF8, 0, intckParseCreateIndexFunc, 0, 0
);
if( rc!=SQLITE_OK ){
sqlite3_intck_close(pNew);
pNew = 0;
}
}
*ppOut = pNew;
return rc;
}
/*
** Free the integrity-check object.
*/
void sqlite3_intck_close(sqlite3_intck *p){
if( p ){
sqlite3_finalize(p->pCheck);
sqlite3_create_function(
p->db, "parse_create_index", 1, SQLITE_UTF8, 0, 0, 0, 0
);
sqlite3_free(p->zObj);
sqlite3_free(p->zKey);
sqlite3_free(p->zTestSql);
sqlite3_free(p->zErr);
sqlite3_free(p->zMessage);
sqlite3_free(p);
}
}
/*
** Step the integrity-check object.
*/
int sqlite3_intck_step(sqlite3_intck *p){
if( p->rc==SQLITE_OK ){
if( p->zMessage ){
sqlite3_free(p->zMessage);
p->zMessage = 0;
}
if( p->bCorruptSchema ){
p->rc = SQLITE_DONE;
}else
if( p->pCheck==0 ){
intckFindObject(p);
if( p->rc==SQLITE_OK ){
if( p->zObj ){
char *zSql = 0;
zSql = intckCheckObjectSql(p, p->zObj, p->zKey, &p->nKeyVal);
p->pCheck = intckPrepare(p, zSql);
sqlite3_free(zSql);
sqlite3_free(p->zKey);
p->zKey = 0;
}else{
p->rc = SQLITE_DONE;
}
}else if( p->rc==SQLITE_CORRUPT ){
p->rc = SQLITE_OK;
p->zMessage = intckMprintf(p, "%s",
"corruption found while reading database schema"
);
p->bCorruptSchema = 1;
}
}
if( p->pCheck ){
assert( p->rc==SQLITE_OK );
if( sqlite3_step(p->pCheck)==SQLITE_ROW ){
/* Normal case, do nothing. */
}else{
intckFinalize(p, p->pCheck);
p->pCheck = 0;
p->nKeyVal = 0;
if( p->rc==SQLITE_CORRUPT ){
p->rc = SQLITE_OK;
p->zMessage = intckMprintf(p,
"corruption found while scanning database object %s", p->zObj
);
}
}
}
}
return p->rc;
}
/*
** Return a message describing the corruption encountered by the most recent
** call to sqlite3_intck_step(), or NULL if no corruption was encountered.
*/
const char *sqlite3_intck_message(sqlite3_intck *p){
assert( p->pCheck==0 || p->zMessage==0 );
if( p->zMessage ){
return p->zMessage;
}
if( p->pCheck ){
return (const char*)sqlite3_column_text(p->pCheck, 0);
}
return 0;
}
/*
** Return the error code and message.
*/
int sqlite3_intck_error(sqlite3_intck *p, const char **pzErr){
if( pzErr ) *pzErr = p->zErr;
return (p->rc==SQLITE_DONE ? SQLITE_OK : p->rc);
}
/*
** Close any read transaction the integrity-check object is holding open
** on the database.
*/
int sqlite3_intck_unlock(sqlite3_intck *p){
if( p->rc==SQLITE_OK && p->pCheck ){
assert( p->zKey==0 && p->nKeyVal>0 );
intckSaveKey(p);
intckFinalize(p, p->pCheck);
p->pCheck = 0;
}
return p->rc;
}
/*
** Return the SQL statement used to check object zObj. Or, if zObj is
** NULL, the current SQL statement.
*/
const char *sqlite3_intck_test_sql(sqlite3_intck *p, const char *zObj){
sqlite3_free(p->zTestSql);
if( zObj ){
p->zTestSql = intckCheckObjectSql(p, zObj, 0, 0);
}else{
if( p->zObj ){
p->zTestSql = intckCheckObjectSql(p, p->zObj, p->zKey, 0);
}else{
sqlite3_free(p->zTestSql);
p->zTestSql = 0;
}
}
return p->zTestSql;
}
/************************* End ../ext/intck/sqlite3intck.c ********************/
/************************* Begin ../ext/misc/stmtrand.c ******************/
/*
** 2024-05-24
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
******************************************************************************
**
** An SQL function that return pseudo-random non-negative integers.
**
** SELECT stmtrand(123);
**
** A special feature of this function is that the same sequence of random
** integers is returned for each invocation of the statement. This makes
** the results repeatable, and hence useful for testing. The argument is
** an integer which is the seed for the random number sequence. The seed
** is used by the first invocation of this function only and is ignored
** for all subsequent calls within the same statement.
**
** Resetting a statement (sqlite3_reset()) also resets the random number
** sequence.
*/
/* #include "sqlite3ext.h" */
SQLITE_EXTENSION_INIT1
#include <assert.h>
#include <string.h>
/* State of the pseudo-random number generator */
typedef struct Stmtrand {
unsigned int x, y;
} Stmtrand;
/* auxdata key */
#define STMTRAND_KEY (-4418371)
/*
** Function: stmtrand(SEED)
**
** Return a pseudo-random number.
*/
static void stmtrandFunc(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
Stmtrand *p;
p = (Stmtrand*)sqlite3_get_auxdata(context, STMTRAND_KEY);
if( p==0 ){
unsigned int seed;
p = sqlite3_malloc( sizeof(*p) );
if( p==0 ){
sqlite3_result_error_nomem(context);
return;
}
if( argc>=1 ){
seed = (unsigned int)sqlite3_value_int(argv[0]);
}else{
seed = 0;
}
p->x = seed | 1;
p->y = seed;
sqlite3_set_auxdata(context, STMTRAND_KEY, p, sqlite3_free);
p = (Stmtrand*)sqlite3_get_auxdata(context, STMTRAND_KEY);
if( p==0 ){
sqlite3_result_error_nomem(context);
return;
}
}
p->x = (p->x>>1) ^ ((1+~(p->x&1)) & 0xd0000001);
p->y = p->y*1103515245 + 12345;
sqlite3_result_int(context, (int)((p->x ^ p->y)&0x7fffffff));
}
#ifdef _WIN32
#endif
int sqlite3_stmtrand_init(
sqlite3 *db,
char **pzErrMsg,
const sqlite3_api_routines *pApi
){
int rc = SQLITE_OK;
SQLITE_EXTENSION_INIT2(pApi);
(void)pzErrMsg; /* Unused parameter */
rc = sqlite3_create_function(db, "stmtrand", 1, SQLITE_UTF8, 0,
stmtrandFunc, 0, 0);
if( rc==SQLITE_OK ){
rc = sqlite3_create_function(db, "stmtrand", 0, SQLITE_UTF8, 0,
stmtrandFunc, 0, 0);
}
return rc;
}
/************************* End ../ext/misc/stmtrand.c ********************/
/************************* Begin ../ext/misc/vfstrace.c ******************/
/*
** 2011 March 16
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
******************************************************************************
**
** This file contains code implements a VFS shim that writes diagnostic
** output for each VFS call, similar to "strace".
**
** USAGE:
**
** This source file exports a single symbol which is the name of a
** function:
**
** int vfstrace_register(
** const char *zTraceName, // Name of the newly constructed VFS
** const char *zOldVfsName, // Name of the underlying VFS
** int (*xOut)(const char*,void*), // Output routine. ex: fputs
** void *pOutArg, // 2nd argument to xOut. ex: stderr
** int makeDefault // Make the new VFS the default
** );
**
** Applications that want to trace their VFS usage must provide a callback
** function with this prototype:
**
** int traceOutput(const char *zMessage, void *pAppData);
**
** This function will "output" the trace messages, where "output" can
** mean different things to different applications. The traceOutput function
** for the command-line shell (see shell.c) is "fputs" from the standard
** library, which means that all trace output is written on the stream
** specified by the second argument. In the case of the command-line shell
** the second argument is stderr. Other applications might choose to output
** trace information to a file, over a socket, or write it into a buffer.
**
** The vfstrace_register() function creates a new "shim" VFS named by
** the zTraceName parameter. A "shim" VFS is an SQLite backend that does
** not really perform the duties of a true backend, but simply filters or
** interprets VFS calls before passing them off to another VFS which does
** the actual work. In this case the other VFS - the one that does the
** real work - is identified by the second parameter, zOldVfsName. If
** the 2nd parameter is NULL then the default VFS is used. The common
** case is for the 2nd parameter to be NULL.
**
** The third and fourth parameters are the pointer to the output function
** and the second argument to the output function. For the SQLite
** command-line shell, when the -vfstrace option is used, these parameters
** are fputs and stderr, respectively.
**
** The fifth argument is true (non-zero) to cause the newly created VFS
** to become the default VFS. The common case is for the fifth parameter
** to be true.
**
** The call to vfstrace_register() simply creates the shim VFS that does
** tracing. The application must also arrange to use the new VFS for
** all database connections that are created and for which tracing is
** desired. This can be done by specifying the trace VFS using URI filename
** notation, or by specifying the trace VFS as the 4th parameter to
** sqlite3_open_v2() or by making the trace VFS be the default (by setting
** the 5th parameter of vfstrace_register() to 1).
**
**
** ENABLING VFSTRACE IN A COMMAND-LINE SHELL
**
** The SQLite command line shell implemented by the shell.c source file
** can be used with this module. To compile in -vfstrace support, first
** gather this file (test_vfstrace.c), the shell source file (shell.c),
** and the SQLite amalgamation source files (sqlite3.c, sqlite3.h) into
** the working directory. Then compile using a command like the following:
**
** gcc -o sqlite3 -Os -I. -DSQLITE_ENABLE_VFSTRACE \
** -DSQLITE_THREADSAFE=0 -DSQLITE_ENABLE_FTS3 -DSQLITE_ENABLE_RTREE \
** -DHAVE_READLINE -DHAVE_USLEEP=1 \
** shell.c test_vfstrace.c sqlite3.c -ldl -lreadline -lncurses
**
** The gcc command above works on Linux and provides (in addition to the
** -vfstrace option) support for FTS3 and FTS4, RTREE, and command-line
** editing using the readline library. The command-line shell does not
** use threads so we added -DSQLITE_THREADSAFE=0 just to make the code
** run a little faster. For compiling on a Mac, you'll probably need
** to omit the -DHAVE_READLINE, the -lreadline, and the -lncurses options.
** The compilation could be simplified to just this:
**
** gcc -DSQLITE_ENABLE_VFSTRACE \
** shell.c test_vfstrace.c sqlite3.c -ldl -lpthread
**
** In this second example, all unnecessary options have been removed
** Note that since the code is now threadsafe, we had to add the -lpthread
** option to pull in the pthreads library.
**
** To cross-compile for windows using MinGW, a command like this might
** work:
**
** /opt/mingw/bin/i386-mingw32msvc-gcc -o sqlite3.exe -Os -I \
** -DSQLITE_THREADSAFE=0 -DSQLITE_ENABLE_VFSTRACE \
** shell.c test_vfstrace.c sqlite3.c
**
** Similar compiler commands will work on different systems. The key
** invariants are (1) you must have -DSQLITE_ENABLE_VFSTRACE so that
** the shell.c source file will know to include the -vfstrace command-line
** option and (2) you must compile and link the three source files
** shell,c, test_vfstrace.c, and sqlite3.c.
**
** RUNTIME CONTROL OF VFSTRACE OUTPUT
**
** The application can use the "vfstrace" pragma to control which VFS
** APIs are traced. To disable all output:
**
** PRAGMA vfstrace('-all');
**
** To enable all output (which is the default setting):
**
** PRAGMA vfstrace('+all');
**
** Individual APIs can be enabled or disabled by name, with or without
** the initial "x" character. For example, to set up for tracing lock
** primatives only:
**
** PRAGMA vfstrace('-all, +Lock,Unlock,ShmLock');
**
** The argument to the vfstrace pragma ignores capitalization and any
** characters other than alphabetics, '+', and '-'.
*/
#include <stdlib.h>
#include <string.h>
/* #include "sqlite3.h" */
/*
** An instance of this structure is attached to the each trace VFS to
** provide auxiliary information.
*/
typedef struct vfstrace_info vfstrace_info;
struct vfstrace_info {
sqlite3_vfs *pRootVfs; /* The underlying real VFS */
int (*xOut)(const char*, void*); /* Send output here */
unsigned int mTrace; /* Mask of interfaces to trace */
u8 bOn; /* Tracing on/off */
void *pOutArg; /* First argument to xOut */
const char *zVfsName; /* Name of this trace-VFS */
sqlite3_vfs *pTraceVfs; /* Pointer back to the trace VFS */
};
/*
** The sqlite3_file object for the trace VFS
*/
typedef struct vfstrace_file vfstrace_file;
struct vfstrace_file {
sqlite3_file base; /* Base class. Must be first */
vfstrace_info *pInfo; /* The trace-VFS to which this file belongs */
const char *zFName; /* Base name of the file */
sqlite3_file *pReal; /* The real underlying file */
};
/*
** Bit values for vfstrace_info.mTrace.
*/
#define VTR_CLOSE 0x00000001
#define VTR_READ 0x00000002
#define VTR_WRITE 0x00000004
#define VTR_TRUNC 0x00000008
#define VTR_SYNC 0x00000010
#define VTR_FSIZE 0x00000020
#define VTR_LOCK 0x00000040
#define VTR_UNLOCK 0x00000080
#define VTR_CRL 0x00000100
#define VTR_FCTRL 0x00000200
#define VTR_SECSZ 0x00000400
#define VTR_DEVCHAR 0x00000800
#define VTR_SHMLOCK 0x00001000
#define VTR_SHMMAP 0x00002000
#define VTR_SHMBAR 0x00004000
#define VTR_SHMUNMAP 0x00008000
#define VTR_OPEN 0x00010000
#define VTR_DELETE 0x00020000
#define VTR_ACCESS 0x00040000
#define VTR_FULLPATH 0x00080000
#define VTR_DLOPEN 0x00100000
#define VTR_DLERR 0x00200000
#define VTR_DLSYM 0x00400000
#define VTR_DLCLOSE 0x00800000
#define VTR_RAND 0x01000000
#define VTR_SLEEP 0x02000000
#define VTR_CURTIME 0x04000000
#define VTR_LASTERR 0x08000000
#define VTR_FETCH 0x10000000 /* Also coverse xUnfetch */
/*
** Method declarations for vfstrace_file.
*/
static int vfstraceClose(sqlite3_file*);
static int vfstraceRead(sqlite3_file*, void*, int iAmt, sqlite3_int64 iOfst);
static int vfstraceWrite(sqlite3_file*,const void*,int iAmt, sqlite3_int64);
static int vfstraceTruncate(sqlite3_file*, sqlite3_int64 size);
static int vfstraceSync(sqlite3_file*, int flags);
static int vfstraceFileSize(sqlite3_file*, sqlite3_int64 *pSize);
static int vfstraceLock(sqlite3_file*, int);
static int vfstraceUnlock(sqlite3_file*, int);
static int vfstraceCheckReservedLock(sqlite3_file*, int *);
static int vfstraceFileControl(sqlite3_file*, int op, void *pArg);
static int vfstraceSectorSize(sqlite3_file*);
static int vfstraceDeviceCharacteristics(sqlite3_file*);
static int vfstraceShmLock(sqlite3_file*,int,int,int);
static int vfstraceShmMap(sqlite3_file*,int,int,int, void volatile **);
static void vfstraceShmBarrier(sqlite3_file*);
static int vfstraceShmUnmap(sqlite3_file*,int);
/*
** Method declarations for vfstrace_vfs.
*/
static int vfstraceOpen(sqlite3_vfs*, const char *, sqlite3_file*, int , int *);
static int vfstraceDelete(sqlite3_vfs*, const char *zName, int syncDir);
static int vfstraceAccess(sqlite3_vfs*, const char *zName, int flags, int *);
static int vfstraceFullPathname(sqlite3_vfs*, const char *zName, int, char *);
static void *vfstraceDlOpen(sqlite3_vfs*, const char *zFilename);
static void vfstraceDlError(sqlite3_vfs*, int nByte, char *zErrMsg);
static void (*vfstraceDlSym(sqlite3_vfs*,void*, const char *zSymbol))(void);
static void vfstraceDlClose(sqlite3_vfs*, void*);
static int vfstraceRandomness(sqlite3_vfs*, int nByte, char *zOut);
static int vfstraceSleep(sqlite3_vfs*, int microseconds);
static int vfstraceCurrentTime(sqlite3_vfs*, double*);
static int vfstraceGetLastError(sqlite3_vfs*, int, char*);
static int vfstraceCurrentTimeInt64(sqlite3_vfs*, sqlite3_int64*);
static int vfstraceSetSystemCall(sqlite3_vfs*,const char*, sqlite3_syscall_ptr);
static sqlite3_syscall_ptr vfstraceGetSystemCall(sqlite3_vfs*, const char *);
static const char *vfstraceNextSystemCall(sqlite3_vfs*, const char *zName);
/*
** Return a pointer to the tail of the pathname. Examples:
**
** /home/drh/xyzzy.txt -> xyzzy.txt
** xyzzy.txt -> xyzzy.txt
*/
static const char *fileTail(const char *z){
size_t i;
if( z==0 ) return 0;
i = strlen(z)-1;
while( i>0 && z[i-1]!='/' ){ i--; }
return &z[i];
}
/*
** Send trace output defined by zFormat and subsequent arguments.
*/
static void vfstrace_printf(
vfstrace_info *pInfo,
const char *zFormat,
...
){
va_list ap;
char *zMsg;
if( pInfo->bOn ){
va_start(ap, zFormat);
zMsg = sqlite3_vmprintf(zFormat, ap);
va_end(ap);
pInfo->xOut(zMsg, pInfo->pOutArg);
sqlite3_free(zMsg);
}
}
/*
** Try to convert an error code into a symbolic name for that error code.
*/
static const char *vfstrace_errcode_name(int rc ){
const char *zVal = 0;
switch( rc ){
case SQLITE_OK: zVal = "SQLITE_OK"; break;
case SQLITE_INTERNAL: zVal = "SQLITE_INTERNAL"; break;
case SQLITE_ERROR: zVal = "SQLITE_ERROR"; break;
case SQLITE_PERM: zVal = "SQLITE_PERM"; break;
case SQLITE_ABORT: zVal = "SQLITE_ABORT"; break;
case SQLITE_BUSY: zVal = "SQLITE_BUSY"; break;
case SQLITE_LOCKED: zVal = "SQLITE_LOCKED"; break;
case SQLITE_NOMEM: zVal = "SQLITE_NOMEM"; break;
case SQLITE_READONLY: zVal = "SQLITE_READONLY"; break;
case SQLITE_INTERRUPT: zVal = "SQLITE_INTERRUPT"; break;
case SQLITE_IOERR: zVal = "SQLITE_IOERR"; break;
case SQLITE_CORRUPT: zVal = "SQLITE_CORRUPT"; break;
case SQLITE_NOTFOUND: zVal = "SQLITE_NOTFOUND"; break;
case SQLITE_FULL: zVal = "SQLITE_FULL"; break;
case SQLITE_CANTOPEN: zVal = "SQLITE_CANTOPEN"; break;
case SQLITE_PROTOCOL: zVal = "SQLITE_PROTOCOL"; break;
case SQLITE_EMPTY: zVal = "SQLITE_EMPTY"; break;
case SQLITE_SCHEMA: zVal = "SQLITE_SCHEMA"; break;
case SQLITE_TOOBIG: zVal = "SQLITE_TOOBIG"; break;
case SQLITE_CONSTRAINT: zVal = "SQLITE_CONSTRAINT"; break;
case SQLITE_MISMATCH: zVal = "SQLITE_MISMATCH"; break;
case SQLITE_MISUSE: zVal = "SQLITE_MISUSE"; break;
case SQLITE_NOLFS: zVal = "SQLITE_NOLFS"; break;
case SQLITE_IOERR_READ: zVal = "SQLITE_IOERR_READ"; break;
case SQLITE_IOERR_SHORT_READ: zVal = "SQLITE_IOERR_SHORT_READ"; break;
case SQLITE_IOERR_WRITE: zVal = "SQLITE_IOERR_WRITE"; break;
case SQLITE_IOERR_FSYNC: zVal = "SQLITE_IOERR_FSYNC"; break;
case SQLITE_IOERR_DIR_FSYNC: zVal = "SQLITE_IOERR_DIR_FSYNC"; break;
case SQLITE_IOERR_TRUNCATE: zVal = "SQLITE_IOERR_TRUNCATE"; break;
case SQLITE_IOERR_FSTAT: zVal = "SQLITE_IOERR_FSTAT"; break;
case SQLITE_IOERR_UNLOCK: zVal = "SQLITE_IOERR_UNLOCK"; break;
case SQLITE_IOERR_RDLOCK: zVal = "SQLITE_IOERR_RDLOCK"; break;
case SQLITE_IOERR_DELETE: zVal = "SQLITE_IOERR_DELETE"; break;
case SQLITE_IOERR_BLOCKED: zVal = "SQLITE_IOERR_BLOCKED"; break;
case SQLITE_IOERR_NOMEM: zVal = "SQLITE_IOERR_NOMEM"; break;
case SQLITE_IOERR_ACCESS: zVal = "SQLITE_IOERR_ACCESS"; break;
case SQLITE_IOERR_CHECKRESERVEDLOCK:
zVal = "SQLITE_IOERR_CHECKRESERVEDLOCK"; break;
case SQLITE_IOERR_LOCK: zVal = "SQLITE_IOERR_LOCK"; break;
case SQLITE_IOERR_CLOSE: zVal = "SQLITE_IOERR_CLOSE"; break;
case SQLITE_IOERR_DIR_CLOSE: zVal = "SQLITE_IOERR_DIR_CLOSE"; break;
case SQLITE_IOERR_SHMOPEN: zVal = "SQLITE_IOERR_SHMOPEN"; break;
case SQLITE_IOERR_SHMSIZE: zVal = "SQLITE_IOERR_SHMSIZE"; break;
case SQLITE_IOERR_SHMLOCK: zVal = "SQLITE_IOERR_SHMLOCK"; break;
case SQLITE_IOERR_SHMMAP: zVal = "SQLITE_IOERR_SHMMAP"; break;
case SQLITE_IOERR_SEEK: zVal = "SQLITE_IOERR_SEEK"; break;
case SQLITE_IOERR_GETTEMPPATH: zVal = "SQLITE_IOERR_GETTEMPPATH"; break;
case SQLITE_IOERR_CONVPATH: zVal = "SQLITE_IOERR_CONVPATH"; break;
case SQLITE_READONLY_DBMOVED: zVal = "SQLITE_READONLY_DBMOVED"; break;
case SQLITE_LOCKED_SHAREDCACHE: zVal = "SQLITE_LOCKED_SHAREDCACHE"; break;
case SQLITE_BUSY_RECOVERY: zVal = "SQLITE_BUSY_RECOVERY"; break;
case SQLITE_CANTOPEN_NOTEMPDIR: zVal = "SQLITE_CANTOPEN_NOTEMPDIR"; break;
}
return zVal;
}
/*
** Convert value rc into a string and print it using zFormat. zFormat
** should have exactly one %s
*/
static void vfstrace_print_errcode(
vfstrace_info *pInfo,
const char *zFormat,
int rc
){
const char *zVal;
char zBuf[50];
zVal = vfstrace_errcode_name(rc);
if( zVal==0 ){
zVal = vfstrace_errcode_name(rc&0xff);
if( zVal ){
sqlite3_snprintf(sizeof(zBuf), zBuf, "%s | 0x%x", zVal, rc&0xffff00);
}else{
sqlite3_snprintf(sizeof(zBuf), zBuf, "%d (0x%x)", rc, rc);
}
zVal = zBuf;
}
vfstrace_printf(pInfo, zFormat, zVal);
}
/*
** Append to a buffer.
*/
static void strappend(char *z, int *pI, const char *zAppend){
int i = *pI;
while( zAppend[0] ){ z[i++] = *(zAppend++); }
z[i] = 0;
*pI = i;
}
/*
** Turn tracing output on or off according to mMask.
*/
static void vfstraceOnOff(vfstrace_info *pInfo, unsigned int mMask){
pInfo->bOn = (pInfo->mTrace & mMask)!=0;
}
/*
** Close an vfstrace-file.
*/
static int vfstraceClose(sqlite3_file *pFile){
vfstrace_file *p = (vfstrace_file *)pFile;
vfstrace_info *pInfo = p->pInfo;
int rc;
vfstraceOnOff(pInfo, VTR_CLOSE);
vfstrace_printf(pInfo, "%s.xClose(%s)", pInfo->zVfsName, p->zFName);
rc = p->pReal->pMethods->xClose(p->pReal);
vfstrace_print_errcode(pInfo, " -> %s\n", rc);
if( rc==SQLITE_OK ){
sqlite3_free((void*)p->base.pMethods);
p->base.pMethods = 0;
}
return rc;
}
/*
** Read data from an vfstrace-file.
*/
static int vfstraceRead(
sqlite3_file *pFile,
void *zBuf,
int iAmt,
sqlite_int64 iOfst
){
vfstrace_file *p = (vfstrace_file *)pFile;
vfstrace_info *pInfo = p->pInfo;
int rc;
vfstraceOnOff(pInfo, VTR_READ);
vfstrace_printf(pInfo, "%s.xRead(%s,n=%d,ofst=%lld)",
pInfo->zVfsName, p->zFName, iAmt, iOfst);
rc = p->pReal->pMethods->xRead(p->pReal, zBuf, iAmt, iOfst);
vfstrace_print_errcode(pInfo, " -> %s\n", rc);
return rc;
}
/*
** Write data to an vfstrace-file.
*/
static int vfstraceWrite(
sqlite3_file *pFile,
const void *zBuf,
int iAmt,
sqlite_int64 iOfst
){
vfstrace_file *p = (vfstrace_file *)pFile;
vfstrace_info *pInfo = p->pInfo;
int rc;
vfstraceOnOff(pInfo, VTR_WRITE);
vfstrace_printf(pInfo, "%s.xWrite(%s,n=%d,ofst=%lld)",
pInfo->zVfsName, p->zFName, iAmt, iOfst);
rc = p->pReal->pMethods->xWrite(p->pReal, zBuf, iAmt, iOfst);
vfstrace_print_errcode(pInfo, " -> %s\n", rc);
return rc;
}
/*
** Truncate an vfstrace-file.
*/
static int vfstraceTruncate(sqlite3_file *pFile, sqlite_int64 size){
vfstrace_file *p = (vfstrace_file *)pFile;
vfstrace_info *pInfo = p->pInfo;
int rc;
vfstraceOnOff(pInfo, VTR_TRUNC);
vfstrace_printf(pInfo, "%s.xTruncate(%s,%lld)", pInfo->zVfsName, p->zFName,
size);
rc = p->pReal->pMethods->xTruncate(p->pReal, size);
vfstrace_printf(pInfo, " -> %d\n", rc);
return rc;
}
/*
** Sync an vfstrace-file.
*/
static int vfstraceSync(sqlite3_file *pFile, int flags){
vfstrace_file *p = (vfstrace_file *)pFile;
vfstrace_info *pInfo = p->pInfo;
int rc;
int i;
char zBuf[100];
memcpy(zBuf, "|0", 3);
i = 0;
if( flags & SQLITE_SYNC_FULL ) strappend(zBuf, &i, "|FULL");
else if( flags & SQLITE_SYNC_NORMAL ) strappend(zBuf, &i, "|NORMAL");
if( flags & SQLITE_SYNC_DATAONLY ) strappend(zBuf, &i, "|DATAONLY");
if( flags & ~(SQLITE_SYNC_FULL|SQLITE_SYNC_DATAONLY) ){
sqlite3_snprintf(sizeof(zBuf)-i, &zBuf[i], "|0x%x", flags);
}
vfstraceOnOff(pInfo, VTR_SYNC);
vfstrace_printf(pInfo, "%s.xSync(%s,%s)", pInfo->zVfsName, p->zFName,
&zBuf[1]);
rc = p->pReal->pMethods->xSync(p->pReal, flags);
vfstrace_printf(pInfo, " -> %d\n", rc);
return rc;
}
/*
** Return the current file-size of an vfstrace-file.
*/
static int vfstraceFileSize(sqlite3_file *pFile, sqlite_int64 *pSize){
vfstrace_file *p = (vfstrace_file *)pFile;
vfstrace_info *pInfo = p->pInfo;
int rc;
vfstraceOnOff(pInfo, VTR_FSIZE);
vfstrace_printf(pInfo, "%s.xFileSize(%s)", pInfo->zVfsName, p->zFName);
rc = p->pReal->pMethods->xFileSize(p->pReal, pSize);
vfstrace_print_errcode(pInfo, " -> %s,", rc);
vfstrace_printf(pInfo, " size=%lld\n", *pSize);
return rc;
}
/*
** Return the name of a lock.
*/
static const char *lockName(int eLock){
const char *azLockNames[] = {
"NONE", "SHARED", "RESERVED", "PENDING", "EXCLUSIVE"
};
if( eLock<0 || eLock>=(int)(sizeof(azLockNames)/sizeof(azLockNames[0])) ){
return "???";
}else{
return azLockNames[eLock];
}
}
/*
** Lock an vfstrace-file.
*/
static int vfstraceLock(sqlite3_file *pFile, int eLock){
vfstrace_file *p = (vfstrace_file *)pFile;
vfstrace_info *pInfo = p->pInfo;
int rc;
vfstraceOnOff(pInfo, VTR_LOCK);
vfstrace_printf(pInfo, "%s.xLock(%s,%s)", pInfo->zVfsName, p->zFName,
lockName(eLock));
rc = p->pReal->pMethods->xLock(p->pReal, eLock);
vfstrace_print_errcode(pInfo, " -> %s\n", rc);
return rc;
}
/*
** Unlock an vfstrace-file.
*/
static int vfstraceUnlock(sqlite3_file *pFile, int eLock){
vfstrace_file *p = (vfstrace_file *)pFile;
vfstrace_info *pInfo = p->pInfo;
int rc;
vfstraceOnOff(pInfo, VTR_UNLOCK);
vfstrace_printf(pInfo, "%s.xUnlock(%s,%s)", pInfo->zVfsName, p->zFName,
lockName(eLock));
rc = p->pReal->pMethods->xUnlock(p->pReal, eLock);
vfstrace_print_errcode(pInfo, " -> %s\n", rc);
return rc;
}
/*
** Check if another file-handle holds a RESERVED lock on an vfstrace-file.
*/
static int vfstraceCheckReservedLock(sqlite3_file *pFile, int *pResOut){
vfstrace_file *p = (vfstrace_file *)pFile;
vfstrace_info *pInfo = p->pInfo;
int rc;
vfstraceOnOff(pInfo, VTR_CRL);
vfstrace_printf(pInfo, "%s.xCheckReservedLock(%s,%d)",
pInfo->zVfsName, p->zFName);
rc = p->pReal->pMethods->xCheckReservedLock(p->pReal, pResOut);
vfstrace_print_errcode(pInfo, " -> %s", rc);
vfstrace_printf(pInfo, ", out=%d\n", *pResOut);
return rc;
}
/*
** File control method. For custom operations on an vfstrace-file.
*/
static int vfstraceFileControl(sqlite3_file *pFile, int op, void *pArg){
vfstrace_file *p = (vfstrace_file *)pFile;
vfstrace_info *pInfo = p->pInfo;
int rc;
char zBuf[100];
char zBuf2[100];
char *zOp;
char *zRVal = 0;
vfstraceOnOff(pInfo, VTR_FCTRL);
switch( op ){
case SQLITE_FCNTL_LOCKSTATE: zOp = "LOCKSTATE"; break;
case SQLITE_GET_LOCKPROXYFILE: zOp = "GET_LOCKPROXYFILE"; break;
case SQLITE_SET_LOCKPROXYFILE: zOp = "SET_LOCKPROXYFILE"; break;
case SQLITE_LAST_ERRNO: zOp = "LAST_ERRNO"; break;
case SQLITE_FCNTL_SIZE_HINT: {
sqlite3_snprintf(sizeof(zBuf), zBuf, "SIZE_HINT,%lld",
*(sqlite3_int64*)pArg);
zOp = zBuf;
break;
}
case SQLITE_FCNTL_CHUNK_SIZE: {
sqlite3_snprintf(sizeof(zBuf), zBuf, "CHUNK_SIZE,%d", *(int*)pArg);
zOp = zBuf;
break;
}
case SQLITE_FCNTL_FILE_POINTER: zOp = "FILE_POINTER"; break;
case SQLITE_FCNTL_WIN32_AV_RETRY: zOp = "WIN32_AV_RETRY"; break;
case SQLITE_FCNTL_PERSIST_WAL: {
sqlite3_snprintf(sizeof(zBuf), zBuf, "PERSIST_WAL,%d", *(int*)pArg);
zOp = zBuf;
break;
}
case SQLITE_FCNTL_OVERWRITE: zOp = "OVERWRITE"; break;
case SQLITE_FCNTL_VFSNAME: zOp = "VFSNAME"; break;
case SQLITE_FCNTL_POWERSAFE_OVERWRITE: zOp = "POWERSAFE_OVERWRITE"; break;
case SQLITE_FCNTL_PRAGMA: {
const char *const* a = (const char*const*)pArg;
if( a[1] && strcmp(a[1],"vfstrace")==0 && a[2] ){
const u8 *zArg = (const u8*)a[2];
if( zArg[0]>='0' && zArg[0]<=9 ){
pInfo->mTrace = (sqlite3_uint64)strtoll(a[2], 0, 0);
}else{
static const struct {
const char *z;
unsigned int m;
} aKw[] = {
{ "all", 0xffffffff },
{ "close", VTR_CLOSE },
{ "read", VTR_READ },
{ "write", VTR_WRITE },
{ "truncate", VTR_TRUNC },
{ "sync", VTR_SYNC },
{ "filesize", VTR_FSIZE },
{ "lock", VTR_LOCK },
{ "unlock", VTR_UNLOCK },
{ "checkreservedlock", VTR_CRL },
{ "filecontrol", VTR_FCTRL },
{ "sectorsize", VTR_SECSZ },
{ "devicecharacteristics", VTR_DEVCHAR },
{ "shmlock", VTR_SHMLOCK },
{ "shmmap", VTR_SHMMAP },
{ "shmummap", VTR_SHMUNMAP },
{ "shmbarrier", VTR_SHMBAR },
{ "open", VTR_OPEN },
{ "delete", VTR_DELETE },
{ "access", VTR_ACCESS },
{ "fullpathname", VTR_FULLPATH },
{ "dlopen", VTR_DLOPEN },
{ "dlerror", VTR_DLERR },
{ "dlsym", VTR_DLSYM },
{ "dlclose", VTR_DLCLOSE },
{ "randomness", VTR_RAND },
{ "sleep", VTR_SLEEP },
{ "currenttime", VTR_CURTIME },
{ "currenttimeint64", VTR_CURTIME },
{ "getlasterror", VTR_LASTERR },
{ "fetch", VTR_FETCH },
};
int onOff = 1;
while( zArg[0] ){
int jj, n;
while( zArg[0]!=0 && zArg[0]!='-' && zArg[0]!='+'
&& !isalpha(zArg[0]) ) zArg++;
if( zArg[0]==0 ) break;
if( zArg[0]=='-' ){
onOff = 0;
zArg++;
}else if( zArg[0]=='+' ){
onOff = 1;
zArg++;
}
while( !isalpha(zArg[0]) ){
if( zArg[0]==0 ) break;
zArg++;
}
if( zArg[0]=='x' && isalpha(zArg[1]) ) zArg++;
for(n=0; isalpha(zArg[n]); n++){}
for(jj=0; jj<(int)(sizeof(aKw)/sizeof(aKw[0])); jj++){
if( sqlite3_strnicmp(aKw[jj].z,(const char*)zArg,n)==0 ){
if( onOff ){
pInfo->mTrace |= aKw[jj].m;
}else{
pInfo->mTrace &= ~aKw[jj].m;
}
break;
}
}
zArg += n;
}
}
}
sqlite3_snprintf(sizeof(zBuf), zBuf, "PRAGMA,[%s,%s]",a[1],a[2]);
zOp = zBuf;
break;
}
case SQLITE_FCNTL_BUSYHANDLER: zOp = "BUSYHANDLER"; break;
case SQLITE_FCNTL_TEMPFILENAME: zOp = "TEMPFILENAME"; break;
case SQLITE_FCNTL_MMAP_SIZE: {
sqlite3_int64 iMMap = *(sqlite3_int64*)pArg;
sqlite3_snprintf(sizeof(zBuf), zBuf, "MMAP_SIZE,%lld",iMMap);
zOp = zBuf;
break;
}
case SQLITE_FCNTL_TRACE: zOp = "TRACE"; break;
case SQLITE_FCNTL_HAS_MOVED: zOp = "HAS_MOVED"; break;
case SQLITE_FCNTL_SYNC: zOp = "SYNC"; break;
case SQLITE_FCNTL_COMMIT_PHASETWO: zOp = "COMMIT_PHASETWO"; break;
case SQLITE_FCNTL_WIN32_SET_HANDLE: zOp = "WIN32_SET_HANDLE"; break;
case SQLITE_FCNTL_WAL_BLOCK: zOp = "WAL_BLOCK"; break;
case SQLITE_FCNTL_ZIPVFS: zOp = "ZIPVFS"; break;
case SQLITE_FCNTL_RBU: zOp = "RBU"; break;
case SQLITE_FCNTL_VFS_POINTER: zOp = "VFS_POINTER"; break;
case SQLITE_FCNTL_JOURNAL_POINTER: zOp = "JOURNAL_POINTER"; break;
case SQLITE_FCNTL_WIN32_GET_HANDLE: zOp = "WIN32_GET_HANDLE"; break;
case SQLITE_FCNTL_PDB: zOp = "PDB"; break;
case SQLITE_FCNTL_BEGIN_ATOMIC_WRITE: zOp = "BEGIN_ATOMIC_WRITE"; break;
case SQLITE_FCNTL_COMMIT_ATOMIC_WRITE: zOp = "COMMIT_ATOMIC_WRITE"; break;
case SQLITE_FCNTL_ROLLBACK_ATOMIC_WRITE: {
zOp = "ROLLBACK_ATOMIC_WRITE";
break;
}
case SQLITE_FCNTL_LOCK_TIMEOUT: {
sqlite3_snprintf(sizeof(zBuf), zBuf, "LOCK_TIMEOUT,%d", *(int*)pArg);
zOp = zBuf;
break;
}
case SQLITE_FCNTL_DATA_VERSION: zOp = "DATA_VERSION"; break;
case SQLITE_FCNTL_SIZE_LIMIT: zOp = "SIZE_LIMIT"; break;
case SQLITE_FCNTL_CKPT_DONE: zOp = "CKPT_DONE"; break;
case SQLITE_FCNTL_RESERVE_BYTES: zOp = "RESERVED_BYTES"; break;
case SQLITE_FCNTL_CKPT_START: zOp = "CKPT_START"; break;
case SQLITE_FCNTL_EXTERNAL_READER: zOp = "EXTERNAL_READER"; break;
case SQLITE_FCNTL_CKSM_FILE: zOp = "CKSM_FILE"; break;
case SQLITE_FCNTL_RESET_CACHE: zOp = "RESET_CACHE"; break;
case 0xca093fa0: zOp = "DB_UNCHANGED"; break;
default: {
sqlite3_snprintf(sizeof zBuf, zBuf, "%d", op);
zOp = zBuf;
break;
}
}
vfstrace_printf(pInfo, "%s.xFileControl(%s,%s)",
pInfo->zVfsName, p->zFName, zOp);
rc = p->pReal->pMethods->xFileControl(p->pReal, op, pArg);
if( rc==SQLITE_OK ){
switch( op ){
case SQLITE_FCNTL_VFSNAME: {
*(char**)pArg = sqlite3_mprintf("vfstrace.%s/%z",
pInfo->zVfsName, *(char**)pArg);
zRVal = *(char**)pArg;
break;
}
case SQLITE_FCNTL_MMAP_SIZE: {
sqlite3_snprintf(sizeof(zBuf2), zBuf2, "%lld", *(sqlite3_int64*)pArg);
zRVal = zBuf2;
break;
}
case SQLITE_FCNTL_HAS_MOVED:
case SQLITE_FCNTL_PERSIST_WAL: {
sqlite3_snprintf(sizeof(zBuf2), zBuf2, "%d", *(int*)pArg);
zRVal = zBuf2;
break;
}
case SQLITE_FCNTL_PRAGMA:
case SQLITE_FCNTL_TEMPFILENAME: {
zRVal = *(char**)pArg;
break;
}
}
}
if( zRVal ){
vfstrace_print_errcode(pInfo, " -> %s", rc);
vfstrace_printf(pInfo, ", %s\n", zRVal);
}else{
vfstrace_print_errcode(pInfo, " -> %s\n", rc);
}
return rc;
}
/*
** Return the sector-size in bytes for an vfstrace-file.
*/
static int vfstraceSectorSize(sqlite3_file *pFile){
vfstrace_file *p = (vfstrace_file *)pFile;
vfstrace_info *pInfo = p->pInfo;
int rc;
vfstraceOnOff(pInfo, VTR_SECSZ);
vfstrace_printf(pInfo, "%s.xSectorSize(%s)", pInfo->zVfsName, p->zFName);
rc = p->pReal->pMethods->xSectorSize(p->pReal);
vfstrace_printf(pInfo, " -> %d\n", rc);
return rc;
}
/*
** Return the device characteristic flags supported by an vfstrace-file.
*/
static int vfstraceDeviceCharacteristics(sqlite3_file *pFile){
vfstrace_file *p = (vfstrace_file *)pFile;
vfstrace_info *pInfo = p->pInfo;
int rc;
vfstraceOnOff(pInfo, VTR_DEVCHAR);
vfstrace_printf(pInfo, "%s.xDeviceCharacteristics(%s)",
pInfo->zVfsName, p->zFName);
rc = p->pReal->pMethods->xDeviceCharacteristics(p->pReal);
vfstrace_printf(pInfo, " -> 0x%08x\n", rc);
return rc;
}
/*
** Shared-memory operations.
*/
static int vfstraceShmLock(sqlite3_file *pFile, int ofst, int n, int flags){
static const char *azLockName[] = {
"WRITE",
"CKPT",
"RECOVER",
"READ0",
"READ1",
"READ2",
"READ3",
"READ4",
};
vfstrace_file *p = (vfstrace_file *)pFile;
vfstrace_info *pInfo = p->pInfo;
int rc;
char zLck[100];
int i = 0;
vfstraceOnOff(pInfo, VTR_SHMLOCK);
memcpy(zLck, "|0", 3);
if( flags & SQLITE_SHM_UNLOCK ) strappend(zLck, &i, "|UNLOCK");
if( flags & SQLITE_SHM_LOCK ) strappend(zLck, &i, "|LOCK");
if( flags & SQLITE_SHM_SHARED ) strappend(zLck, &i, "|SHARED");
if( flags & SQLITE_SHM_EXCLUSIVE ) strappend(zLck, &i, "|EXCLUSIVE");
if( flags & ~(0xf) ){
sqlite3_snprintf(sizeof(zLck)-i, &zLck[i], "|0x%x", flags);
}
if( ofst>=0 && ofst<(int)(sizeof(azLockName)/sizeof(azLockName[0])) ){
vfstrace_printf(pInfo, "%s.xShmLock(%s,ofst=%d(%s),n=%d,%s)",
pInfo->zVfsName, p->zFName, ofst, azLockName[ofst],
n, &zLck[1]);
}else{
vfstrace_printf(pInfo, "%s.xShmLock(%s,ofst=5d,n=%d,%s)",
pInfo->zVfsName, p->zFName, ofst,
n, &zLck[1]);
}
rc = p->pReal->pMethods->xShmLock(p->pReal, ofst, n, flags);
vfstrace_print_errcode(pInfo, " -> %s\n", rc);
return rc;
}
static int vfstraceShmMap(
sqlite3_file *pFile,
int iRegion,
int szRegion,
int isWrite,
void volatile **pp
){
vfstrace_file *p = (vfstrace_file *)pFile;
vfstrace_info *pInfo = p->pInfo;
int rc;
vfstraceOnOff(pInfo, VTR_SHMMAP);
vfstrace_printf(pInfo, "%s.xShmMap(%s,iRegion=%d,szRegion=%d,isWrite=%d,*)",
pInfo->zVfsName, p->zFName, iRegion, szRegion, isWrite);
rc = p->pReal->pMethods->xShmMap(p->pReal, iRegion, szRegion, isWrite, pp);
vfstrace_print_errcode(pInfo, " -> %s\n", rc);
return rc;
}
static void vfstraceShmBarrier(sqlite3_file *pFile){
vfstrace_file *p = (vfstrace_file *)pFile;
vfstrace_info *pInfo = p->pInfo;
vfstraceOnOff(pInfo, VTR_SHMBAR);
vfstrace_printf(pInfo, "%s.xShmBarrier(%s)\n", pInfo->zVfsName, p->zFName);
p->pReal->pMethods->xShmBarrier(p->pReal);
}
static int vfstraceShmUnmap(sqlite3_file *pFile, int delFlag){
vfstrace_file *p = (vfstrace_file *)pFile;
vfstrace_info *pInfo = p->pInfo;
int rc;
vfstraceOnOff(pInfo, VTR_SHMUNMAP);
vfstrace_printf(pInfo, "%s.xShmUnmap(%s,delFlag=%d)",
pInfo->zVfsName, p->zFName, delFlag);
rc = p->pReal->pMethods->xShmUnmap(p->pReal, delFlag);
vfstrace_print_errcode(pInfo, " -> %s\n", rc);
return rc;
}
static int vfstraceFetch(sqlite3_file *pFile, i64 iOff, int nAmt, void **pptr){
vfstrace_file *p = (vfstrace_file *)pFile;
vfstrace_info *pInfo = p->pInfo;
int rc;
vfstraceOnOff(pInfo, VTR_FETCH);
vfstrace_printf(pInfo, "%s.xFetch(%s,iOff=%lld,nAmt=%d,p=%p)",
pInfo->zVfsName, p->zFName, iOff, nAmt, *pptr);
rc = p->pReal->pMethods->xFetch(p->pReal, iOff, nAmt, pptr);
vfstrace_print_errcode(pInfo, " -> %s\n", rc);
return rc;
}
static int vfstraceUnfetch(sqlite3_file *pFile, i64 iOff, void *ptr){
vfstrace_file *p = (vfstrace_file *)pFile;
vfstrace_info *pInfo = p->pInfo;
int rc;
vfstraceOnOff(pInfo, VTR_FETCH);
vfstrace_printf(pInfo, "%s.xUnfetch(%s,iOff=%lld,p=%p)",
pInfo->zVfsName, p->zFName, iOff, ptr);
rc = p->pReal->pMethods->xUnfetch(p->pReal, iOff, ptr);
vfstrace_print_errcode(pInfo, " -> %s\n", rc);
return rc;
}
/*
** Open an vfstrace file handle.
*/
static int vfstraceOpen(
sqlite3_vfs *pVfs,
const char *zName,
sqlite3_file *pFile,
int flags,
int *pOutFlags
){
int rc;
vfstrace_file *p = (vfstrace_file *)pFile;
vfstrace_info *pInfo = (vfstrace_info*)pVfs->pAppData;
sqlite3_vfs *pRoot = pInfo->pRootVfs;
p->pInfo = pInfo;
p->zFName = zName ? fileTail(zName) : "<temp>";
p->pReal = (sqlite3_file *)&p[1];
rc = pRoot->xOpen(pRoot, zName, p->pReal, flags, pOutFlags);
vfstraceOnOff(pInfo, VTR_OPEN);
vfstrace_printf(pInfo, "%s.xOpen(%s,flags=0x%x)",
pInfo->zVfsName, p->zFName, flags);
if( p->pReal->pMethods ){
sqlite3_io_methods *pNew = sqlite3_malloc( sizeof(*pNew) );
const sqlite3_io_methods *pSub = p->pReal->pMethods;
memset(pNew, 0, sizeof(*pNew));
pNew->iVersion = pSub->iVersion;
pNew->xClose = vfstraceClose;
pNew->xRead = vfstraceRead;
pNew->xWrite = vfstraceWrite;
pNew->xTruncate = vfstraceTruncate;
pNew->xSync = vfstraceSync;
pNew->xFileSize = vfstraceFileSize;
pNew->xLock = vfstraceLock;
pNew->xUnlock = vfstraceUnlock;
pNew->xCheckReservedLock = vfstraceCheckReservedLock;
pNew->xFileControl = vfstraceFileControl;
pNew->xSectorSize = vfstraceSectorSize;
pNew->xDeviceCharacteristics = vfstraceDeviceCharacteristics;
if( pNew->iVersion>=2 ){
pNew->xShmMap = pSub->xShmMap ? vfstraceShmMap : 0;
pNew->xShmLock = pSub->xShmLock ? vfstraceShmLock : 0;
pNew->xShmBarrier = pSub->xShmBarrier ? vfstraceShmBarrier : 0;
pNew->xShmUnmap = pSub->xShmUnmap ? vfstraceShmUnmap : 0;
}
if( pNew->iVersion>=3 ){
pNew->xFetch = pSub->xFetch ? vfstraceFetch : 0;
pNew->xUnfetch = pSub->xUnfetch ? vfstraceUnfetch : 0;
}
pFile->pMethods = pNew;
}
vfstrace_print_errcode(pInfo, " -> %s", rc);
if( pOutFlags ){
vfstrace_printf(pInfo, ", outFlags=0x%x\n", *pOutFlags);
}else{
vfstrace_printf(pInfo, "\n");
}
return rc;
}
/*
** Delete the file located at zPath. If the dirSync argument is true,
** ensure the file-system modifications are synced to disk before
** returning.
*/
static int vfstraceDelete(sqlite3_vfs *pVfs, const char *zPath, int dirSync){
vfstrace_info *pInfo = (vfstrace_info*)pVfs->pAppData;
sqlite3_vfs *pRoot = pInfo->pRootVfs;
int rc;
vfstraceOnOff(pInfo, VTR_DELETE);
vfstrace_printf(pInfo, "%s.xDelete(\"%s\",%d)",
pInfo->zVfsName, zPath, dirSync);
rc = pRoot->xDelete(pRoot, zPath, dirSync);
vfstrace_print_errcode(pInfo, " -> %s\n", rc);
return rc;
}
/*
** Test for access permissions. Return true if the requested permission
** is available, or false otherwise.
*/
static int vfstraceAccess(
sqlite3_vfs *pVfs,
const char *zPath,
int flags,
int *pResOut
){
vfstrace_info *pInfo = (vfstrace_info*)pVfs->pAppData;
sqlite3_vfs *pRoot = pInfo->pRootVfs;
int rc;
vfstraceOnOff(pInfo, VTR_ACCESS);
vfstrace_printf(pInfo, "%s.xAccess(\"%s\",%d)",
pInfo->zVfsName, zPath, flags);
rc = pRoot->xAccess(pRoot, zPath, flags, pResOut);
vfstrace_print_errcode(pInfo, " -> %s", rc);
vfstrace_printf(pInfo, ", out=%d\n", *pResOut);
return rc;
}
/*
** Populate buffer zOut with the full canonical pathname corresponding
** to the pathname in zPath. zOut is guaranteed to point to a buffer
** of at least (DEVSYM_MAX_PATHNAME+1) bytes.
*/
static int vfstraceFullPathname(
sqlite3_vfs *pVfs,
const char *zPath,
int nOut,
char *zOut
){
vfstrace_info *pInfo = (vfstrace_info*)pVfs->pAppData;
sqlite3_vfs *pRoot = pInfo->pRootVfs;
int rc;
vfstraceOnOff(pInfo, VTR_FULLPATH);
vfstrace_printf(pInfo, "%s.xFullPathname(\"%s\")",
pInfo->zVfsName, zPath);
rc = pRoot->xFullPathname(pRoot, zPath, nOut, zOut);
vfstrace_print_errcode(pInfo, " -> %s", rc);
vfstrace_printf(pInfo, ", out=\"%.*s\"\n", nOut, zOut);
return rc;
}
/*
** Open the dynamic library located at zPath and return a handle.
*/
static void *vfstraceDlOpen(sqlite3_vfs *pVfs, const char *zPath){
vfstrace_info *pInfo = (vfstrace_info*)pVfs->pAppData;
sqlite3_vfs *pRoot = pInfo->pRootVfs;
vfstraceOnOff(pInfo, VTR_DLOPEN);
vfstrace_printf(pInfo, "%s.xDlOpen(\"%s\")\n", pInfo->zVfsName, zPath);
return pRoot->xDlOpen(pRoot, zPath);
}
/*
** Populate the buffer zErrMsg (size nByte bytes) with a human readable
** utf-8 string describing the most recent error encountered associated
** with dynamic libraries.
*/
static void vfstraceDlError(sqlite3_vfs *pVfs, int nByte, char *zErrMsg){
vfstrace_info *pInfo = (vfstrace_info*)pVfs->pAppData;
sqlite3_vfs *pRoot = pInfo->pRootVfs;
vfstraceOnOff(pInfo, VTR_DLERR);
vfstrace_printf(pInfo, "%s.xDlError(%d)", pInfo->zVfsName, nByte);
pRoot->xDlError(pRoot, nByte, zErrMsg);
vfstrace_printf(pInfo, " -> \"%s\"", zErrMsg);
}
/*
** Return a pointer to the symbol zSymbol in the dynamic library pHandle.
*/
static void (*vfstraceDlSym(sqlite3_vfs *pVfs,void *p,const char *zSym))(void){
vfstrace_info *pInfo = (vfstrace_info*)pVfs->pAppData;
sqlite3_vfs *pRoot = pInfo->pRootVfs;
vfstrace_printf(pInfo, "%s.xDlSym(\"%s\")\n", pInfo->zVfsName, zSym);
return pRoot->xDlSym(pRoot, p, zSym);
}
/*
** Close the dynamic library handle pHandle.
*/
static void vfstraceDlClose(sqlite3_vfs *pVfs, void *pHandle){
vfstrace_info *pInfo = (vfstrace_info*)pVfs->pAppData;
sqlite3_vfs *pRoot = pInfo->pRootVfs;
vfstraceOnOff(pInfo, VTR_DLCLOSE);
vfstrace_printf(pInfo, "%s.xDlOpen()\n", pInfo->zVfsName);
pRoot->xDlClose(pRoot, pHandle);
}
/*
** Populate the buffer pointed to by zBufOut with nByte bytes of
** random data.
*/
static int vfstraceRandomness(sqlite3_vfs *pVfs, int nByte, char *zBufOut){
vfstrace_info *pInfo = (vfstrace_info*)pVfs->pAppData;
sqlite3_vfs *pRoot = pInfo->pRootVfs;
vfstraceOnOff(pInfo, VTR_RAND);
vfstrace_printf(pInfo, "%s.xRandomness(%d)\n", pInfo->zVfsName, nByte);
return pRoot->xRandomness(pRoot, nByte, zBufOut);
}
/*
** Sleep for nMicro microseconds. Return the number of microseconds
** actually slept.
*/
static int vfstraceSleep(sqlite3_vfs *pVfs, int nMicro){
vfstrace_info *pInfo = (vfstrace_info*)pVfs->pAppData;
sqlite3_vfs *pRoot = pInfo->pRootVfs;
vfstraceOnOff(pInfo, VTR_SLEEP);
vfstrace_printf(pInfo, "%s.xSleep(%d)\n", pInfo->zVfsName, nMicro);
return pRoot->xSleep(pRoot, nMicro);
}
/*
** Return the current time as a Julian Day number in *pTimeOut.
*/
static int vfstraceCurrentTime(sqlite3_vfs *pVfs, double *pTimeOut){
vfstrace_info *pInfo = (vfstrace_info*)pVfs->pAppData;
sqlite3_vfs *pRoot = pInfo->pRootVfs;
int rc;
vfstraceOnOff(pInfo, VTR_CURTIME);
vfstrace_printf(pInfo, "%s.xCurrentTime()", pInfo->zVfsName);
rc = pRoot->xCurrentTime(pRoot, pTimeOut);
vfstrace_printf(pInfo, " -> %.17g\n", *pTimeOut);
return rc;
}
static int vfstraceCurrentTimeInt64(sqlite3_vfs *pVfs, sqlite3_int64 *pTimeOut){
vfstrace_info *pInfo = (vfstrace_info*)pVfs->pAppData;
sqlite3_vfs *pRoot = pInfo->pRootVfs;
int rc;
vfstraceOnOff(pInfo, VTR_CURTIME);
vfstrace_printf(pInfo, "%s.xCurrentTimeInt64()", pInfo->zVfsName);
rc = pRoot->xCurrentTimeInt64(pRoot, pTimeOut);
vfstrace_printf(pInfo, " -> %lld\n", *pTimeOut);
return rc;
}
/*
** Return the most recent error code and message
*/
static int vfstraceGetLastError(sqlite3_vfs *pVfs, int nErr, char *zErr){
vfstrace_info *pInfo = (vfstrace_info*)pVfs->pAppData;
sqlite3_vfs *pRoot = pInfo->pRootVfs;
int rc;
vfstraceOnOff(pInfo, VTR_LASTERR);
vfstrace_printf(pInfo, "%s.xGetLastError(%d,zBuf)", pInfo->zVfsName, nErr);
if( nErr ) zErr[0] = 0;
rc = pRoot->xGetLastError(pRoot, nErr, zErr);
vfstrace_printf(pInfo, " -> zBuf[] = \"%s\", rc = %d\n", nErr?zErr:"", rc);
return rc;
}
/*
** Override system calls.
*/
static int vfstraceSetSystemCall(
sqlite3_vfs *pVfs,
const char *zName,
sqlite3_syscall_ptr pFunc
){
vfstrace_info *pInfo = (vfstrace_info*)pVfs->pAppData;
sqlite3_vfs *pRoot = pInfo->pRootVfs;
return pRoot->xSetSystemCall(pRoot, zName, pFunc);
}
static sqlite3_syscall_ptr vfstraceGetSystemCall(
sqlite3_vfs *pVfs,
const char *zName
){
vfstrace_info *pInfo = (vfstrace_info*)pVfs->pAppData;
sqlite3_vfs *pRoot = pInfo->pRootVfs;
return pRoot->xGetSystemCall(pRoot, zName);
}
static const char *vfstraceNextSystemCall(sqlite3_vfs *pVfs, const char *zName){
vfstrace_info *pInfo = (vfstrace_info*)pVfs->pAppData;
sqlite3_vfs *pRoot = pInfo->pRootVfs;
return pRoot->xNextSystemCall(pRoot, zName);
}
/*
** Clients invoke this routine to construct a new trace-vfs shim.
**
** Return SQLITE_OK on success.
**
** SQLITE_NOMEM is returned in the case of a memory allocation error.
** SQLITE_NOTFOUND is returned if zOldVfsName does not exist.
*/
int vfstrace_register(
const char *zTraceName, /* Name of the newly constructed VFS */
const char *zOldVfsName, /* Name of the underlying VFS */
int (*xOut)(const char*,void*), /* Output routine. ex: fputs */
void *pOutArg, /* 2nd argument to xOut. ex: stderr */
int makeDefault /* True to make the new VFS the default */
){
sqlite3_vfs *pNew;
sqlite3_vfs *pRoot;
vfstrace_info *pInfo;
size_t nName;
size_t nByte;
pRoot = sqlite3_vfs_find(zOldVfsName);
if( pRoot==0 ) return SQLITE_NOTFOUND;
nName = strlen(zTraceName);
nByte = sizeof(*pNew) + sizeof(*pInfo) + nName + 1;
pNew = sqlite3_malloc64( nByte );
if( pNew==0 ) return SQLITE_NOMEM;
memset(pNew, 0, nByte);
pInfo = (vfstrace_info*)&pNew[1];
pNew->iVersion = pRoot->iVersion;
pNew->szOsFile = pRoot->szOsFile + sizeof(vfstrace_file);
pNew->mxPathname = pRoot->mxPathname;
pNew->zName = (char*)&pInfo[1];
memcpy((char*)&pInfo[1], zTraceName, nName+1);
pNew->pAppData = pInfo;
pNew->xOpen = vfstraceOpen;
pNew->xDelete = vfstraceDelete;
pNew->xAccess = vfstraceAccess;
pNew->xFullPathname = vfstraceFullPathname;
pNew->xDlOpen = pRoot->xDlOpen==0 ? 0 : vfstraceDlOpen;
pNew->xDlError = pRoot->xDlError==0 ? 0 : vfstraceDlError;
pNew->xDlSym = pRoot->xDlSym==0 ? 0 : vfstraceDlSym;
pNew->xDlClose = pRoot->xDlClose==0 ? 0 : vfstraceDlClose;
pNew->xRandomness = vfstraceRandomness;
pNew->xSleep = vfstraceSleep;
pNew->xCurrentTime = vfstraceCurrentTime;
pNew->xGetLastError = pRoot->xGetLastError==0 ? 0 : vfstraceGetLastError;
if( pNew->iVersion>=2 ){
pNew->xCurrentTimeInt64 = pRoot->xCurrentTimeInt64==0 ? 0 :
vfstraceCurrentTimeInt64;
if( pNew->iVersion>=3 ){
pNew->xSetSystemCall = pRoot->xSetSystemCall==0 ? 0 :
vfstraceSetSystemCall;
pNew->xGetSystemCall = pRoot->xGetSystemCall==0 ? 0 :
vfstraceGetSystemCall;
pNew->xNextSystemCall = pRoot->xNextSystemCall==0 ? 0 :
vfstraceNextSystemCall;
}
}
pInfo->pRootVfs = pRoot;
pInfo->xOut = xOut;
pInfo->pOutArg = pOutArg;
pInfo->zVfsName = pNew->zName;
pInfo->pTraceVfs = pNew;
pInfo->mTrace = 0xffffffff;
pInfo->bOn = 1;
vfstrace_printf(pInfo, "%s.enabled_for(\"%s\")\n",
pInfo->zVfsName, pRoot->zName);
return sqlite3_vfs_register(pNew, makeDefault);
}
/*
** Look for the named VFS. If it is a TRACEVFS, then unregister it
** and delete it.
*/
void vfstrace_unregister(const char *zTraceName){
sqlite3_vfs *pVfs = sqlite3_vfs_find(zTraceName);
if( pVfs==0 ) return;
if( pVfs->xOpen!=vfstraceOpen ) return;
sqlite3_vfs_unregister(pVfs);
sqlite3_free(pVfs);
}
/************************* End ../ext/misc/vfstrace.c ********************/
#if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(SQLITE_ENABLE_DBPAGE_VTAB)
#define SQLITE_SHELL_HAVE_RECOVER 1
#else
#define SQLITE_SHELL_HAVE_RECOVER 0
#endif
#if SQLITE_SHELL_HAVE_RECOVER
/************************* Begin ../ext/recover/sqlite3recover.h ******************/
/*
** 2022-08-27
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
**
** This file contains the public interface to the "recover" extension -
** an SQLite extension designed to recover data from corrupted database
** files.
*/
/*
** OVERVIEW:
**
** To use the API to recover data from a corrupted database, an
** application:
**
** 1) Creates an sqlite3_recover handle by calling either
** sqlite3_recover_init() or sqlite3_recover_init_sql().
**
** 2) Configures the new handle using one or more calls to
** sqlite3_recover_config().
**
** 3) Executes the recovery by repeatedly calling sqlite3_recover_step() on
** the handle until it returns something other than SQLITE_OK. If it
** returns SQLITE_DONE, then the recovery operation completed without
** error. If it returns some other non-SQLITE_OK value, then an error
** has occurred.
**
** 4) Retrieves any error code and English language error message using the
** sqlite3_recover_errcode() and sqlite3_recover_errmsg() APIs,
** respectively.
**
** 5) Destroys the sqlite3_recover handle and frees all resources
** using sqlite3_recover_finish().
**
** The application may abandon the recovery operation at any point
** before it is finished by passing the sqlite3_recover handle to
** sqlite3_recover_finish(). This is not an error, but the final state
** of the output database, or the results of running the partial script
** delivered to the SQL callback, are undefined.
*/
#ifndef _SQLITE_RECOVER_H
#define _SQLITE_RECOVER_H
/* #include "sqlite3.h" */
#ifdef __cplusplus
extern "C" {
#endif
/*
** An instance of the sqlite3_recover object represents a recovery
** operation in progress.
**
** Constructors:
**
** sqlite3_recover_init()
** sqlite3_recover_init_sql()
**
** Destructor:
**
** sqlite3_recover_finish()
**
** Methods:
**
** sqlite3_recover_config()
** sqlite3_recover_errcode()
** sqlite3_recover_errmsg()
** sqlite3_recover_run()
** sqlite3_recover_step()
*/
typedef struct sqlite3_recover sqlite3_recover;
/*
** These two APIs attempt to create and return a new sqlite3_recover object.
** In both cases the first two arguments identify the (possibly
** corrupt) database to recover data from. The first argument is an open
** database handle and the second the name of a database attached to that
** handle (i.e. "main", "temp" or the name of an attached database).
**
** If sqlite3_recover_init() is used to create the new sqlite3_recover
** handle, then data is recovered into a new database, identified by
** string parameter zUri. zUri may be an absolute or relative file path,
** or may be an SQLite URI. If the identified database file already exists,
** it is overwritten.
**
** If sqlite3_recover_init_sql() is invoked, then any recovered data will
** be returned to the user as a series of SQL statements. Executing these
** SQL statements results in the same database as would have been created
** had sqlite3_recover_init() been used. For each SQL statement in the
** output, the callback function passed as the third argument (xSql) is
** invoked once. The first parameter is a passed a copy of the fourth argument
** to this function (pCtx) as its first parameter, and a pointer to a
** nul-terminated buffer containing the SQL statement formated as UTF-8 as
** the second. If the xSql callback returns any value other than SQLITE_OK,
** then processing is immediately abandoned and the value returned used as
** the recover handle error code (see below).
**
** If an out-of-memory error occurs, NULL may be returned instead of
** a valid handle. In all other cases, it is the responsibility of the
** application to avoid resource leaks by ensuring that
** sqlite3_recover_finish() is called on all allocated handles.
*/
sqlite3_recover *sqlite3_recover_init(
sqlite3* db,
const char *zDb,
const char *zUri
);
sqlite3_recover *sqlite3_recover_init_sql(
sqlite3* db,
const char *zDb,
int (*xSql)(void*, const char*),
void *pCtx
);
/*
** Configure an sqlite3_recover object that has just been created using
** sqlite3_recover_init() or sqlite3_recover_init_sql(). This function
** may only be called before the first call to sqlite3_recover_step()
** or sqlite3_recover_run() on the object.
**
** The second argument passed to this function must be one of the
** SQLITE_RECOVER_* symbols defined below. Valid values for the third argument
** depend on the specific SQLITE_RECOVER_* symbol in use.
**
** SQLITE_OK is returned if the configuration operation was successful,
** or an SQLite error code otherwise.
*/
int sqlite3_recover_config(sqlite3_recover*, int op, void *pArg);
/*
** SQLITE_RECOVER_LOST_AND_FOUND:
** The pArg argument points to a string buffer containing the name
** of a "lost-and-found" table in the output database, or NULL. If
** the argument is non-NULL and the database contains seemingly
** valid pages that cannot be associated with any table in the
** recovered part of the schema, data is extracted from these
** pages to add to the lost-and-found table.
**
** SQLITE_RECOVER_FREELIST_CORRUPT:
** The pArg value must actually be a pointer to a value of type
** int containing value 0 or 1 cast as a (void*). If this option is set
** (argument is 1) and a lost-and-found table has been configured using
** SQLITE_RECOVER_LOST_AND_FOUND, then is assumed that the freelist is
** corrupt and an attempt is made to recover records from pages that
** appear to be linked into the freelist. Otherwise, pages on the freelist
** are ignored. Setting this option can recover more data from the
** database, but often ends up "recovering" deleted records. The default
** value is 0 (clear).
**
** SQLITE_RECOVER_ROWIDS:
** The pArg value must actually be a pointer to a value of type
** int containing value 0 or 1 cast as a (void*). If this option is set
** (argument is 1), then an attempt is made to recover rowid values
** that are not also INTEGER PRIMARY KEY values. If this option is
** clear, then new rowids are assigned to all recovered rows. The
** default value is 1 (set).
**
** SQLITE_RECOVER_SLOWINDEXES:
** The pArg value must actually be a pointer to a value of type
** int containing value 0 or 1 cast as a (void*). If this option is clear
** (argument is 0), then when creating an output database, the recover
** module creates and populates non-UNIQUE indexes right at the end of the
** recovery operation - after all recoverable data has been inserted
** into the new database. This is faster overall, but means that the
** final call to sqlite3_recover_step() for a recovery operation may
** be need to create a large number of indexes, which may be very slow.
**
** Or, if this option is set (argument is 1), then non-UNIQUE indexes
** are created in the output database before it is populated with
** recovered data. This is slower overall, but avoids the slow call
** to sqlite3_recover_step() at the end of the recovery operation.
**
** The default option value is 0.
*/
#define SQLITE_RECOVER_LOST_AND_FOUND 1
#define SQLITE_RECOVER_FREELIST_CORRUPT 2
#define SQLITE_RECOVER_ROWIDS 3
#define SQLITE_RECOVER_SLOWINDEXES 4
/*
** Perform a unit of work towards the recovery operation. This function
** must normally be called multiple times to complete database recovery.
**
** If no error occurs but the recovery operation is not completed, this
** function returns SQLITE_OK. If recovery has been completed successfully
** then SQLITE_DONE is returned. If an error has occurred, then an SQLite
** error code (e.g. SQLITE_IOERR or SQLITE_NOMEM) is returned. It is not
** considered an error if some or all of the data cannot be recovered
** due to database corruption.
**
** Once sqlite3_recover_step() has returned a value other than SQLITE_OK,
** all further such calls on the same recover handle are no-ops that return
** the same non-SQLITE_OK value.
*/
int sqlite3_recover_step(sqlite3_recover*);
/*
** Run the recovery operation to completion. Return SQLITE_OK if successful,
** or an SQLite error code otherwise. Calling this function is the same
** as executing:
**
** while( SQLITE_OK==sqlite3_recover_step(p) );
** return sqlite3_recover_errcode(p);
*/
int sqlite3_recover_run(sqlite3_recover*);
/*
** If an error has been encountered during a prior call to
** sqlite3_recover_step(), then this function attempts to return a
** pointer to a buffer containing an English language explanation of
** the error. If no error message is available, or if an out-of memory
** error occurs while attempting to allocate a buffer in which to format
** the error message, NULL is returned.
**
** The returned buffer remains valid until the sqlite3_recover handle is
** destroyed using sqlite3_recover_finish().
*/
const char *sqlite3_recover_errmsg(sqlite3_recover*);
/*
** If this function is called on an sqlite3_recover handle after
** an error occurs, an SQLite error code is returned. Otherwise, SQLITE_OK.
*/
int sqlite3_recover_errcode(sqlite3_recover*);
/*
** Clean up a recovery object created by a call to sqlite3_recover_init().
** The results of using a recovery object with any API after it has been
** passed to this function are undefined.
**
** This function returns the same value as sqlite3_recover_errcode().
*/
int sqlite3_recover_finish(sqlite3_recover*);
#ifdef __cplusplus
} /* end of the 'extern "C"' block */
#endif
#endif /* ifndef _SQLITE_RECOVER_H */
/************************* End ../ext/recover/sqlite3recover.h ********************/
# ifndef SQLITE_HAVE_SQLITE3R
/************************* Begin ../ext/recover/dbdata.c ******************/
/*
** 2019-04-17
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
******************************************************************************
**
** This file contains an implementation of two eponymous virtual tables,
** "sqlite_dbdata" and "sqlite_dbptr". Both modules require that the
** "sqlite_dbpage" eponymous virtual table be available.
**
** SQLITE_DBDATA:
** sqlite_dbdata is used to extract data directly from a database b-tree
** page and its associated overflow pages, bypassing the b-tree layer.
** The table schema is equivalent to:
**
** CREATE TABLE sqlite_dbdata(
** pgno INTEGER,
** cell INTEGER,
** field INTEGER,
** value ANY,
** schema TEXT HIDDEN
** );
**
** IMPORTANT: THE VIRTUAL TABLE SCHEMA ABOVE IS SUBJECT TO CHANGE. IN THE
** FUTURE NEW NON-HIDDEN COLUMNS MAY BE ADDED BETWEEN "value" AND
** "schema".
**
** Each page of the database is inspected. If it cannot be interpreted as
** a b-tree page, or if it is a b-tree page containing 0 entries, the
** sqlite_dbdata table contains no rows for that page. Otherwise, the
** table contains one row for each field in the record associated with
** each cell on the page. For intkey b-trees, the key value is stored in
** field -1.
**
** For example, for the database:
**
** CREATE TABLE t1(a, b); -- root page is page 2
** INSERT INTO t1(rowid, a, b) VALUES(5, 'v', 'five');
** INSERT INTO t1(rowid, a, b) VALUES(10, 'x', 'ten');
**
** the sqlite_dbdata table contains, as well as from entries related to
** page 1, content equivalent to:
**
** INSERT INTO sqlite_dbdata(pgno, cell, field, value) VALUES
** (2, 0, -1, 5 ),
** (2, 0, 0, 'v' ),
** (2, 0, 1, 'five'),
** (2, 1, -1, 10 ),
** (2, 1, 0, 'x' ),
** (2, 1, 1, 'ten' );
**
** If database corruption is encountered, this module does not report an
** error. Instead, it attempts to extract as much data as possible and
** ignores the corruption.
**
** SQLITE_DBPTR:
** The sqlite_dbptr table has the following schema:
**
** CREATE TABLE sqlite_dbptr(
** pgno INTEGER,
** child INTEGER,
** schema TEXT HIDDEN
** );
**
** It contains one entry for each b-tree pointer between a parent and
** child page in the database.
*/
#if !defined(SQLITEINT_H)
/* #include "sqlite3.h" */
/* typedef unsigned char u8; */
/* typedef unsigned int u32; */
#endif
#include <string.h>
#include <assert.h>
#ifndef SQLITE_OMIT_VIRTUALTABLE
#define DBDATA_PADDING_BYTES 100
typedef struct DbdataTable DbdataTable;
typedef struct DbdataCursor DbdataCursor;
typedef struct DbdataBuffer DbdataBuffer;
/*
** Buffer type.
*/
struct DbdataBuffer {
u8 *aBuf;
sqlite3_int64 nBuf;
};
/* Cursor object */
struct DbdataCursor {
sqlite3_vtab_cursor base; /* Base class. Must be first */
sqlite3_stmt *pStmt; /* For fetching database pages */
int iPgno; /* Current page number */
u8 *aPage; /* Buffer containing page */
int nPage; /* Size of aPage[] in bytes */
int nCell; /* Number of cells on aPage[] */
int iCell; /* Current cell number */
int bOnePage; /* True to stop after one page */
int szDb;
sqlite3_int64 iRowid;
/* Only for the sqlite_dbdata table */
DbdataBuffer rec;
sqlite3_int64 nRec; /* Size of pRec[] in bytes */
sqlite3_int64 nHdr; /* Size of header in bytes */
int iField; /* Current field number */
u8 *pHdrPtr;
u8 *pPtr;
u32 enc; /* Text encoding */
sqlite3_int64 iIntkey; /* Integer key value */
};
/* Table object */
struct DbdataTable {
sqlite3_vtab base; /* Base class. Must be first */
sqlite3 *db; /* The database connection */
sqlite3_stmt *pStmt; /* For fetching database pages */
int bPtr; /* True for sqlite3_dbptr table */
};
/* Column and schema definitions for sqlite_dbdata */
#define DBDATA_COLUMN_PGNO 0
#define DBDATA_COLUMN_CELL 1
#define DBDATA_COLUMN_FIELD 2
#define DBDATA_COLUMN_VALUE 3
#define DBDATA_COLUMN_SCHEMA 4
#define DBDATA_SCHEMA \
"CREATE TABLE x(" \
" pgno INTEGER," \
" cell INTEGER," \
" field INTEGER," \
" value ANY," \
" schema TEXT HIDDEN" \
")"
/* Column and schema definitions for sqlite_dbptr */
#define DBPTR_COLUMN_PGNO 0
#define DBPTR_COLUMN_CHILD 1
#define DBPTR_COLUMN_SCHEMA 2
#define DBPTR_SCHEMA \
"CREATE TABLE x(" \
" pgno INTEGER," \
" child INTEGER," \
" schema TEXT HIDDEN" \
")"
/*
** Ensure the buffer passed as the first argument is at least nMin bytes
** in size. If an error occurs while attempting to resize the buffer,
** SQLITE_NOMEM is returned. Otherwise, SQLITE_OK.
*/
static int dbdataBufferSize(DbdataBuffer *pBuf, sqlite3_int64 nMin){
if( nMin>pBuf->nBuf ){
sqlite3_int64 nNew = nMin+16384;
u8 *aNew = (u8*)sqlite3_realloc64(pBuf->aBuf, nNew);
if( aNew==0 ) return SQLITE_NOMEM;
pBuf->aBuf = aNew;
pBuf->nBuf = nNew;
}
return SQLITE_OK;
}
/*
** Release the allocation managed by buffer pBuf.
*/
static void dbdataBufferFree(DbdataBuffer *pBuf){
sqlite3_free(pBuf->aBuf);
memset(pBuf, 0, sizeof(*pBuf));
}
/*
** Connect to an sqlite_dbdata (pAux==0) or sqlite_dbptr (pAux!=0) virtual
** table.
*/
static int dbdataConnect(
sqlite3 *db,
void *pAux,
int argc, const char *const*argv,
sqlite3_vtab **ppVtab,
char **pzErr
){
DbdataTable *pTab = 0;
int rc = sqlite3_declare_vtab(db, pAux ? DBPTR_SCHEMA : DBDATA_SCHEMA);
(void)argc;
(void)argv;
(void)pzErr;
sqlite3_vtab_config(db, SQLITE_VTAB_USES_ALL_SCHEMAS);
if( rc==SQLITE_OK ){
pTab = (DbdataTable*)sqlite3_malloc64(sizeof(DbdataTable));
if( pTab==0 ){
rc = SQLITE_NOMEM;
}else{
memset(pTab, 0, sizeof(DbdataTable));
pTab->db = db;
pTab->bPtr = (pAux!=0);
}
}
*ppVtab = (sqlite3_vtab*)pTab;
return rc;
}
/*
** Disconnect from or destroy a sqlite_dbdata or sqlite_dbptr virtual table.
*/
static int dbdataDisconnect(sqlite3_vtab *pVtab){
DbdataTable *pTab = (DbdataTable*)pVtab;
if( pTab ){
sqlite3_finalize(pTab->pStmt);
sqlite3_free(pVtab);
}
return SQLITE_OK;
}
/*
** This function interprets two types of constraints:
**
** schema=?
** pgno=?
**
** If neither are present, idxNum is set to 0. If schema=? is present,
** the 0x01 bit in idxNum is set. If pgno=? is present, the 0x02 bit
** in idxNum is set.
**
** If both parameters are present, schema is in position 0 and pgno in
** position 1.
*/
static int dbdataBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdx){
DbdataTable *pTab = (DbdataTable*)tab;
int i;
int iSchema = -1;
int iPgno = -1;
int colSchema = (pTab->bPtr ? DBPTR_COLUMN_SCHEMA : DBDATA_COLUMN_SCHEMA);
for(i=0; i<pIdx->nConstraint; i++){
struct sqlite3_index_constraint *p = &pIdx->aConstraint[i];
if( p->op==SQLITE_INDEX_CONSTRAINT_EQ ){
if( p->iColumn==colSchema ){
if( p->usable==0 ) return SQLITE_CONSTRAINT;
iSchema = i;
}
if( p->iColumn==DBDATA_COLUMN_PGNO && p->usable ){
iPgno = i;
}
}
}
if( iSchema>=0 ){
pIdx->aConstraintUsage[iSchema].argvIndex = 1;
pIdx->aConstraintUsage[iSchema].omit = 1;
}
if( iPgno>=0 ){
pIdx->aConstraintUsage[iPgno].argvIndex = 1 + (iSchema>=0);
pIdx->aConstraintUsage[iPgno].omit = 1;
pIdx->estimatedCost = 100;
pIdx->estimatedRows = 50;
if( pTab->bPtr==0 && pIdx->nOrderBy && pIdx->aOrderBy[0].desc==0 ){
int iCol = pIdx->aOrderBy[0].iColumn;
if( pIdx->nOrderBy==1 ){
pIdx->orderByConsumed = (iCol==0 || iCol==1);
}else if( pIdx->nOrderBy==2 && pIdx->aOrderBy[1].desc==0 && iCol==0 ){
pIdx->orderByConsumed = (pIdx->aOrderBy[1].iColumn==1);
}
}
}else{
pIdx->estimatedCost = 100000000;
pIdx->estimatedRows = 1000000000;
}
pIdx->idxNum = (iSchema>=0 ? 0x01 : 0x00) | (iPgno>=0 ? 0x02 : 0x00);
return SQLITE_OK;
}
/*
** Open a new sqlite_dbdata or sqlite_dbptr cursor.
*/
static int dbdataOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){
DbdataCursor *pCsr;
pCsr = (DbdataCursor*)sqlite3_malloc64(sizeof(DbdataCursor));
if( pCsr==0 ){
return SQLITE_NOMEM;
}else{
memset(pCsr, 0, sizeof(DbdataCursor));
pCsr->base.pVtab = pVTab;
}
*ppCursor = (sqlite3_vtab_cursor *)pCsr;
return SQLITE_OK;
}
/*
** Restore a cursor object to the state it was in when first allocated
** by dbdataOpen().
*/
static void dbdataResetCursor(DbdataCursor *pCsr){
DbdataTable *pTab = (DbdataTable*)(pCsr->base.pVtab);
if( pTab->pStmt==0 ){
pTab->pStmt = pCsr->pStmt;
}else{
sqlite3_finalize(pCsr->pStmt);
}
pCsr->pStmt = 0;
pCsr->iPgno = 1;
pCsr->iCell = 0;
pCsr->iField = 0;
pCsr->bOnePage = 0;
sqlite3_free(pCsr->aPage);
dbdataBufferFree(&pCsr->rec);
pCsr->aPage = 0;
pCsr->nRec = 0;
}
/*
** Close an sqlite_dbdata or sqlite_dbptr cursor.
*/
static int dbdataClose(sqlite3_vtab_cursor *pCursor){
DbdataCursor *pCsr = (DbdataCursor*)pCursor;
dbdataResetCursor(pCsr);
sqlite3_free(pCsr);
return SQLITE_OK;
}
/*
** Utility methods to decode 16 and 32-bit big-endian unsigned integers.
*/
static u32 get_uint16(unsigned char *a){
return (a[0]<<8)|a[1];
}
static u32 get_uint32(unsigned char *a){
return ((u32)a[0]<<24)
| ((u32)a[1]<<16)
| ((u32)a[2]<<8)
| ((u32)a[3]);
}
/*
** Load page pgno from the database via the sqlite_dbpage virtual table.
** If successful, set (*ppPage) to point to a buffer containing the page
** data, (*pnPage) to the size of that buffer in bytes and return
** SQLITE_OK. In this case it is the responsibility of the caller to
** eventually free the buffer using sqlite3_free().
**
** Or, if an error occurs, set both (*ppPage) and (*pnPage) to 0 and
** return an SQLite error code.
*/
static int dbdataLoadPage(
DbdataCursor *pCsr, /* Cursor object */
u32 pgno, /* Page number of page to load */
u8 **ppPage, /* OUT: pointer to page buffer */
int *pnPage /* OUT: Size of (*ppPage) in bytes */
){
int rc2;
int rc = SQLITE_OK;
sqlite3_stmt *pStmt = pCsr->pStmt;
*ppPage = 0;
*pnPage = 0;
if( pgno>0 ){
sqlite3_bind_int64(pStmt, 2, pgno);
if( SQLITE_ROW==sqlite3_step(pStmt) ){
int nCopy = sqlite3_column_bytes(pStmt, 0);
if( nCopy>0 ){
u8 *pPage;
pPage = (u8*)sqlite3_malloc64(nCopy + DBDATA_PADDING_BYTES);
if( pPage==0 ){
rc = SQLITE_NOMEM;
}else{
const u8 *pCopy = sqlite3_column_blob(pStmt, 0);
memcpy(pPage, pCopy, nCopy);
memset(&pPage[nCopy], 0, DBDATA_PADDING_BYTES);
}
*ppPage = pPage;
*pnPage = nCopy;
}
}
rc2 = sqlite3_reset(pStmt);
if( rc==SQLITE_OK ) rc = rc2;
}
return rc;
}
/*
** Read a varint. Put the value in *pVal and return the number of bytes.
*/
static int dbdataGetVarint(const u8 *z, sqlite3_int64 *pVal){
sqlite3_uint64 u = 0;
int i;
for(i=0; i<8; i++){
u = (u<<7) + (z[i]&0x7f);
if( (z[i]&0x80)==0 ){ *pVal = (sqlite3_int64)u; return i+1; }
}
u = (u<<8) + (z[i]&0xff);
*pVal = (sqlite3_int64)u;
return 9;
}
/*
** Like dbdataGetVarint(), but set the output to 0 if it is less than 0
** or greater than 0xFFFFFFFF. This can be used for all varints in an
** SQLite database except for key values in intkey tables.
*/
static int dbdataGetVarintU32(const u8 *z, sqlite3_int64 *pVal){
sqlite3_int64 val;
int nRet = dbdataGetVarint(z, &val);
if( val<0 || val>0xFFFFFFFF ) val = 0;
*pVal = val;
return nRet;
}
/*
** Return the number of bytes of space used by an SQLite value of type
** eType.
*/
static int dbdataValueBytes(int eType){
switch( eType ){
case 0: case 8: case 9:
case 10: case 11:
return 0;
case 1:
return 1;
case 2:
return 2;
case 3:
return 3;
case 4:
return 4;
case 5:
return 6;
case 6:
case 7:
return 8;
default:
if( eType>0 ){
return ((eType-12) / 2);
}
return 0;
}
}
/*
** Load a value of type eType from buffer pData and use it to set the
** result of context object pCtx.
*/
static void dbdataValue(
sqlite3_context *pCtx,
u32 enc,
int eType,
u8 *pData,
sqlite3_int64 nData
){
if( eType>=0 ){
if( dbdataValueBytes(eType)<=nData ){
switch( eType ){
case 0:
case 10:
case 11:
sqlite3_result_null(pCtx);
break;
case 8:
sqlite3_result_int(pCtx, 0);
break;
case 9:
sqlite3_result_int(pCtx, 1);
break;
case 1: case 2: case 3: case 4: case 5: case 6: case 7: {
sqlite3_uint64 v = (signed char)pData[0];
pData++;
switch( eType ){
case 7:
case 6: v = (v<<16) + (pData[0]<<8) + pData[1]; pData += 2;
case 5: v = (v<<16) + (pData[0]<<8) + pData[1]; pData += 2;
case 4: v = (v<<8) + pData[0]; pData++;
case 3: v = (v<<8) + pData[0]; pData++;
case 2: v = (v<<8) + pData[0]; pData++;
}
if( eType==7 ){
double r;
memcpy(&r, &v, sizeof(r));
sqlite3_result_double(pCtx, r);
}else{
sqlite3_result_int64(pCtx, (sqlite3_int64)v);
}
break;
}
default: {
int n = ((eType-12) / 2);
if( eType % 2 ){
switch( enc ){
#ifndef SQLITE_OMIT_UTF16
case SQLITE_UTF16BE:
sqlite3_result_text16be(pCtx, (void*)pData, n, SQLITE_TRANSIENT);
break;
case SQLITE_UTF16LE:
sqlite3_result_text16le(pCtx, (void*)pData, n, SQLITE_TRANSIENT);
break;
#endif
default:
sqlite3_result_text(pCtx, (char*)pData, n, SQLITE_TRANSIENT);
break;
}
}else{
sqlite3_result_blob(pCtx, pData, n, SQLITE_TRANSIENT);
}
}
}
}else{
if( eType==7 ){
sqlite3_result_double(pCtx, 0.0);
}else if( eType<7 ){
sqlite3_result_int(pCtx, 0);
}else if( eType%2 ){
sqlite3_result_text(pCtx, "", 0, SQLITE_STATIC);
}else{
sqlite3_result_blob(pCtx, "", 0, SQLITE_STATIC);
}
}
}
}
/* This macro is a copy of the MX_CELL() macro in the SQLite core. Given
** a page-size, it returns the maximum number of cells that may be present
** on the page. */
#define DBDATA_MX_CELL(pgsz) ((pgsz-8)/6)
/* Maximum number of fields that may appear in a single record. This is
** the "hard-limit", according to comments in sqliteLimit.h. */
#define DBDATA_MX_FIELD 32676
/*
** Move an sqlite_dbdata or sqlite_dbptr cursor to the next entry.
*/
static int dbdataNext(sqlite3_vtab_cursor *pCursor){
DbdataCursor *pCsr = (DbdataCursor*)pCursor;
DbdataTable *pTab = (DbdataTable*)pCursor->pVtab;
pCsr->iRowid++;
while( 1 ){
int rc;
int iOff = (pCsr->iPgno==1 ? 100 : 0);
int bNextPage = 0;
if( pCsr->aPage==0 ){
while( 1 ){
if( pCsr->bOnePage==0 && pCsr->iPgno>pCsr->szDb ) return SQLITE_OK;
rc = dbdataLoadPage(pCsr, pCsr->iPgno, &pCsr->aPage, &pCsr->nPage);
if( rc!=SQLITE_OK ) return rc;
if( pCsr->aPage && pCsr->nPage>=256 ) break;
sqlite3_free(pCsr->aPage);
pCsr->aPage = 0;
if( pCsr->bOnePage ) return SQLITE_OK;
pCsr->iPgno++;
}
assert( iOff+3+2<=pCsr->nPage );
pCsr->iCell = pTab->bPtr ? -2 : 0;
pCsr->nCell = get_uint16(&pCsr->aPage[iOff+3]);
if( pCsr->nCell>DBDATA_MX_CELL(pCsr->nPage) ){
pCsr->nCell = DBDATA_MX_CELL(pCsr->nPage);
}
}
if( pTab->bPtr ){
if( pCsr->aPage[iOff]!=0x02 && pCsr->aPage[iOff]!=0x05 ){
pCsr->iCell = pCsr->nCell;
}
pCsr->iCell++;
if( pCsr->iCell>=pCsr->nCell ){
sqlite3_free(pCsr->aPage);
pCsr->aPage = 0;
if( pCsr->bOnePage ) return SQLITE_OK;
pCsr->iPgno++;
}else{
return SQLITE_OK;
}
}else{
/* If there is no record loaded, load it now. */
assert( pCsr->rec.aBuf!=0 || pCsr->nRec==0 );
if( pCsr->nRec==0 ){
int bHasRowid = 0;
int nPointer = 0;
sqlite3_int64 nPayload = 0;
sqlite3_int64 nHdr = 0;
int iHdr;
int U, X;
int nLocal;
switch( pCsr->aPage[iOff] ){
case 0x02:
nPointer = 4;
break;
case 0x0a:
break;
case 0x0d:
bHasRowid = 1;
break;
default:
/* This is not a b-tree page with records on it. Continue. */
pCsr->iCell = pCsr->nCell;
break;
}
if( pCsr->iCell>=pCsr->nCell ){
bNextPage = 1;
}else{
int iCellPtr = iOff + 8 + nPointer + pCsr->iCell*2;
if( iCellPtr>pCsr->nPage ){
bNextPage = 1;
}else{
iOff = get_uint16(&pCsr->aPage[iCellPtr]);
}
/* For an interior node cell, skip past the child-page number */
iOff += nPointer;
/* Load the "byte of payload including overflow" field */
if( bNextPage || iOff>pCsr->nPage || iOff<=iCellPtr ){
bNextPage = 1;
}else{
iOff += dbdataGetVarintU32(&pCsr->aPage[iOff], &nPayload);
if( nPayload>0x7fffff00 ) nPayload &= 0x3fff;
if( nPayload==0 ) nPayload = 1;
}
/* If this is a leaf intkey cell, load the rowid */
if( bHasRowid && !bNextPage && iOff<pCsr->nPage ){
iOff += dbdataGetVarint(&pCsr->aPage[iOff], &pCsr->iIntkey);
}
/* Figure out how much data to read from the local page */
U = pCsr->nPage;
if( bHasRowid ){
X = U-35;
}else{
X = ((U-12)*64/255)-23;
}
if( nPayload<=X ){
nLocal = nPayload;
}else{
int M, K;
M = ((U-12)*32/255)-23;
K = M+((nPayload-M)%(U-4));
if( K<=X ){
nLocal = K;
}else{
nLocal = M;
}
}
if( bNextPage || nLocal+iOff>pCsr->nPage ){
bNextPage = 1;
}else{
/* Allocate space for payload. And a bit more to catch small buffer
** overruns caused by attempting to read a varint or similar from
** near the end of a corrupt record. */
rc = dbdataBufferSize(&pCsr->rec, nPayload+DBDATA_PADDING_BYTES);
if( rc!=SQLITE_OK ) return rc;
assert( pCsr->rec.aBuf!=0 );
assert( nPayload!=0 );
/* Load the nLocal bytes of payload */
memcpy(pCsr->rec.aBuf, &pCsr->aPage[iOff], nLocal);
iOff += nLocal;
/* Load content from overflow pages */
if( nPayload>nLocal ){
sqlite3_int64 nRem = nPayload - nLocal;
u32 pgnoOvfl = get_uint32(&pCsr->aPage[iOff]);
while( nRem>0 ){
u8 *aOvfl = 0;
int nOvfl = 0;
int nCopy;
rc = dbdataLoadPage(pCsr, pgnoOvfl, &aOvfl, &nOvfl);
assert( rc!=SQLITE_OK || aOvfl==0 || nOvfl==pCsr->nPage );
if( rc!=SQLITE_OK ) return rc;
if( aOvfl==0 ) break;
nCopy = U-4;
if( nCopy>nRem ) nCopy = nRem;
memcpy(&pCsr->rec.aBuf[nPayload-nRem], &aOvfl[4], nCopy);
nRem -= nCopy;
pgnoOvfl = get_uint32(aOvfl);
sqlite3_free(aOvfl);
}
nPayload -= nRem;
}
memset(&pCsr->rec.aBuf[nPayload], 0, DBDATA_PADDING_BYTES);
pCsr->nRec = nPayload;
iHdr = dbdataGetVarintU32(pCsr->rec.aBuf, &nHdr);
if( nHdr>nPayload ) nHdr = 0;
pCsr->nHdr = nHdr;
pCsr->pHdrPtr = &pCsr->rec.aBuf[iHdr];
pCsr->pPtr = &pCsr->rec.aBuf[pCsr->nHdr];
pCsr->iField = (bHasRowid ? -1 : 0);
}
}
}else{
pCsr->iField++;
if( pCsr->iField>0 ){
sqlite3_int64 iType;
if( pCsr->pHdrPtr>=&pCsr->rec.aBuf[pCsr->nRec]
|| pCsr->iField>=DBDATA_MX_FIELD
){
bNextPage = 1;
}else{
int szField = 0;
pCsr->pHdrPtr += dbdataGetVarintU32(pCsr->pHdrPtr, &iType);
szField = dbdataValueBytes(iType);
if( (pCsr->nRec - (pCsr->pPtr - pCsr->rec.aBuf))<szField ){
pCsr->pPtr = &pCsr->rec.aBuf[pCsr->nRec];
}else{
pCsr->pPtr += szField;
}
}
}
}
if( bNextPage ){
sqlite3_free(pCsr->aPage);
pCsr->aPage = 0;
pCsr->nRec = 0;
if( pCsr->bOnePage ) return SQLITE_OK;
pCsr->iPgno++;
}else{
if( pCsr->iField<0 || pCsr->pHdrPtr<&pCsr->rec.aBuf[pCsr->nHdr] ){
return SQLITE_OK;
}
/* Advance to the next cell. The next iteration of the loop will load
** the record and so on. */
pCsr->nRec = 0;
pCsr->iCell++;
}
}
}
assert( !"can't get here" );
return SQLITE_OK;
}
/*
** Return true if the cursor is at EOF.
*/
static int dbdataEof(sqlite3_vtab_cursor *pCursor){
DbdataCursor *pCsr = (DbdataCursor*)pCursor;
return pCsr->aPage==0;
}
/*
** Return true if nul-terminated string zSchema ends in "()". Or false
** otherwise.
*/
static int dbdataIsFunction(const char *zSchema){
size_t n = strlen(zSchema);
if( n>2 && zSchema[n-2]=='(' && zSchema[n-1]==')' ){
return (int)n-2;
}
return 0;
}
/*
** Determine the size in pages of database zSchema (where zSchema is
** "main", "temp" or the name of an attached database) and set
** pCsr->szDb accordingly. If successful, return SQLITE_OK. Otherwise,
** an SQLite error code.
*/
static int dbdataDbsize(DbdataCursor *pCsr, const char *zSchema){
DbdataTable *pTab = (DbdataTable*)pCsr->base.pVtab;
char *zSql = 0;
int rc, rc2;
int nFunc = 0;
sqlite3_stmt *pStmt = 0;
if( (nFunc = dbdataIsFunction(zSchema))>0 ){
zSql = sqlite3_mprintf("SELECT %.*s(0)", nFunc, zSchema);
}else{
zSql = sqlite3_mprintf("PRAGMA %Q.page_count", zSchema);
}
if( zSql==0 ) return SQLITE_NOMEM;
rc = sqlite3_prepare_v2(pTab->db, zSql, -1, &pStmt, 0);
sqlite3_free(zSql);
if( rc==SQLITE_OK && sqlite3_step(pStmt)==SQLITE_ROW ){
pCsr->szDb = sqlite3_column_int(pStmt, 0);
}
rc2 = sqlite3_finalize(pStmt);
if( rc==SQLITE_OK ) rc = rc2;
return rc;
}
/*
** Attempt to figure out the encoding of the database by retrieving page 1
** and inspecting the header field. If successful, set the pCsr->enc variable
** and return SQLITE_OK. Otherwise, return an SQLite error code.
*/
static int dbdataGetEncoding(DbdataCursor *pCsr){
int rc = SQLITE_OK;
int nPg1 = 0;
u8 *aPg1 = 0;
rc = dbdataLoadPage(pCsr, 1, &aPg1, &nPg1);
if( rc==SQLITE_OK && nPg1>=(56+4) ){
pCsr->enc = get_uint32(&aPg1[56]);
}
sqlite3_free(aPg1);
return rc;
}
/*
** xFilter method for sqlite_dbdata and sqlite_dbptr.
*/
static int dbdataFilter(
sqlite3_vtab_cursor *pCursor,
int idxNum, const char *idxStr,
int argc, sqlite3_value **argv
){
DbdataCursor *pCsr = (DbdataCursor*)pCursor;
DbdataTable *pTab = (DbdataTable*)pCursor->pVtab;
int rc = SQLITE_OK;
const char *zSchema = "main";
(void)idxStr;
(void)argc;
dbdataResetCursor(pCsr);
assert( pCsr->iPgno==1 );
if( idxNum & 0x01 ){
zSchema = (const char*)sqlite3_value_text(argv[0]);
if( zSchema==0 ) zSchema = "";
}
if( idxNum & 0x02 ){
pCsr->iPgno = sqlite3_value_int(argv[(idxNum & 0x01)]);
pCsr->bOnePage = 1;
}else{
rc = dbdataDbsize(pCsr, zSchema);
}
if( rc==SQLITE_OK ){
int nFunc = 0;
if( pTab->pStmt ){
pCsr->pStmt = pTab->pStmt;
pTab->pStmt = 0;
}else if( (nFunc = dbdataIsFunction(zSchema))>0 ){
char *zSql = sqlite3_mprintf("SELECT %.*s(?2)", nFunc, zSchema);
if( zSql==0 ){
rc = SQLITE_NOMEM;
}else{
rc = sqlite3_prepare_v2(pTab->db, zSql, -1, &pCsr->pStmt, 0);
sqlite3_free(zSql);
}
}else{
rc = sqlite3_prepare_v2(pTab->db,
"SELECT data FROM sqlite_dbpage(?) WHERE pgno=?", -1,
&pCsr->pStmt, 0
);
}
}
if( rc==SQLITE_OK ){
rc = sqlite3_bind_text(pCsr->pStmt, 1, zSchema, -1, SQLITE_TRANSIENT);
}
/* Try to determine the encoding of the db by inspecting the header
** field on page 1. */
if( rc==SQLITE_OK ){
rc = dbdataGetEncoding(pCsr);
}
if( rc!=SQLITE_OK ){
pTab->base.zErrMsg = sqlite3_mprintf("%s", sqlite3_errmsg(pTab->db));
}
if( rc==SQLITE_OK ){
rc = dbdataNext(pCursor);
}
return rc;
}
/*
** Return a column for the sqlite_dbdata or sqlite_dbptr table.
*/
static int dbdataColumn(
sqlite3_vtab_cursor *pCursor,
sqlite3_context *ctx,
int i
){
DbdataCursor *pCsr = (DbdataCursor*)pCursor;
DbdataTable *pTab = (DbdataTable*)pCursor->pVtab;
if( pTab->bPtr ){
switch( i ){
case DBPTR_COLUMN_PGNO:
sqlite3_result_int64(ctx, pCsr->iPgno);
break;
case DBPTR_COLUMN_CHILD: {
int iOff = pCsr->iPgno==1 ? 100 : 0;
if( pCsr->iCell<0 ){
iOff += 8;
}else{
iOff += 12 + pCsr->iCell*2;
if( iOff>pCsr->nPage ) return SQLITE_OK;
iOff = get_uint16(&pCsr->aPage[iOff]);
}
if( iOff<=pCsr->nPage ){
sqlite3_result_int64(ctx, get_uint32(&pCsr->aPage[iOff]));
}
break;
}
}
}else{
switch( i ){
case DBDATA_COLUMN_PGNO:
sqlite3_result_int64(ctx, pCsr->iPgno);
break;
case DBDATA_COLUMN_CELL:
sqlite3_result_int(ctx, pCsr->iCell);
break;
case DBDATA_COLUMN_FIELD:
sqlite3_result_int(ctx, pCsr->iField);
break;
case DBDATA_COLUMN_VALUE: {
if( pCsr->iField<0 ){
sqlite3_result_int64(ctx, pCsr->iIntkey);
}else if( &pCsr->rec.aBuf[pCsr->nRec] >= pCsr->pPtr ){
sqlite3_int64 iType;
dbdataGetVarintU32(pCsr->pHdrPtr, &iType);
dbdataValue(
ctx, pCsr->enc, iType, pCsr->pPtr,
&pCsr->rec.aBuf[pCsr->nRec] - pCsr->pPtr
);
}
break;
}
}
}
return SQLITE_OK;
}
/*
** Return the rowid for an sqlite_dbdata or sqlite_dptr table.
*/
static int dbdataRowid(sqlite3_vtab_cursor *pCursor, sqlite_int64 *pRowid){
DbdataCursor *pCsr = (DbdataCursor*)pCursor;
*pRowid = pCsr->iRowid;
return SQLITE_OK;
}
/*
** Invoke this routine to register the "sqlite_dbdata" virtual table module
*/
static int sqlite3DbdataRegister(sqlite3 *db){
static sqlite3_module dbdata_module = {
0, /* iVersion */
0, /* xCreate */
dbdataConnect, /* xConnect */
dbdataBestIndex, /* xBestIndex */
dbdataDisconnect, /* xDisconnect */
0, /* xDestroy */
dbdataOpen, /* xOpen - open a cursor */
dbdataClose, /* xClose - close a cursor */
dbdataFilter, /* xFilter - configure scan constraints */
dbdataNext, /* xNext - advance a cursor */
dbdataEof, /* xEof - check for end of scan */
dbdataColumn, /* xColumn - read data */
dbdataRowid, /* xRowid - read data */
0, /* xUpdate */
0, /* xBegin */
0, /* xSync */
0, /* xCommit */
0, /* xRollback */
0, /* xFindMethod */
0, /* xRename */
0, /* xSavepoint */
0, /* xRelease */
0, /* xRollbackTo */
0, /* xShadowName */
0 /* xIntegrity */
};
int rc = sqlite3_create_module(db, "sqlite_dbdata", &dbdata_module, 0);
if( rc==SQLITE_OK ){
rc = sqlite3_create_module(db, "sqlite_dbptr", &dbdata_module, (void*)1);
}
return rc;
}
int sqlite3_dbdata_init(
sqlite3 *db,
char **pzErrMsg,
const sqlite3_api_routines *pApi
){
(void)pzErrMsg;
return sqlite3DbdataRegister(db);
}
#endif /* ifndef SQLITE_OMIT_VIRTUALTABLE */
/************************* End ../ext/recover/dbdata.c ********************/
/************************* Begin ../ext/recover/sqlite3recover.c ******************/
/*
** 2022-08-27
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
**
*/
/* #include "sqlite3recover.h" */
#include <assert.h>
#include <string.h>
#ifndef SQLITE_OMIT_VIRTUALTABLE
/*
** Declaration for public API function in file dbdata.c. This may be called
** with NULL as the final two arguments to register the sqlite_dbptr and
** sqlite_dbdata virtual tables with a database handle.
*/
#ifdef _WIN32
#endif
int sqlite3_dbdata_init(sqlite3*, char**, const sqlite3_api_routines*);
/* typedef unsigned int u32; */
/* typedef unsigned char u8; */
/* typedef sqlite3_int64 i64; */
typedef struct RecoverTable RecoverTable;
typedef struct RecoverColumn RecoverColumn;
/*
** When recovering rows of data that can be associated with table
** definitions recovered from the sqlite_schema table, each table is
** represented by an instance of the following object.
**
** iRoot:
** The root page in the original database. Not necessarily (and usually
** not) the same in the recovered database.
**
** zTab:
** Name of the table.
**
** nCol/aCol[]:
** aCol[] is an array of nCol columns. In the order in which they appear
** in the table.
**
** bIntkey:
** Set to true for intkey tables, false for WITHOUT ROWID.
**
** iRowidBind:
** Each column in the aCol[] array has associated with it the index of
** the bind parameter its values will be bound to in the INSERT statement
** used to construct the output database. If the table does has a rowid
** but not an INTEGER PRIMARY KEY column, then iRowidBind contains the
** index of the bind paramater to which the rowid value should be bound.
** Otherwise, it contains -1. If the table does contain an INTEGER PRIMARY
** KEY column, then the rowid value should be bound to the index associated
** with the column.
**
** pNext:
** All RecoverTable objects used by the recovery operation are allocated
** and populated as part of creating the recovered database schema in
** the output database, before any non-schema data are recovered. They
** are then stored in a singly-linked list linked by this variable beginning
** at sqlite3_recover.pTblList.
*/
struct RecoverTable {
u32 iRoot; /* Root page in original database */
char *zTab; /* Name of table */
int nCol; /* Number of columns in table */
RecoverColumn *aCol; /* Array of columns */
int bIntkey; /* True for intkey, false for without rowid */
int iRowidBind; /* If >0, bind rowid to INSERT here */
RecoverTable *pNext;
};
/*
** Each database column is represented by an instance of the following object
** stored in the RecoverTable.aCol[] array of the associated table.
**
** iField:
** The index of the associated field within database records. Or -1 if
** there is no associated field (e.g. for virtual generated columns).
**
** iBind:
** The bind index of the INSERT statement to bind this columns values
** to. Or 0 if there is no such index (iff (iField<0)).
**
** bIPK:
** True if this is the INTEGER PRIMARY KEY column.
**
** zCol:
** Name of column.
**
** eHidden:
** A RECOVER_EHIDDEN_* constant value (see below for interpretation of each).
*/
struct RecoverColumn {
int iField; /* Field in record on disk */
int iBind; /* Binding to use in INSERT */
int bIPK; /* True for IPK column */
char *zCol;
int eHidden;
};
#define RECOVER_EHIDDEN_NONE 0 /* Normal database column */
#define RECOVER_EHIDDEN_HIDDEN 1 /* Column is __HIDDEN__ */
#define RECOVER_EHIDDEN_VIRTUAL 2 /* Virtual generated column */
#define RECOVER_EHIDDEN_STORED 3 /* Stored generated column */
/*
** Bitmap object used to track pages in the input database. Allocated
** and manipulated only by the following functions:
**
** recoverBitmapAlloc()
** recoverBitmapFree()
** recoverBitmapSet()
** recoverBitmapQuery()
**
** nPg:
** Largest page number that may be stored in the bitmap. The range
** of valid keys is 1 to nPg, inclusive.
**
** aElem[]:
** Array large enough to contain a bit for each key. For key value
** iKey, the associated bit is the bit (iKey%32) of aElem[iKey/32].
** In other words, the following is true if bit iKey is set, or
** false if it is clear:
**
** (aElem[iKey/32] & (1 << (iKey%32))) ? 1 : 0
*/
typedef struct RecoverBitmap RecoverBitmap;
struct RecoverBitmap {
i64 nPg; /* Size of bitmap */
u32 aElem[1]; /* Array of 32-bit bitmasks */
};
/*
** State variables (part of the sqlite3_recover structure) used while
** recovering data for tables identified in the recovered schema (state
** RECOVER_STATE_WRITING).
*/
typedef struct RecoverStateW1 RecoverStateW1;
struct RecoverStateW1 {
sqlite3_stmt *pTbls;
sqlite3_stmt *pSel;
sqlite3_stmt *pInsert;
int nInsert;
RecoverTable *pTab; /* Table currently being written */
int nMax; /* Max column count in any schema table */
sqlite3_value **apVal; /* Array of nMax values */
int nVal; /* Number of valid entries in apVal[] */
int bHaveRowid;
i64 iRowid;
i64 iPrevPage;
int iPrevCell;
};
/*
** State variables (part of the sqlite3_recover structure) used while
** recovering data destined for the lost and found table (states
** RECOVER_STATE_LOSTANDFOUND[123]).
*/
typedef struct RecoverStateLAF RecoverStateLAF;
struct RecoverStateLAF {
RecoverBitmap *pUsed;
i64 nPg; /* Size of db in pages */
sqlite3_stmt *pAllAndParent;
sqlite3_stmt *pMapInsert;
sqlite3_stmt *pMaxField;
sqlite3_stmt *pUsedPages;
sqlite3_stmt *pFindRoot;
sqlite3_stmt *pInsert; /* INSERT INTO lost_and_found ... */
sqlite3_stmt *pAllPage;
sqlite3_stmt *pPageData;
sqlite3_value **apVal;
int nMaxField;
};
/*
** Main recover handle structure.
*/
struct sqlite3_recover {
/* Copies of sqlite3_recover_init[_sql]() parameters */
sqlite3 *dbIn; /* Input database */
char *zDb; /* Name of input db ("main" etc.) */
char *zUri; /* URI for output database */
void *pSqlCtx; /* SQL callback context */
int (*xSql)(void*,const char*); /* Pointer to SQL callback function */
/* Values configured by sqlite3_recover_config() */
char *zStateDb; /* State database to use (or NULL) */
char *zLostAndFound; /* Name of lost-and-found table (or NULL) */
int bFreelistCorrupt; /* SQLITE_RECOVER_FREELIST_CORRUPT setting */
int bRecoverRowid; /* SQLITE_RECOVER_ROWIDS setting */
int bSlowIndexes; /* SQLITE_RECOVER_SLOWINDEXES setting */
int pgsz;
int detected_pgsz;
int nReserve;
u8 *pPage1Disk;
u8 *pPage1Cache;
/* Error code and error message */
int errCode; /* For sqlite3_recover_errcode() */
char *zErrMsg; /* For sqlite3_recover_errmsg() */
int eState;
int bCloseTransaction;
/* Variables used with eState==RECOVER_STATE_WRITING */
RecoverStateW1 w1;
/* Variables used with states RECOVER_STATE_LOSTANDFOUND[123] */
RecoverStateLAF laf;
/* Fields used within sqlite3_recover_run() */
sqlite3 *dbOut; /* Output database */
sqlite3_stmt *pGetPage; /* SELECT against input db sqlite_dbdata */
RecoverTable *pTblList; /* List of tables recovered from schema */
};
/*
** The various states in which an sqlite3_recover object may exist:
**
** RECOVER_STATE_INIT:
** The object is initially created in this state. sqlite3_recover_step()
** has yet to be called. This is the only state in which it is permitted
** to call sqlite3_recover_config().
**
** RECOVER_STATE_WRITING:
**
** RECOVER_STATE_LOSTANDFOUND1:
** State to populate the bitmap of pages used by other tables or the
** database freelist.
**
** RECOVER_STATE_LOSTANDFOUND2:
** Populate the recovery.map table - used to figure out a "root" page
** for each lost page from in the database from which records are
** extracted.
**
** RECOVER_STATE_LOSTANDFOUND3:
** Populate the lost-and-found table itself.
*/
#define RECOVER_STATE_INIT 0
#define RECOVER_STATE_WRITING 1
#define RECOVER_STATE_LOSTANDFOUND1 2
#define RECOVER_STATE_LOSTANDFOUND2 3
#define RECOVER_STATE_LOSTANDFOUND3 4
#define RECOVER_STATE_SCHEMA2 5
#define RECOVER_STATE_DONE 6
/*
** Global variables used by this extension.
*/
typedef struct RecoverGlobal RecoverGlobal;
struct RecoverGlobal {
const sqlite3_io_methods *pMethods;
sqlite3_recover *p;
};
static RecoverGlobal recover_g;
/*
** Use this static SQLite mutex to protect the globals during the
** first call to sqlite3_recover_step().
*/
#define RECOVER_MUTEX_ID SQLITE_MUTEX_STATIC_APP2
/*
** Default value for SQLITE_RECOVER_ROWIDS (sqlite3_recover.bRecoverRowid).
*/
#define RECOVER_ROWID_DEFAULT 1
/*
** Mutex handling:
**
** recoverEnterMutex() - Enter the recovery mutex
** recoverLeaveMutex() - Leave the recovery mutex
** recoverAssertMutexHeld() - Assert that the recovery mutex is held
*/
#if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE==0
# define recoverEnterMutex()
# define recoverLeaveMutex()
#else
static void recoverEnterMutex(void){
sqlite3_mutex_enter(sqlite3_mutex_alloc(RECOVER_MUTEX_ID));
}
static void recoverLeaveMutex(void){
sqlite3_mutex_leave(sqlite3_mutex_alloc(RECOVER_MUTEX_ID));
}
#endif
#if SQLITE_THREADSAFE+0>=1 && defined(SQLITE_DEBUG)
static void recoverAssertMutexHeld(void){
assert( sqlite3_mutex_held(sqlite3_mutex_alloc(RECOVER_MUTEX_ID)) );
}
#else
# define recoverAssertMutexHeld()
#endif
/*
** Like strlen(). But handles NULL pointer arguments.
*/
static int recoverStrlen(const char *zStr){
if( zStr==0 ) return 0;
return (int)(strlen(zStr)&0x7fffffff);
}
/*
** This function is a no-op if the recover handle passed as the first
** argument already contains an error (if p->errCode!=SQLITE_OK).
**
** Otherwise, an attempt is made to allocate, zero and return a buffer nByte
** bytes in size. If successful, a pointer to the new buffer is returned. Or,
** if an OOM error occurs, NULL is returned and the handle error code
** (p->errCode) set to SQLITE_NOMEM.
*/
static void *recoverMalloc(sqlite3_recover *p, i64 nByte){
void *pRet = 0;
assert( nByte>0 );
if( p->errCode==SQLITE_OK ){
pRet = sqlite3_malloc64(nByte);
if( pRet ){
memset(pRet, 0, nByte);
}else{
p->errCode = SQLITE_NOMEM;
}
}
return pRet;
}
/*
** Set the error code and error message for the recover handle passed as
** the first argument. The error code is set to the value of parameter
** errCode.
**
** Parameter zFmt must be a printf() style formatting string. The handle
** error message is set to the result of using any trailing arguments for
** parameter substitutions in the formatting string.
**
** For example:
**
** recoverError(p, SQLITE_ERROR, "no such table: %s", zTablename);
*/
static int recoverError(
sqlite3_recover *p,
int errCode,
const char *zFmt, ...
){
char *z = 0;
va_list ap;
va_start(ap, zFmt);
if( zFmt ){
z = sqlite3_vmprintf(zFmt, ap);
}
va_end(ap);
sqlite3_free(p->zErrMsg);
p->zErrMsg = z;
p->errCode = errCode;
return errCode;
}
/*
** This function is a no-op if p->errCode is initially other than SQLITE_OK.
** In this case it returns NULL.
**
** Otherwise, an attempt is made to allocate and return a bitmap object
** large enough to store a bit for all page numbers between 1 and nPg,
** inclusive. The bitmap is initially zeroed.
*/
static RecoverBitmap *recoverBitmapAlloc(sqlite3_recover *p, i64 nPg){
int nElem = (nPg+1+31) / 32;
int nByte = sizeof(RecoverBitmap) + nElem*sizeof(u32);
RecoverBitmap *pRet = (RecoverBitmap*)recoverMalloc(p, nByte);
if( pRet ){
pRet->nPg = nPg;
}
return pRet;
}
/*
** Free a bitmap object allocated by recoverBitmapAlloc().
*/
static void recoverBitmapFree(RecoverBitmap *pMap){
sqlite3_free(pMap);
}
/*
** Set the bit associated with page iPg in bitvec pMap.
*/
static void recoverBitmapSet(RecoverBitmap *pMap, i64 iPg){
if( iPg<=pMap->nPg ){
int iElem = (iPg / 32);
int iBit = (iPg % 32);
pMap->aElem[iElem] |= (((u32)1) << iBit);
}
}
/*
** Query bitmap object pMap for the state of the bit associated with page
** iPg. Return 1 if it is set, or 0 otherwise.
*/
static int recoverBitmapQuery(RecoverBitmap *pMap, i64 iPg){
int ret = 1;
if( iPg<=pMap->nPg && iPg>0 ){
int iElem = (iPg / 32);
int iBit = (iPg % 32);
ret = (pMap->aElem[iElem] & (((u32)1) << iBit)) ? 1 : 0;
}
return ret;
}
/*
** Set the recover handle error to the error code and message returned by
** calling sqlite3_errcode() and sqlite3_errmsg(), respectively, on database
** handle db.
*/
static int recoverDbError(sqlite3_recover *p, sqlite3 *db){
return recoverError(p, sqlite3_errcode(db), "%s", sqlite3_errmsg(db));
}
/*
** This function is a no-op if recover handle p already contains an error
** (if p->errCode!=SQLITE_OK).
**
** Otherwise, it attempts to prepare the SQL statement in zSql against
** database handle db. If successful, the statement handle is returned.
** Or, if an error occurs, NULL is returned and an error left in the
** recover handle.
*/
static sqlite3_stmt *recoverPrepare(
sqlite3_recover *p,
sqlite3 *db,
const char *zSql
){
sqlite3_stmt *pStmt = 0;
if( p->errCode==SQLITE_OK ){
if( sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0) ){
recoverDbError(p, db);
}
}
return pStmt;
}
/*
** This function is a no-op if recover handle p already contains an error
** (if p->errCode!=SQLITE_OK).
**
** Otherwise, argument zFmt is used as a printf() style format string,
** along with any trailing arguments, to create an SQL statement. This
** SQL statement is prepared against database handle db and, if successful,
** the statment handle returned. Or, if an error occurs - either during
** the printf() formatting or when preparing the resulting SQL - an
** error code and message are left in the recover handle.
*/
static sqlite3_stmt *recoverPreparePrintf(
sqlite3_recover *p,
sqlite3 *db,
const char *zFmt, ...
){
sqlite3_stmt *pStmt = 0;
if( p->errCode==SQLITE_OK ){
va_list ap;
char *z;
va_start(ap, zFmt);
z = sqlite3_vmprintf(zFmt, ap);
va_end(ap);
if( z==0 ){
p->errCode = SQLITE_NOMEM;
}else{
pStmt = recoverPrepare(p, db, z);
sqlite3_free(z);
}
}
return pStmt;
}
/*
** Reset SQLite statement handle pStmt. If the call to sqlite3_reset()
** indicates that an error occurred, and there is not already an error
** in the recover handle passed as the first argument, set the error
** code and error message appropriately.
**
** This function returns a copy of the statement handle pointer passed
** as the second argument.
*/
static sqlite3_stmt *recoverReset(sqlite3_recover *p, sqlite3_stmt *pStmt){
int rc = sqlite3_reset(pStmt);
if( rc!=SQLITE_OK && rc!=SQLITE_CONSTRAINT && p->errCode==SQLITE_OK ){
recoverDbError(p, sqlite3_db_handle(pStmt));
}
return pStmt;
}
/*
** Finalize SQLite statement handle pStmt. If the call to sqlite3_reset()
** indicates that an error occurred, and there is not already an error
** in the recover handle passed as the first argument, set the error
** code and error message appropriately.
*/
static void recoverFinalize(sqlite3_recover *p, sqlite3_stmt *pStmt){
sqlite3 *db = sqlite3_db_handle(pStmt);
int rc = sqlite3_finalize(pStmt);
if( rc!=SQLITE_OK && p->errCode==SQLITE_OK ){
recoverDbError(p, db);
}
}
/*
** This function is a no-op if recover handle p already contains an error
** (if p->errCode!=SQLITE_OK). A copy of p->errCode is returned in this
** case.
**
** Otherwise, execute SQL script zSql. If successful, return SQLITE_OK.
** Or, if an error occurs, leave an error code and message in the recover
** handle and return a copy of the error code.
*/
static int recoverExec(sqlite3_recover *p, sqlite3 *db, const char *zSql){
if( p->errCode==SQLITE_OK ){
int rc = sqlite3_exec(db, zSql, 0, 0, 0);
if( rc ){
recoverDbError(p, db);
}
}
return p->errCode;
}
/*
** Bind the value pVal to parameter iBind of statement pStmt. Leave an
** error in the recover handle passed as the first argument if an error
** (e.g. an OOM) occurs.
*/
static void recoverBindValue(
sqlite3_recover *p,
sqlite3_stmt *pStmt,
int iBind,
sqlite3_value *pVal
){
if( p->errCode==SQLITE_OK ){
int rc = sqlite3_bind_value(pStmt, iBind, pVal);
if( rc ) recoverError(p, rc, 0);
}
}
/*
** This function is a no-op if recover handle p already contains an error
** (if p->errCode!=SQLITE_OK). NULL is returned in this case.
**
** Otherwise, an attempt is made to interpret zFmt as a printf() style
** formatting string and the result of using the trailing arguments for
** parameter substitution with it written into a buffer obtained from
** sqlite3_malloc(). If successful, a pointer to the buffer is returned.
** It is the responsibility of the caller to eventually free the buffer
** using sqlite3_free().
**
** Or, if an error occurs, an error code and message is left in the recover
** handle and NULL returned.
*/
static char *recoverMPrintf(sqlite3_recover *p, const char *zFmt, ...){
va_list ap;
char *z;
va_start(ap, zFmt);
z = sqlite3_vmprintf(zFmt, ap);
va_end(ap);
if( p->errCode==SQLITE_OK ){
if( z==0 ) p->errCode = SQLITE_NOMEM;
}else{
sqlite3_free(z);
z = 0;
}
return z;
}
/*
** This function is a no-op if recover handle p already contains an error
** (if p->errCode!=SQLITE_OK). Zero is returned in this case.
**
** Otherwise, execute "PRAGMA page_count" against the input database. If
** successful, return the integer result. Or, if an error occurs, leave an
** error code and error message in the sqlite3_recover handle and return
** zero.
*/
static i64 recoverPageCount(sqlite3_recover *p){
i64 nPg = 0;
if( p->errCode==SQLITE_OK ){
sqlite3_stmt *pStmt = 0;
pStmt = recoverPreparePrintf(p, p->dbIn, "PRAGMA %Q.page_count", p->zDb);
if( pStmt ){
sqlite3_step(pStmt);
nPg = sqlite3_column_int64(pStmt, 0);
}
recoverFinalize(p, pStmt);
}
return nPg;
}
/*
** Implementation of SQL scalar function "read_i32". The first argument to
** this function must be a blob. The second a non-negative integer. This
** function reads and returns a 32-bit big-endian integer from byte
** offset (4*<arg2>) of the blob.
**
** SELECT read_i32(<blob>, <idx>)
*/
static void recoverReadI32(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
const unsigned char *pBlob;
int nBlob;
int iInt;
assert( argc==2 );
nBlob = sqlite3_value_bytes(argv[0]);
pBlob = (const unsigned char*)sqlite3_value_blob(argv[0]);
iInt = sqlite3_value_int(argv[1]) & 0xFFFF;
if( (iInt+1)*4<=nBlob ){
const unsigned char *a = &pBlob[iInt*4];
i64 iVal = ((i64)a[0]<<24)
+ ((i64)a[1]<<16)
+ ((i64)a[2]<< 8)
+ ((i64)a[3]<< 0);
sqlite3_result_int64(context, iVal);
}
}
/*
** Implementation of SQL scalar function "page_is_used". This function
** is used as part of the procedure for locating orphan rows for the
** lost-and-found table, and it depends on those routines having populated
** the sqlite3_recover.laf.pUsed variable.
**
** The only argument to this function is a page-number. It returns true
** if the page has already been used somehow during data recovery, or false
** otherwise.
**
** SELECT page_is_used(<pgno>);
*/
static void recoverPageIsUsed(
sqlite3_context *pCtx,
int nArg,
sqlite3_value **apArg
){
sqlite3_recover *p = (sqlite3_recover*)sqlite3_user_data(pCtx);
i64 pgno = sqlite3_value_int64(apArg[0]);
assert( nArg==1 );
sqlite3_result_int(pCtx, recoverBitmapQuery(p->laf.pUsed, pgno));
}
/*
** The implementation of a user-defined SQL function invoked by the
** sqlite_dbdata and sqlite_dbptr virtual table modules to access pages
** of the database being recovered.
**
** This function always takes a single integer argument. If the argument
** is zero, then the value returned is the number of pages in the db being
** recovered. If the argument is greater than zero, it is a page number.
** The value returned in this case is an SQL blob containing the data for
** the identified page of the db being recovered. e.g.
**
** SELECT getpage(0); -- return number of pages in db
** SELECT getpage(4); -- return page 4 of db as a blob of data
*/
static void recoverGetPage(
sqlite3_context *pCtx,
int nArg,
sqlite3_value **apArg
){
sqlite3_recover *p = (sqlite3_recover*)sqlite3_user_data(pCtx);
i64 pgno = sqlite3_value_int64(apArg[0]);
sqlite3_stmt *pStmt = 0;
assert( nArg==1 );
if( pgno==0 ){
i64 nPg = recoverPageCount(p);
sqlite3_result_int64(pCtx, nPg);
return;
}else{
if( p->pGetPage==0 ){
pStmt = p->pGetPage = recoverPreparePrintf(
p, p->dbIn, "SELECT data FROM sqlite_dbpage(%Q) WHERE pgno=?", p->zDb
);
}else if( p->errCode==SQLITE_OK ){
pStmt = p->pGetPage;
}
if( pStmt ){
sqlite3_bind_int64(pStmt, 1, pgno);
if( SQLITE_ROW==sqlite3_step(pStmt) ){
const u8 *aPg;
int nPg;
assert( p->errCode==SQLITE_OK );
aPg = sqlite3_column_blob(pStmt, 0);
nPg = sqlite3_column_bytes(pStmt, 0);
if( pgno==1 && nPg==p->pgsz && 0==memcmp(p->pPage1Cache, aPg, nPg) ){
aPg = p->pPage1Disk;
}
sqlite3_result_blob(pCtx, aPg, nPg-p->nReserve, SQLITE_TRANSIENT);
}
recoverReset(p, pStmt);
}
}
if( p->errCode ){
if( p->zErrMsg ) sqlite3_result_error(pCtx, p->zErrMsg, -1);
sqlite3_result_error_code(pCtx, p->errCode);
}
}
/*
** Find a string that is not found anywhere in z[]. Return a pointer
** to that string.
**
** Try to use zA and zB first. If both of those are already found in z[]
** then make up some string and store it in the buffer zBuf.
*/
static const char *recoverUnusedString(
const char *z, /* Result must not appear anywhere in z */
const char *zA, const char *zB, /* Try these first */
char *zBuf /* Space to store a generated string */
){
unsigned i = 0;
if( strstr(z, zA)==0 ) return zA;
if( strstr(z, zB)==0 ) return zB;
do{
sqlite3_snprintf(20,zBuf,"(%s%u)", zA, i++);
}while( strstr(z,zBuf)!=0 );
return zBuf;
}
/*
** Implementation of scalar SQL function "escape_crlf". The argument passed to
** this function is the output of built-in function quote(). If the first
** character of the input is "'", indicating that the value passed to quote()
** was a text value, then this function searches the input for "\n" and "\r"
** characters and adds a wrapper similar to the following:
**
** replace(replace(<input>, '\n', char(10), '\r', char(13));
**
** Or, if the first character of the input is not "'", then a copy of the input
** is returned.
*/
static void recoverEscapeCrlf(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
const char *zText = (const char*)sqlite3_value_text(argv[0]);
(void)argc;
if( zText && zText[0]=='\'' ){
int nText = sqlite3_value_bytes(argv[0]);
int i;
char zBuf1[20];
char zBuf2[20];
const char *zNL = 0;
const char *zCR = 0;
int nCR = 0;
int nNL = 0;
for(i=0; zText[i]; i++){
if( zNL==0 && zText[i]=='\n' ){
zNL = recoverUnusedString(zText, "\\n", "\\012", zBuf1);
nNL = (int)strlen(zNL);
}
if( zCR==0 && zText[i]=='\r' ){
zCR = recoverUnusedString(zText, "\\r", "\\015", zBuf2);
nCR = (int)strlen(zCR);
}
}
if( zNL || zCR ){
int iOut = 0;
i64 nMax = (nNL > nCR) ? nNL : nCR;
i64 nAlloc = nMax * nText + (nMax+64)*2;
char *zOut = (char*)sqlite3_malloc64(nAlloc);
if( zOut==0 ){
sqlite3_result_error_nomem(context);
return;
}
if( zNL && zCR ){
memcpy(&zOut[iOut], "replace(replace(", 16);
iOut += 16;
}else{
memcpy(&zOut[iOut], "replace(", 8);
iOut += 8;
}
for(i=0; zText[i]; i++){
if( zText[i]=='\n' ){
memcpy(&zOut[iOut], zNL, nNL);
iOut += nNL;
}else if( zText[i]=='\r' ){
memcpy(&zOut[iOut], zCR, nCR);
iOut += nCR;
}else{
zOut[iOut] = zText[i];
iOut++;
}
}
if( zNL ){
memcpy(&zOut[iOut], ",'", 2); iOut += 2;
memcpy(&zOut[iOut], zNL, nNL); iOut += nNL;
memcpy(&zOut[iOut], "', char(10))", 12); iOut += 12;
}
if( zCR ){
memcpy(&zOut[iOut], ",'", 2); iOut += 2;
memcpy(&zOut[iOut], zCR, nCR); iOut += nCR;
memcpy(&zOut[iOut], "', char(13))", 12); iOut += 12;
}
sqlite3_result_text(context, zOut, iOut, SQLITE_TRANSIENT);
sqlite3_free(zOut);
return;
}
}
sqlite3_result_value(context, argv[0]);
}
/*
** This function is a no-op if recover handle p already contains an error
** (if p->errCode!=SQLITE_OK). A copy of the error code is returned in
** this case.
**
** Otherwise, attempt to populate temporary table "recovery.schema" with the
** parts of the database schema that can be extracted from the input database.
**
** If no error occurs, SQLITE_OK is returned. Otherwise, an error code
** and error message are left in the recover handle and a copy of the
** error code returned. It is not considered an error if part of all of
** the database schema cannot be recovered due to corruption.
*/
static int recoverCacheSchema(sqlite3_recover *p){
return recoverExec(p, p->dbOut,
"WITH RECURSIVE pages(p) AS ("
" SELECT 1"
" UNION"
" SELECT child FROM sqlite_dbptr('getpage()'), pages WHERE pgno=p"
")"
"INSERT INTO recovery.schema SELECT"
" max(CASE WHEN field=0 THEN value ELSE NULL END),"
" max(CASE WHEN field=1 THEN value ELSE NULL END),"
" max(CASE WHEN field=2 THEN value ELSE NULL END),"
" max(CASE WHEN field=3 THEN value ELSE NULL END),"
" max(CASE WHEN field=4 THEN value ELSE NULL END)"
"FROM sqlite_dbdata('getpage()') WHERE pgno IN ("
" SELECT p FROM pages"
") GROUP BY pgno, cell"
);
}
/*
** If this recover handle is not in SQL callback mode (i.e. was not created
** using sqlite3_recover_init_sql()) of if an error has already occurred,
** this function is a no-op. Otherwise, issue a callback with SQL statement
** zSql as the parameter.
**
** If the callback returns non-zero, set the recover handle error code to
** the value returned (so that the caller will abandon processing).
*/
static void recoverSqlCallback(sqlite3_recover *p, const char *zSql){
if( p->errCode==SQLITE_OK && p->xSql ){
int res = p->xSql(p->pSqlCtx, zSql);
if( res ){
recoverError(p, SQLITE_ERROR, "callback returned an error - %d", res);
}
}
}
/*
** Transfer the following settings from the input database to the output
** database:
**
** + page-size,
** + auto-vacuum settings,
** + database encoding,
** + user-version (PRAGMA user_version), and
** + application-id (PRAGMA application_id), and
*/
static void recoverTransferSettings(sqlite3_recover *p){
const char *aPragma[] = {
"encoding",
"page_size",
"auto_vacuum",
"user_version",
"application_id"
};
int ii;
/* Truncate the output database to 0 pages in size. This is done by
** opening a new, empty, temp db, then using the backup API to clobber
** any existing output db with a copy of it. */
if( p->errCode==SQLITE_OK ){
sqlite3 *db2 = 0;
int rc = sqlite3_open("", &db2);
if( rc!=SQLITE_OK ){
recoverDbError(p, db2);
return;
}
for(ii=0; ii<(int)(sizeof(aPragma)/sizeof(aPragma[0])); ii++){
const char *zPrag = aPragma[ii];
sqlite3_stmt *p1 = 0;
p1 = recoverPreparePrintf(p, p->dbIn, "PRAGMA %Q.%s", p->zDb, zPrag);
if( p->errCode==SQLITE_OK && sqlite3_step(p1)==SQLITE_ROW ){
const char *zArg = (const char*)sqlite3_column_text(p1, 0);
char *z2 = recoverMPrintf(p, "PRAGMA %s = %Q", zPrag, zArg);
recoverSqlCallback(p, z2);
recoverExec(p, db2, z2);
sqlite3_free(z2);
if( zArg==0 ){
recoverError(p, SQLITE_NOMEM, 0);
}
}
recoverFinalize(p, p1);
}
recoverExec(p, db2, "CREATE TABLE t1(a); DROP TABLE t1;");
if( p->errCode==SQLITE_OK ){
sqlite3 *db = p->dbOut;
sqlite3_backup *pBackup = sqlite3_backup_init(db, "main", db2, "main");
if( pBackup ){
sqlite3_backup_step(pBackup, -1);
p->errCode = sqlite3_backup_finish(pBackup);
}else{
recoverDbError(p, db);
}
}
sqlite3_close(db2);
}
}
/*
** This function is a no-op if recover handle p already contains an error
** (if p->errCode!=SQLITE_OK). A copy of the error code is returned in
** this case.
**
** Otherwise, an attempt is made to open the output database, attach
** and create the schema of the temporary database used to store
** intermediate data, and to register all required user functions and
** virtual table modules with the output handle.
**
** If no error occurs, SQLITE_OK is returned. Otherwise, an error code
** and error message are left in the recover handle and a copy of the
** error code returned.
*/
static int recoverOpenOutput(sqlite3_recover *p){
struct Func {
const char *zName;
int nArg;
void (*xFunc)(sqlite3_context*,int,sqlite3_value **);
} aFunc[] = {
{ "getpage", 1, recoverGetPage },
{ "page_is_used", 1, recoverPageIsUsed },
{ "read_i32", 2, recoverReadI32 },
{ "escape_crlf", 1, recoverEscapeCrlf },
};
const int flags = SQLITE_OPEN_URI|SQLITE_OPEN_CREATE|SQLITE_OPEN_READWRITE;
sqlite3 *db = 0; /* New database handle */
int ii; /* For iterating through aFunc[] */
assert( p->dbOut==0 );
if( sqlite3_open_v2(p->zUri, &db, flags, 0) ){
recoverDbError(p, db);
}
/* Register the sqlite_dbdata and sqlite_dbptr virtual table modules.
** These two are registered with the output database handle - this
** module depends on the input handle supporting the sqlite_dbpage
** virtual table only. */
if( p->errCode==SQLITE_OK ){
p->errCode = sqlite3_dbdata_init(db, 0, 0);
}
/* Register the custom user-functions with the output handle. */
for(ii=0;
p->errCode==SQLITE_OK && ii<(int)(sizeof(aFunc)/sizeof(aFunc[0]));
ii++){
p->errCode = sqlite3_create_function(db, aFunc[ii].zName,
aFunc[ii].nArg, SQLITE_UTF8, (void*)p, aFunc[ii].xFunc, 0, 0
);
}
p->dbOut = db;
return p->errCode;
}
/*
** Attach the auxiliary database 'recovery' to the output database handle.
** This temporary database is used during the recovery process and then
** discarded.
*/
static void recoverOpenRecovery(sqlite3_recover *p){
char *zSql = recoverMPrintf(p, "ATTACH %Q AS recovery;", p->zStateDb);
recoverExec(p, p->dbOut, zSql);
recoverExec(p, p->dbOut,
"PRAGMA writable_schema = 1;"
"CREATE TABLE recovery.map(pgno INTEGER PRIMARY KEY, parent INT);"
"CREATE TABLE recovery.schema(type, name, tbl_name, rootpage, sql);"
);
sqlite3_free(zSql);
}
/*
** This function is a no-op if recover handle p already contains an error
** (if p->errCode!=SQLITE_OK).
**
** Otherwise, argument zName must be the name of a table that has just been
** created in the output database. This function queries the output db
** for the schema of said table, and creates a RecoverTable object to
** store the schema in memory. The new RecoverTable object is linked into
** the list at sqlite3_recover.pTblList.
**
** Parameter iRoot must be the root page of table zName in the INPUT
** database.
*/
static void recoverAddTable(
sqlite3_recover *p,
const char *zName, /* Name of table created in output db */
i64 iRoot /* Root page of same table in INPUT db */
){
sqlite3_stmt *pStmt = recoverPreparePrintf(p, p->dbOut,
"PRAGMA table_xinfo(%Q)", zName
);
if( pStmt ){
int iPk = -1;
int iBind = 1;
RecoverTable *pNew = 0;
int nCol = 0;
int nName = recoverStrlen(zName);
int nByte = 0;
while( sqlite3_step(pStmt)==SQLITE_ROW ){
nCol++;
nByte += (sqlite3_column_bytes(pStmt, 1)+1);
}
nByte += sizeof(RecoverTable) + nCol*sizeof(RecoverColumn) + nName+1;
recoverReset(p, pStmt);
pNew = recoverMalloc(p, nByte);
if( pNew ){
int i = 0;
int iField = 0;
char *csr = 0;
pNew->aCol = (RecoverColumn*)&pNew[1];
pNew->zTab = csr = (char*)&pNew->aCol[nCol];
pNew->nCol = nCol;
pNew->iRoot = iRoot;
memcpy(csr, zName, nName);
csr += nName+1;
for(i=0; sqlite3_step(pStmt)==SQLITE_ROW; i++){
int iPKF = sqlite3_column_int(pStmt, 5);
int n = sqlite3_column_bytes(pStmt, 1);
const char *z = (const char*)sqlite3_column_text(pStmt, 1);
const char *zType = (const char*)sqlite3_column_text(pStmt, 2);
int eHidden = sqlite3_column_int(pStmt, 6);
if( iPk==-1 && iPKF==1 && !sqlite3_stricmp("integer", zType) ) iPk = i;
if( iPKF>1 ) iPk = -2;
pNew->aCol[i].zCol = csr;
pNew->aCol[i].eHidden = eHidden;
if( eHidden==RECOVER_EHIDDEN_VIRTUAL ){
pNew->aCol[i].iField = -1;
}else{
pNew->aCol[i].iField = iField++;
}
if( eHidden!=RECOVER_EHIDDEN_VIRTUAL
&& eHidden!=RECOVER_EHIDDEN_STORED
){
pNew->aCol[i].iBind = iBind++;
}
memcpy(csr, z, n);
csr += (n+1);
}
pNew->pNext = p->pTblList;
p->pTblList = pNew;
pNew->bIntkey = 1;
}
recoverFinalize(p, pStmt);
pStmt = recoverPreparePrintf(p, p->dbOut, "PRAGMA index_xinfo(%Q)", zName);
while( pStmt && sqlite3_step(pStmt)==SQLITE_ROW ){
int iField = sqlite3_column_int(pStmt, 0);
int iCol = sqlite3_column_int(pStmt, 1);
assert( iCol<pNew->nCol );
pNew->aCol[iCol].iField = iField;
pNew->bIntkey = 0;
iPk = -2;
}
recoverFinalize(p, pStmt);
if( p->errCode==SQLITE_OK ){
if( iPk>=0 ){
pNew->aCol[iPk].bIPK = 1;
}else if( pNew->bIntkey ){
pNew->iRowidBind = iBind++;
}
}
}
}
/*
** This function is called after recoverCacheSchema() has cached those parts
** of the input database schema that could be recovered in temporary table
** "recovery.schema". This function creates in the output database copies
** of all parts of that schema that must be created before the tables can
** be populated. Specifically, this means:
**
** * all tables that are not VIRTUAL, and
** * UNIQUE indexes.
**
** If the recovery handle uses SQL callbacks, then callbacks containing
** the associated "CREATE TABLE" and "CREATE INDEX" statements are made.
**
** Additionally, records are added to the sqlite_schema table of the
** output database for any VIRTUAL tables. The CREATE VIRTUAL TABLE
** records are written directly to sqlite_schema, not actually executed.
** If the handle is in SQL callback mode, then callbacks are invoked
** with equivalent SQL statements.
*/
static int recoverWriteSchema1(sqlite3_recover *p){
sqlite3_stmt *pSelect = 0;
sqlite3_stmt *pTblname = 0;
pSelect = recoverPrepare(p, p->dbOut,
"WITH dbschema(rootpage, name, sql, tbl, isVirtual, isIndex) AS ("
" SELECT rootpage, name, sql, "
" type='table', "
" sql LIKE 'create virtual%',"
" (type='index' AND (sql LIKE '%unique%' OR ?1))"
" FROM recovery.schema"
")"
"SELECT rootpage, tbl, isVirtual, name, sql"
" FROM dbschema "
" WHERE tbl OR isIndex"
" ORDER BY tbl DESC, name=='sqlite_sequence' DESC"
);
pTblname = recoverPrepare(p, p->dbOut,
"SELECT name FROM sqlite_schema "
"WHERE type='table' ORDER BY rowid DESC LIMIT 1"
);
if( pSelect ){
sqlite3_bind_int(pSelect, 1, p->bSlowIndexes);
while( sqlite3_step(pSelect)==SQLITE_ROW ){
i64 iRoot = sqlite3_column_int64(pSelect, 0);
int bTable = sqlite3_column_int(pSelect, 1);
int bVirtual = sqlite3_column_int(pSelect, 2);
const char *zName = (const char*)sqlite3_column_text(pSelect, 3);
const char *zSql = (const char*)sqlite3_column_text(pSelect, 4);
char *zFree = 0;
int rc = SQLITE_OK;
if( bVirtual ){
zSql = (const char*)(zFree = recoverMPrintf(p,
"INSERT INTO sqlite_schema VALUES('table', %Q, %Q, 0, %Q)",
zName, zName, zSql
));
}
rc = sqlite3_exec(p->dbOut, zSql, 0, 0, 0);
if( rc==SQLITE_OK ){
recoverSqlCallback(p, zSql);
if( bTable && !bVirtual ){
if( SQLITE_ROW==sqlite3_step(pTblname) ){
const char *zTbl = (const char*)sqlite3_column_text(pTblname, 0);
if( zTbl ) recoverAddTable(p, zTbl, iRoot);
}
recoverReset(p, pTblname);
}
}else if( rc!=SQLITE_ERROR ){
recoverDbError(p, p->dbOut);
}
sqlite3_free(zFree);
}
}
recoverFinalize(p, pSelect);
recoverFinalize(p, pTblname);
return p->errCode;
}
/*
** This function is called after the output database has been populated. It
** adds all recovered schema elements that were not created in the output
** database by recoverWriteSchema1() - everything except for tables and
** UNIQUE indexes. Specifically:
**
** * views,
** * triggers,
** * non-UNIQUE indexes.
**
** If the recover handle is in SQL callback mode, then equivalent callbacks
** are issued to create the schema elements.
*/
static int recoverWriteSchema2(sqlite3_recover *p){
sqlite3_stmt *pSelect = 0;
pSelect = recoverPrepare(p, p->dbOut,
p->bSlowIndexes ?
"SELECT rootpage, sql FROM recovery.schema "
" WHERE type!='table' AND type!='index'"
:
"SELECT rootpage, sql FROM recovery.schema "
" WHERE type!='table' AND (type!='index' OR sql NOT LIKE '%unique%')"
);
if( pSelect ){
while( sqlite3_step(pSelect)==SQLITE_ROW ){
const char *zSql = (const char*)sqlite3_column_text(pSelect, 1);
int rc = sqlite3_exec(p->dbOut, zSql, 0, 0, 0);
if( rc==SQLITE_OK ){
recoverSqlCallback(p, zSql);
}else if( rc!=SQLITE_ERROR ){
recoverDbError(p, p->dbOut);
}
}
}
recoverFinalize(p, pSelect);
return p->errCode;
}
/*
** This function is a no-op if recover handle p already contains an error
** (if p->errCode!=SQLITE_OK). In this case it returns NULL.
**
** Otherwise, if the recover handle is configured to create an output
** database (was created by sqlite3_recover_init()), then this function
** prepares and returns an SQL statement to INSERT a new record into table
** pTab, assuming the first nField fields of a record extracted from disk
** are valid.
**
** For example, if table pTab is:
**
** CREATE TABLE name(a, b GENERATED ALWAYS AS (a+1) STORED, c, d, e);
**
** And nField is 4, then the SQL statement prepared and returned is:
**
** INSERT INTO (a, c, d) VALUES (?1, ?2, ?3);
**
** In this case even though 4 values were extracted from the input db,
** only 3 are written to the output, as the generated STORED column
** cannot be written.
**
** If the recover handle is in SQL callback mode, then the SQL statement
** prepared is such that evaluating it returns a single row containing
** a single text value - itself an SQL statement similar to the above,
** except with SQL literals in place of the variables. For example:
**
** SELECT 'INSERT INTO (a, c, d) VALUES ('
** || quote(?1) || ', '
** || quote(?2) || ', '
** || quote(?3) || ')';
**
** In either case, it is the responsibility of the caller to eventually
** free the statement handle using sqlite3_finalize().
*/
static sqlite3_stmt *recoverInsertStmt(
sqlite3_recover *p,
RecoverTable *pTab,
int nField
){
sqlite3_stmt *pRet = 0;
const char *zSep = "";
const char *zSqlSep = "";
char *zSql = 0;
char *zFinal = 0;
char *zBind = 0;
int ii;
int bSql = p->xSql ? 1 : 0;
if( nField<=0 ) return 0;
assert( nField<=pTab->nCol );
zSql = recoverMPrintf(p, "INSERT OR IGNORE INTO %Q(", pTab->zTab);
if( pTab->iRowidBind ){
assert( pTab->bIntkey );
zSql = recoverMPrintf(p, "%z_rowid_", zSql);
if( bSql ){
zBind = recoverMPrintf(p, "%zquote(?%d)", zBind, pTab->iRowidBind);
}else{
zBind = recoverMPrintf(p, "%z?%d", zBind, pTab->iRowidBind);
}
zSqlSep = "||', '||";
zSep = ", ";
}
for(ii=0; ii<nField; ii++){
int eHidden = pTab->aCol[ii].eHidden;
if( eHidden!=RECOVER_EHIDDEN_VIRTUAL
&& eHidden!=RECOVER_EHIDDEN_STORED
){
assert( pTab->aCol[ii].iField>=0 && pTab->aCol[ii].iBind>=1 );
zSql = recoverMPrintf(p, "%z%s%Q", zSql, zSep, pTab->aCol[ii].zCol);
if( bSql ){
zBind = recoverMPrintf(p,
"%z%sescape_crlf(quote(?%d))", zBind, zSqlSep, pTab->aCol[ii].iBind
);
zSqlSep = "||', '||";
}else{
zBind = recoverMPrintf(p, "%z%s?%d", zBind, zSep, pTab->aCol[ii].iBind);
}
zSep = ", ";
}
}
if( bSql ){
zFinal = recoverMPrintf(p, "SELECT %Q || ') VALUES (' || %s || ')'",
zSql, zBind
);
}else{
zFinal = recoverMPrintf(p, "%s) VALUES (%s)", zSql, zBind);
}
pRet = recoverPrepare(p, p->dbOut, zFinal);
sqlite3_free(zSql);
sqlite3_free(zBind);
sqlite3_free(zFinal);
return pRet;
}
/*
** Search the list of RecoverTable objects at p->pTblList for one that
** has root page iRoot in the input database. If such an object is found,
** return a pointer to it. Otherwise, return NULL.
*/
static RecoverTable *recoverFindTable(sqlite3_recover *p, u32 iRoot){
RecoverTable *pRet = 0;
for(pRet=p->pTblList; pRet && pRet->iRoot!=iRoot; pRet=pRet->pNext);
return pRet;
}
/*
** This function attempts to create a lost and found table within the
** output db. If successful, it returns a pointer to a buffer containing
** the name of the new table. It is the responsibility of the caller to
** eventually free this buffer using sqlite3_free().
**
** If an error occurs, NULL is returned and an error code and error
** message left in the recover handle.
*/
static char *recoverLostAndFoundCreate(
sqlite3_recover *p, /* Recover object */
int nField /* Number of column fields in new table */
){
char *zTbl = 0;
sqlite3_stmt *pProbe = 0;
int ii = 0;
pProbe = recoverPrepare(p, p->dbOut,
"SELECT 1 FROM sqlite_schema WHERE name=?"
);
for(ii=-1; zTbl==0 && p->errCode==SQLITE_OK && ii<1000; ii++){
int bFail = 0;
if( ii<0 ){
zTbl = recoverMPrintf(p, "%s", p->zLostAndFound);
}else{
zTbl = recoverMPrintf(p, "%s_%d", p->zLostAndFound, ii);
}
if( p->errCode==SQLITE_OK ){
sqlite3_bind_text(pProbe, 1, zTbl, -1, SQLITE_STATIC);
if( SQLITE_ROW==sqlite3_step(pProbe) ){
bFail = 1;
}
recoverReset(p, pProbe);
}
if( bFail ){
sqlite3_clear_bindings(pProbe);
sqlite3_free(zTbl);
zTbl = 0;
}
}
recoverFinalize(p, pProbe);
if( zTbl ){
const char *zSep = 0;
char *zField = 0;
char *zSql = 0;
zSep = "rootpgno INTEGER, pgno INTEGER, nfield INTEGER, id INTEGER, ";
for(ii=0; p->errCode==SQLITE_OK && ii<nField; ii++){
zField = recoverMPrintf(p, "%z%sc%d", zField, zSep, ii);
zSep = ", ";
}
zSql = recoverMPrintf(p, "CREATE TABLE %s(%s)", zTbl, zField);
sqlite3_free(zField);
recoverExec(p, p->dbOut, zSql);
recoverSqlCallback(p, zSql);
sqlite3_free(zSql);
}else if( p->errCode==SQLITE_OK ){
recoverError(
p, SQLITE_ERROR, "failed to create %s output table", p->zLostAndFound
);
}
return zTbl;
}
/*
** Synthesize and prepare an INSERT statement to write to the lost_and_found
** table in the output database. The name of the table is zTab, and it has
** nField c* fields.
*/
static sqlite3_stmt *recoverLostAndFoundInsert(
sqlite3_recover *p,
const char *zTab,
int nField
){
int nTotal = nField + 4;
int ii;
char *zBind = 0;
sqlite3_stmt *pRet = 0;
if( p->xSql==0 ){
for(ii=0; ii<nTotal; ii++){
zBind = recoverMPrintf(p, "%z%s?", zBind, zBind?", ":"", ii);
}
pRet = recoverPreparePrintf(
p, p->dbOut, "INSERT INTO %s VALUES(%s)", zTab, zBind
);
}else{
const char *zSep = "";
for(ii=0; ii<nTotal; ii++){
zBind = recoverMPrintf(p, "%z%squote(?)", zBind, zSep);
zSep = "|| ', ' ||";
}
pRet = recoverPreparePrintf(
p, p->dbOut, "SELECT 'INSERT INTO %s VALUES(' || %s || ')'", zTab, zBind
);
}
sqlite3_free(zBind);
return pRet;
}
/*
** Input database page iPg contains data that will be written to the
** lost-and-found table of the output database. This function attempts
** to identify the root page of the tree that page iPg belonged to.
** If successful, it sets output variable (*piRoot) to the page number
** of the root page and returns SQLITE_OK. Otherwise, if an error occurs,
** an SQLite error code is returned and the final value of *piRoot
** undefined.
*/
static int recoverLostAndFoundFindRoot(
sqlite3_recover *p,
i64 iPg,
i64 *piRoot
){
RecoverStateLAF *pLaf = &p->laf;
if( pLaf->pFindRoot==0 ){
pLaf->pFindRoot = recoverPrepare(p, p->dbOut,
"WITH RECURSIVE p(pgno) AS ("
" SELECT ?"
" UNION"
" SELECT parent FROM recovery.map AS m, p WHERE m.pgno=p.pgno"
") "
"SELECT p.pgno FROM p, recovery.map m WHERE m.pgno=p.pgno "
" AND m.parent IS NULL"
);
}
if( p->errCode==SQLITE_OK ){
sqlite3_bind_int64(pLaf->pFindRoot, 1, iPg);
if( sqlite3_step(pLaf->pFindRoot)==SQLITE_ROW ){
*piRoot = sqlite3_column_int64(pLaf->pFindRoot, 0);
}else{
*piRoot = iPg;
}
recoverReset(p, pLaf->pFindRoot);
}
return p->errCode;
}
/*
** Recover data from page iPage of the input database and write it to
** the lost-and-found table in the output database.
*/
static void recoverLostAndFoundOnePage(sqlite3_recover *p, i64 iPage){
RecoverStateLAF *pLaf = &p->laf;
sqlite3_value **apVal = pLaf->apVal;
sqlite3_stmt *pPageData = pLaf->pPageData;
sqlite3_stmt *pInsert = pLaf->pInsert;
int nVal = -1;
int iPrevCell = 0;
i64 iRoot = 0;
int bHaveRowid = 0;
i64 iRowid = 0;
int ii = 0;
if( recoverLostAndFoundFindRoot(p, iPage, &iRoot) ) return;
sqlite3_bind_int64(pPageData, 1, iPage);
while( p->errCode==SQLITE_OK && SQLITE_ROW==sqlite3_step(pPageData) ){
int iCell = sqlite3_column_int64(pPageData, 0);
int iField = sqlite3_column_int64(pPageData, 1);
if( iPrevCell!=iCell && nVal>=0 ){
/* Insert the new row */
sqlite3_bind_int64(pInsert, 1, iRoot); /* rootpgno */
sqlite3_bind_int64(pInsert, 2, iPage); /* pgno */
sqlite3_bind_int(pInsert, 3, nVal); /* nfield */
if( bHaveRowid ){
sqlite3_bind_int64(pInsert, 4, iRowid); /* id */
}
for(ii=0; ii<nVal; ii++){
recoverBindValue(p, pInsert, 5+ii, apVal[ii]);
}
if( sqlite3_step(pInsert)==SQLITE_ROW ){
recoverSqlCallback(p, (const char*)sqlite3_column_text(pInsert, 0));
}
recoverReset(p, pInsert);
/* Discard the accumulated row data */
for(ii=0; ii<nVal; ii++){
sqlite3_value_free(apVal[ii]);
apVal[ii] = 0;
}
sqlite3_clear_bindings(pInsert);
bHaveRowid = 0;
nVal = -1;
}
if( iCell<0 ) break;
if( iField<0 ){
assert( nVal==-1 );
iRowid = sqlite3_column_int64(pPageData, 2);
bHaveRowid = 1;
nVal = 0;
}else if( iField<pLaf->nMaxField ){
sqlite3_value *pVal = sqlite3_column_value(pPageData, 2);
apVal[iField] = sqlite3_value_dup(pVal);
assert( iField==nVal || (nVal==-1 && iField==0) );
nVal = iField+1;
if( apVal[iField]==0 ){
recoverError(p, SQLITE_NOMEM, 0);
}
}
iPrevCell = iCell;
}
recoverReset(p, pPageData);
for(ii=0; ii<nVal; ii++){
sqlite3_value_free(apVal[ii]);
apVal[ii] = 0;
}
}
/*
** Perform one step (sqlite3_recover_step()) of work for the connection
** passed as the only argument, which is guaranteed to be in
** RECOVER_STATE_LOSTANDFOUND3 state - during which the lost-and-found
** table of the output database is populated with recovered data that can
** not be assigned to any recovered schema object.
*/
static int recoverLostAndFound3Step(sqlite3_recover *p){
RecoverStateLAF *pLaf = &p->laf;
if( p->errCode==SQLITE_OK ){
if( pLaf->pInsert==0 ){
return SQLITE_DONE;
}else{
if( p->errCode==SQLITE_OK ){
int res = sqlite3_step(pLaf->pAllPage);
if( res==SQLITE_ROW ){
i64 iPage = sqlite3_column_int64(pLaf->pAllPage, 0);
if( recoverBitmapQuery(pLaf->pUsed, iPage)==0 ){
recoverLostAndFoundOnePage(p, iPage);
}
}else{
recoverReset(p, pLaf->pAllPage);
return SQLITE_DONE;
}
}
}
}
return SQLITE_OK;
}
/*
** Initialize resources required in RECOVER_STATE_LOSTANDFOUND3
** state - during which the lost-and-found table of the output database
** is populated with recovered data that can not be assigned to any
** recovered schema object.
*/
static void recoverLostAndFound3Init(sqlite3_recover *p){
RecoverStateLAF *pLaf = &p->laf;
if( pLaf->nMaxField>0 ){
char *zTab = 0; /* Name of lost_and_found table */
zTab = recoverLostAndFoundCreate(p, pLaf->nMaxField);
pLaf->pInsert = recoverLostAndFoundInsert(p, zTab, pLaf->nMaxField);
sqlite3_free(zTab);
pLaf->pAllPage = recoverPreparePrintf(p, p->dbOut,
"WITH RECURSIVE seq(ii) AS ("
" SELECT 1 UNION ALL SELECT ii+1 FROM seq WHERE ii<%lld"
")"
"SELECT ii FROM seq" , p->laf.nPg
);
pLaf->pPageData = recoverPrepare(p, p->dbOut,
"SELECT cell, field, value "
"FROM sqlite_dbdata('getpage()') d WHERE d.pgno=? "
"UNION ALL "
"SELECT -1, -1, -1"
);
pLaf->apVal = (sqlite3_value**)recoverMalloc(p,
pLaf->nMaxField*sizeof(sqlite3_value*)
);
}
}
/*
** Initialize resources required in RECOVER_STATE_WRITING state - during which
** tables recovered from the schema of the input database are populated with
** recovered data.
*/
static int recoverWriteDataInit(sqlite3_recover *p){
RecoverStateW1 *p1 = &p->w1;
RecoverTable *pTbl = 0;
int nByte = 0;
/* Figure out the maximum number of columns for any table in the schema */
assert( p1->nMax==0 );
for(pTbl=p->pTblList; pTbl; pTbl=pTbl->pNext){
if( pTbl->nCol>p1->nMax ) p1->nMax = pTbl->nCol;
}
/* Allocate an array of (sqlite3_value*) in which to accumulate the values
** that will be written to the output database in a single row. */
nByte = sizeof(sqlite3_value*) * (p1->nMax+1);
p1->apVal = (sqlite3_value**)recoverMalloc(p, nByte);
if( p1->apVal==0 ) return p->errCode;
/* Prepare the SELECT to loop through schema tables (pTbls) and the SELECT
** to loop through cells that appear to belong to a single table (pSel). */
p1->pTbls = recoverPrepare(p, p->dbOut,
"SELECT rootpage FROM recovery.schema "
" WHERE type='table' AND (sql NOT LIKE 'create virtual%')"
" ORDER BY (tbl_name='sqlite_sequence') ASC"
);
p1->pSel = recoverPrepare(p, p->dbOut,
"WITH RECURSIVE pages(page) AS ("
" SELECT ?1"
" UNION"
" SELECT child FROM sqlite_dbptr('getpage()'), pages "
" WHERE pgno=page"
") "
"SELECT page, cell, field, value "
"FROM sqlite_dbdata('getpage()') d, pages p WHERE p.page=d.pgno "
"UNION ALL "
"SELECT 0, 0, 0, 0"
);
return p->errCode;
}
/*
** Clean up resources allocated by recoverWriteDataInit() (stuff in
** sqlite3_recover.w1).
*/
static void recoverWriteDataCleanup(sqlite3_recover *p){
RecoverStateW1 *p1 = &p->w1;
int ii;
for(ii=0; ii<p1->nVal; ii++){
sqlite3_value_free(p1->apVal[ii]);
}
sqlite3_free(p1->apVal);
recoverFinalize(p, p1->pInsert);
recoverFinalize(p, p1->pTbls);
recoverFinalize(p, p1->pSel);
memset(p1, 0, sizeof(*p1));
}
/*
** Perform one step (sqlite3_recover_step()) of work for the connection
** passed as the only argument, which is guaranteed to be in
** RECOVER_STATE_WRITING state - during which tables recovered from the
** schema of the input database are populated with recovered data.
*/
static int recoverWriteDataStep(sqlite3_recover *p){
RecoverStateW1 *p1 = &p->w1;
sqlite3_stmt *pSel = p1->pSel;
sqlite3_value **apVal = p1->apVal;
if( p->errCode==SQLITE_OK && p1->pTab==0 ){
if( sqlite3_step(p1->pTbls)==SQLITE_ROW ){
i64 iRoot = sqlite3_column_int64(p1->pTbls, 0);
p1->pTab = recoverFindTable(p, iRoot);
recoverFinalize(p, p1->pInsert);
p1->pInsert = 0;
/* If this table is unknown, return early. The caller will invoke this
** function again and it will move on to the next table. */
if( p1->pTab==0 ) return p->errCode;
/* If this is the sqlite_sequence table, delete any rows added by
** earlier INSERT statements on tables with AUTOINCREMENT primary
** keys before recovering its contents. The p1->pTbls SELECT statement
** is rigged to deliver "sqlite_sequence" last of all, so we don't
** worry about it being modified after it is recovered. */
if( sqlite3_stricmp("sqlite_sequence", p1->pTab->zTab)==0 ){
recoverExec(p, p->dbOut, "DELETE FROM sqlite_sequence");
recoverSqlCallback(p, "DELETE FROM sqlite_sequence");
}
/* Bind the root page of this table within the original database to
** SELECT statement p1->pSel. The SELECT statement will then iterate
** through cells that look like they belong to table pTab. */
sqlite3_bind_int64(pSel, 1, iRoot);
p1->nVal = 0;
p1->bHaveRowid = 0;
p1->iPrevPage = -1;
p1->iPrevCell = -1;
}else{
return SQLITE_DONE;
}
}
assert( p->errCode!=SQLITE_OK || p1->pTab );
if( p->errCode==SQLITE_OK && sqlite3_step(pSel)==SQLITE_ROW ){
RecoverTable *pTab = p1->pTab;
i64 iPage = sqlite3_column_int64(pSel, 0);
int iCell = sqlite3_column_int(pSel, 1);
int iField = sqlite3_column_int(pSel, 2);
sqlite3_value *pVal = sqlite3_column_value(pSel, 3);
int bNewCell = (p1->iPrevPage!=iPage || p1->iPrevCell!=iCell);
assert( bNewCell==0 || (iField==-1 || iField==0) );
assert( bNewCell || iField==p1->nVal || p1->nVal==pTab->nCol );
if( bNewCell ){
int ii = 0;
if( p1->nVal>=0 ){
if( p1->pInsert==0 || p1->nVal!=p1->nInsert ){
recoverFinalize(p, p1->pInsert);
p1->pInsert = recoverInsertStmt(p, pTab, p1->nVal);
p1->nInsert = p1->nVal;
}
if( p1->nVal>0 ){
sqlite3_stmt *pInsert = p1->pInsert;
for(ii=0; ii<pTab->nCol; ii++){
RecoverColumn *pCol = &pTab->aCol[ii];
int iBind = pCol->iBind;
if( iBind>0 ){
if( pCol->bIPK ){
sqlite3_bind_int64(pInsert, iBind, p1->iRowid);
}else if( pCol->iField<p1->nVal ){
recoverBindValue(p, pInsert, iBind, apVal[pCol->iField]);
}
}
}
if( p->bRecoverRowid && pTab->iRowidBind>0 && p1->bHaveRowid ){
sqlite3_bind_int64(pInsert, pTab->iRowidBind, p1->iRowid);
}
if( SQLITE_ROW==sqlite3_step(pInsert) ){
const char *z = (const char*)sqlite3_column_text(pInsert, 0);
recoverSqlCallback(p, z);
}
recoverReset(p, pInsert);
assert( p->errCode || pInsert );
if( pInsert ) sqlite3_clear_bindings(pInsert);
}
}
for(ii=0; ii<p1->nVal; ii++){
sqlite3_value_free(apVal[ii]);
apVal[ii] = 0;
}
p1->nVal = -1;
p1->bHaveRowid = 0;
}
if( iPage!=0 ){
if( iField<0 ){
p1->iRowid = sqlite3_column_int64(pSel, 3);
assert( p1->nVal==-1 );
p1->nVal = 0;
p1->bHaveRowid = 1;
}else if( iField<pTab->nCol ){
assert( apVal[iField]==0 );
apVal[iField] = sqlite3_value_dup( pVal );
if( apVal[iField]==0 ){
recoverError(p, SQLITE_NOMEM, 0);
}
p1->nVal = iField+1;
}else if( pTab->nCol==0 ){
p1->nVal = pTab->nCol;
}
p1->iPrevCell = iCell;
p1->iPrevPage = iPage;
}
}else{
recoverReset(p, pSel);
p1->pTab = 0;
}
return p->errCode;
}
/*
** Initialize resources required by sqlite3_recover_step() in
** RECOVER_STATE_LOSTANDFOUND1 state - during which the set of pages not
** already allocated to a recovered schema element is determined.
*/
static void recoverLostAndFound1Init(sqlite3_recover *p){
RecoverStateLAF *pLaf = &p->laf;
sqlite3_stmt *pStmt = 0;
assert( p->laf.pUsed==0 );
pLaf->nPg = recoverPageCount(p);
pLaf->pUsed = recoverBitmapAlloc(p, pLaf->nPg);
/* Prepare a statement to iterate through all pages that are part of any tree
** in the recoverable part of the input database schema to the bitmap. And,
** if !p->bFreelistCorrupt, add all pages that appear to be part of the
** freelist. */
pStmt = recoverPrepare(
p, p->dbOut,
"WITH trunk(pgno) AS ("
" SELECT read_i32(getpage(1), 8) AS x WHERE x>0"
" UNION"
" SELECT read_i32(getpage(trunk.pgno), 0) AS x FROM trunk WHERE x>0"
"),"
"trunkdata(pgno, data) AS ("
" SELECT pgno, getpage(pgno) FROM trunk"
"),"
"freelist(data, n, freepgno) AS ("
" SELECT data, min(16384, read_i32(data, 1)-1), pgno FROM trunkdata"
" UNION ALL"
" SELECT data, n-1, read_i32(data, 2+n) FROM freelist WHERE n>=0"
"),"
""
"roots(r) AS ("
" SELECT 1 UNION ALL"
" SELECT rootpage FROM recovery.schema WHERE rootpage>0"
"),"
"used(page) AS ("
" SELECT r FROM roots"
" UNION"
" SELECT child FROM sqlite_dbptr('getpage()'), used "
" WHERE pgno=page"
") "
"SELECT page FROM used"
" UNION ALL "
"SELECT freepgno FROM freelist WHERE NOT ?"
);
if( pStmt ) sqlite3_bind_int(pStmt, 1, p->bFreelistCorrupt);
pLaf->pUsedPages = pStmt;
}
/*
** Perform one step (sqlite3_recover_step()) of work for the connection
** passed as the only argument, which is guaranteed to be in
** RECOVER_STATE_LOSTANDFOUND1 state - during which the set of pages not
** already allocated to a recovered schema element is determined.
*/
static int recoverLostAndFound1Step(sqlite3_recover *p){
RecoverStateLAF *pLaf = &p->laf;
int rc = p->errCode;
if( rc==SQLITE_OK ){
rc = sqlite3_step(pLaf->pUsedPages);
if( rc==SQLITE_ROW ){
i64 iPg = sqlite3_column_int64(pLaf->pUsedPages, 0);
recoverBitmapSet(pLaf->pUsed, iPg);
rc = SQLITE_OK;
}else{
recoverFinalize(p, pLaf->pUsedPages);
pLaf->pUsedPages = 0;
}
}
return rc;
}
/*
** Initialize resources required by RECOVER_STATE_LOSTANDFOUND2
** state - during which the pages identified in RECOVER_STATE_LOSTANDFOUND1
** are sorted into sets that likely belonged to the same database tree.
*/
static void recoverLostAndFound2Init(sqlite3_recover *p){
RecoverStateLAF *pLaf = &p->laf;
assert( p->laf.pAllAndParent==0 );
assert( p->laf.pMapInsert==0 );
assert( p->laf.pMaxField==0 );
assert( p->laf.nMaxField==0 );
pLaf->pMapInsert = recoverPrepare(p, p->dbOut,
"INSERT OR IGNORE INTO recovery.map(pgno, parent) VALUES(?, ?)"
);
pLaf->pAllAndParent = recoverPreparePrintf(p, p->dbOut,
"WITH RECURSIVE seq(ii) AS ("
" SELECT 1 UNION ALL SELECT ii+1 FROM seq WHERE ii<%lld"
")"
"SELECT pgno, child FROM sqlite_dbptr('getpage()') "
" UNION ALL "
"SELECT NULL, ii FROM seq", p->laf.nPg
);
pLaf->pMaxField = recoverPreparePrintf(p, p->dbOut,
"SELECT max(field)+1 FROM sqlite_dbdata('getpage') WHERE pgno = ?"
);
}
/*
** Perform one step (sqlite3_recover_step()) of work for the connection
** passed as the only argument, which is guaranteed to be in
** RECOVER_STATE_LOSTANDFOUND2 state - during which the pages identified
** in RECOVER_STATE_LOSTANDFOUND1 are sorted into sets that likely belonged
** to the same database tree.
*/
static int recoverLostAndFound2Step(sqlite3_recover *p){
RecoverStateLAF *pLaf = &p->laf;
if( p->errCode==SQLITE_OK ){
int res = sqlite3_step(pLaf->pAllAndParent);
if( res==SQLITE_ROW ){
i64 iChild = sqlite3_column_int(pLaf->pAllAndParent, 1);
if( recoverBitmapQuery(pLaf->pUsed, iChild)==0 ){
sqlite3_bind_int64(pLaf->pMapInsert, 1, iChild);
sqlite3_bind_value(pLaf->pMapInsert, 2,
sqlite3_column_value(pLaf->pAllAndParent, 0)
);
sqlite3_step(pLaf->pMapInsert);
recoverReset(p, pLaf->pMapInsert);
sqlite3_bind_int64(pLaf->pMaxField, 1, iChild);
if( SQLITE_ROW==sqlite3_step(pLaf->pMaxField) ){
int nMax = sqlite3_column_int(pLaf->pMaxField, 0);
if( nMax>pLaf->nMaxField ) pLaf->nMaxField = nMax;
}
recoverReset(p, pLaf->pMaxField);
}
}else{
recoverFinalize(p, pLaf->pAllAndParent);
pLaf->pAllAndParent =0;
return SQLITE_DONE;
}
}
return p->errCode;
}
/*
** Free all resources allocated as part of sqlite3_recover_step() calls
** in one of the RECOVER_STATE_LOSTANDFOUND[123] states.
*/
static void recoverLostAndFoundCleanup(sqlite3_recover *p){
recoverBitmapFree(p->laf.pUsed);
p->laf.pUsed = 0;
sqlite3_finalize(p->laf.pUsedPages);
sqlite3_finalize(p->laf.pAllAndParent);
sqlite3_finalize(p->laf.pMapInsert);
sqlite3_finalize(p->laf.pMaxField);
sqlite3_finalize(p->laf.pFindRoot);
sqlite3_finalize(p->laf.pInsert);
sqlite3_finalize(p->laf.pAllPage);
sqlite3_finalize(p->laf.pPageData);
p->laf.pUsedPages = 0;
p->laf.pAllAndParent = 0;
p->laf.pMapInsert = 0;
p->laf.pMaxField = 0;
p->laf.pFindRoot = 0;
p->laf.pInsert = 0;
p->laf.pAllPage = 0;
p->laf.pPageData = 0;
sqlite3_free(p->laf.apVal);
p->laf.apVal = 0;
}
/*
** Free all resources allocated as part of sqlite3_recover_step() calls.
*/
static void recoverFinalCleanup(sqlite3_recover *p){
RecoverTable *pTab = 0;
RecoverTable *pNext = 0;
recoverWriteDataCleanup(p);
recoverLostAndFoundCleanup(p);
for(pTab=p->pTblList; pTab; pTab=pNext){
pNext = pTab->pNext;
sqlite3_free(pTab);
}
p->pTblList = 0;
sqlite3_finalize(p->pGetPage);
p->pGetPage = 0;
sqlite3_file_control(p->dbIn, p->zDb, SQLITE_FCNTL_RESET_CACHE, 0);
{
#ifndef NDEBUG
int res =
#endif
sqlite3_close(p->dbOut);
assert( res==SQLITE_OK );
}
p->dbOut = 0;
}
/*
** Decode and return an unsigned 16-bit big-endian integer value from
** buffer a[].
*/
static u32 recoverGetU16(const u8 *a){
return (((u32)a[0])<<8) + ((u32)a[1]);
}
/*
** Decode and return an unsigned 32-bit big-endian integer value from
** buffer a[].
*/
static u32 recoverGetU32(const u8 *a){
return (((u32)a[0])<<24) + (((u32)a[1])<<16) + (((u32)a[2])<<8) + ((u32)a[3]);
}
/*
** Decode an SQLite varint from buffer a[]. Write the decoded value to (*pVal)
** and return the number of bytes consumed.
*/
static int recoverGetVarint(const u8 *a, i64 *pVal){
sqlite3_uint64 u = 0;
int i;
for(i=0; i<8; i++){
u = (u<<7) + (a[i]&0x7f);
if( (a[i]&0x80)==0 ){ *pVal = (sqlite3_int64)u; return i+1; }
}
u = (u<<8) + (a[i]&0xff);
*pVal = (sqlite3_int64)u;
return 9;
}
/*
** The second argument points to a buffer n bytes in size. If this buffer
** or a prefix thereof appears to contain a well-formed SQLite b-tree page,
** return the page-size in bytes. Otherwise, if the buffer does not
** appear to contain a well-formed b-tree page, return 0.
*/
static int recoverIsValidPage(u8 *aTmp, const u8 *a, int n){
u8 *aUsed = aTmp;
int nFrag = 0;
int nActual = 0;
int iFree = 0;
int nCell = 0; /* Number of cells on page */
int iCellOff = 0; /* Offset of cell array in page */
int iContent = 0;
int eType = 0;
int ii = 0;
eType = (int)a[0];
if( eType!=0x02 && eType!=0x05 && eType!=0x0A && eType!=0x0D ) return 0;
iFree = (int)recoverGetU16(&a[1]);
nCell = (int)recoverGetU16(&a[3]);
iContent = (int)recoverGetU16(&a[5]);
if( iContent==0 ) iContent = 65536;
nFrag = (int)a[7];
if( iContent>n ) return 0;
memset(aUsed, 0, n);
memset(aUsed, 0xFF, iContent);
/* Follow the free-list. This is the same format for all b-tree pages. */
if( iFree && iFree<=iContent ) return 0;
while( iFree ){
int iNext = 0;
int nByte = 0;
if( iFree>(n-4) ) return 0;
iNext = recoverGetU16(&a[iFree]);
nByte = recoverGetU16(&a[iFree+2]);
if( iFree+nByte>n || nByte<4 ) return 0;
if( iNext && iNext<iFree+nByte ) return 0;
memset(&aUsed[iFree], 0xFF, nByte);
iFree = iNext;
}
/* Run through the cells */
if( eType==0x02 || eType==0x05 ){
iCellOff = 12;
}else{
iCellOff = 8;
}
if( (iCellOff + 2*nCell)>iContent ) return 0;
for(ii=0; ii<nCell; ii++){
int iByte;
i64 nPayload = 0;
int nByte = 0;
int iOff = recoverGetU16(&a[iCellOff + 2*ii]);
if( iOff<iContent || iOff>n ){
return 0;
}
if( eType==0x05 || eType==0x02 ) nByte += 4;
nByte += recoverGetVarint(&a[iOff+nByte], &nPayload);
if( eType==0x0D ){
i64 dummy = 0;
nByte += recoverGetVarint(&a[iOff+nByte], &dummy);
}
if( eType!=0x05 ){
int X = (eType==0x0D) ? n-35 : (((n-12)*64/255)-23);
int M = ((n-12)*32/255)-23;
int K = M+((nPayload-M)%(n-4));
if( nPayload<X ){
nByte += nPayload;
}else if( K<=X ){
nByte += K+4;
}else{
nByte += M+4;
}
}
if( iOff+nByte>n ){
return 0;
}
for(iByte=iOff; iByte<(iOff+nByte); iByte++){
if( aUsed[iByte]!=0 ){
return 0;
}
aUsed[iByte] = 0xFF;
}
}
nActual = 0;
for(ii=0; ii<n; ii++){
if( aUsed[ii]==0 ) nActual++;
}
return (nActual==nFrag);
}
static int recoverVfsClose(sqlite3_file*);
static int recoverVfsRead(sqlite3_file*, void*, int iAmt, sqlite3_int64 iOfst);
static int recoverVfsWrite(sqlite3_file*, const void*, int, sqlite3_int64);
static int recoverVfsTruncate(sqlite3_file*, sqlite3_int64 size);
static int recoverVfsSync(sqlite3_file*, int flags);
static int recoverVfsFileSize(sqlite3_file*, sqlite3_int64 *pSize);
static int recoverVfsLock(sqlite3_file*, int);
static int recoverVfsUnlock(sqlite3_file*, int);
static int recoverVfsCheckReservedLock(sqlite3_file*, int *pResOut);
static int recoverVfsFileControl(sqlite3_file*, int op, void *pArg);
static int recoverVfsSectorSize(sqlite3_file*);
static int recoverVfsDeviceCharacteristics(sqlite3_file*);
static int recoverVfsShmMap(sqlite3_file*, int, int, int, void volatile**);
static int recoverVfsShmLock(sqlite3_file*, int offset, int n, int flags);
static void recoverVfsShmBarrier(sqlite3_file*);
static int recoverVfsShmUnmap(sqlite3_file*, int deleteFlag);
static int recoverVfsFetch(sqlite3_file*, sqlite3_int64, int, void**);
static int recoverVfsUnfetch(sqlite3_file *pFd, sqlite3_int64 iOff, void *p);
static sqlite3_io_methods recover_methods = {
2, /* iVersion */
recoverVfsClose,
recoverVfsRead,
recoverVfsWrite,
recoverVfsTruncate,
recoverVfsSync,
recoverVfsFileSize,
recoverVfsLock,
recoverVfsUnlock,
recoverVfsCheckReservedLock,
recoverVfsFileControl,
recoverVfsSectorSize,
recoverVfsDeviceCharacteristics,
recoverVfsShmMap,
recoverVfsShmLock,
recoverVfsShmBarrier,
recoverVfsShmUnmap,
recoverVfsFetch,
recoverVfsUnfetch
};
static int recoverVfsClose(sqlite3_file *pFd){
assert( pFd->pMethods!=&recover_methods );
return pFd->pMethods->xClose(pFd);
}
/*
** Write value v to buffer a[] as a 16-bit big-endian unsigned integer.
*/
static void recoverPutU16(u8 *a, u32 v){
a[0] = (v>>8) & 0x00FF;
a[1] = (v>>0) & 0x00FF;
}
/*
** Write value v to buffer a[] as a 32-bit big-endian unsigned integer.
*/
static void recoverPutU32(u8 *a, u32 v){
a[0] = (v>>24) & 0x00FF;
a[1] = (v>>16) & 0x00FF;
a[2] = (v>>8) & 0x00FF;
a[3] = (v>>0) & 0x00FF;
}
/*
** Detect the page-size of the database opened by file-handle pFd by
** searching the first part of the file for a well-formed SQLite b-tree
** page. If parameter nReserve is non-zero, then as well as searching for
** a b-tree page with zero reserved bytes, this function searches for one
** with nReserve reserved bytes at the end of it.
**
** If successful, set variable p->detected_pgsz to the detected page-size
** in bytes and return SQLITE_OK. Or, if no error occurs but no valid page
** can be found, return SQLITE_OK but leave p->detected_pgsz set to 0. Or,
** if an error occurs (e.g. an IO or OOM error), then an SQLite error code
** is returned. The final value of p->detected_pgsz is undefined in this
** case.
*/
static int recoverVfsDetectPagesize(
sqlite3_recover *p, /* Recover handle */
sqlite3_file *pFd, /* File-handle open on input database */
u32 nReserve, /* Possible nReserve value */
i64 nSz /* Size of database file in bytes */
){
int rc = SQLITE_OK;
const int nMin = 512;
const int nMax = 65536;
const int nMaxBlk = 4;
u32 pgsz = 0;
int iBlk = 0;
u8 *aPg = 0;
u8 *aTmp = 0;
int nBlk = 0;
aPg = (u8*)sqlite3_malloc(2*nMax);
if( aPg==0 ) return SQLITE_NOMEM;
aTmp = &aPg[nMax];
nBlk = (nSz+nMax-1)/nMax;
if( nBlk>nMaxBlk ) nBlk = nMaxBlk;
do {
for(iBlk=0; rc==SQLITE_OK && iBlk<nBlk; iBlk++){
int nByte = (nSz>=((iBlk+1)*nMax)) ? nMax : (nSz % nMax);
memset(aPg, 0, nMax);
rc = pFd->pMethods->xRead(pFd, aPg, nByte, iBlk*nMax);
if( rc==SQLITE_OK ){
int pgsz2;
for(pgsz2=(pgsz ? pgsz*2 : nMin); pgsz2<=nMax; pgsz2=pgsz2*2){
int iOff;
for(iOff=0; iOff<nMax; iOff+=pgsz2){
if( recoverIsValidPage(aTmp, &aPg[iOff], pgsz2-nReserve) ){
pgsz = pgsz2;
break;
}
}
}
}
}
if( pgsz>(u32)p->detected_pgsz ){
p->detected_pgsz = pgsz;
p->nReserve = nReserve;
}
if( nReserve==0 ) break;
nReserve = 0;
}while( 1 );
p->detected_pgsz = pgsz;
sqlite3_free(aPg);
return rc;
}
/*
** The xRead() method of the wrapper VFS. This is used to intercept calls
** to read page 1 of the input database.
*/
static int recoverVfsRead(sqlite3_file *pFd, void *aBuf, int nByte, i64 iOff){
int rc = SQLITE_OK;
if( pFd->pMethods==&recover_methods ){
pFd->pMethods = recover_g.pMethods;
rc = pFd->pMethods->xRead(pFd, aBuf, nByte, iOff);
if( nByte==16 ){
sqlite3_randomness(16, aBuf);
}else
if( rc==SQLITE_OK && iOff==0 && nByte>=108 ){
/* Ensure that the database has a valid header file. The only fields
** that really matter to recovery are:
**
** + Database page size (16-bits at offset 16)
** + Size of db in pages (32-bits at offset 28)
** + Database encoding (32-bits at offset 56)
**
** Also preserved are:
**
** + first freelist page (32-bits at offset 32)
** + size of freelist (32-bits at offset 36)
** + the wal-mode flags (16-bits at offset 18)
**
** We also try to preserve the auto-vacuum, incr-value, user-version
** and application-id fields - all 32 bit quantities at offsets
** 52, 60, 64 and 68. All other fields are set to known good values.
**
** Byte offset 105 should also contain the page-size as a 16-bit
** integer.
*/
const int aPreserve[] = {32, 36, 52, 60, 64, 68};
u8 aHdr[108] = {
0x53, 0x51, 0x4c, 0x69, 0x74, 0x65, 0x20, 0x66,
0x6f, 0x72, 0x6d, 0x61, 0x74, 0x20, 0x33, 0x00,
0xFF, 0xFF, 0x01, 0x01, 0x00, 0x40, 0x20, 0x20,
0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04,
0x00, 0x00, 0x10, 0x00, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x2e, 0x5b, 0x30,
0x0D, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0x00
};
u8 *a = (u8*)aBuf;
u32 pgsz = recoverGetU16(&a[16]);
u32 nReserve = a[20];
u32 enc = recoverGetU32(&a[56]);
u32 dbsz = 0;
i64 dbFileSize = 0;
int ii;
sqlite3_recover *p = recover_g.p;
if( pgsz==0x01 ) pgsz = 65536;
rc = pFd->pMethods->xFileSize(pFd, &dbFileSize);
if( rc==SQLITE_OK && p->detected_pgsz==0 ){
rc = recoverVfsDetectPagesize(p, pFd, nReserve, dbFileSize);
}
if( p->detected_pgsz ){
pgsz = p->detected_pgsz;
nReserve = p->nReserve;
}
if( pgsz ){
dbsz = dbFileSize / pgsz;
}
if( enc!=SQLITE_UTF8 && enc!=SQLITE_UTF16BE && enc!=SQLITE_UTF16LE ){
enc = SQLITE_UTF8;
}
sqlite3_free(p->pPage1Cache);
p->pPage1Cache = 0;
p->pPage1Disk = 0;
p->pgsz = nByte;
p->pPage1Cache = (u8*)recoverMalloc(p, nByte*2);
if( p->pPage1Cache ){
p->pPage1Disk = &p->pPage1Cache[nByte];
memcpy(p->pPage1Disk, aBuf, nByte);
aHdr[18] = a[18];
aHdr[19] = a[19];
recoverPutU32(&aHdr[28], dbsz);
recoverPutU32(&aHdr[56], enc);
recoverPutU16(&aHdr[105], pgsz-nReserve);
if( pgsz==65536 ) pgsz = 1;
recoverPutU16(&aHdr[16], pgsz);
aHdr[20] = nReserve;
for(ii=0; ii<(int)(sizeof(aPreserve)/sizeof(aPreserve[0])); ii++){
memcpy(&aHdr[aPreserve[ii]], &a[aPreserve[ii]], 4);
}
memcpy(aBuf, aHdr, sizeof(aHdr));
memset(&((u8*)aBuf)[sizeof(aHdr)], 0, nByte-sizeof(aHdr));
memcpy(p->pPage1Cache, aBuf, nByte);
}else{
rc = p->errCode;
}
}
pFd->pMethods = &recover_methods;
}else{
rc = pFd->pMethods->xRead(pFd, aBuf, nByte, iOff);
}
return rc;
}
/*
** Used to make sqlite3_io_methods wrapper methods less verbose.
*/
#define RECOVER_VFS_WRAPPER(code) \
int rc = SQLITE_OK; \
if( pFd->pMethods==&recover_methods ){ \
pFd->pMethods = recover_g.pMethods; \
rc = code; \
pFd->pMethods = &recover_methods; \
}else{ \
rc = code; \
} \
return rc;
/*
** Methods of the wrapper VFS. All methods except for xRead() and xClose()
** simply uninstall the sqlite3_io_methods wrapper, invoke the equivalent
** method on the lower level VFS, then reinstall the wrapper before returning.
** Those that return an integer value use the RECOVER_VFS_WRAPPER macro.
*/
static int recoverVfsWrite(
sqlite3_file *pFd, const void *aBuf, int nByte, i64 iOff
){
RECOVER_VFS_WRAPPER (
pFd->pMethods->xWrite(pFd, aBuf, nByte, iOff)
);
}
static int recoverVfsTruncate(sqlite3_file *pFd, sqlite3_int64 size){
RECOVER_VFS_WRAPPER (
pFd->pMethods->xTruncate(pFd, size)
);
}
static int recoverVfsSync(sqlite3_file *pFd, int flags){
RECOVER_VFS_WRAPPER (
pFd->pMethods->xSync(pFd, flags)
);
}
static int recoverVfsFileSize(sqlite3_file *pFd, sqlite3_int64 *pSize){
RECOVER_VFS_WRAPPER (
pFd->pMethods->xFileSize(pFd, pSize)
);
}
static int recoverVfsLock(sqlite3_file *pFd, int eLock){
RECOVER_VFS_WRAPPER (
pFd->pMethods->xLock(pFd, eLock)
);
}
static int recoverVfsUnlock(sqlite3_file *pFd, int eLock){
RECOVER_VFS_WRAPPER (
pFd->pMethods->xUnlock(pFd, eLock)
);
}
static int recoverVfsCheckReservedLock(sqlite3_file *pFd, int *pResOut){
RECOVER_VFS_WRAPPER (
pFd->pMethods->xCheckReservedLock(pFd, pResOut)
);
}
static int recoverVfsFileControl(sqlite3_file *pFd, int op, void *pArg){
RECOVER_VFS_WRAPPER (
(pFd->pMethods ? pFd->pMethods->xFileControl(pFd, op, pArg) : SQLITE_NOTFOUND)
);
}
static int recoverVfsSectorSize(sqlite3_file *pFd){
RECOVER_VFS_WRAPPER (
pFd->pMethods->xSectorSize(pFd)
);
}
static int recoverVfsDeviceCharacteristics(sqlite3_file *pFd){
RECOVER_VFS_WRAPPER (
pFd->pMethods->xDeviceCharacteristics(pFd)
);
}
static int recoverVfsShmMap(
sqlite3_file *pFd, int iPg, int pgsz, int bExtend, void volatile **pp
){
RECOVER_VFS_WRAPPER (
pFd->pMethods->xShmMap(pFd, iPg, pgsz, bExtend, pp)
);
}
static int recoverVfsShmLock(sqlite3_file *pFd, int offset, int n, int flags){
RECOVER_VFS_WRAPPER (
pFd->pMethods->xShmLock(pFd, offset, n, flags)
);
}
static void recoverVfsShmBarrier(sqlite3_file *pFd){
if( pFd->pMethods==&recover_methods ){
pFd->pMethods = recover_g.pMethods;
pFd->pMethods->xShmBarrier(pFd);
pFd->pMethods = &recover_methods;
}else{
pFd->pMethods->xShmBarrier(pFd);
}
}
static int recoverVfsShmUnmap(sqlite3_file *pFd, int deleteFlag){
RECOVER_VFS_WRAPPER (
pFd->pMethods->xShmUnmap(pFd, deleteFlag)
);
}
static int recoverVfsFetch(
sqlite3_file *pFd,
sqlite3_int64 iOff,
int iAmt,
void **pp
){
(void)pFd;
(void)iOff;
(void)iAmt;
*pp = 0;
return SQLITE_OK;
}
static int recoverVfsUnfetch(sqlite3_file *pFd, sqlite3_int64 iOff, void *p){
(void)pFd;
(void)iOff;
(void)p;
return SQLITE_OK;
}
/*
** Install the VFS wrapper around the file-descriptor open on the input
** database for recover handle p. Mutex RECOVER_MUTEX_ID must be held
** when this function is called.
*/
static void recoverInstallWrapper(sqlite3_recover *p){
sqlite3_file *pFd = 0;
assert( recover_g.pMethods==0 );
recoverAssertMutexHeld();
sqlite3_file_control(p->dbIn, p->zDb, SQLITE_FCNTL_FILE_POINTER, (void*)&pFd);
assert( pFd==0 || pFd->pMethods!=&recover_methods );
if( pFd && pFd->pMethods ){
int iVersion = 1 + (pFd->pMethods->iVersion>1 && pFd->pMethods->xShmMap!=0);
recover_g.pMethods = pFd->pMethods;
recover_g.p = p;
recover_methods.iVersion = iVersion;
pFd->pMethods = &recover_methods;
}
}
/*
** Uninstall the VFS wrapper that was installed around the file-descriptor open
** on the input database for recover handle p. Mutex RECOVER_MUTEX_ID must be
** held when this function is called.
*/
static void recoverUninstallWrapper(sqlite3_recover *p){
sqlite3_file *pFd = 0;
recoverAssertMutexHeld();
sqlite3_file_control(p->dbIn, p->zDb,SQLITE_FCNTL_FILE_POINTER,(void*)&pFd);
if( pFd && pFd->pMethods ){
pFd->pMethods = recover_g.pMethods;
recover_g.pMethods = 0;
recover_g.p = 0;
}
}
/*
** This function does the work of a single sqlite3_recover_step() call. It
** is guaranteed that the handle is not in an error state when this
** function is called.
*/
static void recoverStep(sqlite3_recover *p){
assert( p && p->errCode==SQLITE_OK );
switch( p->eState ){
case RECOVER_STATE_INIT:
/* This is the very first call to sqlite3_recover_step() on this object.
*/
recoverSqlCallback(p, "BEGIN");
recoverSqlCallback(p, "PRAGMA writable_schema = on");
recoverEnterMutex();
recoverInstallWrapper(p);
/* Open the output database. And register required virtual tables and
** user functions with the new handle. */
recoverOpenOutput(p);
/* Open transactions on both the input and output databases. */
sqlite3_file_control(p->dbIn, p->zDb, SQLITE_FCNTL_RESET_CACHE, 0);
recoverExec(p, p->dbIn, "PRAGMA writable_schema = on");
recoverExec(p, p->dbIn, "BEGIN");
if( p->errCode==SQLITE_OK ) p->bCloseTransaction = 1;
recoverExec(p, p->dbIn, "SELECT 1 FROM sqlite_schema");
recoverTransferSettings(p);
recoverOpenRecovery(p);
recoverCacheSchema(p);
recoverUninstallWrapper(p);
recoverLeaveMutex();
recoverExec(p, p->dbOut, "BEGIN");
recoverWriteSchema1(p);
p->eState = RECOVER_STATE_WRITING;
break;
case RECOVER_STATE_WRITING: {
if( p->w1.pTbls==0 ){
recoverWriteDataInit(p);
}
if( SQLITE_DONE==recoverWriteDataStep(p) ){
recoverWriteDataCleanup(p);
if( p->zLostAndFound ){
p->eState = RECOVER_STATE_LOSTANDFOUND1;
}else{
p->eState = RECOVER_STATE_SCHEMA2;
}
}
break;
}
case RECOVER_STATE_LOSTANDFOUND1: {
if( p->laf.pUsed==0 ){
recoverLostAndFound1Init(p);
}
if( SQLITE_DONE==recoverLostAndFound1Step(p) ){
p->eState = RECOVER_STATE_LOSTANDFOUND2;
}
break;
}
case RECOVER_STATE_LOSTANDFOUND2: {
if( p->laf.pAllAndParent==0 ){
recoverLostAndFound2Init(p);
}
if( SQLITE_DONE==recoverLostAndFound2Step(p) ){
p->eState = RECOVER_STATE_LOSTANDFOUND3;
}
break;
}
case RECOVER_STATE_LOSTANDFOUND3: {
if( p->laf.pInsert==0 ){
recoverLostAndFound3Init(p);
}
if( SQLITE_DONE==recoverLostAndFound3Step(p) ){
p->eState = RECOVER_STATE_SCHEMA2;
}
break;
}
case RECOVER_STATE_SCHEMA2: {
int rc = SQLITE_OK;
recoverWriteSchema2(p);
p->eState = RECOVER_STATE_DONE;
/* If no error has occurred, commit the write transaction on the output
** database. Regardless of whether or not an error has occurred, make
** an attempt to end the read transaction on the input database. */
recoverExec(p, p->dbOut, "COMMIT");
rc = sqlite3_exec(p->dbIn, "END", 0, 0, 0);
if( p->errCode==SQLITE_OK ) p->errCode = rc;
recoverSqlCallback(p, "PRAGMA writable_schema = off");
recoverSqlCallback(p, "COMMIT");
p->eState = RECOVER_STATE_DONE;
recoverFinalCleanup(p);
break;
};
case RECOVER_STATE_DONE: {
/* no-op */
break;
};
}
}
/*
** This is a worker function that does the heavy lifting for both init
** functions:
**
** sqlite3_recover_init()
** sqlite3_recover_init_sql()
**
** All this function does is allocate space for the recover handle and
** take copies of the input parameters. All the real work is done within
** sqlite3_recover_run().
*/
sqlite3_recover *recoverInit(
sqlite3* db,
const char *zDb,
const char *zUri, /* Output URI for _recover_init() */
int (*xSql)(void*, const char*),/* SQL callback for _recover_init_sql() */
void *pSqlCtx /* Context arg for _recover_init_sql() */
){
sqlite3_recover *pRet = 0;
int nDb = 0;
int nUri = 0;
int nByte = 0;
if( zDb==0 ){ zDb = "main"; }
nDb = recoverStrlen(zDb);
nUri = recoverStrlen(zUri);
nByte = sizeof(sqlite3_recover) + nDb+1 + nUri+1;
pRet = (sqlite3_recover*)sqlite3_malloc(nByte);
if( pRet ){
memset(pRet, 0, nByte);
pRet->dbIn = db;
pRet->zDb = (char*)&pRet[1];
pRet->zUri = &pRet->zDb[nDb+1];
memcpy(pRet->zDb, zDb, nDb);
if( nUri>0 && zUri ) memcpy(pRet->zUri, zUri, nUri);
pRet->xSql = xSql;
pRet->pSqlCtx = pSqlCtx;
pRet->bRecoverRowid = RECOVER_ROWID_DEFAULT;
}
return pRet;
}
/*
** Initialize a recovery handle that creates a new database containing
** the recovered data.
*/
sqlite3_recover *sqlite3_recover_init(
sqlite3* db,
const char *zDb,
const char *zUri
){
return recoverInit(db, zDb, zUri, 0, 0);
}
/*
** Initialize a recovery handle that returns recovered data in the
** form of SQL statements via a callback.
*/
sqlite3_recover *sqlite3_recover_init_sql(
sqlite3* db,
const char *zDb,
int (*xSql)(void*, const char*),
void *pSqlCtx
){
return recoverInit(db, zDb, 0, xSql, pSqlCtx);
}
/*
** Return the handle error message, if any.
*/
const char *sqlite3_recover_errmsg(sqlite3_recover *p){
return (p && p->errCode!=SQLITE_NOMEM) ? p->zErrMsg : "out of memory";
}
/*
** Return the handle error code.
*/
int sqlite3_recover_errcode(sqlite3_recover *p){
return p ? p->errCode : SQLITE_NOMEM;
}
/*
** Configure the handle.
*/
int sqlite3_recover_config(sqlite3_recover *p, int op, void *pArg){
int rc = SQLITE_OK;
if( p==0 ){
rc = SQLITE_NOMEM;
}else if( p->eState!=RECOVER_STATE_INIT ){
rc = SQLITE_MISUSE;
}else{
switch( op ){
case 789:
/* This undocumented magic configuration option is used to set the
** name of the auxiliary database that is ATTACH-ed to the database
** connection and used to hold state information during the
** recovery process. This option is for debugging use only and
** is subject to change or removal at any time. */
sqlite3_free(p->zStateDb);
p->zStateDb = recoverMPrintf(p, "%s", (char*)pArg);
break;
case SQLITE_RECOVER_LOST_AND_FOUND: {
const char *zArg = (const char*)pArg;
sqlite3_free(p->zLostAndFound);
if( zArg ){
p->zLostAndFound = recoverMPrintf(p, "%s", zArg);
}else{
p->zLostAndFound = 0;
}
break;
}
case SQLITE_RECOVER_FREELIST_CORRUPT:
p->bFreelistCorrupt = *(int*)pArg;
break;
case SQLITE_RECOVER_ROWIDS:
p->bRecoverRowid = *(int*)pArg;
break;
case SQLITE_RECOVER_SLOWINDEXES:
p->bSlowIndexes = *(int*)pArg;
break;
default:
rc = SQLITE_NOTFOUND;
break;
}
}
return rc;
}
/*
** Do a unit of work towards the recovery job. Return SQLITE_OK if
** no error has occurred but database recovery is not finished, SQLITE_DONE
** if database recovery has been successfully completed, or an SQLite
** error code if an error has occurred.
*/
int sqlite3_recover_step(sqlite3_recover *p){
if( p==0 ) return SQLITE_NOMEM;
if( p->errCode==SQLITE_OK ) recoverStep(p);
if( p->eState==RECOVER_STATE_DONE && p->errCode==SQLITE_OK ){
return SQLITE_DONE;
}
return p->errCode;
}
/*
** Do the configured recovery operation. Return SQLITE_OK if successful, or
** else an SQLite error code.
*/
int sqlite3_recover_run(sqlite3_recover *p){
while( SQLITE_OK==sqlite3_recover_step(p) );
return sqlite3_recover_errcode(p);
}
/*
** Free all resources associated with the recover handle passed as the only
** argument. The results of using a handle with any sqlite3_recover_**
** API function after it has been passed to this function are undefined.
**
** A copy of the value returned by the first call made to sqlite3_recover_run()
** on this handle is returned, or SQLITE_OK if sqlite3_recover_run() has
** not been called on this handle.
*/
int sqlite3_recover_finish(sqlite3_recover *p){
int rc;
if( p==0 ){
rc = SQLITE_NOMEM;
}else{
recoverFinalCleanup(p);
if( p->bCloseTransaction && sqlite3_get_autocommit(p->dbIn)==0 ){
rc = sqlite3_exec(p->dbIn, "END", 0, 0, 0);
if( p->errCode==SQLITE_OK ) p->errCode = rc;
}
rc = p->errCode;
sqlite3_free(p->zErrMsg);
sqlite3_free(p->zStateDb);
sqlite3_free(p->zLostAndFound);
sqlite3_free(p->pPage1Cache);
sqlite3_free(p);
}
return rc;
}
#endif /* ifndef SQLITE_OMIT_VIRTUALTABLE */
/************************* End ../ext/recover/sqlite3recover.c ********************/
# endif /* SQLITE_HAVE_SQLITE3R */
#endif
#ifdef SQLITE_SHELL_EXTSRC
# include SHELL_STRINGIFY(SQLITE_SHELL_EXTSRC)
#endif
#if defined(SQLITE_ENABLE_SESSION)
/*
** State information for a single open session
*/
typedef struct OpenSession OpenSession;
struct OpenSession {
char *zName; /* Symbolic name for this session */
int nFilter; /* Number of xFilter rejection GLOB patterns */
char **azFilter; /* Array of xFilter rejection GLOB patterns */
sqlite3_session *p; /* The open session */
};
#endif
typedef struct ExpertInfo ExpertInfo;
struct ExpertInfo {
sqlite3expert *pExpert;
int bVerbose;
};
/* A single line in the EQP output */
typedef struct EQPGraphRow EQPGraphRow;
struct EQPGraphRow {
int iEqpId; /* ID for this row */
int iParentId; /* ID of the parent row */
EQPGraphRow *pNext; /* Next row in sequence */
char zText[1]; /* Text to display for this row */
};
/* All EQP output is collected into an instance of the following */
typedef struct EQPGraph EQPGraph;
struct EQPGraph {
EQPGraphRow *pRow; /* Linked list of all rows of the EQP output */
EQPGraphRow *pLast; /* Last element of the pRow list */
char zPrefix[100]; /* Graph prefix */
};
/* Parameters affecting columnar mode result display (defaulting together) */
typedef struct ColModeOpts {
int iWrap; /* In columnar modes, wrap lines reaching this limit */
u8 bQuote; /* Quote results for .mode box and table */
u8 bWordWrap; /* In columnar modes, wrap at word boundaries */
} ColModeOpts;
#define ColModeOpts_default { 60, 0, 0 }
#define ColModeOpts_default_qbox { 60, 1, 0 }
/*
** State information about the database connection is contained in an
** instance of the following structure.
*/
typedef struct ShellState ShellState;
struct ShellState {
sqlite3 *db; /* The database */
u8 autoExplain; /* Automatically turn on .explain mode */
u8 autoEQP; /* Run EXPLAIN QUERY PLAN prior to each SQL stmt */
u8 autoEQPtest; /* autoEQP is in test mode */
u8 autoEQPtrace; /* autoEQP is in trace mode */
u8 scanstatsOn; /* True to display scan stats before each finalize */
u8 openMode; /* SHELL_OPEN_NORMAL, _APPENDVFS, or _ZIPFILE */
u8 doXdgOpen; /* Invoke start/open/xdg-open in output_reset() */
u8 nEqpLevel; /* Depth of the EQP output graph */
u8 eTraceType; /* SHELL_TRACE_* value for type of trace */
u8 bSafeMode; /* True to prohibit unsafe operations */
u8 bSafeModePersist; /* The long-term value of bSafeMode */
u8 eRestoreState; /* See comments above doAutoDetectRestore() */
u8 crlfMode; /* Do NL-to-CRLF translations when enabled (maybe) */
ColModeOpts cmOpts; /* Option values affecting columnar mode output */
unsigned statsOn; /* True to display memory stats before each finalize */
unsigned mEqpLines; /* Mask of vertical lines in the EQP output graph */
int inputNesting; /* Track nesting level of .read and other redirects */
int outCount; /* Revert to stdout when reaching zero */
int cnt; /* Number of records displayed so far */
int lineno; /* Line number of last line read from in */
int openFlags; /* Additional flags to open. (SQLITE_OPEN_NOFOLLOW) */
FILE *in; /* Read commands from this stream */
FILE *out; /* Write results here */
FILE *traceOut; /* Output for sqlite3_trace() */
int nErr; /* Number of errors seen */
int mode; /* An output mode setting */
int modePrior; /* Saved mode */
int cMode; /* temporary output mode for the current query */
int normalMode; /* Output mode before ".explain on" */
int writableSchema; /* True if PRAGMA writable_schema=ON */
int showHeader; /* True to show column names in List or Column mode */
int nCheck; /* Number of ".check" commands run */
unsigned nProgress; /* Number of progress callbacks encountered */
unsigned mxProgress; /* Maximum progress callbacks before failing */
unsigned flgProgress; /* Flags for the progress callback */
unsigned shellFlgs; /* Various flags */
unsigned priorShFlgs; /* Saved copy of flags */
sqlite3_int64 szMax; /* --maxsize argument to .open */
char *zDestTable; /* Name of destination table when MODE_Insert */
char *zTempFile; /* Temporary file that might need deleting */
char zTestcase[30]; /* Name of current test case */
char colSeparator[20]; /* Column separator character for several modes */
char rowSeparator[20]; /* Row separator character for MODE_Ascii */
char colSepPrior[20]; /* Saved column separator */
char rowSepPrior[20]; /* Saved row separator */
int *colWidth; /* Requested width of each column in columnar modes */
int *actualWidth; /* Actual width of each column */
int nWidth; /* Number of slots in colWidth[] and actualWidth[] */
char nullValue[20]; /* The text to print when a NULL comes back from
** the database */
char outfile[FILENAME_MAX]; /* Filename for *out */
sqlite3_stmt *pStmt; /* Current statement if any. */
FILE *pLog; /* Write log output here */
struct AuxDb { /* Storage space for auxiliary database connections */
sqlite3 *db; /* Connection pointer */
const char *zDbFilename; /* Filename used to open the connection */
char *zFreeOnClose; /* Free this memory allocation on close */
#if defined(SQLITE_ENABLE_SESSION)
int nSession; /* Number of active sessions */
OpenSession aSession[4]; /* Array of sessions. [0] is in focus. */
#endif
} aAuxDb[5], /* Array of all database connections */
*pAuxDb; /* Currently active database connection */
int *aiIndent; /* Array of indents used in MODE_Explain */
int nIndent; /* Size of array aiIndent[] */
int iIndent; /* Index of current op in aiIndent[] */
char *zNonce; /* Nonce for temporary safe-mode escapes */
EQPGraph sGraph; /* Information for the graphical EXPLAIN QUERY PLAN */
ExpertInfo expert; /* Valid if previous command was ".expert OPT..." */
#ifdef SQLITE_SHELL_FIDDLE
struct {
const char * zInput; /* Input string from wasm/JS proxy */
const char * zPos; /* Cursor pos into zInput */
const char * zDefaultDbName; /* Default name for db file */
} wasm;
#endif
};
#ifdef SQLITE_SHELL_FIDDLE
static ShellState shellState;
#endif
/* Allowed values for ShellState.autoEQP
*/
#define AUTOEQP_off 0 /* Automatic EXPLAIN QUERY PLAN is off */
#define AUTOEQP_on 1 /* Automatic EQP is on */
#define AUTOEQP_trigger 2 /* On and also show plans for triggers */
#define AUTOEQP_full 3 /* Show full EXPLAIN */
/* Allowed values for ShellState.openMode
*/
#define SHELL_OPEN_UNSPEC 0 /* No open-mode specified */
#define SHELL_OPEN_NORMAL 1 /* Normal database file */
#define SHELL_OPEN_APPENDVFS 2 /* Use appendvfs */
#define SHELL_OPEN_ZIPFILE 3 /* Use the zipfile virtual table */
#define SHELL_OPEN_READONLY 4 /* Open a normal database read-only */
#define SHELL_OPEN_DESERIALIZE 5 /* Open using sqlite3_deserialize() */
#define SHELL_OPEN_HEXDB 6 /* Use "dbtotxt" output as data source */
/* Allowed values for ShellState.eTraceType
*/
#define SHELL_TRACE_PLAIN 0 /* Show input SQL text */
#define SHELL_TRACE_EXPANDED 1 /* Show expanded SQL text */
#define SHELL_TRACE_NORMALIZED 2 /* Show normalized SQL text */
/* Bits in the ShellState.flgProgress variable */
#define SHELL_PROGRESS_QUIET 0x01 /* Omit announcing every progress callback */
#define SHELL_PROGRESS_RESET 0x02 /* Reset the count when the progress
** callback limit is reached, and for each
** top-level SQL statement */
#define SHELL_PROGRESS_ONCE 0x04 /* Cancel the --limit after firing once */
/*
** These are the allowed shellFlgs values
*/
#define SHFLG_Pagecache 0x00000001 /* The --pagecache option is used */
#define SHFLG_Lookaside 0x00000002 /* Lookaside memory is used */
#define SHFLG_Backslash 0x00000004 /* The --backslash option is used */
#define SHFLG_PreserveRowid 0x00000008 /* .dump preserves rowid values */
#define SHFLG_Newlines 0x00000010 /* .dump --newline flag */
#define SHFLG_CountChanges 0x00000020 /* .changes setting */
#define SHFLG_Echo 0x00000040 /* .echo on/off, or --echo setting */
#define SHFLG_HeaderSet 0x00000080 /* showHeader has been specified */
#define SHFLG_DumpDataOnly 0x00000100 /* .dump show data only */
#define SHFLG_DumpNoSys 0x00000200 /* .dump omits system tables */
#define SHFLG_TestingMode 0x00000400 /* allow unsafe testing features */
/*
** Macros for testing and setting shellFlgs
*/
#define ShellHasFlag(P,X) (((P)->shellFlgs & (X))!=0)
#define ShellSetFlag(P,X) ((P)->shellFlgs|=(X))
#define ShellClearFlag(P,X) ((P)->shellFlgs&=(~(X)))
/*
** These are the allowed modes.
*/
#define MODE_Line 0 /* One column per line. Blank line between records */
#define MODE_Column 1 /* One record per line in neat columns */
#define MODE_List 2 /* One record per line with a separator */
#define MODE_Semi 3 /* Same as MODE_List but append ";" to each line */
#define MODE_Html 4 /* Generate an XHTML table */
#define MODE_Insert 5 /* Generate SQL "insert" statements */
#define MODE_Quote 6 /* Quote values as for SQL */
#define MODE_Tcl 7 /* Generate ANSI-C or TCL quoted elements */
#define MODE_Csv 8 /* Quote strings, numbers are plain */
#define MODE_Explain 9 /* Like MODE_Column, but do not truncate data */
#define MODE_Ascii 10 /* Use ASCII unit and record separators (0x1F/0x1E) */
#define MODE_Pretty 11 /* Pretty-print schemas */
#define MODE_EQP 12 /* Converts EXPLAIN QUERY PLAN output into a graph */
#define MODE_Json 13 /* Output JSON */
#define MODE_Markdown 14 /* Markdown formatting */
#define MODE_Table 15 /* MySQL-style table formatting */
#define MODE_Box 16 /* Unicode box-drawing characters */
#define MODE_Count 17 /* Output only a count of the rows of output */
#define MODE_Off 18 /* No query output shown */
#define MODE_ScanExp 19 /* Like MODE_Explain, but for ".scanstats vm" */
#define MODE_Www 20 /* Full web-page output */
static const char *modeDescr[] = {
"line",
"column",
"list",
"semi",
"html",
"insert",
"quote",
"tcl",
"csv",
"explain",
"ascii",
"prettyprint",
"eqp",
"json",
"markdown",
"table",
"box",
"count",
"off",
"scanexp",
"www",
};
/*
** These are the column/row/line separators used by the various
** import/export modes.
*/
#define SEP_Column "|"
#define SEP_Row "\n"
#define SEP_Tab "\t"
#define SEP_Space " "
#define SEP_Comma ","
#define SEP_CrLf "\r\n"
#define SEP_Unit "\x1F"
#define SEP_Record "\x1E"
/*
** Limit input nesting via .read or any other input redirect.
** It's not too expensive, so a generous allowance can be made.
*/
#define MAX_INPUT_NESTING 25
/*
** A callback for the sqlite3_log() interface.
*/
static void shellLog(void *pArg, int iErrCode, const char *zMsg){
ShellState *p = (ShellState*)pArg;
if( p->pLog==0 ) return;
sqlite3_fprintf(p->pLog, "(%d) %s\n", iErrCode, zMsg);
fflush(p->pLog);
}
/*
** SQL function: shell_putsnl(X)
**
** Write the text X to the screen (or whatever output is being directed)
** adding a newline at the end, and then return X.
*/
static void shellPutsFunc(
sqlite3_context *pCtx,
int nVal,
sqlite3_value **apVal
){
ShellState *p = (ShellState*)sqlite3_user_data(pCtx);
(void)nVal;
sqlite3_fprintf(p->out, "%s\n", sqlite3_value_text(apVal[0]));
sqlite3_result_value(pCtx, apVal[0]);
}
/*
** If in safe mode, print an error message described by the arguments
** and exit immediately.
*/
static void failIfSafeMode(
ShellState *p,
const char *zErrMsg,
...
){
if( p->bSafeMode ){
va_list ap;
char *zMsg;
va_start(ap, zErrMsg);
zMsg = sqlite3_vmprintf(zErrMsg, ap);
va_end(ap);
sqlite3_fprintf(stderr, "line %d: %s\n", p->lineno, zMsg);
exit(1);
}
}
/*
** SQL function: edit(VALUE)
** edit(VALUE,EDITOR)
**
** These steps:
**
** (1) Write VALUE into a temporary file.
** (2) Run program EDITOR on that temporary file.
** (3) Read the temporary file back and return its content as the result.
** (4) Delete the temporary file
**
** If the EDITOR argument is omitted, use the value in the VISUAL
** environment variable. If still there is no EDITOR, through an error.
**
** Also throw an error if the EDITOR program returns a non-zero exit code.
*/
#ifndef SQLITE_NOHAVE_SYSTEM
static void editFunc(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
const char *zEditor;
char *zTempFile = 0;
sqlite3 *db;
char *zCmd = 0;
int bBin;
int rc;
int hasCRLF = 0;
FILE *f = 0;
sqlite3_int64 sz;
sqlite3_int64 x;
unsigned char *p = 0;
if( argc==2 ){
zEditor = (const char*)sqlite3_value_text(argv[1]);
}else{
zEditor = getenv("VISUAL");
}
if( zEditor==0 ){
sqlite3_result_error(context, "no editor for edit()", -1);
return;
}
if( sqlite3_value_type(argv[0])==SQLITE_NULL ){
sqlite3_result_error(context, "NULL input to edit()", -1);
return;
}
db = sqlite3_context_db_handle(context);
zTempFile = 0;
sqlite3_file_control(db, 0, SQLITE_FCNTL_TEMPFILENAME, &zTempFile);
if( zTempFile==0 ){
sqlite3_uint64 r = 0;
sqlite3_randomness(sizeof(r), &r);
zTempFile = sqlite3_mprintf("temp%llx", r);
if( zTempFile==0 ){
sqlite3_result_error_nomem(context);
return;
}
}
bBin = sqlite3_value_type(argv[0])==SQLITE_BLOB;
/* When writing the file to be edited, do \n to \r\n conversions on systems
** that want \r\n line endings */
f = sqlite3_fopen(zTempFile, bBin ? "wb" : "w");
if( f==0 ){
sqlite3_result_error(context, "edit() cannot open temp file", -1);
goto edit_func_end;
}
sz = sqlite3_value_bytes(argv[0]);
if( bBin ){
x = fwrite(sqlite3_value_blob(argv[0]), 1, (size_t)sz, f);
}else{
const char *z = (const char*)sqlite3_value_text(argv[0]);
/* Remember whether or not the value originally contained \r\n */
if( z && strstr(z,"\r\n")!=0 ) hasCRLF = 1;
x = fwrite(sqlite3_value_text(argv[0]), 1, (size_t)sz, f);
}
fclose(f);
f = 0;
if( x!=sz ){
sqlite3_result_error(context, "edit() could not write the whole file", -1);
goto edit_func_end;
}
zCmd = sqlite3_mprintf("%s \"%s\"", zEditor, zTempFile);
if( zCmd==0 ){
sqlite3_result_error_nomem(context);
goto edit_func_end;
}
rc = system(zCmd);
sqlite3_free(zCmd);
if( rc ){
sqlite3_result_error(context, "EDITOR returned non-zero", -1);
goto edit_func_end;
}
f = sqlite3_fopen(zTempFile, "rb");
if( f==0 ){
sqlite3_result_error(context,
"edit() cannot reopen temp file after edit", -1);
goto edit_func_end;
}
fseek(f, 0, SEEK_END);
sz = ftell(f);
rewind(f);
p = sqlite3_malloc64( sz+1 );
if( p==0 ){
sqlite3_result_error_nomem(context);
goto edit_func_end;
}
x = fread(p, 1, (size_t)sz, f);
fclose(f);
f = 0;
if( x!=sz ){
sqlite3_result_error(context, "could not read back the whole file", -1);
goto edit_func_end;
}
if( bBin ){
sqlite3_result_blob64(context, p, sz, sqlite3_free);
}else{
sqlite3_int64 i, j;
if( hasCRLF ){
/* If the original contains \r\n then do no conversions back to \n */
}else{
/* If the file did not originally contain \r\n then convert any new
** \r\n back into \n */
p[sz] = 0;
for(i=j=0; i<sz; i++){
if( p[i]=='\r' && p[i+1]=='\n' ) i++;
p[j++] = p[i];
}
sz = j;
p[sz] = 0;
}
sqlite3_result_text64(context, (const char*)p, sz,
sqlite3_free, SQLITE_UTF8);
}
p = 0;
edit_func_end:
if( f ) fclose(f);
unlink(zTempFile);
sqlite3_free(zTempFile);
sqlite3_free(p);
}
#endif /* SQLITE_NOHAVE_SYSTEM */
/*
** Save or restore the current output mode
*/
static void outputModePush(ShellState *p){
p->modePrior = p->mode;
p->priorShFlgs = p->shellFlgs;
memcpy(p->colSepPrior, p->colSeparator, sizeof(p->colSeparator));
memcpy(p->rowSepPrior, p->rowSeparator, sizeof(p->rowSeparator));
}
static void outputModePop(ShellState *p){
p->mode = p->modePrior;
p->shellFlgs = p->priorShFlgs;
memcpy(p->colSeparator, p->colSepPrior, sizeof(p->colSeparator));
memcpy(p->rowSeparator, p->rowSepPrior, sizeof(p->rowSeparator));
}
/*
** Set output mode to text or binary for Windows.
*/
static void setCrlfMode(ShellState *p){
#ifdef _WIN32
if( p->crlfMode ){
sqlite3_fsetmode(p->out, _O_TEXT);
}else{
sqlite3_fsetmode(p->out, _O_BINARY);
}
#else
UNUSED_PARAMETER(p);
#endif
}
/*
** Output the given string as a hex-encoded blob (eg. X'1234' )
*/
static void output_hex_blob(FILE *out, const void *pBlob, int nBlob){
int i;
unsigned char *aBlob = (unsigned char*)pBlob;
char *zStr = sqlite3_malloc(nBlob*2 + 1);
shell_check_oom(zStr);
for(i=0; i<nBlob; i++){
static const char aHex[] = {
'0', '1', '2', '3', '4', '5', '6', '7',
'8', '9', 'a', 'b', 'c', 'd', 'e', 'f'
};
zStr[i*2] = aHex[ (aBlob[i] >> 4) ];
zStr[i*2+1] = aHex[ (aBlob[i] & 0x0F) ];
}
zStr[i*2] = '\0';
sqlite3_fprintf(out, "X'%s'", zStr);
sqlite3_free(zStr);
}
/*
** Find a string that is not found anywhere in z[]. Return a pointer
** to that string.
**
** Try to use zA and zB first. If both of those are already found in z[]
** then make up some string and store it in the buffer zBuf.
*/
static const char *unused_string(
const char *z, /* Result must not appear anywhere in z */
const char *zA, const char *zB, /* Try these first */
char *zBuf /* Space to store a generated string */
){
unsigned i = 0;
if( strstr(z, zA)==0 ) return zA;
if( strstr(z, zB)==0 ) return zB;
do{
sqlite3_snprintf(20,zBuf,"(%s%u)", zA, i++);
}while( strstr(z,zBuf)!=0 );
return zBuf;
}
/*
** Output the given string as a quoted string using SQL quoting conventions.
**
** See also: output_quoted_escaped_string()
*/
static void output_quoted_string(ShellState *p, const char *z){
int i;
char c;
FILE *out = p->out;
sqlite3_fsetmode(out, _O_BINARY);
if( z==0 ) return;
for(i=0; (c = z[i])!=0 && c!='\''; i++){}
if( c==0 ){
sqlite3_fprintf(out, "'%s'",z);
}else{
sqlite3_fputs("'", out);
while( *z ){
for(i=0; (c = z[i])!=0 && c!='\''; i++){}
if( c=='\'' ) i++;
if( i ){
sqlite3_fprintf(out, "%.*s", i, z);
z += i;
}
if( c=='\'' ){
sqlite3_fputs("'", out);
continue;
}
if( c==0 ){
break;
}
z++;
}
sqlite3_fputs("'", out);
}
setCrlfMode(p);
}
/*
** Output the given string as a quoted string using SQL quoting conventions.
** Additionallly , escape the "\n" and "\r" characters so that they do not
** get corrupted by end-of-line translation facilities in some operating
** systems.
**
** This is like output_quoted_string() but with the addition of the \r\n
** escape mechanism.
*/
static void output_quoted_escaped_string(ShellState *p, const char *z){
int i;
char c;
FILE *out = p->out;
sqlite3_fsetmode(out, _O_BINARY);
for(i=0; (c = z[i])!=0 && c!='\'' && c!='\n' && c!='\r'; i++){}
if( c==0 ){
sqlite3_fprintf(out, "'%s'",z);
}else{
const char *zNL = 0;
const char *zCR = 0;
int nNL = 0;
int nCR = 0;
char zBuf1[20], zBuf2[20];
for(i=0; z[i]; i++){
if( z[i]=='\n' ) nNL++;
if( z[i]=='\r' ) nCR++;
}
if( nNL ){
sqlite3_fputs("replace(", out);
zNL = unused_string(z, "\\n", "\\012", zBuf1);
}
if( nCR ){
sqlite3_fputs("replace(", out);
zCR = unused_string(z, "\\r", "\\015", zBuf2);
}
sqlite3_fputs("'", out);
while( *z ){
for(i=0; (c = z[i])!=0 && c!='\n' && c!='\r' && c!='\''; i++){}
if( c=='\'' ) i++;
if( i ){
sqlite3_fprintf(out, "%.*s", i, z);
z += i;
}
if( c=='\'' ){
sqlite3_fputs("'", out);
continue;
}
if( c==0 ){
break;
}
z++;
if( c=='\n' ){
sqlite3_fputs(zNL, out);
continue;
}
sqlite3_fputs(zCR, out);
}
sqlite3_fputs("'", out);
if( nCR ){
sqlite3_fprintf(out, ",'%s',char(13))", zCR);
}
if( nNL ){
sqlite3_fprintf(out, ",'%s',char(10))", zNL);
}
}
setCrlfMode(p);
}
/*
** Find earliest of chars within s specified in zAny.
** With ns == ~0, is like strpbrk(s,zAny) and s must be 0-terminated.
*/
static const char *anyOfInStr(const char *s, const char *zAny, size_t ns){
const char *pcFirst = 0;
if( ns == ~(size_t)0 ) ns = strlen(s);
while(*zAny){
const char *pc = (const char*)memchr(s, *zAny&0xff, ns);
if( pc ){
pcFirst = pc;
ns = pcFirst - s;
}
++zAny;
}
return pcFirst;
}
/* Skip over as much z[] input char sequence as is valid UTF-8,
** limited per nAccept char's or whole characters and containing
** no char cn such that ((1<<cn) & ccm)!=0. On return, the
** sequence z:return (inclusive:exclusive) is validated UTF-8.
** Limit: nAccept>=0 => char count, nAccept<0 => character
*/
const char *zSkipValidUtf8(const char *z, int nAccept, long ccm){
int ng = (nAccept<0)? -nAccept : 0;
const char *pcLimit = (nAccept>=0)? z+nAccept : 0;
assert(z!=0);
while( (pcLimit)? (z<pcLimit) : (ng-- != 0) ){
unsigned char c = *(u8*)z;
if( c<0x7f ){
if( ccm != 0L && c < 0x20 && ((1L<<c) & ccm) != 0 ) return z;
++z; /* ASCII */
}else if( (c & 0xC0) != 0xC0 ) return z; /* not a lead byte */
else{
const char *zt = z+1; /* Got lead byte, look at trail bytes.*/
do{
if( pcLimit && zt >= pcLimit ) return z;
else{
char ct = *zt++;
if( ct==0 || (zt-z)>4 || (ct & 0xC0)!=0x80 ){
/* Trailing bytes are too few, too many, or invalid. */
return z;
}
}
} while( ((c <<= 1) & 0x40) == 0x40 ); /* Eat lead byte's count. */
z = zt;
}
}
return z;
}
/*
** Output the given string as a quoted according to C or TCL quoting rules.
*/
static void output_c_string(FILE *out, const char *z){
char c;
static const char *zq = "\"";
static long ctrlMask = ~0L;
static const char *zDQBSRO = "\"\\\x7f"; /* double-quote, backslash, rubout */
char ace[3] = "\\?";
char cbsSay;
sqlite3_fputs(zq, out);
while( *z!=0 ){
const char *pcDQBSRO = anyOfInStr(z, zDQBSRO, ~(size_t)0);
const char *pcPast = zSkipValidUtf8(z, INT_MAX, ctrlMask);
const char *pcEnd = (pcDQBSRO && pcDQBSRO < pcPast)? pcDQBSRO : pcPast;
if( pcEnd > z ){
sqlite3_fprintf(out, "%.*s", (int)(pcEnd-z), z);
}
if( (c = *pcEnd)==0 ) break;
++pcEnd;
switch( c ){
case '\\': case '"':
cbsSay = (char)c;
break;
case '\t': cbsSay = 't'; break;
case '\n': cbsSay = 'n'; break;
case '\r': cbsSay = 'r'; break;
case '\f': cbsSay = 'f'; break;
default: cbsSay = 0; break;
}
if( cbsSay ){
ace[1] = cbsSay;
sqlite3_fputs(ace, out);
}else if( !isprint(c&0xff) ){
sqlite3_fprintf(out, "\\%03o", c&0xff);
}else{
ace[1] = (char)c;
sqlite3_fputs(ace+1, out);
}
z = pcEnd;
}
sqlite3_fputs(zq, out);
}
/*
** Output the given string as quoted according to JSON quoting rules.
*/
static void output_json_string(FILE *out, const char *z, i64 n){
unsigned char c;
static const char *zq = "\"";
static long ctrlMask = ~0L;
static const char *zDQBS = "\"\\";
const char *pcLimit;
char ace[3] = "\\?";
char cbsSay;
if( z==0 ) z = "";
pcLimit = z + ((n<0)? strlen(z) : (size_t)n);
sqlite3_fputs(zq, out);
while( z < pcLimit ){
const char *pcDQBS = anyOfInStr(z, zDQBS, pcLimit-z);
const char *pcPast = zSkipValidUtf8(z, (int)(pcLimit-z), ctrlMask);
const char *pcEnd = (pcDQBS && pcDQBS < pcPast)? pcDQBS : pcPast;
if( pcEnd > z ){
sqlite3_fprintf(out, "%.*s", (int)(pcEnd-z), z);
z = pcEnd;
}
if( z >= pcLimit ) break;
c = (unsigned char)*(z++);
switch( c ){
case '"': case '\\':
cbsSay = (char)c;
break;
case '\b': cbsSay = 'b'; break;
case '\f': cbsSay = 'f'; break;
case '\n': cbsSay = 'n'; break;
case '\r': cbsSay = 'r'; break;
case '\t': cbsSay = 't'; break;
default: cbsSay = 0; break;
}
if( cbsSay ){
ace[1] = cbsSay;
sqlite3_fputs(ace, out);
}else if( c<=0x1f || c>=0x7f ){
sqlite3_fprintf(out, "\\u%04x", c);
}else{
ace[1] = (char)c;
sqlite3_fputs(ace+1, out);
}
}
sqlite3_fputs(zq, out);
}
/*
** Output the given string with characters that are special to
** HTML escaped.
*/
static void output_html_string(FILE *out, const char *z){
int i;
if( z==0 ) z = "";
while( *z ){
for(i=0; z[i]
&& z[i]!='<'
&& z[i]!='&'
&& z[i]!='>'
&& z[i]!='\"'
&& z[i]!='\'';
i++){}
if( i>0 ){
sqlite3_fprintf(out, "%.*s",i,z);
}
if( z[i]=='<' ){
sqlite3_fputs("&lt;", out);
}else if( z[i]=='&' ){
sqlite3_fputs("&amp;", out);
}else if( z[i]=='>' ){
sqlite3_fputs("&gt;", out);
}else if( z[i]=='\"' ){
sqlite3_fputs("&quot;", out);
}else if( z[i]=='\'' ){
sqlite3_fputs("&#39;", out);
}else{
break;
}
z += i + 1;
}
}
/*
** If a field contains any character identified by a 1 in the following
** array, then the string must be quoted for CSV.
*/
static const char needCsvQuote[] = {
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
};
/*
** Output a single term of CSV. Actually, p->colSeparator is used for
** the separator, which may or may not be a comma. p->nullValue is
** the null value. Strings are quoted if necessary. The separator
** is only issued if bSep is true.
*/
static void output_csv(ShellState *p, const char *z, int bSep){
if( z==0 ){
sqlite3_fprintf(p->out, "%s",p->nullValue);
}else{
unsigned i;
for(i=0; z[i]; i++){
if( needCsvQuote[((unsigned char*)z)[i]] ){
i = 0;
break;
}
}
if( i==0 || strstr(z, p->colSeparator)!=0 ){
char *zQuoted = sqlite3_mprintf("\"%w\"", z);
shell_check_oom(zQuoted);
sqlite3_fputs(zQuoted, p->out);
sqlite3_free(zQuoted);
}else{
sqlite3_fputs(z, p->out);
}
}
if( bSep ){
sqlite3_fputs(p->colSeparator, p->out);
}
}
/*
** This routine runs when the user presses Ctrl-C
*/
static void interrupt_handler(int NotUsed){
UNUSED_PARAMETER(NotUsed);
if( ++seenInterrupt>1 ) exit(1);
if( globalDb ) sqlite3_interrupt(globalDb);
}
#if (defined(_WIN32) || defined(WIN32)) && !defined(_WIN32_WCE)
/*
** This routine runs for console events (e.g. Ctrl-C) on Win32
*/
static BOOL WINAPI ConsoleCtrlHandler(
DWORD dwCtrlType /* One of the CTRL_*_EVENT constants */
){
if( dwCtrlType==CTRL_C_EVENT ){
interrupt_handler(0);
return TRUE;
}
return FALSE;
}
#endif
#ifndef SQLITE_OMIT_AUTHORIZATION
/*
** This authorizer runs in safe mode.
*/
static int safeModeAuth(
void *pClientData,
int op,
const char *zA1,
const char *zA2,
const char *zA3,
const char *zA4
){
ShellState *p = (ShellState*)pClientData;
static const char *azProhibitedFunctions[] = {
"edit",
"fts3_tokenizer",
"load_extension",
"readfile",
"writefile",
"zipfile",
"zipfile_cds",
};
UNUSED_PARAMETER(zA1);
UNUSED_PARAMETER(zA3);
UNUSED_PARAMETER(zA4);
switch( op ){
case SQLITE_ATTACH: {
#ifndef SQLITE_SHELL_FIDDLE
/* In WASM builds the filesystem is a virtual sandbox, so
** there's no harm in using ATTACH. */
failIfSafeMode(p, "cannot run ATTACH in safe mode");
#endif
break;
}
case SQLITE_FUNCTION: {
int i;
for(i=0; i<ArraySize(azProhibitedFunctions); i++){
if( sqlite3_stricmp(zA2, azProhibitedFunctions[i])==0 ){
failIfSafeMode(p, "cannot use the %s() function in safe mode",
azProhibitedFunctions[i]);
}
}
break;
}
}
return SQLITE_OK;
}
/*
** When the ".auth ON" is set, the following authorizer callback is
** invoked. It always returns SQLITE_OK.
*/
static int shellAuth(
void *pClientData,
int op,
const char *zA1,
const char *zA2,
const char *zA3,
const char *zA4
){
ShellState *p = (ShellState*)pClientData;
static const char *azAction[] = { 0,
"CREATE_INDEX", "CREATE_TABLE", "CREATE_TEMP_INDEX",
"CREATE_TEMP_TABLE", "CREATE_TEMP_TRIGGER", "CREATE_TEMP_VIEW",
"CREATE_TRIGGER", "CREATE_VIEW", "DELETE",
"DROP_INDEX", "DROP_TABLE", "DROP_TEMP_INDEX",
"DROP_TEMP_TABLE", "DROP_TEMP_TRIGGER", "DROP_TEMP_VIEW",
"DROP_TRIGGER", "DROP_VIEW", "INSERT",
"PRAGMA", "READ", "SELECT",
"TRANSACTION", "UPDATE", "ATTACH",
"DETACH", "ALTER_TABLE", "REINDEX",
"ANALYZE", "CREATE_VTABLE", "DROP_VTABLE",
"FUNCTION", "SAVEPOINT", "RECURSIVE"
};
int i;
const char *az[4];
az[0] = zA1;
az[1] = zA2;
az[2] = zA3;
az[3] = zA4;
sqlite3_fprintf(p->out, "authorizer: %s", azAction[op]);
for(i=0; i<4; i++){
sqlite3_fputs(" ", p->out);
if( az[i] ){
output_c_string(p->out, az[i]);
}else{
sqlite3_fputs("NULL", p->out);
}
}
sqlite3_fputs("\n", p->out);
if( p->bSafeMode ) (void)safeModeAuth(pClientData, op, zA1, zA2, zA3, zA4);
return SQLITE_OK;
}
#endif
/*
** Print a schema statement. Part of MODE_Semi and MODE_Pretty output.
**
** This routine converts some CREATE TABLE statements for shadow tables
** in FTS3/4/5 into CREATE TABLE IF NOT EXISTS statements.
**
** If the schema statement in z[] contains a start-of-comment and if
** sqlite3_complete() returns false, try to terminate the comment before
** printing the result. https://sqlite.org/forum/forumpost/d7be961c5c
*/
static void printSchemaLine(FILE *out, const char *z, const char *zTail){
char *zToFree = 0;
if( z==0 ) return;
if( zTail==0 ) return;
if( zTail[0]==';' && (strstr(z, "/*")!=0 || strstr(z,"--")!=0) ){
const char *zOrig = z;
static const char *azTerm[] = { "", "*/", "\n" };
int i;
for(i=0; i<ArraySize(azTerm); i++){
char *zNew = sqlite3_mprintf("%s%s;", zOrig, azTerm[i]);
shell_check_oom(zNew);
if( sqlite3_complete(zNew) ){
size_t n = strlen(zNew);
zNew[n-1] = 0;
zToFree = zNew;
z = zNew;
break;
}
sqlite3_free(zNew);
}
}
if( sqlite3_strglob("CREATE TABLE ['\"]*", z)==0 ){
sqlite3_fprintf(out, "CREATE TABLE IF NOT EXISTS %s%s", z+13, zTail);
}else{
sqlite3_fprintf(out, "%s%s", z, zTail);
}
sqlite3_free(zToFree);
}
static void printSchemaLineN(FILE *out, char *z, int n, const char *zTail){
char c = z[n];
z[n] = 0;
printSchemaLine(out, z, zTail);
z[n] = c;
}
/*
** Return true if string z[] has nothing but whitespace and comments to the
** end of the first line.
*/
static int wsToEol(const char *z){
int i;
for(i=0; z[i]; i++){
if( z[i]=='\n' ) return 1;
if( IsSpace(z[i]) ) continue;
if( z[i]=='-' && z[i+1]=='-' ) return 1;
return 0;
}
return 1;
}
/*
** Add a new entry to the EXPLAIN QUERY PLAN data
*/
static void eqp_append(ShellState *p, int iEqpId, int p2, const char *zText){
EQPGraphRow *pNew;
i64 nText;
if( zText==0 ) return;
nText = strlen(zText);
if( p->autoEQPtest ){
sqlite3_fprintf(p->out, "%d,%d,%s\n", iEqpId, p2, zText);
}
pNew = sqlite3_malloc64( sizeof(*pNew) + nText );
shell_check_oom(pNew);
pNew->iEqpId = iEqpId;
pNew->iParentId = p2;
memcpy(pNew->zText, zText, nText+1);
pNew->pNext = 0;
if( p->sGraph.pLast ){
p->sGraph.pLast->pNext = pNew;
}else{
p->sGraph.pRow = pNew;
}
p->sGraph.pLast = pNew;
}
/*
** Free and reset the EXPLAIN QUERY PLAN data that has been collected
** in p->sGraph.
*/
static void eqp_reset(ShellState *p){
EQPGraphRow *pRow, *pNext;
for(pRow = p->sGraph.pRow; pRow; pRow = pNext){
pNext = pRow->pNext;
sqlite3_free(pRow);
}
memset(&p->sGraph, 0, sizeof(p->sGraph));
}
/* Return the next EXPLAIN QUERY PLAN line with iEqpId that occurs after
** pOld, or return the first such line if pOld is NULL
*/
static EQPGraphRow *eqp_next_row(ShellState *p, int iEqpId, EQPGraphRow *pOld){
EQPGraphRow *pRow = pOld ? pOld->pNext : p->sGraph.pRow;
while( pRow && pRow->iParentId!=iEqpId ) pRow = pRow->pNext;
return pRow;
}
/* Render a single level of the graph that has iEqpId as its parent. Called
** recursively to render sublevels.
*/
static void eqp_render_level(ShellState *p, int iEqpId){
EQPGraphRow *pRow, *pNext;
i64 n = strlen(p->sGraph.zPrefix);
char *z;
for(pRow = eqp_next_row(p, iEqpId, 0); pRow; pRow = pNext){
pNext = eqp_next_row(p, iEqpId, pRow);
z = pRow->zText;
sqlite3_fprintf(p->out, "%s%s%s\n", p->sGraph.zPrefix,
pNext ? "|--" : "`--", z);
if( n<(i64)sizeof(p->sGraph.zPrefix)-7 ){
memcpy(&p->sGraph.zPrefix[n], pNext ? "| " : " ", 4);
eqp_render_level(p, pRow->iEqpId);
p->sGraph.zPrefix[n] = 0;
}
}
}
/*
** Display and reset the EXPLAIN QUERY PLAN data
*/
static void eqp_render(ShellState *p, i64 nCycle){
EQPGraphRow *pRow = p->sGraph.pRow;
if( pRow ){
if( pRow->zText[0]=='-' ){
if( pRow->pNext==0 ){
eqp_reset(p);
return;
}
sqlite3_fprintf(p->out, "%s\n", pRow->zText+3);
p->sGraph.pRow = pRow->pNext;
sqlite3_free(pRow);
}else if( nCycle>0 ){
sqlite3_fprintf(p->out, "QUERY PLAN (cycles=%lld [100%%])\n", nCycle);
}else{
sqlite3_fputs("QUERY PLAN\n", p->out);
}
p->sGraph.zPrefix[0] = 0;
eqp_render_level(p, 0);
eqp_reset(p);
}
}
#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
/*
** Progress handler callback.
*/
static int progress_handler(void *pClientData) {
ShellState *p = (ShellState*)pClientData;
p->nProgress++;
if( p->nProgress>=p->mxProgress && p->mxProgress>0 ){
sqlite3_fprintf(p->out, "Progress limit reached (%u)\n", p->nProgress);
if( p->flgProgress & SHELL_PROGRESS_RESET ) p->nProgress = 0;
if( p->flgProgress & SHELL_PROGRESS_ONCE ) p->mxProgress = 0;
return 1;
}
if( (p->flgProgress & SHELL_PROGRESS_QUIET)==0 ){
sqlite3_fprintf(p->out, "Progress %u\n", p->nProgress);
}
return 0;
}
#endif /* SQLITE_OMIT_PROGRESS_CALLBACK */
/*
** Print N dashes
*/
static void print_dashes(FILE *out, int N){
const char zDash[] = "--------------------------------------------------";
const int nDash = sizeof(zDash) - 1;
while( N>nDash ){
sqlite3_fputs(zDash, out);
N -= nDash;
}
sqlite3_fprintf(out, "%.*s", N, zDash);
}
/*
** Print a markdown or table-style row separator using ascii-art
*/
static void print_row_separator(
ShellState *p,
int nArg,
const char *zSep
){
int i;
if( nArg>0 ){
sqlite3_fputs(zSep, p->out);
print_dashes(p->out, p->actualWidth[0]+2);
for(i=1; i<nArg; i++){
sqlite3_fputs(zSep, p->out);
print_dashes(p->out, p->actualWidth[i]+2);
}
sqlite3_fputs(zSep, p->out);
}
sqlite3_fputs("\n", p->out);
}
/*
** This is the callback routine that the shell
** invokes for each row of a query result.
*/
static int shell_callback(
void *pArg,
int nArg, /* Number of result columns */
char **azArg, /* Text of each result column */
char **azCol, /* Column names */
int *aiType /* Column types. Might be NULL */
){
int i;
ShellState *p = (ShellState*)pArg;
if( azArg==0 ) return 0;
switch( p->cMode ){
case MODE_Count:
case MODE_Off: {
break;
}
case MODE_Line: {
int w = 5;
if( azArg==0 ) break;
for(i=0; i<nArg; i++){
int len = strlen30(azCol[i] ? azCol[i] : "");
if( len>w ) w = len;
}
if( p->cnt++>0 ) sqlite3_fputs(p->rowSeparator, p->out);
for(i=0; i<nArg; i++){
sqlite3_fprintf(p->out, "%*s = %s%s", w, azCol[i],
azArg[i] ? azArg[i] : p->nullValue, p->rowSeparator);
}
break;
}
case MODE_ScanExp:
case MODE_Explain: {
static const int aExplainWidth[] = {4, 13, 4, 4, 4, 13, 2, 13};
static const int aExplainMap[] = {0, 1, 2, 3, 4, 5, 6, 7 };
static const int aScanExpWidth[] = {4, 15, 6, 13, 4, 4, 4, 13, 2, 13};
static const int aScanExpMap[] = {0, 9, 8, 1, 2, 3, 4, 5, 6, 7 };
const int *aWidth = aExplainWidth;
const int *aMap = aExplainMap;
int nWidth = ArraySize(aExplainWidth);
int iIndent = 1;
if( p->cMode==MODE_ScanExp ){
aWidth = aScanExpWidth;
aMap = aScanExpMap;
nWidth = ArraySize(aScanExpWidth);
iIndent = 3;
}
if( nArg>nWidth ) nArg = nWidth;
/* If this is the first row seen, print out the headers */
if( p->cnt++==0 ){
for(i=0; i<nArg; i++){
utf8_width_print(p->out, aWidth[i], azCol[ aMap[i] ]);
sqlite3_fputs(i==nArg-1 ? "\n" : " ", p->out);
}
for(i=0; i<nArg; i++){
print_dashes(p->out, aWidth[i]);
sqlite3_fputs(i==nArg-1 ? "\n" : " ", p->out);
}
}
/* If there is no data, exit early. */
if( azArg==0 ) break;
for(i=0; i<nArg; i++){
const char *zSep = " ";
int w = aWidth[i];
const char *zVal = azArg[ aMap[i] ];
if( i==nArg-1 ) w = 0;
if( zVal && strlenChar(zVal)>w ){
w = strlenChar(zVal);
zSep = " ";
}
if( i==iIndent && p->aiIndent && p->pStmt ){
if( p->iIndent<p->nIndent ){
sqlite3_fprintf(p->out, "%*.s", p->aiIndent[p->iIndent], "");
}
p->iIndent++;
}
utf8_width_print(p->out, w, zVal ? zVal : p->nullValue);
sqlite3_fputs(i==nArg-1 ? "\n" : zSep, p->out);
}
break;
}
case MODE_Semi: { /* .schema and .fullschema output */
printSchemaLine(p->out, azArg[0], ";\n");
break;
}
case MODE_Pretty: { /* .schema and .fullschema with --indent */
char *z;
int j;
int nParen = 0;
char cEnd = 0;
char c;
int nLine = 0;
assert( nArg==1 );
if( azArg[0]==0 ) break;
if( sqlite3_strlike("CREATE VIEW%", azArg[0], 0)==0
|| sqlite3_strlike("CREATE TRIG%", azArg[0], 0)==0
){
sqlite3_fprintf(p->out, "%s;\n", azArg[0]);
break;
}
z = sqlite3_mprintf("%s", azArg[0]);
shell_check_oom(z);
j = 0;
for(i=0; IsSpace(z[i]); i++){}
for(; (c = z[i])!=0; i++){
if( IsSpace(c) ){
if( z[j-1]=='\r' ) z[j-1] = '\n';
if( IsSpace(z[j-1]) || z[j-1]=='(' ) continue;
}else if( (c=='(' || c==')') && j>0 && IsSpace(z[j-1]) ){
j--;
}
z[j++] = c;
}
while( j>0 && IsSpace(z[j-1]) ){ j--; }
z[j] = 0;
if( strlen30(z)>=79 ){
for(i=j=0; (c = z[i])!=0; i++){ /* Copy from z[i] back to z[j] */
if( c==cEnd ){
cEnd = 0;
}else if( c=='"' || c=='\'' || c=='`' ){
cEnd = c;
}else if( c=='[' ){
cEnd = ']';
}else if( c=='-' && z[i+1]=='-' ){
cEnd = '\n';
}else if( c=='(' ){
nParen++;
}else if( c==')' ){
nParen--;
if( nLine>0 && nParen==0 && j>0 ){
printSchemaLineN(p->out, z, j, "\n");
j = 0;
}
}
z[j++] = c;
if( nParen==1 && cEnd==0
&& (c=='(' || c=='\n' || (c==',' && !wsToEol(z+i+1)))
){
if( c=='\n' ) j--;
printSchemaLineN(p->out, z, j, "\n ");
j = 0;
nLine++;
while( IsSpace(z[i+1]) ){ i++; }
}
}
z[j] = 0;
}
printSchemaLine(p->out, z, ";\n");
sqlite3_free(z);
break;
}
case MODE_List: {
if( p->cnt++==0 && p->showHeader ){
for(i=0; i<nArg; i++){
sqlite3_fprintf(p->out, "%s%s", azCol[i],
i==nArg-1 ? p->rowSeparator : p->colSeparator);
}
}
if( azArg==0 ) break;
for(i=0; i<nArg; i++){
char *z = azArg[i];
if( z==0 ) z = p->nullValue;
sqlite3_fputs(z, p->out);
sqlite3_fputs((i<nArg-1)? p->colSeparator : p->rowSeparator, p->out);
}
break;
}
case MODE_Www:
case MODE_Html: {
if( p->cnt==0 && p->cMode==MODE_Www ){
sqlite3_fputs(
"</PRE>\n"
"<TABLE border='1' cellspacing='0' cellpadding='2'>\n"
,p->out
);
}
if( p->cnt==0 && (p->showHeader || p->cMode==MODE_Www) ){
sqlite3_fputs("<TR>", p->out);
for(i=0; i<nArg; i++){
sqlite3_fputs("<TH>", p->out);
output_html_string(p->out, azCol[i]);
sqlite3_fputs("</TH>\n", p->out);
}
sqlite3_fputs("</TR>\n", p->out);
}
p->cnt++;
if( azArg==0 ) break;
sqlite3_fputs("<TR>", p->out);
for(i=0; i<nArg; i++){
sqlite3_fputs("<TD>", p->out);
output_html_string(p->out, azArg[i] ? azArg[i] : p->nullValue);
sqlite3_fputs("</TD>\n", p->out);
}
sqlite3_fputs("</TR>\n", p->out);
break;
}
case MODE_Tcl: {
if( p->cnt++==0 && p->showHeader ){
for(i=0; i<nArg; i++){
output_c_string(p->out, azCol[i] ? azCol[i] : "");
if(i<nArg-1) sqlite3_fputs(p->colSeparator, p->out);
}
sqlite3_fputs(p->rowSeparator, p->out);
}
if( azArg==0 ) break;
for(i=0; i<nArg; i++){
output_c_string(p->out, azArg[i] ? azArg[i] : p->nullValue);
if(i<nArg-1) sqlite3_fputs(p->colSeparator, p->out);
}
sqlite3_fputs(p->rowSeparator, p->out);
break;
}
case MODE_Csv: {
sqlite3_fsetmode(p->out, _O_BINARY);
if( p->cnt++==0 && p->showHeader ){
for(i=0; i<nArg; i++){
output_csv(p, azCol[i] ? azCol[i] : "", i<nArg-1);
}
sqlite3_fputs(p->rowSeparator, p->out);
}
if( nArg>0 ){
for(i=0; i<nArg; i++){
output_csv(p, azArg[i], i<nArg-1);
}
sqlite3_fputs(p->rowSeparator, p->out);
}
setCrlfMode(p);
break;
}
case MODE_Insert: {
if( azArg==0 ) break;
sqlite3_fprintf(p->out, "INSERT INTO %s",p->zDestTable);
if( p->showHeader ){
sqlite3_fputs("(", p->out);
for(i=0; i<nArg; i++){
if( i>0 ) sqlite3_fputs(",", p->out);
if( quoteChar(azCol[i]) ){
char *z = sqlite3_mprintf("\"%w\"", azCol[i]);
shell_check_oom(z);
sqlite3_fputs(z, p->out);
sqlite3_free(z);
}else{
sqlite3_fprintf(p->out, "%s", azCol[i]);
}
}
sqlite3_fputs(")", p->out);
}
p->cnt++;
for(i=0; i<nArg; i++){
sqlite3_fputs(i>0 ? "," : " VALUES(", p->out);
if( (azArg[i]==0) || (aiType && aiType[i]==SQLITE_NULL) ){
sqlite3_fputs("NULL", p->out);
}else if( aiType && aiType[i]==SQLITE_TEXT ){
if( ShellHasFlag(p, SHFLG_Newlines) ){
output_quoted_string(p, azArg[i]);
}else{
output_quoted_escaped_string(p, azArg[i]);
}
}else if( aiType && aiType[i]==SQLITE_INTEGER ){
sqlite3_fputs(azArg[i], p->out);
}else if( aiType && aiType[i]==SQLITE_FLOAT ){
char z[50];
double r = sqlite3_column_double(p->pStmt, i);
sqlite3_uint64 ur;
memcpy(&ur,&r,sizeof(r));
if( ur==0x7ff0000000000000LL ){
sqlite3_fputs("9.0e+999", p->out);
}else if( ur==0xfff0000000000000LL ){
sqlite3_fputs("-9.0e+999", p->out);
}else{
sqlite3_int64 ir = (sqlite3_int64)r;
if( r==(double)ir ){
sqlite3_snprintf(50,z,"%lld.0", ir);
}else{
sqlite3_snprintf(50,z,"%!.20g", r);
}
sqlite3_fputs(z, p->out);
}
}else if( aiType && aiType[i]==SQLITE_BLOB && p->pStmt ){
const void *pBlob = sqlite3_column_blob(p->pStmt, i);
int nBlob = sqlite3_column_bytes(p->pStmt, i);
output_hex_blob(p->out, pBlob, nBlob);
}else if( isNumber(azArg[i], 0) ){
sqlite3_fputs(azArg[i], p->out);
}else if( ShellHasFlag(p, SHFLG_Newlines) ){
output_quoted_string(p, azArg[i]);
}else{
output_quoted_escaped_string(p, azArg[i]);
}
}
sqlite3_fputs(");\n", p->out);
break;
}
case MODE_Json: {
if( azArg==0 ) break;
if( p->cnt==0 ){
sqlite3_fputs("[{", p->out);
}else{
sqlite3_fputs(",\n{", p->out);
}
p->cnt++;
for(i=0; i<nArg; i++){
output_json_string(p->out, azCol[i], -1);
sqlite3_fputs(":", p->out);
if( (azArg[i]==0) || (aiType && aiType[i]==SQLITE_NULL) ){
sqlite3_fputs("null", p->out);
}else if( aiType && aiType[i]==SQLITE_FLOAT ){
char z[50];
double r = sqlite3_column_double(p->pStmt, i);
sqlite3_uint64 ur;
memcpy(&ur,&r,sizeof(r));
if( ur==0x7ff0000000000000LL ){
sqlite3_fputs("9.0e+999", p->out);
}else if( ur==0xfff0000000000000LL ){
sqlite3_fputs("-9.0e+999", p->out);
}else{
sqlite3_snprintf(50,z,"%!.20g", r);
sqlite3_fputs(z, p->out);
}
}else if( aiType && aiType[i]==SQLITE_BLOB && p->pStmt ){
const void *pBlob = sqlite3_column_blob(p->pStmt, i);
int nBlob = sqlite3_column_bytes(p->pStmt, i);
output_json_string(p->out, pBlob, nBlob);
}else if( aiType && aiType[i]==SQLITE_TEXT ){
output_json_string(p->out, azArg[i], -1);
}else{
sqlite3_fputs(azArg[i], p->out);
}
if( i<nArg-1 ){
sqlite3_fputs(",", p->out);
}
}
sqlite3_fputs("}", p->out);
break;
}
case MODE_Quote: {
if( azArg==0 ) break;
if( p->cnt==0 && p->showHeader ){
for(i=0; i<nArg; i++){
if( i>0 ) sqlite3_fputs(p->colSeparator, p->out);
output_quoted_string(p, azCol[i]);
}
sqlite3_fputs(p->rowSeparator, p->out);
}
p->cnt++;
for(i=0; i<nArg; i++){
if( i>0 ) sqlite3_fputs(p->colSeparator, p->out);
if( (azArg[i]==0) || (aiType && aiType[i]==SQLITE_NULL) ){
sqlite3_fputs("NULL", p->out);
}else if( aiType && aiType[i]==SQLITE_TEXT ){
output_quoted_string(p, azArg[i]);
}else if( aiType && aiType[i]==SQLITE_INTEGER ){
sqlite3_fputs(azArg[i], p->out);
}else if( aiType && aiType[i]==SQLITE_FLOAT ){
char z[50];
double r = sqlite3_column_double(p->pStmt, i);
sqlite3_snprintf(50,z,"%!.20g", r);
sqlite3_fputs(z, p->out);
}else if( aiType && aiType[i]==SQLITE_BLOB && p->pStmt ){
const void *pBlob = sqlite3_column_blob(p->pStmt, i);
int nBlob = sqlite3_column_bytes(p->pStmt, i);
output_hex_blob(p->out, pBlob, nBlob);
}else if( isNumber(azArg[i], 0) ){
sqlite3_fputs(azArg[i], p->out);
}else{
output_quoted_string(p, azArg[i]);
}
}
sqlite3_fputs(p->rowSeparator, p->out);
break;
}
case MODE_Ascii: {
if( p->cnt++==0 && p->showHeader ){
for(i=0; i<nArg; i++){
if( i>0 ) sqlite3_fputs(p->colSeparator, p->out);
sqlite3_fputs(azCol[i] ? azCol[i] : "", p->out);
}
sqlite3_fputs(p->rowSeparator, p->out);
}
if( azArg==0 ) break;
for(i=0; i<nArg; i++){
if( i>0 ) sqlite3_fputs(p->colSeparator, p->out);
sqlite3_fputs(azArg[i] ? azArg[i] : p->nullValue, p->out);
}
sqlite3_fputs(p->rowSeparator, p->out);
break;
}
case MODE_EQP: {
eqp_append(p, atoi(azArg[0]), atoi(azArg[1]), azArg[3]);
break;
}
}
return 0;
}
/*
** This is the callback routine that the SQLite library
** invokes for each row of a query result.
*/
static int callback(void *pArg, int nArg, char **azArg, char **azCol){
/* since we don't have type info, call the shell_callback with a NULL value */
return shell_callback(pArg, nArg, azArg, azCol, NULL);
}
/*
** This is the callback routine from sqlite3_exec() that appends all
** output onto the end of a ShellText object.
*/
static int captureOutputCallback(void *pArg, int nArg, char **azArg, char **az){
ShellText *p = (ShellText*)pArg;
int i;
UNUSED_PARAMETER(az);
if( azArg==0 ) return 0;
if( p->n ) appendText(p, "|", 0);
for(i=0; i<nArg; i++){
if( i ) appendText(p, ",", 0);
if( azArg[i] ) appendText(p, azArg[i], 0);
}
return 0;
}
/*
** Generate an appropriate SELFTEST table in the main database.
*/
static void createSelftestTable(ShellState *p){
char *zErrMsg = 0;
sqlite3_exec(p->db,
"SAVEPOINT selftest_init;\n"
"CREATE TABLE IF NOT EXISTS selftest(\n"
" tno INTEGER PRIMARY KEY,\n" /* Test number */
" op TEXT,\n" /* Operator: memo run */
" cmd TEXT,\n" /* Command text */
" ans TEXT\n" /* Desired answer */
");"
"CREATE TEMP TABLE [_shell$self](op,cmd,ans);\n"
"INSERT INTO [_shell$self](rowid,op,cmd)\n"
" VALUES(coalesce((SELECT (max(tno)+100)/10 FROM selftest),10),\n"
" 'memo','Tests generated by --init');\n"
"INSERT INTO [_shell$self]\n"
" SELECT 'run',\n"
" 'SELECT hex(sha3_query(''SELECT type,name,tbl_name,sql "
"FROM sqlite_schema ORDER BY 2'',224))',\n"
" hex(sha3_query('SELECT type,name,tbl_name,sql "
"FROM sqlite_schema ORDER BY 2',224));\n"
"INSERT INTO [_shell$self]\n"
" SELECT 'run',"
" 'SELECT hex(sha3_query(''SELECT * FROM \"' ||"
" printf('%w',name) || '\" NOT INDEXED'',224))',\n"
" hex(sha3_query(printf('SELECT * FROM \"%w\" NOT INDEXED',name),224))\n"
" FROM (\n"
" SELECT name FROM sqlite_schema\n"
" WHERE type='table'\n"
" AND name<>'selftest'\n"
" AND coalesce(rootpage,0)>0\n"
" )\n"
" ORDER BY name;\n"
"INSERT INTO [_shell$self]\n"
" VALUES('run','PRAGMA integrity_check','ok');\n"
"INSERT INTO selftest(tno,op,cmd,ans)"
" SELECT rowid*10,op,cmd,ans FROM [_shell$self];\n"
"DROP TABLE [_shell$self];"
,0,0,&zErrMsg);
if( zErrMsg ){
sqlite3_fprintf(stderr, "SELFTEST initialization failure: %s\n", zErrMsg);
sqlite3_free(zErrMsg);
}
sqlite3_exec(p->db, "RELEASE selftest_init",0,0,0);
}
/*
** Set the destination table field of the ShellState structure to
** the name of the table given. Escape any quote characters in the
** table name.
*/
static void set_table_name(ShellState *p, const char *zName){
int i, n;
char cQuote;
char *z;
if( p->zDestTable ){
free(p->zDestTable);
p->zDestTable = 0;
}
if( zName==0 ) return;
cQuote = quoteChar(zName);
n = strlen30(zName);
if( cQuote ) n += n+2;
z = p->zDestTable = malloc( n+1 );
shell_check_oom(z);
n = 0;
if( cQuote ) z[n++] = cQuote;
for(i=0; zName[i]; i++){
z[n++] = zName[i];
if( zName[i]==cQuote ) z[n++] = cQuote;
}
if( cQuote ) z[n++] = cQuote;
z[n] = 0;
}
/*
** Maybe construct two lines of text that point out the position of a
** syntax error. Return a pointer to the text, in memory obtained from
** sqlite3_malloc(). Or, if the most recent error does not involve a
** specific token that we can point to, return an empty string.
**
** In all cases, the memory returned is obtained from sqlite3_malloc64()
** and should be released by the caller invoking sqlite3_free().
*/
static char *shell_error_context(const char *zSql, sqlite3 *db){
int iOffset;
size_t len;
char *zCode;
char *zMsg;
int i;
if( db==0
|| zSql==0
|| (iOffset = sqlite3_error_offset(db))<0
|| iOffset>=(int)strlen(zSql)
){
return sqlite3_mprintf("");
}
while( iOffset>50 ){
iOffset--;
zSql++;
while( (zSql[0]&0xc0)==0x80 ){ zSql++; iOffset--; }
}
len = strlen(zSql);
if( len>78 ){
len = 78;
while( len>0 && (zSql[len]&0xc0)==0x80 ) len--;
}
zCode = sqlite3_mprintf("%.*s", len, zSql);
shell_check_oom(zCode);
for(i=0; zCode[i]; i++){ if( IsSpace(zSql[i]) ) zCode[i] = ' '; }
if( iOffset<25 ){
zMsg = sqlite3_mprintf("\n %z\n %*s^--- error here", zCode,iOffset,"");
}else{
zMsg = sqlite3_mprintf("\n %z\n %*serror here ---^", zCode,iOffset-14,"");
}
return zMsg;
}
/*
** Execute a query statement that will generate SQL output. Print
** the result columns, comma-separated, on a line and then add a
** semicolon terminator to the end of that line.
**
** If the number of columns is 1 and that column contains text "--"
** then write the semicolon on a separate line. That way, if a
** "--" comment occurs at the end of the statement, the comment
** won't consume the semicolon terminator.
*/
static int run_table_dump_query(
ShellState *p, /* Query context */
const char *zSelect /* SELECT statement to extract content */
){
sqlite3_stmt *pSelect;
int rc;
int nResult;
int i;
const char *z;
rc = sqlite3_prepare_v2(p->db, zSelect, -1, &pSelect, 0);
if( rc!=SQLITE_OK || !pSelect ){
char *zContext = shell_error_context(zSelect, p->db);
sqlite3_fprintf(p->out, "/**** ERROR: (%d) %s *****/\n%s",
rc, sqlite3_errmsg(p->db), zContext);
sqlite3_free(zContext);
if( (rc&0xff)!=SQLITE_CORRUPT ) p->nErr++;
return rc;
}
rc = sqlite3_step(pSelect);
nResult = sqlite3_column_count(pSelect);
while( rc==SQLITE_ROW ){
z = (const char*)sqlite3_column_text(pSelect, 0);
sqlite3_fprintf(p->out, "%s", z);
for(i=1; i<nResult; i++){
sqlite3_fprintf(p->out, ",%s", sqlite3_column_text(pSelect, i));
}
if( z==0 ) z = "";
while( z[0] && (z[0]!='-' || z[1]!='-') ) z++;
if( z[0] ){
sqlite3_fputs("\n;\n", p->out);
}else{
sqlite3_fputs(";\n", p->out);
}
rc = sqlite3_step(pSelect);
}
rc = sqlite3_finalize(pSelect);
if( rc!=SQLITE_OK ){
sqlite3_fprintf(p->out, "/**** ERROR: (%d) %s *****/\n",
rc, sqlite3_errmsg(p->db));
if( (rc&0xff)!=SQLITE_CORRUPT ) p->nErr++;
}
return rc;
}
/*
** Allocate space and save off string indicating current error.
*/
static char *save_err_msg(
sqlite3 *db, /* Database to query */
const char *zPhase, /* When the error occurs */
int rc, /* Error code returned from API */
const char *zSql /* SQL string, or NULL */
){
char *zErr;
char *zContext;
sqlite3_str *pStr = sqlite3_str_new(0);
sqlite3_str_appendf(pStr, "%s, %s", zPhase, sqlite3_errmsg(db));
if( rc>1 ){
sqlite3_str_appendf(pStr, " (%d)", rc);
}
zContext = shell_error_context(zSql, db);
if( zContext ){
sqlite3_str_appendall(pStr, zContext);
sqlite3_free(zContext);
}
zErr = sqlite3_str_finish(pStr);
shell_check_oom(zErr);
return zErr;
}
#ifdef __linux__
/*
** Attempt to display I/O stats on Linux using /proc/PID/io
*/
static void displayLinuxIoStats(FILE *out){
FILE *in;
char z[200];
sqlite3_snprintf(sizeof(z), z, "/proc/%d/io", getpid());
in = sqlite3_fopen(z, "rb");
if( in==0 ) return;
while( sqlite3_fgets(z, sizeof(z), in)!=0 ){
static const struct {
const char *zPattern;
const char *zDesc;
} aTrans[] = {
{ "rchar: ", "Bytes received by read():" },
{ "wchar: ", "Bytes sent to write():" },
{ "syscr: ", "Read() system calls:" },
{ "syscw: ", "Write() system calls:" },
{ "read_bytes: ", "Bytes read from storage:" },
{ "write_bytes: ", "Bytes written to storage:" },
{ "cancelled_write_bytes: ", "Cancelled write bytes:" },
};
int i;
for(i=0; i<ArraySize(aTrans); i++){
int n = strlen30(aTrans[i].zPattern);
if( cli_strncmp(aTrans[i].zPattern, z, n)==0 ){
sqlite3_fprintf(out, "%-36s %s", aTrans[i].zDesc, &z[n]);
break;
}
}
}
fclose(in);
}
#endif
/*
** Display a single line of status using 64-bit values.
*/
static void displayStatLine(
FILE *out, /* Write to this channel */
char *zLabel, /* Label for this one line */
char *zFormat, /* Format for the result */
int iStatusCtrl, /* Which status to display */
int bReset /* True to reset the stats */
){
sqlite3_int64 iCur = -1;
sqlite3_int64 iHiwtr = -1;
int i, nPercent;
char zLine[200];
sqlite3_status64(iStatusCtrl, &iCur, &iHiwtr, bReset);
for(i=0, nPercent=0; zFormat[i]; i++){
if( zFormat[i]=='%' ) nPercent++;
}
if( nPercent>1 ){
sqlite3_snprintf(sizeof(zLine), zLine, zFormat, iCur, iHiwtr);
}else{
sqlite3_snprintf(sizeof(zLine), zLine, zFormat, iHiwtr);
}
sqlite3_fprintf(out, "%-36s %s\n", zLabel, zLine);
}
/*
** Display memory stats.
*/
static int display_stats(
sqlite3 *db, /* Database to query */
ShellState *pArg, /* Pointer to ShellState */
int bReset /* True to reset the stats */
){
int iCur;
int iHiwtr;
FILE *out;
if( pArg==0 || pArg->out==0 ) return 0;
out = pArg->out;
if( pArg->pStmt && pArg->statsOn==2 ){
int nCol, i, x;
sqlite3_stmt *pStmt = pArg->pStmt;
char z[100];
nCol = sqlite3_column_count(pStmt);
sqlite3_fprintf(out, "%-36s %d\n", "Number of output columns:", nCol);
for(i=0; i<nCol; i++){
sqlite3_snprintf(sizeof(z),z,"Column %d %nname:", i, &x);
sqlite3_fprintf(out, "%-36s %s\n", z, sqlite3_column_name(pStmt,i));
#ifndef SQLITE_OMIT_DECLTYPE
sqlite3_snprintf(30, z+x, "declared type:");
sqlite3_fprintf(out, "%-36s %s\n", z, sqlite3_column_decltype(pStmt, i));
#endif
#ifdef SQLITE_ENABLE_COLUMN_METADATA
sqlite3_snprintf(30, z+x, "database name:");
sqlite3_fprintf(out, "%-36s %s\n", z,
sqlite3_column_database_name(pStmt,i));
sqlite3_snprintf(30, z+x, "table name:");
sqlite3_fprintf(out, "%-36s %s\n", z, sqlite3_column_table_name(pStmt,i));
sqlite3_snprintf(30, z+x, "origin name:");
sqlite3_fprintf(out, "%-36s %s\n", z,sqlite3_column_origin_name(pStmt,i));
#endif
}
}
if( pArg->statsOn==3 ){
if( pArg->pStmt ){
iCur = sqlite3_stmt_status(pArg->pStmt, SQLITE_STMTSTATUS_VM_STEP,bReset);
sqlite3_fprintf(out, "VM-steps: %d\n", iCur);
}
return 0;
}
displayStatLine(out, "Memory Used:",
"%lld (max %lld) bytes", SQLITE_STATUS_MEMORY_USED, bReset);
displayStatLine(out, "Number of Outstanding Allocations:",
"%lld (max %lld)", SQLITE_STATUS_MALLOC_COUNT, bReset);
if( pArg->shellFlgs & SHFLG_Pagecache ){
displayStatLine(out, "Number of Pcache Pages Used:",
"%lld (max %lld) pages", SQLITE_STATUS_PAGECACHE_USED, bReset);
}
displayStatLine(out, "Number of Pcache Overflow Bytes:",
"%lld (max %lld) bytes", SQLITE_STATUS_PAGECACHE_OVERFLOW, bReset);
displayStatLine(out, "Largest Allocation:",
"%lld bytes", SQLITE_STATUS_MALLOC_SIZE, bReset);
displayStatLine(out, "Largest Pcache Allocation:",
"%lld bytes", SQLITE_STATUS_PAGECACHE_SIZE, bReset);
#ifdef YYTRACKMAXSTACKDEPTH
displayStatLine(out, "Deepest Parser Stack:",
"%lld (max %lld)", SQLITE_STATUS_PARSER_STACK, bReset);
#endif
if( db ){
if( pArg->shellFlgs & SHFLG_Lookaside ){
iHiwtr = iCur = -1;
sqlite3_db_status(db, SQLITE_DBSTATUS_LOOKASIDE_USED,
&iCur, &iHiwtr, bReset);
sqlite3_fprintf(out,
"Lookaside Slots Used: %d (max %d)\n", iCur, iHiwtr);
sqlite3_db_status(db, SQLITE_DBSTATUS_LOOKASIDE_HIT,
&iCur, &iHiwtr, bReset);
sqlite3_fprintf(out,
"Successful lookaside attempts: %d\n", iHiwtr);
sqlite3_db_status(db, SQLITE_DBSTATUS_LOOKASIDE_MISS_SIZE,
&iCur, &iHiwtr, bReset);
sqlite3_fprintf(out,
"Lookaside failures due to size: %d\n", iHiwtr);
sqlite3_db_status(db, SQLITE_DBSTATUS_LOOKASIDE_MISS_FULL,
&iCur, &iHiwtr, bReset);
sqlite3_fprintf(out,
"Lookaside failures due to OOM: %d\n", iHiwtr);
}
iHiwtr = iCur = -1;
sqlite3_db_status(db, SQLITE_DBSTATUS_CACHE_USED, &iCur, &iHiwtr, bReset);
sqlite3_fprintf(out,
"Pager Heap Usage: %d bytes\n", iCur);
iHiwtr = iCur = -1;
sqlite3_db_status(db, SQLITE_DBSTATUS_CACHE_HIT, &iCur, &iHiwtr, 1);
sqlite3_fprintf(out,
"Page cache hits: %d\n", iCur);
iHiwtr = iCur = -1;
sqlite3_db_status(db, SQLITE_DBSTATUS_CACHE_MISS, &iCur, &iHiwtr, 1);
sqlite3_fprintf(out,
"Page cache misses: %d\n", iCur);
iHiwtr = iCur = -1;
sqlite3_db_status(db, SQLITE_DBSTATUS_CACHE_WRITE, &iCur, &iHiwtr, 1);
sqlite3_fprintf(out,
"Page cache writes: %d\n", iCur);
iHiwtr = iCur = -1;
sqlite3_db_status(db, SQLITE_DBSTATUS_CACHE_SPILL, &iCur, &iHiwtr, 1);
sqlite3_fprintf(out,
"Page cache spills: %d\n", iCur);
iHiwtr = iCur = -1;
sqlite3_db_status(db, SQLITE_DBSTATUS_SCHEMA_USED, &iCur, &iHiwtr, bReset);
sqlite3_fprintf(out,
"Schema Heap Usage: %d bytes\n", iCur);
iHiwtr = iCur = -1;
sqlite3_db_status(db, SQLITE_DBSTATUS_STMT_USED, &iCur, &iHiwtr, bReset);
sqlite3_fprintf(out,
"Statement Heap/Lookaside Usage: %d bytes\n", iCur);
}
if( pArg->pStmt ){
int iHit, iMiss;
iCur = sqlite3_stmt_status(pArg->pStmt, SQLITE_STMTSTATUS_FULLSCAN_STEP,
bReset);
sqlite3_fprintf(out,
"Fullscan Steps: %d\n", iCur);
iCur = sqlite3_stmt_status(pArg->pStmt, SQLITE_STMTSTATUS_SORT, bReset);
sqlite3_fprintf(out,
"Sort Operations: %d\n", iCur);
iCur = sqlite3_stmt_status(pArg->pStmt, SQLITE_STMTSTATUS_AUTOINDEX,bReset);
sqlite3_fprintf(out,
"Autoindex Inserts: %d\n", iCur);
iHit = sqlite3_stmt_status(pArg->pStmt, SQLITE_STMTSTATUS_FILTER_HIT,
bReset);
iMiss = sqlite3_stmt_status(pArg->pStmt, SQLITE_STMTSTATUS_FILTER_MISS,
bReset);
if( iHit || iMiss ){
sqlite3_fprintf(out,
"Bloom filter bypass taken: %d/%d\n", iHit, iHit+iMiss);
}
iCur = sqlite3_stmt_status(pArg->pStmt, SQLITE_STMTSTATUS_VM_STEP, bReset);
sqlite3_fprintf(out,
"Virtual Machine Steps: %d\n", iCur);
iCur = sqlite3_stmt_status(pArg->pStmt, SQLITE_STMTSTATUS_REPREPARE,bReset);
sqlite3_fprintf(out,
"Reprepare operations: %d\n", iCur);
iCur = sqlite3_stmt_status(pArg->pStmt, SQLITE_STMTSTATUS_RUN, bReset);
sqlite3_fprintf(out,
"Number of times run: %d\n", iCur);
iCur = sqlite3_stmt_status(pArg->pStmt, SQLITE_STMTSTATUS_MEMUSED, bReset);
sqlite3_fprintf(out,
"Memory used by prepared stmt: %d\n", iCur);
}
#ifdef __linux__
displayLinuxIoStats(pArg->out);
#endif
/* Do not remove this machine readable comment: extra-stats-output-here */
return 0;
}
#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
static int scanStatsHeight(sqlite3_stmt *p, int iEntry){
int iPid = 0;
int ret = 1;
sqlite3_stmt_scanstatus_v2(p, iEntry,
SQLITE_SCANSTAT_SELECTID, SQLITE_SCANSTAT_COMPLEX, (void*)&iPid
);
while( iPid!=0 ){
int ii;
for(ii=0; 1; ii++){
int iId;
int res;
res = sqlite3_stmt_scanstatus_v2(p, ii,
SQLITE_SCANSTAT_SELECTID, SQLITE_SCANSTAT_COMPLEX, (void*)&iId
);
if( res ) break;
if( iId==iPid ){
sqlite3_stmt_scanstatus_v2(p, ii,
SQLITE_SCANSTAT_PARENTID, SQLITE_SCANSTAT_COMPLEX, (void*)&iPid
);
}
}
ret++;
}
return ret;
}
#endif
#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
static void display_explain_scanstats(
sqlite3 *db, /* Database to query */
ShellState *pArg /* Pointer to ShellState */
){
static const int f = SQLITE_SCANSTAT_COMPLEX;
sqlite3_stmt *p = pArg->pStmt;
int ii = 0;
i64 nTotal = 0;
int nWidth = 0;
eqp_reset(pArg);
for(ii=0; 1; ii++){
const char *z = 0;
int n = 0;
if( sqlite3_stmt_scanstatus_v2(p,ii,SQLITE_SCANSTAT_EXPLAIN,f,(void*)&z) ){
break;
}
n = (int)strlen(z) + scanStatsHeight(p, ii)*3;
if( n>nWidth ) nWidth = n;
}
nWidth += 4;
sqlite3_stmt_scanstatus_v2(p, -1, SQLITE_SCANSTAT_NCYCLE, f, (void*)&nTotal);
for(ii=0; 1; ii++){
i64 nLoop = 0;
i64 nRow = 0;
i64 nCycle = 0;
int iId = 0;
int iPid = 0;
const char *zo = 0;
const char *zName = 0;
char *zText = 0;
double rEst = 0.0;
if( sqlite3_stmt_scanstatus_v2(p,ii,SQLITE_SCANSTAT_EXPLAIN,f,(void*)&zo) ){
break;
}
sqlite3_stmt_scanstatus_v2(p, ii, SQLITE_SCANSTAT_EST,f,(void*)&rEst);
sqlite3_stmt_scanstatus_v2(p, ii, SQLITE_SCANSTAT_NLOOP,f,(void*)&nLoop);
sqlite3_stmt_scanstatus_v2(p, ii, SQLITE_SCANSTAT_NVISIT,f,(void*)&nRow);
sqlite3_stmt_scanstatus_v2(p, ii, SQLITE_SCANSTAT_NCYCLE,f,(void*)&nCycle);
sqlite3_stmt_scanstatus_v2(p, ii, SQLITE_SCANSTAT_SELECTID,f,(void*)&iId);
sqlite3_stmt_scanstatus_v2(p, ii, SQLITE_SCANSTAT_PARENTID,f,(void*)&iPid);
sqlite3_stmt_scanstatus_v2(p, ii, SQLITE_SCANSTAT_NAME,f,(void*)&zName);
zText = sqlite3_mprintf("%s", zo);
if( nCycle>=0 || nLoop>=0 || nRow>=0 ){
char *z = 0;
if( nCycle>=0 && nTotal>0 ){
z = sqlite3_mprintf("%zcycles=%lld [%d%%]", z,
nCycle, ((nCycle*100)+nTotal/2) / nTotal
);
}
if( nLoop>=0 ){
z = sqlite3_mprintf("%z%sloops=%lld", z, z ? " " : "", nLoop);
}
if( nRow>=0 ){
z = sqlite3_mprintf("%z%srows=%lld", z, z ? " " : "", nRow);
}
if( zName && pArg->scanstatsOn>1 ){
double rpl = (double)nRow / (double)nLoop;
z = sqlite3_mprintf("%z rpl=%.1f est=%.1f", z, rpl, rEst);
}
zText = sqlite3_mprintf(
"% *z (%z)", -1*(nWidth-scanStatsHeight(p, ii)*3), zText, z
);
}
eqp_append(pArg, iId, iPid, zText);
sqlite3_free(zText);
}
eqp_render(pArg, nTotal);
}
#endif
/*
** Parameter azArray points to a zero-terminated array of strings. zStr
** points to a single nul-terminated string. Return non-zero if zStr
** is equal, according to strcmp(), to any of the strings in the array.
** Otherwise, return zero.
*/
static int str_in_array(const char *zStr, const char **azArray){
int i;
for(i=0; azArray[i]; i++){
if( 0==cli_strcmp(zStr, azArray[i]) ) return 1;
}
return 0;
}
/*
** If compiled statement pSql appears to be an EXPLAIN statement, allocate
** and populate the ShellState.aiIndent[] array with the number of
** spaces each opcode should be indented before it is output.
**
** The indenting rules are:
**
** * For each "Next", "Prev", "VNext" or "VPrev" instruction, indent
** all opcodes that occur between the p2 jump destination and the opcode
** itself by 2 spaces.
**
** * Do the previous for "Return" instructions for when P2 is positive.
** See tag-20220407a in wherecode.c and vdbe.c.
**
** * For each "Goto", if the jump destination is earlier in the program
** and ends on one of:
** Yield SeekGt SeekLt RowSetRead Rewind
** or if the P1 parameter is one instead of zero,
** then indent all opcodes between the earlier instruction
** and "Goto" by 2 spaces.
*/
static void explain_data_prepare(ShellState *p, sqlite3_stmt *pSql){
int *abYield = 0; /* True if op is an OP_Yield */
int nAlloc = 0; /* Allocated size of p->aiIndent[], abYield */
int iOp; /* Index of operation in p->aiIndent[] */
const char *azNext[] = { "Next", "Prev", "VPrev", "VNext", "SorterNext",
"Return", 0 };
const char *azYield[] = { "Yield", "SeekLT", "SeekGT", "RowSetRead",
"Rewind", 0 };
const char *azGoto[] = { "Goto", 0 };
/* The caller guarantees that the leftmost 4 columns of the statement
** passed to this function are equivalent to the leftmost 4 columns
** of EXPLAIN statement output. In practice the statement may be
** an EXPLAIN, or it may be a query on the bytecode() virtual table. */
assert( sqlite3_column_count(pSql)>=4 );
assert( 0==sqlite3_stricmp( sqlite3_column_name(pSql, 0), "addr" ) );
assert( 0==sqlite3_stricmp( sqlite3_column_name(pSql, 1), "opcode" ) );
assert( 0==sqlite3_stricmp( sqlite3_column_name(pSql, 2), "p1" ) );
assert( 0==sqlite3_stricmp( sqlite3_column_name(pSql, 3), "p2" ) );
for(iOp=0; SQLITE_ROW==sqlite3_step(pSql); iOp++){
int i;
int iAddr = sqlite3_column_int(pSql, 0);
const char *zOp = (const char*)sqlite3_column_text(pSql, 1);
int p1 = sqlite3_column_int(pSql, 2);
int p2 = sqlite3_column_int(pSql, 3);
/* Assuming that p2 is an instruction address, set variable p2op to the
** index of that instruction in the aiIndent[] array. p2 and p2op may be
** different if the current instruction is part of a sub-program generated
** by an SQL trigger or foreign key. */
int p2op = (p2 + (iOp-iAddr));
/* Grow the p->aiIndent array as required */
if( iOp>=nAlloc ){
nAlloc += 100;
p->aiIndent = (int*)sqlite3_realloc64(p->aiIndent, nAlloc*sizeof(int));
shell_check_oom(p->aiIndent);
abYield = (int*)sqlite3_realloc64(abYield, nAlloc*sizeof(int));
shell_check_oom(abYield);
}
abYield[iOp] = str_in_array(zOp, azYield);
p->aiIndent[iOp] = 0;
p->nIndent = iOp+1;
if( str_in_array(zOp, azNext) && p2op>0 ){
for(i=p2op; i<iOp; i++) p->aiIndent[i] += 2;
}
if( str_in_array(zOp, azGoto) && p2op<iOp && (abYield[p2op] || p1) ){
for(i=p2op; i<iOp; i++) p->aiIndent[i] += 2;
}
}
p->iIndent = 0;
sqlite3_free(abYield);
sqlite3_reset(pSql);
}
/*
** Free the array allocated by explain_data_prepare().
*/
static void explain_data_delete(ShellState *p){
sqlite3_free(p->aiIndent);
p->aiIndent = 0;
p->nIndent = 0;
p->iIndent = 0;
}
static void exec_prepared_stmt(ShellState*, sqlite3_stmt*);
/*
** Display scan stats.
*/
static void display_scanstats(
sqlite3 *db, /* Database to query */
ShellState *pArg /* Pointer to ShellState */
){
#ifndef SQLITE_ENABLE_STMT_SCANSTATUS
UNUSED_PARAMETER(db);
UNUSED_PARAMETER(pArg);
#else
if( pArg->scanstatsOn==3 ){
const char *zSql =
" SELECT addr, opcode, p1, p2, p3, p4, p5, comment, nexec,"
" format('% 6s (%.2f%%)',"
" CASE WHEN ncycle<100_000 THEN ncycle || ' '"
" WHEN ncycle<100_000_000 THEN (ncycle/1_000) || 'K'"
" WHEN ncycle<100_000_000_000 THEN (ncycle/1_000_000) || 'M'"
" ELSE (ncycle/1000_000_000) || 'G' END,"
" ncycle*100.0/(sum(ncycle) OVER ())"
" ) AS cycles"
" FROM bytecode(?)";
int rc = SQLITE_OK;
sqlite3_stmt *pStmt = 0;
rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0);
if( rc==SQLITE_OK ){
sqlite3_stmt *pSave = pArg->pStmt;
pArg->pStmt = pStmt;
sqlite3_bind_pointer(pStmt, 1, pSave, "stmt-pointer", 0);
pArg->cnt = 0;
pArg->cMode = MODE_ScanExp;
explain_data_prepare(pArg, pStmt);
exec_prepared_stmt(pArg, pStmt);
explain_data_delete(pArg);
sqlite3_finalize(pStmt);
pArg->pStmt = pSave;
}
}else{
display_explain_scanstats(db, pArg);
}
#endif
}
/*
** Disable and restore .wheretrace and .treetrace/.selecttrace settings.
*/
static unsigned int savedSelectTrace;
static unsigned int savedWhereTrace;
static void disable_debug_trace_modes(void){
unsigned int zero = 0;
sqlite3_test_control(SQLITE_TESTCTRL_TRACEFLAGS, 0, &savedSelectTrace);
sqlite3_test_control(SQLITE_TESTCTRL_TRACEFLAGS, 1, &zero);
sqlite3_test_control(SQLITE_TESTCTRL_TRACEFLAGS, 2, &savedWhereTrace);
sqlite3_test_control(SQLITE_TESTCTRL_TRACEFLAGS, 3, &zero);
}
static void restore_debug_trace_modes(void){
sqlite3_test_control(SQLITE_TESTCTRL_TRACEFLAGS, 1, &savedSelectTrace);
sqlite3_test_control(SQLITE_TESTCTRL_TRACEFLAGS, 3, &savedWhereTrace);
}
/* Create the TEMP table used to store parameter bindings */
static void bind_table_init(ShellState *p){
int wrSchema = 0;
int defensiveMode = 0;
sqlite3_db_config(p->db, SQLITE_DBCONFIG_DEFENSIVE, -1, &defensiveMode);
sqlite3_db_config(p->db, SQLITE_DBCONFIG_DEFENSIVE, 0, 0);
sqlite3_db_config(p->db, SQLITE_DBCONFIG_WRITABLE_SCHEMA, -1, &wrSchema);
sqlite3_db_config(p->db, SQLITE_DBCONFIG_WRITABLE_SCHEMA, 1, 0);
sqlite3_exec(p->db,
"CREATE TABLE IF NOT EXISTS temp.sqlite_parameters(\n"
" key TEXT PRIMARY KEY,\n"
" value\n"
") WITHOUT ROWID;",
0, 0, 0);
sqlite3_db_config(p->db, SQLITE_DBCONFIG_WRITABLE_SCHEMA, wrSchema, 0);
sqlite3_db_config(p->db, SQLITE_DBCONFIG_DEFENSIVE, defensiveMode, 0);
}
/*
** Bind parameters on a prepared statement.
**
** Parameter bindings are taken from a TEMP table of the form:
**
** CREATE TEMP TABLE sqlite_parameters(key TEXT PRIMARY KEY, value)
** WITHOUT ROWID;
**
** No bindings occur if this table does not exist. The name of the table
** begins with "sqlite_" so that it will not collide with ordinary application
** tables. The table must be in the TEMP schema.
*/
static void bind_prepared_stmt(ShellState *pArg, sqlite3_stmt *pStmt){
int nVar;
int i;
int rc;
sqlite3_stmt *pQ = 0;
nVar = sqlite3_bind_parameter_count(pStmt);
if( nVar==0 ) return; /* Nothing to do */
if( sqlite3_table_column_metadata(pArg->db, "TEMP", "sqlite_parameters",
"key", 0, 0, 0, 0, 0)!=SQLITE_OK ){
rc = SQLITE_NOTFOUND;
pQ = 0;
}else{
rc = sqlite3_prepare_v2(pArg->db,
"SELECT value FROM temp.sqlite_parameters"
" WHERE key=?1", -1, &pQ, 0);
}
for(i=1; i<=nVar; i++){
char zNum[30];
const char *zVar = sqlite3_bind_parameter_name(pStmt, i);
if( zVar==0 ){
sqlite3_snprintf(sizeof(zNum),zNum,"?%d",i);
zVar = zNum;
}
sqlite3_bind_text(pQ, 1, zVar, -1, SQLITE_STATIC);
if( rc==SQLITE_OK && pQ && sqlite3_step(pQ)==SQLITE_ROW ){
sqlite3_bind_value(pStmt, i, sqlite3_column_value(pQ, 0));
#ifdef NAN
}else if( sqlite3_strlike("_NAN", zVar, 0)==0 ){
sqlite3_bind_double(pStmt, i, NAN);
#endif
#ifdef INFINITY
}else if( sqlite3_strlike("_INF", zVar, 0)==0 ){
sqlite3_bind_double(pStmt, i, INFINITY);
#endif
}else if( strncmp(zVar, "$int_", 5)==0 ){
sqlite3_bind_int(pStmt, i, atoi(&zVar[5]));
}else if( strncmp(zVar, "$text_", 6)==0 ){
size_t szVar = strlen(zVar);
char *zBuf = sqlite3_malloc64( szVar-5 );
if( zBuf ){
memcpy(zBuf, &zVar[6], szVar-5);
sqlite3_bind_text64(pStmt, i, zBuf, szVar-6, sqlite3_free, SQLITE_UTF8);
}
}else{
sqlite3_bind_null(pStmt, i);
}
sqlite3_reset(pQ);
}
sqlite3_finalize(pQ);
}
/*
** UTF8 box-drawing characters. Imagine box lines like this:
**
** 1
** |
** 4 --+-- 2
** |
** 3
**
** Each box characters has between 2 and 4 of the lines leading from
** the center. The characters are here identified by the numbers of
** their corresponding lines.
*/
#define BOX_24 "\342\224\200" /* U+2500 --- */
#define BOX_13 "\342\224\202" /* U+2502 | */
#define BOX_23 "\342\224\214" /* U+250c ,- */
#define BOX_34 "\342\224\220" /* U+2510 -, */
#define BOX_12 "\342\224\224" /* U+2514 '- */
#define BOX_14 "\342\224\230" /* U+2518 -' */
#define BOX_123 "\342\224\234" /* U+251c |- */
#define BOX_134 "\342\224\244" /* U+2524 -| */
#define BOX_234 "\342\224\254" /* U+252c -,- */
#define BOX_124 "\342\224\264" /* U+2534 -'- */
#define BOX_1234 "\342\224\274" /* U+253c -|- */
/* Draw horizontal line N characters long using unicode box
** characters
*/
static void print_box_line(FILE *out, int N){
const char zDash[] =
BOX_24 BOX_24 BOX_24 BOX_24 BOX_24 BOX_24 BOX_24 BOX_24 BOX_24 BOX_24
BOX_24 BOX_24 BOX_24 BOX_24 BOX_24 BOX_24 BOX_24 BOX_24 BOX_24 BOX_24;
const int nDash = sizeof(zDash) - 1;
N *= 3;
while( N>nDash ){
sqlite3_fputs(zDash, out);
N -= nDash;
}
sqlite3_fprintf(out, "%.*s", N, zDash);
}
/*
** Draw a horizontal separator for a MODE_Box table.
*/
static void print_box_row_separator(
ShellState *p,
int nArg,
const char *zSep1,
const char *zSep2,
const char *zSep3
){
int i;
if( nArg>0 ){
sqlite3_fputs(zSep1, p->out);
print_box_line(p->out, p->actualWidth[0]+2);
for(i=1; i<nArg; i++){
sqlite3_fputs(zSep2, p->out);
print_box_line(p->out, p->actualWidth[i]+2);
}
sqlite3_fputs(zSep3, p->out);
}
sqlite3_fputs("\n", p->out);
}
/*
** z[] is a line of text that is to be displayed the .mode box or table or
** similar tabular formats. z[] might contain control characters such
** as \n, \t, \f, or \r.
**
** Compute characters to display on the first line of z[]. Stop at the
** first \r, \n, or \f. Expand \t into spaces. Return a copy (obtained
** from malloc()) of that first line, which caller should free sometime.
** Write anything to display on the next line into *pzTail. If this is
** the last line, write a NULL into *pzTail. (*pzTail is not allocated.)
*/
static char *translateForDisplayAndDup(
const unsigned char *z, /* Input text to be transformed */
const unsigned char **pzTail, /* OUT: Tail of the input for next line */
int mxWidth, /* Max width. 0 means no limit */
u8 bWordWrap /* If true, avoid breaking mid-word */
){
int i; /* Input bytes consumed */
int j; /* Output bytes generated */
int k; /* Input bytes to be displayed */
int n; /* Output column number */
unsigned char *zOut; /* Output text */
if( z==0 ){
*pzTail = 0;
return 0;
}
if( mxWidth<0 ) mxWidth = -mxWidth;
if( mxWidth==0 ) mxWidth = 1000000;
i = j = n = 0;
while( n<mxWidth ){
unsigned char c = z[i];
if( c>=0xc0 ){
int u;
int len = decodeUtf8(&z[i], &u);
i += len;
j += len;
n += cli_wcwidth(u);
continue;
}
if( c>=' ' ){
n++;
i++;
j++;
continue;
}
if( c=='\t' ){
do{
n++;
j++;
}while( (n&7)!=0 && n<mxWidth );
i++;
continue;
}
break;
}
if( n>=mxWidth && bWordWrap ){
/* Perhaps try to back up to a better place to break the line */
for(k=i; k>i/2; k--){
if( isspace(z[k-1]) ) break;
}
if( k<=i/2 ){
for(k=i; k>i/2; k--){
if( isalnum(z[k-1])!=isalnum(z[k]) && (z[k]&0xc0)!=0x80 ) break;
}
}
if( k<=i/2 ){
k = i;
}else{
i = k;
while( z[i]==' ' ) i++;
}
}else{
k = i;
}
if( n>=mxWidth && z[i]>=' ' ){
*pzTail = &z[i];
}else if( z[i]=='\r' && z[i+1]=='\n' ){
*pzTail = z[i+2] ? &z[i+2] : 0;
}else if( z[i]==0 || z[i+1]==0 ){
*pzTail = 0;
}else{
*pzTail = &z[i+1];
}
zOut = malloc( j+1 );
shell_check_oom(zOut);
i = j = n = 0;
while( i<k ){
unsigned char c = z[i];
if( c>=0xc0 ){
int u;
int len = decodeUtf8(&z[i], &u);
do{ zOut[j++] = z[i++]; }while( (--len)>0 );
n += cli_wcwidth(u);
continue;
}
if( c>=' ' ){
n++;
zOut[j++] = z[i++];
continue;
}
if( z[i]=='\t' ){
do{
n++;
zOut[j++] = ' ';
}while( (n&7)!=0 && n<mxWidth );
i++;
continue;
}
break;
}
zOut[j] = 0;
return (char*)zOut;
}
/* Extract the value of the i-th current column for pStmt as an SQL literal
** value. Memory is obtained from sqlite3_malloc64() and must be freed by
** the caller.
*/
static char *quoted_column(sqlite3_stmt *pStmt, int i){
switch( sqlite3_column_type(pStmt, i) ){
case SQLITE_NULL: {
return sqlite3_mprintf("NULL");
}
case SQLITE_INTEGER:
case SQLITE_FLOAT: {
return sqlite3_mprintf("%s",sqlite3_column_text(pStmt,i));
}
case SQLITE_TEXT: {
return sqlite3_mprintf("%Q",sqlite3_column_text(pStmt,i));
}
case SQLITE_BLOB: {
int j;
sqlite3_str *pStr = sqlite3_str_new(0);
const unsigned char *a = sqlite3_column_blob(pStmt,i);
int n = sqlite3_column_bytes(pStmt,i);
sqlite3_str_append(pStr, "x'", 2);
for(j=0; j<n; j++){
sqlite3_str_appendf(pStr, "%02x", a[j]);
}
sqlite3_str_append(pStr, "'", 1);
return sqlite3_str_finish(pStr);
}
}
return 0; /* Not reached */
}
/*
** Run a prepared statement and output the result in one of the
** table-oriented formats: MODE_Column, MODE_Markdown, MODE_Table,
** or MODE_Box.
**
** This is different from ordinary exec_prepared_stmt() in that
** it has to run the entire query and gather the results into memory
** first, in order to determine column widths, before providing
** any output.
*/
static void exec_prepared_stmt_columnar(
ShellState *p, /* Pointer to ShellState */
sqlite3_stmt *pStmt /* Statement to run */
){
sqlite3_int64 nRow = 0;
int nColumn = 0;
char **azData = 0;
sqlite3_int64 nAlloc = 0;
char *abRowDiv = 0;
const unsigned char *uz;
const char *z;
char **azQuoted = 0;
int rc;
sqlite3_int64 i, nData;
int j, nTotal, w, n;
const char *colSep = 0;
const char *rowSep = 0;
const unsigned char **azNextLine = 0;
int bNextLine = 0;
int bMultiLineRowExists = 0;
int bw = p->cmOpts.bWordWrap;
const char *zEmpty = "";
const char *zShowNull = p->nullValue;
rc = sqlite3_step(pStmt);
if( rc!=SQLITE_ROW ) return;
nColumn = sqlite3_column_count(pStmt);
if( nColumn==0 ) goto columnar_end;
nAlloc = nColumn*4;
if( nAlloc<=0 ) nAlloc = 1;
azData = sqlite3_malloc64( nAlloc*sizeof(char*) );
shell_check_oom(azData);
azNextLine = sqlite3_malloc64( nColumn*sizeof(char*) );
shell_check_oom(azNextLine);
memset((void*)azNextLine, 0, nColumn*sizeof(char*) );
if( p->cmOpts.bQuote ){
azQuoted = sqlite3_malloc64( nColumn*sizeof(char*) );
shell_check_oom(azQuoted);
memset(azQuoted, 0, nColumn*sizeof(char*) );
}
abRowDiv = sqlite3_malloc64( nAlloc/nColumn );
shell_check_oom(abRowDiv);
if( nColumn>p->nWidth ){
p->colWidth = realloc(p->colWidth, (nColumn+1)*2*sizeof(int));
shell_check_oom(p->colWidth);
for(i=p->nWidth; i<nColumn; i++) p->colWidth[i] = 0;
p->nWidth = nColumn;
p->actualWidth = &p->colWidth[nColumn];
}
memset(p->actualWidth, 0, nColumn*sizeof(int));
for(i=0; i<nColumn; i++){
w = p->colWidth[i];
if( w<0 ) w = -w;
p->actualWidth[i] = w;
}
for(i=0; i<nColumn; i++){
const unsigned char *zNotUsed;
int wx = p->colWidth[i];
if( wx==0 ){
wx = p->cmOpts.iWrap;
}
if( wx<0 ) wx = -wx;
uz = (const unsigned char*)sqlite3_column_name(pStmt,i);
if( uz==0 ) uz = (u8*)"";
azData[i] = translateForDisplayAndDup(uz, &zNotUsed, wx, bw);
}
do{
int useNextLine = bNextLine;
bNextLine = 0;
if( (nRow+2)*nColumn >= nAlloc ){
nAlloc *= 2;
azData = sqlite3_realloc64(azData, nAlloc*sizeof(char*));
shell_check_oom(azData);
abRowDiv = sqlite3_realloc64(abRowDiv, nAlloc/nColumn);
shell_check_oom(abRowDiv);
}
abRowDiv[nRow] = 1;
nRow++;
for(i=0; i<nColumn; i++){
int wx = p->colWidth[i];
if( wx==0 ){
wx = p->cmOpts.iWrap;
}
if( wx<0 ) wx = -wx;
if( useNextLine ){
uz = azNextLine[i];
if( uz==0 ) uz = (u8*)zEmpty;
}else if( p->cmOpts.bQuote ){
sqlite3_free(azQuoted[i]);
azQuoted[i] = quoted_column(pStmt,i);
uz = (const unsigned char*)azQuoted[i];
}else{
uz = (const unsigned char*)sqlite3_column_text(pStmt,i);
if( uz==0 ) uz = (u8*)zShowNull;
}
azData[nRow*nColumn + i]
= translateForDisplayAndDup(uz, &azNextLine[i], wx, bw);
if( azNextLine[i] ){
bNextLine = 1;
abRowDiv[nRow-1] = 0;
bMultiLineRowExists = 1;
}
}
}while( bNextLine || sqlite3_step(pStmt)==SQLITE_ROW );
nTotal = nColumn*(nRow+1);
for(i=0; i<nTotal; i++){
z = azData[i];
if( z==0 ) z = (char*)zEmpty;
n = strlenChar(z);
j = i%nColumn;
if( n>p->actualWidth[j] ) p->actualWidth[j] = n;
}
if( seenInterrupt ) goto columnar_end;
switch( p->cMode ){
case MODE_Column: {
colSep = " ";
rowSep = "\n";
if( p->showHeader ){
for(i=0; i<nColumn; i++){
w = p->actualWidth[i];
if( p->colWidth[i]<0 ) w = -w;
utf8_width_print(p->out, w, azData[i]);
sqlite3_fputs(i==nColumn-1?"\n":" ", p->out);
}
for(i=0; i<nColumn; i++){
print_dashes(p->out, p->actualWidth[i]);
sqlite3_fputs(i==nColumn-1?"\n":" ", p->out);
}
}
break;
}
case MODE_Table: {
colSep = " | ";
rowSep = " |\n";
print_row_separator(p, nColumn, "+");
sqlite3_fputs("| ", p->out);
for(i=0; i<nColumn; i++){
w = p->actualWidth[i];
n = strlenChar(azData[i]);
sqlite3_fprintf(p->out, "%*s%s%*s", (w-n)/2, "",
azData[i], (w-n+1)/2, "");
sqlite3_fputs(i==nColumn-1?" |\n":" | ", p->out);
}
print_row_separator(p, nColumn, "+");
break;
}
case MODE_Markdown: {
colSep = " | ";
rowSep = " |\n";
sqlite3_fputs("| ", p->out);
for(i=0; i<nColumn; i++){
w = p->actualWidth[i];
n = strlenChar(azData[i]);
sqlite3_fprintf(p->out, "%*s%s%*s", (w-n)/2, "",
azData[i], (w-n+1)/2, "");
sqlite3_fputs(i==nColumn-1?" |\n":" | ", p->out);
}
print_row_separator(p, nColumn, "|");
break;
}
case MODE_Box: {
colSep = " " BOX_13 " ";
rowSep = " " BOX_13 "\n";
print_box_row_separator(p, nColumn, BOX_23, BOX_234, BOX_34);
sqlite3_fputs(BOX_13 " ", p->out);
for(i=0; i<nColumn; i++){
w = p->actualWidth[i];
n = strlenChar(azData[i]);
sqlite3_fprintf(p->out, "%*s%s%*s%s",
(w-n)/2, "", azData[i], (w-n+1)/2, "",
i==nColumn-1?" "BOX_13"\n":" "BOX_13" ");
}
print_box_row_separator(p, nColumn, BOX_123, BOX_1234, BOX_134);
break;
}
}
for(i=nColumn, j=0; i<nTotal; i++, j++){
if( j==0 && p->cMode!=MODE_Column ){
sqlite3_fputs(p->cMode==MODE_Box?BOX_13" ":"| ", p->out);
}
z = azData[i];
if( z==0 ) z = p->nullValue;
w = p->actualWidth[j];
if( p->colWidth[j]<0 ) w = -w;
utf8_width_print(p->out, w, z);
if( j==nColumn-1 ){
sqlite3_fputs(rowSep, p->out);
if( bMultiLineRowExists && abRowDiv[i/nColumn-1] && i+1<nTotal ){
if( p->cMode==MODE_Table ){
print_row_separator(p, nColumn, "+");
}else if( p->cMode==MODE_Box ){
print_box_row_separator(p, nColumn, BOX_123, BOX_1234, BOX_134);
}else if( p->cMode==MODE_Column ){
sqlite3_fputs("\n", p->out);
}
}
j = -1;
if( seenInterrupt ) goto columnar_end;
}else{
sqlite3_fputs(colSep, p->out);
}
}
if( p->cMode==MODE_Table ){
print_row_separator(p, nColumn, "+");
}else if( p->cMode==MODE_Box ){
print_box_row_separator(p, nColumn, BOX_12, BOX_124, BOX_14);
}
columnar_end:
if( seenInterrupt ){
sqlite3_fputs("Interrupt\n", p->out);
}
nData = (nRow+1)*nColumn;
for(i=0; i<nData; i++){
z = azData[i];
if( z!=zEmpty && z!=zShowNull ) free(azData[i]);
}
sqlite3_free(azData);
sqlite3_free((void*)azNextLine);
sqlite3_free(abRowDiv);
if( azQuoted ){
for(i=0; i<nColumn; i++) sqlite3_free(azQuoted[i]);
sqlite3_free(azQuoted);
}
}
/*
** Run a prepared statement
*/
static void exec_prepared_stmt(
ShellState *pArg, /* Pointer to ShellState */
sqlite3_stmt *pStmt /* Statement to run */
){
int rc;
sqlite3_uint64 nRow = 0;
if( pArg->cMode==MODE_Column
|| pArg->cMode==MODE_Table
|| pArg->cMode==MODE_Box
|| pArg->cMode==MODE_Markdown
){
exec_prepared_stmt_columnar(pArg, pStmt);
return;
}
/* perform the first step. this will tell us if we
** have a result set or not and how wide it is.
*/
rc = sqlite3_step(pStmt);
/* if we have a result set... */
if( SQLITE_ROW == rc ){
/* allocate space for col name ptr, value ptr, and type */
int nCol = sqlite3_column_count(pStmt);
void *pData = sqlite3_malloc64(3*nCol*sizeof(const char*) + 1);
if( !pData ){
shell_out_of_memory();
}else{
char **azCols = (char **)pData; /* Names of result columns */
char **azVals = &azCols[nCol]; /* Results */
int *aiTypes = (int *)&azVals[nCol]; /* Result types */
int i, x;
assert(sizeof(int) <= sizeof(char *));
/* save off ptrs to column names */
for(i=0; i<nCol; i++){
azCols[i] = (char *)sqlite3_column_name(pStmt, i);
}
do{
nRow++;
/* extract the data and data types */
for(i=0; i<nCol; i++){
aiTypes[i] = x = sqlite3_column_type(pStmt, i);
if( x==SQLITE_BLOB
&& pArg
&& (pArg->cMode==MODE_Insert || pArg->cMode==MODE_Quote)
){
azVals[i] = "";
}else{
azVals[i] = (char*)sqlite3_column_text(pStmt, i);
}
if( !azVals[i] && (aiTypes[i]!=SQLITE_NULL) ){
rc = SQLITE_NOMEM;
break; /* from for */
}
} /* end for */
/* if data and types extracted successfully... */
if( SQLITE_ROW == rc ){
/* call the supplied callback with the result row data */
if( shell_callback(pArg, nCol, azVals, azCols, aiTypes) ){
rc = SQLITE_ABORT;
}else{
rc = sqlite3_step(pStmt);
}
}
} while( SQLITE_ROW == rc );
sqlite3_free(pData);
if( pArg->cMode==MODE_Json ){
sqlite3_fputs("]\n", pArg->out);
}else if( pArg->cMode==MODE_Www ){
sqlite3_fputs("</TABLE>\n<PRE>\n", pArg->out);
}else if( pArg->cMode==MODE_Count ){
char zBuf[200];
sqlite3_snprintf(sizeof(zBuf), zBuf, "%llu row%s\n",
nRow, nRow!=1 ? "s" : "");
printf("%s", zBuf);
}
}
}
}
#ifndef SQLITE_OMIT_VIRTUALTABLE
/*
** This function is called to process SQL if the previous shell command
** was ".expert". It passes the SQL in the second argument directly to
** the sqlite3expert object.
**
** If successful, SQLITE_OK is returned. Otherwise, an SQLite error
** code. In this case, (*pzErr) may be set to point to a buffer containing
** an English language error message. It is the responsibility of the
** caller to eventually free this buffer using sqlite3_free().
*/
static int expertHandleSQL(
ShellState *pState,
const char *zSql,
char **pzErr
){
assert( pState->expert.pExpert );
assert( pzErr==0 || *pzErr==0 );
return sqlite3_expert_sql(pState->expert.pExpert, zSql, pzErr);
}
/*
** This function is called either to silently clean up the object
** created by the ".expert" command (if bCancel==1), or to generate a
** report from it and then clean it up (if bCancel==0).
**
** If successful, SQLITE_OK is returned. Otherwise, an SQLite error
** code. In this case, (*pzErr) may be set to point to a buffer containing
** an English language error message. It is the responsibility of the
** caller to eventually free this buffer using sqlite3_free().
*/
static int expertFinish(
ShellState *pState,
int bCancel,
char **pzErr
){
int rc = SQLITE_OK;
sqlite3expert *p = pState->expert.pExpert;
FILE *out = pState->out;
assert( p );
assert( bCancel || pzErr==0 || *pzErr==0 );
if( bCancel==0 ){
int bVerbose = pState->expert.bVerbose;
rc = sqlite3_expert_analyze(p, pzErr);
if( rc==SQLITE_OK ){
int nQuery = sqlite3_expert_count(p);
int i;
if( bVerbose ){
const char *zCand = sqlite3_expert_report(p,0,EXPERT_REPORT_CANDIDATES);
sqlite3_fputs("-- Candidates -----------------------------\n", out);
sqlite3_fprintf(out, "%s\n", zCand);
}
for(i=0; i<nQuery; i++){
const char *zSql = sqlite3_expert_report(p, i, EXPERT_REPORT_SQL);
const char *zIdx = sqlite3_expert_report(p, i, EXPERT_REPORT_INDEXES);
const char *zEQP = sqlite3_expert_report(p, i, EXPERT_REPORT_PLAN);
if( zIdx==0 ) zIdx = "(no new indexes)\n";
if( bVerbose ){
sqlite3_fprintf(out,
"-- Query %d --------------------------------\n"
"%s\n\n"
,i+1, zSql);
}
sqlite3_fprintf(out, "%s\n%s\n", zIdx, zEQP);
}
}
}
sqlite3_expert_destroy(p);
pState->expert.pExpert = 0;
return rc;
}
/*
** Implementation of ".expert" dot command.
*/
static int expertDotCommand(
ShellState *pState, /* Current shell tool state */
char **azArg, /* Array of arguments passed to dot command */
int nArg /* Number of entries in azArg[] */
){
int rc = SQLITE_OK;
char *zErr = 0;
int i;
int iSample = 0;
assert( pState->expert.pExpert==0 );
memset(&pState->expert, 0, sizeof(ExpertInfo));
for(i=1; rc==SQLITE_OK && i<nArg; i++){
char *z = azArg[i];
int n;
if( z[0]=='-' && z[1]=='-' ) z++;
n = strlen30(z);
if( n>=2 && 0==cli_strncmp(z, "-verbose", n) ){
pState->expert.bVerbose = 1;
}
else if( n>=2 && 0==cli_strncmp(z, "-sample", n) ){
if( i==(nArg-1) ){
sqlite3_fprintf(stderr, "option requires an argument: %s\n", z);
rc = SQLITE_ERROR;
}else{
iSample = (int)integerValue(azArg[++i]);
if( iSample<0 || iSample>100 ){
sqlite3_fprintf(stderr,"value out of range: %s\n", azArg[i]);
rc = SQLITE_ERROR;
}
}
}
else{
sqlite3_fprintf(stderr,"unknown option: %s\n", z);
rc = SQLITE_ERROR;
}
}
if( rc==SQLITE_OK ){
pState->expert.pExpert = sqlite3_expert_new(pState->db, &zErr);
if( pState->expert.pExpert==0 ){
sqlite3_fprintf(stderr,
"sqlite3_expert_new: %s\n", zErr ? zErr : "out of memory");
rc = SQLITE_ERROR;
}else{
sqlite3_expert_config(
pState->expert.pExpert, EXPERT_CONFIG_SAMPLE, iSample
);
}
}
sqlite3_free(zErr);
return rc;
}
#endif /* ifndef SQLITE_OMIT_VIRTUALTABLE */
/*
** Execute a statement or set of statements. Print
** any result rows/columns depending on the current mode
** set via the supplied callback.
**
** This is very similar to SQLite's built-in sqlite3_exec()
** function except it takes a slightly different callback
** and callback data argument.
*/
static int shell_exec(
ShellState *pArg, /* Pointer to ShellState */
const char *zSql, /* SQL to be evaluated */
char **pzErrMsg /* Error msg written here */
){
sqlite3_stmt *pStmt = NULL; /* Statement to execute. */
int rc = SQLITE_OK; /* Return Code */
int rc2;
const char *zLeftover; /* Tail of unprocessed SQL */
sqlite3 *db = pArg->db;
if( pzErrMsg ){
*pzErrMsg = NULL;
}
#ifndef SQLITE_OMIT_VIRTUALTABLE
if( pArg->expert.pExpert ){
rc = expertHandleSQL(pArg, zSql, pzErrMsg);
return expertFinish(pArg, (rc!=SQLITE_OK), pzErrMsg);
}
#endif
while( zSql[0] && (SQLITE_OK == rc) ){
static const char *zStmtSql;
rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, &zLeftover);
if( SQLITE_OK != rc ){
if( pzErrMsg ){
*pzErrMsg = save_err_msg(db, "in prepare", rc, zSql);
}
}else{
if( !pStmt ){
/* this happens for a comment or white-space */
zSql = zLeftover;
while( IsSpace(zSql[0]) ) zSql++;
continue;
}
zStmtSql = sqlite3_sql(pStmt);
if( zStmtSql==0 ) zStmtSql = "";
while( IsSpace(zStmtSql[0]) ) zStmtSql++;
/* save off the prepared statement handle and reset row count */
if( pArg ){
pArg->pStmt = pStmt;
pArg->cnt = 0;
}
/* Show the EXPLAIN QUERY PLAN if .eqp is on */
if( pArg && pArg->autoEQP && sqlite3_stmt_isexplain(pStmt)==0 ){
sqlite3_stmt *pExplain;
int triggerEQP = 0;
disable_debug_trace_modes();
sqlite3_db_config(db, SQLITE_DBCONFIG_TRIGGER_EQP, -1, &triggerEQP);
if( pArg->autoEQP>=AUTOEQP_trigger ){
sqlite3_db_config(db, SQLITE_DBCONFIG_TRIGGER_EQP, 1, 0);
}
pExplain = pStmt;
sqlite3_reset(pExplain);
rc = sqlite3_stmt_explain(pExplain, 2);
if( rc==SQLITE_OK ){
bind_prepared_stmt(pArg, pExplain);
while( sqlite3_step(pExplain)==SQLITE_ROW ){
const char *zEQPLine = (const char*)sqlite3_column_text(pExplain,3);
int iEqpId = sqlite3_column_int(pExplain, 0);
int iParentId = sqlite3_column_int(pExplain, 1);
if( zEQPLine==0 ) zEQPLine = "";
if( zEQPLine[0]=='-' ) eqp_render(pArg, 0);
eqp_append(pArg, iEqpId, iParentId, zEQPLine);
}
eqp_render(pArg, 0);
}
if( pArg->autoEQP>=AUTOEQP_full ){
/* Also do an EXPLAIN for ".eqp full" mode */
sqlite3_reset(pExplain);
rc = sqlite3_stmt_explain(pExplain, 1);
if( rc==SQLITE_OK ){
pArg->cMode = MODE_Explain;
assert( sqlite3_stmt_isexplain(pExplain)==1 );
bind_prepared_stmt(pArg, pExplain);
explain_data_prepare(pArg, pExplain);
exec_prepared_stmt(pArg, pExplain);
explain_data_delete(pArg);
}
}
if( pArg->autoEQP>=AUTOEQP_trigger && triggerEQP==0 ){
sqlite3_db_config(db, SQLITE_DBCONFIG_TRIGGER_EQP, 0, 0);
}
sqlite3_reset(pStmt);
sqlite3_stmt_explain(pStmt, 0);
restore_debug_trace_modes();
}
if( pArg ){
int bIsExplain = (sqlite3_stmt_isexplain(pStmt)==1);
pArg->cMode = pArg->mode;
if( pArg->autoExplain ){
if( bIsExplain ){
pArg->cMode = MODE_Explain;
}
if( sqlite3_stmt_isexplain(pStmt)==2 ){
pArg->cMode = MODE_EQP;
}
}
/* If the shell is currently in ".explain" mode, gather the extra
** data required to add indents to the output.*/
if( pArg->cMode==MODE_Explain && bIsExplain ){
explain_data_prepare(pArg, pStmt);
}
}
bind_prepared_stmt(pArg, pStmt);
exec_prepared_stmt(pArg, pStmt);
explain_data_delete(pArg);
eqp_render(pArg, 0);
/* print usage stats if stats on */
if( pArg && pArg->statsOn ){
display_stats(db, pArg, 0);
}
/* print loop-counters if required */
if( pArg && pArg->scanstatsOn ){
display_scanstats(db, pArg);
}
/* Finalize the statement just executed. If this fails, save a
** copy of the error message. Otherwise, set zSql to point to the
** next statement to execute. */
rc2 = sqlite3_finalize(pStmt);
if( rc!=SQLITE_NOMEM ) rc = rc2;
if( rc==SQLITE_OK ){
zSql = zLeftover;
while( IsSpace(zSql[0]) ) zSql++;
}else if( pzErrMsg ){
*pzErrMsg = save_err_msg(db, "stepping", rc, 0);
}
/* clear saved stmt handle */
if( pArg ){
pArg->pStmt = NULL;
}
}
} /* end while */
return rc;
}
/*
** Release memory previously allocated by tableColumnList().
*/
static void freeColumnList(char **azCol){
int i;
for(i=1; azCol[i]; i++){
sqlite3_free(azCol[i]);
}
/* azCol[0] is a static string */
sqlite3_free(azCol);
}
/*
** Return a list of pointers to strings which are the names of all
** columns in table zTab. The memory to hold the names is dynamically
** allocated and must be released by the caller using a subsequent call
** to freeColumnList().
**
** The azCol[0] entry is usually NULL. However, if zTab contains a rowid
** value that needs to be preserved, then azCol[0] is filled in with the
** name of the rowid column.
**
** The first regular column in the table is azCol[1]. The list is terminated
** by an entry with azCol[i]==0.
*/
static char **tableColumnList(ShellState *p, const char *zTab){
char **azCol = 0;
sqlite3_stmt *pStmt;
char *zSql;
int nCol = 0;
int nAlloc = 0;
int nPK = 0; /* Number of PRIMARY KEY columns seen */
int isIPK = 0; /* True if one PRIMARY KEY column of type INTEGER */
int preserveRowid = ShellHasFlag(p, SHFLG_PreserveRowid);
int rc;
zSql = sqlite3_mprintf("PRAGMA table_info=%Q", zTab);
shell_check_oom(zSql);
rc = sqlite3_prepare_v2(p->db, zSql, -1, &pStmt, 0);
sqlite3_free(zSql);
if( rc ) return 0;
while( sqlite3_step(pStmt)==SQLITE_ROW ){
if( nCol>=nAlloc-2 ){
nAlloc = nAlloc*2 + nCol + 10;
azCol = sqlite3_realloc(azCol, nAlloc*sizeof(azCol[0]));
shell_check_oom(azCol);
}
azCol[++nCol] = sqlite3_mprintf("%s", sqlite3_column_text(pStmt, 1));
shell_check_oom(azCol[nCol]);
if( sqlite3_column_int(pStmt, 5) ){
nPK++;
if( nPK==1
&& sqlite3_stricmp((const char*)sqlite3_column_text(pStmt,2),
"INTEGER")==0
){
isIPK = 1;
}else{
isIPK = 0;
}
}
}
sqlite3_finalize(pStmt);
if( azCol==0 ) return 0;
azCol[0] = 0;
azCol[nCol+1] = 0;
/* The decision of whether or not a rowid really needs to be preserved
** is tricky. We never need to preserve a rowid for a WITHOUT ROWID table
** or a table with an INTEGER PRIMARY KEY. We are unable to preserve
** rowids on tables where the rowid is inaccessible because there are other
** columns in the table named "rowid", "_rowid_", and "oid".
*/
if( preserveRowid && isIPK ){
/* If a single PRIMARY KEY column with type INTEGER was seen, then it
** might be an alias for the ROWID. But it might also be a WITHOUT ROWID
** table or a INTEGER PRIMARY KEY DESC column, neither of which are
** ROWID aliases. To distinguish these cases, check to see if
** there is a "pk" entry in "PRAGMA index_list". There will be
** no "pk" index if the PRIMARY KEY really is an alias for the ROWID.
*/
zSql = sqlite3_mprintf("SELECT 1 FROM pragma_index_list(%Q)"
" WHERE origin='pk'", zTab);
shell_check_oom(zSql);
rc = sqlite3_prepare_v2(p->db, zSql, -1, &pStmt, 0);
sqlite3_free(zSql);
if( rc ){
freeColumnList(azCol);
return 0;
}
rc = sqlite3_step(pStmt);
sqlite3_finalize(pStmt);
preserveRowid = rc==SQLITE_ROW;
}
if( preserveRowid ){
/* Only preserve the rowid if we can find a name to use for the
** rowid */
static char *azRowid[] = { "rowid", "_rowid_", "oid" };
int i, j;
for(j=0; j<3; j++){
for(i=1; i<=nCol; i++){
if( sqlite3_stricmp(azRowid[j],azCol[i])==0 ) break;
}
if( i>nCol ){
/* At this point, we know that azRowid[j] is not the name of any
** ordinary column in the table. Verify that azRowid[j] is a valid
** name for the rowid before adding it to azCol[0]. WITHOUT ROWID
** tables will fail this last check */
rc = sqlite3_table_column_metadata(p->db,0,zTab,azRowid[j],0,0,0,0,0);
if( rc==SQLITE_OK ) azCol[0] = azRowid[j];
break;
}
}
}
return azCol;
}
/*
** Toggle the reverse_unordered_selects setting.
*/
static void toggleSelectOrder(sqlite3 *db){
sqlite3_stmt *pStmt = 0;
int iSetting = 0;
char zStmt[100];
sqlite3_prepare_v2(db, "PRAGMA reverse_unordered_selects", -1, &pStmt, 0);
if( sqlite3_step(pStmt)==SQLITE_ROW ){
iSetting = sqlite3_column_int(pStmt, 0);
}
sqlite3_finalize(pStmt);
sqlite3_snprintf(sizeof(zStmt), zStmt,
"PRAGMA reverse_unordered_selects(%d)", !iSetting);
sqlite3_exec(db, zStmt, 0, 0, 0);
}
/*
** This is a different callback routine used for dumping the database.
** Each row received by this callback consists of a table name,
** the table type ("index" or "table") and SQL to create the table.
** This routine should print text sufficient to recreate the table.
*/
static int dump_callback(void *pArg, int nArg, char **azArg, char **azNotUsed){
int rc;
const char *zTable;
const char *zType;
const char *zSql;
ShellState *p = (ShellState *)pArg;
int dataOnly;
int noSys;
UNUSED_PARAMETER(azNotUsed);
if( nArg!=3 || azArg==0 ) return 0;
zTable = azArg[0];
zType = azArg[1];
zSql = azArg[2];
if( zTable==0 ) return 0;
if( zType==0 ) return 0;
dataOnly = (p->shellFlgs & SHFLG_DumpDataOnly)!=0;
noSys = (p->shellFlgs & SHFLG_DumpNoSys)!=0;
if( cli_strcmp(zTable, "sqlite_sequence")==0 && !noSys ){
/* no-op */
}else if( sqlite3_strglob("sqlite_stat?", zTable)==0 && !noSys ){
if( !dataOnly ) sqlite3_fputs("ANALYZE sqlite_schema;\n", p->out);
}else if( cli_strncmp(zTable, "sqlite_", 7)==0 ){
return 0;
}else if( dataOnly ){
/* no-op */
}else if( cli_strncmp(zSql, "CREATE VIRTUAL TABLE", 20)==0 ){
char *zIns;
if( !p->writableSchema ){
sqlite3_fputs("PRAGMA writable_schema=ON;\n", p->out);
p->writableSchema = 1;
}
zIns = sqlite3_mprintf(
"INSERT INTO sqlite_schema(type,name,tbl_name,rootpage,sql)"
"VALUES('table','%q','%q',0,'%q');",
zTable, zTable, zSql);
shell_check_oom(zIns);
sqlite3_fprintf(p->out, "%s\n", zIns);
sqlite3_free(zIns);
return 0;
}else{
printSchemaLine(p->out, zSql, ";\n");
}
if( cli_strcmp(zType, "table")==0 ){
ShellText sSelect;
ShellText sTable;
char **azCol;
int i;
char *savedDestTable;
int savedMode;
azCol = tableColumnList(p, zTable);
if( azCol==0 ){
p->nErr++;
return 0;
}
/* Always quote the table name, even if it appears to be pure ascii,
** in case it is a keyword. Ex: INSERT INTO "table" ... */
initText(&sTable);
appendText(&sTable, zTable, quoteChar(zTable));
/* If preserving the rowid, add a column list after the table name.
** In other words: "INSERT INTO tab(rowid,a,b,c,...) VALUES(...)"
** instead of the usual "INSERT INTO tab VALUES(...)".
*/
if( azCol[0] ){
appendText(&sTable, "(", 0);
appendText(&sTable, azCol[0], 0);
for(i=1; azCol[i]; i++){
appendText(&sTable, ",", 0);
appendText(&sTable, azCol[i], quoteChar(azCol[i]));
}
appendText(&sTable, ")", 0);
}
/* Build an appropriate SELECT statement */
initText(&sSelect);
appendText(&sSelect, "SELECT ", 0);
if( azCol[0] ){
appendText(&sSelect, azCol[0], 0);
appendText(&sSelect, ",", 0);
}
for(i=1; azCol[i]; i++){
appendText(&sSelect, azCol[i], quoteChar(azCol[i]));
if( azCol[i+1] ){
appendText(&sSelect, ",", 0);
}
}
freeColumnList(azCol);
appendText(&sSelect, " FROM ", 0);
appendText(&sSelect, zTable, quoteChar(zTable));
savedDestTable = p->zDestTable;
savedMode = p->mode;
p->zDestTable = sTable.z;
p->mode = p->cMode = MODE_Insert;
rc = shell_exec(p, sSelect.z, 0);
if( (rc&0xff)==SQLITE_CORRUPT ){
sqlite3_fputs("/****** CORRUPTION ERROR *******/\n", p->out);
toggleSelectOrder(p->db);
shell_exec(p, sSelect.z, 0);
toggleSelectOrder(p->db);
}
p->zDestTable = savedDestTable;
p->mode = savedMode;
freeText(&sTable);
freeText(&sSelect);
if( rc ) p->nErr++;
}
return 0;
}
/*
** Run zQuery. Use dump_callback() as the callback routine so that
** the contents of the query are output as SQL statements.
**
** If we get a SQLITE_CORRUPT error, rerun the query after appending
** "ORDER BY rowid DESC" to the end.
*/
static int run_schema_dump_query(
ShellState *p,
const char *zQuery
){
int rc;
char *zErr = 0;
rc = sqlite3_exec(p->db, zQuery, dump_callback, p, &zErr);
if( rc==SQLITE_CORRUPT ){
char *zQ2;
int len = strlen30(zQuery);
sqlite3_fputs("/****** CORRUPTION ERROR *******/\n", p->out);
if( zErr ){
sqlite3_fprintf(p->out, "/****** %s ******/\n", zErr);
sqlite3_free(zErr);
zErr = 0;
}
zQ2 = malloc( len+100 );
if( zQ2==0 ) return rc;
sqlite3_snprintf(len+100, zQ2, "%s ORDER BY rowid DESC", zQuery);
rc = sqlite3_exec(p->db, zQ2, dump_callback, p, &zErr);
if( rc ){
sqlite3_fprintf(p->out, "/****** ERROR: %s ******/\n", zErr);
}else{
rc = SQLITE_CORRUPT;
}
free(zQ2);
}
sqlite3_free(zErr);
return rc;
}
/*
** Text of help messages.
**
** The help text for each individual command begins with a line that starts
** with ".". Subsequent lines are supplemental information.
**
** There must be two or more spaces between the end of the command and the
** start of the description of what that command does.
*/
static const char *(azHelp[]) = {
#if defined(SQLITE_HAVE_ZLIB) && !defined(SQLITE_OMIT_VIRTUALTABLE) \
&& !defined(SQLITE_SHELL_FIDDLE)
".archive ... Manage SQL archives",
" Each command must have exactly one of the following options:",
" -c, --create Create a new archive",
" -u, --update Add or update files with changed mtime",
" -i, --insert Like -u but always add even if unchanged",
" -r, --remove Remove files from archive",
" -t, --list List contents of archive",
" -x, --extract Extract files from archive",
" Optional arguments:",
" -v, --verbose Print each filename as it is processed",
" -f FILE, --file FILE Use archive FILE (default is current db)",
" -a FILE, --append FILE Open FILE using the apndvfs VFS",
" -C DIR, --directory DIR Read/extract files from directory DIR",
" -g, --glob Use glob matching for names in archive",
" -n, --dryrun Show the SQL that would have occurred",
" Examples:",
" .ar -cf ARCHIVE foo bar # Create ARCHIVE from files foo and bar",
" .ar -tf ARCHIVE # List members of ARCHIVE",
" .ar -xvf ARCHIVE # Verbosely extract files from ARCHIVE",
" See also:",
" http://sqlite.org/cli.html#sqlite_archive_support",
#endif
#ifndef SQLITE_OMIT_AUTHORIZATION
".auth ON|OFF Show authorizer callbacks",
#endif
#ifndef SQLITE_SHELL_FIDDLE
".backup ?DB? FILE Backup DB (default \"main\") to FILE",
" Options:",
" --append Use the appendvfs",
" --async Write to FILE without journal and fsync()",
#endif
".bail on|off Stop after hitting an error. Default OFF",
#ifndef SQLITE_SHELL_FIDDLE
".cd DIRECTORY Change the working directory to DIRECTORY",
#endif
".changes on|off Show number of rows changed by SQL",
#ifndef SQLITE_SHELL_FIDDLE
".check GLOB Fail if output since .testcase does not match",
".clone NEWDB Clone data into NEWDB from the existing database",
#endif
".connection [close] [#] Open or close an auxiliary database connection",
".crlf ?on|off? Whether or not to use \\r\\n line endings",
".databases List names and files of attached databases",
".dbconfig ?op? ?val? List or change sqlite3_db_config() options",
#if SQLITE_SHELL_HAVE_RECOVER
".dbinfo ?DB? Show status information about the database",
#endif
".dbtotxt Hex dump of the database file",
".dump ?OBJECTS? Render database content as SQL",
" Options:",
" --data-only Output only INSERT statements",
" --newlines Allow unescaped newline characters in output",
" --nosys Omit system tables (ex: \"sqlite_stat1\")",
" --preserve-rowids Include ROWID values in the output",
" OBJECTS is a LIKE pattern for tables, indexes, triggers or views to dump",
" Additional LIKE patterns can be given in subsequent arguments",
".echo on|off Turn command echo on or off",
".eqp on|off|full|... Enable or disable automatic EXPLAIN QUERY PLAN",
" Other Modes:",
#ifdef SQLITE_DEBUG
" test Show raw EXPLAIN QUERY PLAN output",
" trace Like \"full\" but enable \"PRAGMA vdbe_trace\"",
#endif
" trigger Like \"full\" but also show trigger bytecode",
#ifndef SQLITE_SHELL_FIDDLE
".excel Display the output of next command in spreadsheet",
" --bom Put a UTF8 byte-order mark on intermediate file",
#endif
#ifndef SQLITE_SHELL_FIDDLE
".exit ?CODE? Exit this program with return-code CODE",
#endif
".expert EXPERIMENTAL. Suggest indexes for queries",
".explain ?on|off|auto? Change the EXPLAIN formatting mode. Default: auto",
".filectrl CMD ... Run various sqlite3_file_control() operations",
" --schema SCHEMA Use SCHEMA instead of \"main\"",
" --help Show CMD details",
".fullschema ?--indent? Show schema and the content of sqlite_stat tables",
".headers on|off Turn display of headers on or off",
".help ?-all? ?PATTERN? Show help text for PATTERN",
#ifndef SQLITE_SHELL_FIDDLE
".import FILE TABLE Import data from FILE into TABLE",
" Options:",
" --ascii Use \\037 and \\036 as column and row separators",
" --csv Use , and \\n as column and row separators",
" --skip N Skip the first N rows of input",
" --schema S Target table to be S.TABLE",
" -v \"Verbose\" - increase auxiliary output",
" Notes:",
" * If TABLE does not exist, it is created. The first row of input",
" determines the column names.",
" * If neither --csv or --ascii are used, the input mode is derived",
" from the \".mode\" output mode",
" * If FILE begins with \"|\" then it is a command that generates the",
" input text.",
#endif
#ifndef SQLITE_OMIT_TEST_CONTROL
",imposter INDEX TABLE Create imposter table TABLE on index INDEX",
#endif
".indexes ?TABLE? Show names of indexes",
" If TABLE is specified, only show indexes for",
" tables matching TABLE using the LIKE operator.",
".intck ?STEPS_PER_UNLOCK? Run an incremental integrity check on the db",
#ifdef SQLITE_ENABLE_IOTRACE
",iotrace FILE Enable I/O diagnostic logging to FILE",
#endif
".limit ?LIMIT? ?VAL? Display or change the value of an SQLITE_LIMIT",
".lint OPTIONS Report potential schema issues.",
" Options:",
" fkey-indexes Find missing foreign key indexes",
#if !defined(SQLITE_OMIT_LOAD_EXTENSION) && !defined(SQLITE_SHELL_FIDDLE)
".load FILE ?ENTRY? Load an extension library",
#endif
#if !defined(SQLITE_SHELL_FIDDLE)
".log FILE|on|off Turn logging on or off. FILE can be stderr/stdout",
#else
".log on|off Turn logging on or off.",
#endif
".mode MODE ?OPTIONS? Set output mode",
" MODE is one of:",
" ascii Columns/rows delimited by 0x1F and 0x1E",
" box Tables using unicode box-drawing characters",
" csv Comma-separated values",
" column Output in columns. (See .width)",
" html HTML <table> code",
" insert SQL insert statements for TABLE",
" json Results in a JSON array",
" line One value per line",
" list Values delimited by \"|\"",
" markdown Markdown table format",
" qbox Shorthand for \"box --wrap 60 --quote\"",
" quote Escape answers as for SQL",
" table ASCII-art table",
" tabs Tab-separated values",
" tcl TCL list elements",
" OPTIONS: (for columnar modes or insert mode):",
" --wrap N Wrap output lines to no longer than N characters",
" --wordwrap B Wrap or not at word boundaries per B (on/off)",
" --ww Shorthand for \"--wordwrap 1\"",
" --quote Quote output text as SQL literals",
" --noquote Do not quote output text",
" TABLE The name of SQL table used for \"insert\" mode",
#ifndef SQLITE_SHELL_FIDDLE
".nonce STRING Suspend safe mode for one command if nonce matches",
#endif
".nullvalue STRING Use STRING in place of NULL values",
#ifndef SQLITE_SHELL_FIDDLE
".once ?OPTIONS? ?FILE? Output for the next SQL command only to FILE",
" If FILE begins with '|' then open as a pipe",
" --bom Put a UTF8 byte-order mark at the beginning",
" -e Send output to the system text editor",
" --plain Use text/plain output instead of HTML for -w option",
" -w Send output as HTML to a web browser (same as \".www\")",
" -x Send output as CSV to a spreadsheet (same as \".excel\")",
/* Note that .open is (partially) available in WASM builds but is
** currently only intended to be used by the fiddle tool, not
** end users, so is "undocumented." */
".open ?OPTIONS? ?FILE? Close existing database and reopen FILE",
" Options:",
" --append Use appendvfs to append database to the end of FILE",
#endif
#ifndef SQLITE_OMIT_DESERIALIZE
" --deserialize Load into memory using sqlite3_deserialize()",
" --hexdb Load the output of \"dbtotxt\" as an in-memory db",
" --maxsize N Maximum size for --hexdb or --deserialized database",
#endif
" --new Initialize FILE to an empty database",
" --nofollow Do not follow symbolic links",
" --readonly Open FILE readonly",
" --zip FILE is a ZIP archive",
#ifndef SQLITE_SHELL_FIDDLE
".output ?FILE? Send output to FILE or stdout if FILE is omitted",
" If FILE begins with '|' then open it as a pipe.",
" Options:",
" --bom Prefix output with a UTF8 byte-order mark",
" -e Send output to the system text editor",
" --plain Use text/plain for -w option",
" -w Send output to a web browser",
" -x Send output as CSV to a spreadsheet",
#endif
".parameter CMD ... Manage SQL parameter bindings",
" clear Erase all bindings",
" init Initialize the TEMP table that holds bindings",
" list List the current parameter bindings",
" set PARAMETER VALUE Given SQL parameter PARAMETER a value of VALUE",
" PARAMETER should start with one of: $ : @ ?",
" unset PARAMETER Remove PARAMETER from the binding table",
".print STRING... Print literal STRING",
#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
".progress N Invoke progress handler after every N opcodes",
" --limit N Interrupt after N progress callbacks",
" --once Do no more than one progress interrupt",
" --quiet|-q No output except at interrupts",
" --reset Reset the count for each input and interrupt",
#endif
".prompt MAIN CONTINUE Replace the standard prompts",
#ifndef SQLITE_SHELL_FIDDLE
".quit Stop interpreting input stream, exit if primary.",
".read FILE Read input from FILE or command output",
" If FILE begins with \"|\", it is a command that generates the input.",
#endif
#if SQLITE_SHELL_HAVE_RECOVER
".recover Recover as much data as possible from corrupt db.",
" --ignore-freelist Ignore pages that appear to be on db freelist",
" --lost-and-found TABLE Alternative name for the lost-and-found table",
" --no-rowids Do not attempt to recover rowid values",
" that are not also INTEGER PRIMARY KEYs",
#endif
#ifndef SQLITE_SHELL_FIDDLE
".restore ?DB? FILE Restore content of DB (default \"main\") from FILE",
".save ?OPTIONS? FILE Write database to FILE (an alias for .backup ...)",
#endif
".scanstats on|off|est Turn sqlite3_stmt_scanstatus() metrics on or off",
".schema ?PATTERN? Show the CREATE statements matching PATTERN",
" Options:",
" --indent Try to pretty-print the schema",
" --nosys Omit objects whose names start with \"sqlite_\"",
",selftest ?OPTIONS? Run tests defined in the SELFTEST table",
" Options:",
" --init Create a new SELFTEST table",
" -v Verbose output",
".separator COL ?ROW? Change the column and row separators",
#if defined(SQLITE_ENABLE_SESSION)
".session ?NAME? CMD ... Create or control sessions",
" Subcommands:",
" attach TABLE Attach TABLE",
" changeset FILE Write a changeset into FILE",
" close Close one session",
" enable ?BOOLEAN? Set or query the enable bit",
" filter GLOB... Reject tables matching GLOBs",
" indirect ?BOOLEAN? Mark or query the indirect status",
" isempty Query whether the session is empty",
" list List currently open session names",
" open DB NAME Open a new session on DB",
" patchset FILE Write a patchset into FILE",
" If ?NAME? is omitted, the first defined session is used.",
#endif
".sha3sum ... Compute a SHA3 hash of database content",
" Options:",
" --schema Also hash the sqlite_schema table",
" --sha3-224 Use the sha3-224 algorithm",
" --sha3-256 Use the sha3-256 algorithm (default)",
" --sha3-384 Use the sha3-384 algorithm",
" --sha3-512 Use the sha3-512 algorithm",
" Any other argument is a LIKE pattern for tables to hash",
#if !defined(SQLITE_NOHAVE_SYSTEM) && !defined(SQLITE_SHELL_FIDDLE)
".shell CMD ARGS... Run CMD ARGS... in a system shell",
#endif
".show Show the current values for various settings",
".stats ?ARG? Show stats or turn stats on or off",
" off Turn off automatic stat display",
" on Turn on automatic stat display",
" stmt Show statement stats",
" vmstep Show the virtual machine step count only",
#if !defined(SQLITE_NOHAVE_SYSTEM) && !defined(SQLITE_SHELL_FIDDLE)
".system CMD ARGS... Run CMD ARGS... in a system shell",
#endif
".tables ?TABLE? List names of tables matching LIKE pattern TABLE",
#ifndef SQLITE_SHELL_FIDDLE
",testcase NAME Begin redirecting output to 'testcase-out.txt'",
#endif
",testctrl CMD ... Run various sqlite3_test_control() operations",
" Run \".testctrl\" with no arguments for details",
".timeout MS Try opening locked tables for MS milliseconds",
".timer on|off Turn SQL timer on or off",
#ifndef SQLITE_OMIT_TRACE
".trace ?OPTIONS? Output each SQL statement as it is run",
" FILE Send output to FILE",
" stdout Send output to stdout",
" stderr Send output to stderr",
" off Disable tracing",
" --expanded Expand query parameters",
#ifdef SQLITE_ENABLE_NORMALIZE
" --normalized Normal the SQL statements",
#endif
" --plain Show SQL as it is input",
" --stmt Trace statement execution (SQLITE_TRACE_STMT)",
" --profile Profile statements (SQLITE_TRACE_PROFILE)",
" --row Trace each row (SQLITE_TRACE_ROW)",
" --close Trace connection close (SQLITE_TRACE_CLOSE)",
#endif /* SQLITE_OMIT_TRACE */
#ifdef SQLITE_DEBUG
".unmodule NAME ... Unregister virtual table modules",
" --allexcept Unregister everything except those named",
#endif
".version Show source, library and compiler versions",
".vfsinfo ?AUX? Information about the top-level VFS",
".vfslist List all available VFSes",
".vfsname ?AUX? Print the name of the VFS stack",
".width NUM1 NUM2 ... Set minimum column widths for columnar output",
" Negative values right-justify",
#ifndef SQLITE_SHELL_FIDDLE
".www Display output of the next command in web browser",
" --plain Show results as text/plain, not as HTML",
#endif
};
/*
** Output help text.
**
** zPattern describes the set of commands for which help text is provided.
** If zPattern is NULL, then show all commands, but only give a one-line
** description of each.
**
** Return the number of matches.
*/
static int showHelp(FILE *out, const char *zPattern){
int i = 0;
int j = 0;
int n = 0;
char *zPat;
if( zPattern==0
|| zPattern[0]=='0'
|| cli_strcmp(zPattern,"-a")==0
|| cli_strcmp(zPattern,"-all")==0
|| cli_strcmp(zPattern,"--all")==0
){
enum HelpWanted { HW_NoCull = 0, HW_SummaryOnly = 1, HW_Undoc = 2 };
enum HelpHave { HH_Undoc = 2, HH_Summary = 1, HH_More = 0 };
/* Show all or most commands
** *zPattern==0 => summary of documented commands only
** *zPattern=='0' => whole help for undocumented commands
** Otherwise => whole help for documented commands
*/
enum HelpWanted hw = HW_SummaryOnly;
enum HelpHave hh = HH_More;
if( zPattern!=0 ){
hw = (*zPattern=='0')? HW_NoCull|HW_Undoc : HW_NoCull;
}
for(i=0; i<ArraySize(azHelp); i++){
switch( azHelp[i][0] ){
case ',':
hh = HH_Summary|HH_Undoc;
break;
case '.':
hh = HH_Summary;
break;
default:
hh &= ~HH_Summary;
break;
}
if( ((hw^hh)&HH_Undoc)==0 ){
if( (hh&HH_Summary)!=0 ){
sqlite3_fprintf(out, ".%s\n", azHelp[i]+1);
++n;
}else if( (hw&HW_SummaryOnly)==0 ){
sqlite3_fprintf(out, "%s\n", azHelp[i]);
}
}
}
}else{
/* Seek documented commands for which zPattern is an exact prefix */
zPat = sqlite3_mprintf(".%s*", zPattern);
shell_check_oom(zPat);
for(i=0; i<ArraySize(azHelp); i++){
if( sqlite3_strglob(zPat, azHelp[i])==0 ){
sqlite3_fprintf(out, "%s\n", azHelp[i]);
j = i+1;
n++;
}
}
sqlite3_free(zPat);
if( n ){
if( n==1 ){
/* when zPattern is a prefix of exactly one command, then include
** the details of that command, which should begin at offset j */
while( j<ArraySize(azHelp)-1 && azHelp[j][0]==' ' ){
sqlite3_fprintf(out, "%s\n", azHelp[j]);
j++;
}
}
return n;
}
/* Look for documented commands that contain zPattern anywhere.
** Show complete text of all documented commands that match. */
zPat = sqlite3_mprintf("%%%s%%", zPattern);
shell_check_oom(zPat);
for(i=0; i<ArraySize(azHelp); i++){
if( azHelp[i][0]==',' ){
while( i<ArraySize(azHelp)-1 && azHelp[i+1][0]==' ' ) ++i;
continue;
}
if( azHelp[i][0]=='.' ) j = i;
if( sqlite3_strlike(zPat, azHelp[i], 0)==0 ){
sqlite3_fprintf(out, "%s\n", azHelp[j]);
while( j<ArraySize(azHelp)-1 && azHelp[j+1][0]==' ' ){
j++;
sqlite3_fprintf(out, "%s\n", azHelp[j]);
}
i = j;
n++;
}
}
sqlite3_free(zPat);
}
return n;
}
/* Forward reference */
static int process_input(ShellState *p);
/*
** Read the content of file zName into memory obtained from sqlite3_malloc64()
** and return a pointer to the buffer. The caller is responsible for freeing
** the memory.
**
** If parameter pnByte is not NULL, (*pnByte) is set to the number of bytes
** read.
**
** For convenience, a nul-terminator byte is always appended to the data read
** from the file before the buffer is returned. This byte is not included in
** the final value of (*pnByte), if applicable.
**
** NULL is returned if any error is encountered. The final value of *pnByte
** is undefined in this case.
*/
static char *readFile(const char *zName, int *pnByte){
FILE *in = sqlite3_fopen(zName, "rb");
long nIn;
size_t nRead;
char *pBuf;
int rc;
if( in==0 ) return 0;
rc = fseek(in, 0, SEEK_END);
if( rc!=0 ){
sqlite3_fprintf(stderr,"Error: '%s' not seekable\n", zName);
fclose(in);
return 0;
}
nIn = ftell(in);
rewind(in);
pBuf = sqlite3_malloc64( nIn+1 );
if( pBuf==0 ){
sqlite3_fputs("Error: out of memory\n", stderr);
fclose(in);
return 0;
}
nRead = fread(pBuf, nIn, 1, in);
fclose(in);
if( nRead!=1 ){
sqlite3_free(pBuf);
sqlite3_fprintf(stderr,"Error: cannot read '%s'\n", zName);
return 0;
}
pBuf[nIn] = 0;
if( pnByte ) *pnByte = nIn;
return pBuf;
}
#if defined(SQLITE_ENABLE_SESSION)
/*
** Close a single OpenSession object and release all of its associated
** resources.
*/
static void session_close(OpenSession *pSession){
int i;
sqlite3session_delete(pSession->p);
sqlite3_free(pSession->zName);
for(i=0; i<pSession->nFilter; i++){
sqlite3_free(pSession->azFilter[i]);
}
sqlite3_free(pSession->azFilter);
memset(pSession, 0, sizeof(OpenSession));
}
#endif
/*
** Close all OpenSession objects and release all associated resources.
*/
#if defined(SQLITE_ENABLE_SESSION)
static void session_close_all(ShellState *p, int i){
int j;
struct AuxDb *pAuxDb = i<0 ? p->pAuxDb : &p->aAuxDb[i];
for(j=0; j<pAuxDb->nSession; j++){
session_close(&pAuxDb->aSession[j]);
}
pAuxDb->nSession = 0;
}
#else
# define session_close_all(X,Y)
#endif
/*
** Implementation of the xFilter function for an open session. Omit
** any tables named by ".session filter" but let all other table through.
*/
#if defined(SQLITE_ENABLE_SESSION)
static int session_filter(void *pCtx, const char *zTab){
OpenSession *pSession = (OpenSession*)pCtx;
int i;
for(i=0; i<pSession->nFilter; i++){
if( sqlite3_strglob(pSession->azFilter[i], zTab)==0 ) return 0;
}
return 1;
}
#endif
/*
** Try to deduce the type of file for zName based on its content. Return
** one of the SHELL_OPEN_* constants.
**
** If the file does not exist or is empty but its name looks like a ZIP
** archive and the dfltZip flag is true, then assume it is a ZIP archive.
** Otherwise, assume an ordinary database regardless of the filename if
** the type cannot be determined from content.
*/
int deduceDatabaseType(const char *zName, int dfltZip){
FILE *f = sqlite3_fopen(zName, "rb");
size_t n;
int rc = SHELL_OPEN_UNSPEC;
char zBuf[100];
if( f==0 ){
if( dfltZip && sqlite3_strlike("%.zip",zName,0)==0 ){
return SHELL_OPEN_ZIPFILE;
}else{
return SHELL_OPEN_NORMAL;
}
}
n = fread(zBuf, 16, 1, f);
if( n==1 && memcmp(zBuf, "SQLite format 3", 16)==0 ){
fclose(f);
return SHELL_OPEN_NORMAL;
}
fseek(f, -25, SEEK_END);
n = fread(zBuf, 25, 1, f);
if( n==1 && memcmp(zBuf, "Start-Of-SQLite3-", 17)==0 ){
rc = SHELL_OPEN_APPENDVFS;
}else{
fseek(f, -22, SEEK_END);
n = fread(zBuf, 22, 1, f);
if( n==1 && zBuf[0]==0x50 && zBuf[1]==0x4b && zBuf[2]==0x05
&& zBuf[3]==0x06 ){
rc = SHELL_OPEN_ZIPFILE;
}else if( n==0 && dfltZip && sqlite3_strlike("%.zip",zName,0)==0 ){
rc = SHELL_OPEN_ZIPFILE;
}
}
fclose(f);
return rc;
}
#ifndef SQLITE_OMIT_DESERIALIZE
/*
** Reconstruct an in-memory database using the output from the "dbtotxt"
** program. Read content from the file in p->aAuxDb[].zDbFilename.
** If p->aAuxDb[].zDbFilename is 0, then read from standard input.
*/
static unsigned char *readHexDb(ShellState *p, int *pnData){
unsigned char *a = 0;
int nLine;
int n = 0;
int pgsz = 0;
int iOffset = 0;
int j, k;
int rc;
FILE *in;
const char *zDbFilename = p->pAuxDb->zDbFilename;
unsigned int x[16];
char zLine[1000];
if( zDbFilename ){
in = sqlite3_fopen(zDbFilename, "r");
if( in==0 ){
sqlite3_fprintf(stderr,"cannot open \"%s\" for reading\n", zDbFilename);
return 0;
}
nLine = 0;
}else{
in = p->in;
nLine = p->lineno;
if( in==0 ) in = stdin;
}
*pnData = 0;
nLine++;
if( sqlite3_fgets(zLine, sizeof(zLine), in)==0 ) goto readHexDb_error;
rc = sscanf(zLine, "| size %d pagesize %d", &n, &pgsz);
if( rc!=2 ) goto readHexDb_error;
if( n<0 ) goto readHexDb_error;
if( pgsz<512 || pgsz>65536 || (pgsz&(pgsz-1))!=0 ) goto readHexDb_error;
n = (n+pgsz-1)&~(pgsz-1); /* Round n up to the next multiple of pgsz */
a = sqlite3_malloc( n ? n : 1 );
shell_check_oom(a);
memset(a, 0, n);
if( pgsz<512 || pgsz>65536 || (pgsz & (pgsz-1))!=0 ){
sqlite3_fputs("invalid pagesize\n", stderr);
goto readHexDb_error;
}
for(nLine++; sqlite3_fgets(zLine, sizeof(zLine), in)!=0; nLine++){
rc = sscanf(zLine, "| page %d offset %d", &j, &k);
if( rc==2 ){
iOffset = k;
continue;
}
if( cli_strncmp(zLine, "| end ", 6)==0 ){
break;
}
rc = sscanf(zLine,"| %d: %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x",
&j, &x[0], &x[1], &x[2], &x[3], &x[4], &x[5], &x[6], &x[7],
&x[8], &x[9], &x[10], &x[11], &x[12], &x[13], &x[14], &x[15]);
if( rc==17 ){
k = iOffset+j;
if( k+16<=n && k>=0 ){
int ii;
for(ii=0; ii<16; ii++) a[k+ii] = x[ii]&0xff;
}
}
}
*pnData = n;
if( in!=p->in ){
fclose(in);
}else{
p->lineno = nLine;
}
return a;
readHexDb_error:
if( in!=p->in ){
fclose(in);
}else{
while( sqlite3_fgets(zLine, sizeof(zLine), p->in)!=0 ){
nLine++;
if(cli_strncmp(zLine, "| end ", 6)==0 ) break;
}
p->lineno = nLine;
}
sqlite3_free(a);
sqlite3_fprintf(stderr,"Error on line %d of --hexdb input\n", nLine);
return 0;
}
#endif /* SQLITE_OMIT_DESERIALIZE */
/*
** Scalar function "usleep(X)" invokes sqlite3_sleep(X) and returns X.
*/
static void shellUSleepFunc(
sqlite3_context *context,
int argcUnused,
sqlite3_value **argv
){
int sleep = sqlite3_value_int(argv[0]);
(void)argcUnused;
sqlite3_sleep(sleep/1000);
sqlite3_result_int(context, sleep);
}
/* Flags for open_db().
**
** The default behavior of open_db() is to exit(1) if the database fails to
** open. The OPEN_DB_KEEPALIVE flag changes that so that it prints an error
** but still returns without calling exit.
**
** The OPEN_DB_ZIPFILE flag causes open_db() to prefer to open files as a
** ZIP archive if the file does not exist or is empty and its name matches
** the *.zip pattern.
*/
#define OPEN_DB_KEEPALIVE 0x001 /* Return after error if true */
#define OPEN_DB_ZIPFILE 0x002 /* Open as ZIP if name matches *.zip */
/*
** Make sure the database is open. If it is not, then open it. If
** the database fails to open, print an error message and exit.
*/
static void open_db(ShellState *p, int openFlags){
if( p->db==0 ){
const char *zDbFilename = p->pAuxDb->zDbFilename;
if( p->openMode==SHELL_OPEN_UNSPEC ){
if( zDbFilename==0 || zDbFilename[0]==0 ){
p->openMode = SHELL_OPEN_NORMAL;
}else{
p->openMode = (u8)deduceDatabaseType(zDbFilename,
(openFlags & OPEN_DB_ZIPFILE)!=0);
}
}
switch( p->openMode ){
case SHELL_OPEN_APPENDVFS: {
sqlite3_open_v2(zDbFilename, &p->db,
SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|p->openFlags, "apndvfs");
break;
}
case SHELL_OPEN_HEXDB:
case SHELL_OPEN_DESERIALIZE: {
sqlite3_open(0, &p->db);
break;
}
case SHELL_OPEN_ZIPFILE: {
sqlite3_open(":memory:", &p->db);
break;
}
case SHELL_OPEN_READONLY: {
sqlite3_open_v2(zDbFilename, &p->db,
SQLITE_OPEN_READONLY|p->openFlags, 0);
break;
}
case SHELL_OPEN_UNSPEC:
case SHELL_OPEN_NORMAL: {
sqlite3_open_v2(zDbFilename, &p->db,
SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|p->openFlags, 0);
break;
}
}
if( p->db==0 || SQLITE_OK!=sqlite3_errcode(p->db) ){
sqlite3_fprintf(stderr,"Error: unable to open database \"%s\": %s\n",
zDbFilename, sqlite3_errmsg(p->db));
if( (openFlags & OPEN_DB_KEEPALIVE)==0 ){
exit(1);
}
sqlite3_close(p->db);
sqlite3_open(":memory:", &p->db);
if( p->db==0 || SQLITE_OK!=sqlite3_errcode(p->db) ){
sqlite3_fputs("Also: unable to open substitute in-memory database.\n",
stderr);
exit(1);
}else{
sqlite3_fprintf(stderr,
"Notice: using substitute in-memory database instead of \"%s\"\n",
zDbFilename);
}
}
globalDb = p->db;
sqlite3_db_config(p->db, SQLITE_DBCONFIG_STMT_SCANSTATUS, (int)0, (int*)0);
/* Reflect the use or absence of --unsafe-testing invocation. */
{
int testmode_on = ShellHasFlag(p,SHFLG_TestingMode);
sqlite3_db_config(p->db, SQLITE_DBCONFIG_TRUSTED_SCHEMA, testmode_on,0);
sqlite3_db_config(p->db, SQLITE_DBCONFIG_DEFENSIVE, !testmode_on,0);
}
#ifndef SQLITE_OMIT_LOAD_EXTENSION
sqlite3_enable_load_extension(p->db, 1);
#endif
sqlite3_sha_init(p->db, 0, 0);
sqlite3_shathree_init(p->db, 0, 0);
sqlite3_uint_init(p->db, 0, 0);
sqlite3_stmtrand_init(p->db, 0, 0);
sqlite3_decimal_init(p->db, 0, 0);
sqlite3_percentile_init(p->db, 0, 0);
sqlite3_base64_init(p->db, 0, 0);
sqlite3_base85_init(p->db, 0, 0);
sqlite3_regexp_init(p->db, 0, 0);
sqlite3_ieee_init(p->db, 0, 0);
sqlite3_series_init(p->db, 0, 0);
#ifndef SQLITE_SHELL_FIDDLE
sqlite3_fileio_init(p->db, 0, 0);
sqlite3_completion_init(p->db, 0, 0);
#endif
#ifdef SQLITE_HAVE_ZLIB
if( !p->bSafeModePersist ){
sqlite3_zipfile_init(p->db, 0, 0);
sqlite3_sqlar_init(p->db, 0, 0);
}
#endif
#ifdef SQLITE_SHELL_EXTFUNCS
/* Create a preprocessing mechanism for extensions to make
* their own provisions for being built into the shell.
* This is a short-span macro. See further below for usage.
*/
#define SHELL_SUB_MACRO(base, variant) base ## _ ## variant
#define SHELL_SUBMACRO(base, variant) SHELL_SUB_MACRO(base, variant)
/* Let custom-included extensions get their ..._init() called.
* The WHATEVER_INIT( db, pzErrorMsg, pApi ) macro should cause
* the extension's sqlite3_*_init( db, pzErrorMsg, pApi )
* initialization routine to be called.
*/
{
int irc = SHELL_SUBMACRO(SQLITE_SHELL_EXTFUNCS, INIT)(p->db);
/* Let custom-included extensions expose their functionality.
* The WHATEVER_EXPOSE( db, pzErrorMsg ) macro should cause
* the SQL functions, virtual tables, collating sequences or
* VFS's implemented by the extension to be registered.
*/
if( irc==SQLITE_OK
|| irc==SQLITE_OK_LOAD_PERMANENTLY ){
SHELL_SUBMACRO(SQLITE_SHELL_EXTFUNCS, EXPOSE)(p->db, 0);
}
#undef SHELL_SUB_MACRO
#undef SHELL_SUBMACRO
}
#endif
sqlite3_create_function(p->db, "strtod", 1, SQLITE_UTF8, 0,
shellStrtod, 0, 0);
sqlite3_create_function(p->db, "dtostr", 1, SQLITE_UTF8, 0,
shellDtostr, 0, 0);
sqlite3_create_function(p->db, "dtostr", 2, SQLITE_UTF8, 0,
shellDtostr, 0, 0);
sqlite3_create_function(p->db, "shell_add_schema", 3, SQLITE_UTF8, 0,
shellAddSchemaName, 0, 0);
sqlite3_create_function(p->db, "shell_module_schema", 1, SQLITE_UTF8, 0,
shellModuleSchema, 0, 0);
sqlite3_create_function(p->db, "shell_putsnl", 1, SQLITE_UTF8, p,
shellPutsFunc, 0, 0);
sqlite3_create_function(p->db, "usleep",1,SQLITE_UTF8,0,
shellUSleepFunc, 0, 0);
#ifndef SQLITE_NOHAVE_SYSTEM
sqlite3_create_function(p->db, "edit", 1, SQLITE_UTF8, 0,
editFunc, 0, 0);
sqlite3_create_function(p->db, "edit", 2, SQLITE_UTF8, 0,
editFunc, 0, 0);
#endif
if( p->openMode==SHELL_OPEN_ZIPFILE ){
char *zSql = sqlite3_mprintf(
"CREATE VIRTUAL TABLE zip USING zipfile(%Q);", zDbFilename);
shell_check_oom(zSql);
sqlite3_exec(p->db, zSql, 0, 0, 0);
sqlite3_free(zSql);
}
#ifndef SQLITE_OMIT_DESERIALIZE
else
if( p->openMode==SHELL_OPEN_DESERIALIZE || p->openMode==SHELL_OPEN_HEXDB ){
int rc;
int nData = 0;
unsigned char *aData;
if( p->openMode==SHELL_OPEN_DESERIALIZE ){
aData = (unsigned char*)readFile(zDbFilename, &nData);
}else{
aData = readHexDb(p, &nData);
}
if( aData==0 ){
return;
}
rc = sqlite3_deserialize(p->db, "main", aData, nData, nData,
SQLITE_DESERIALIZE_RESIZEABLE |
SQLITE_DESERIALIZE_FREEONCLOSE);
if( rc ){
sqlite3_fprintf(stderr,"Error: sqlite3_deserialize() returns %d\n", rc);
}
if( p->szMax>0 ){
sqlite3_file_control(p->db, "main", SQLITE_FCNTL_SIZE_LIMIT, &p->szMax);
}
}
#endif
}
if( p->db!=0 ){
if( p->bSafeModePersist ){
sqlite3_set_authorizer(p->db, safeModeAuth, p);
}
sqlite3_db_config(
p->db, SQLITE_DBCONFIG_STMT_SCANSTATUS, p->scanstatsOn, (int*)0
);
}
}
/*
** Attempt to close the database connection. Report errors.
*/
void close_db(sqlite3 *db){
int rc = sqlite3_close(db);
if( rc ){
sqlite3_fprintf(stderr,
"Error: sqlite3_close() returns %d: %s\n", rc, sqlite3_errmsg(db));
}
}
#if (HAVE_READLINE || HAVE_EDITLINE) \
&& !defined(SQLITE_OMIT_READLINE_COMPLETION)
/*
** Readline completion callbacks
*/
static char *readline_completion_generator(const char *text, int state){
static sqlite3_stmt *pStmt = 0;
char *zRet;
if( state==0 ){
char *zSql;
sqlite3_finalize(pStmt);
zSql = sqlite3_mprintf("SELECT DISTINCT candidate COLLATE nocase"
" FROM completion(%Q) ORDER BY 1", text);
shell_check_oom(zSql);
sqlite3_prepare_v2(globalDb, zSql, -1, &pStmt, 0);
sqlite3_free(zSql);
}
if( sqlite3_step(pStmt)==SQLITE_ROW ){
const char *z = (const char*)sqlite3_column_text(pStmt,0);
zRet = z ? strdup(z) : 0;
}else{
sqlite3_finalize(pStmt);
pStmt = 0;
zRet = 0;
}
return zRet;
}
static char **readline_completion(const char *zText, int iStart, int iEnd){
(void)iStart;
(void)iEnd;
rl_attempted_completion_over = 1;
return rl_completion_matches(zText, readline_completion_generator);
}
#elif HAVE_LINENOISE
/*
** Linenoise completion callback. Note that the 3rd argument is from
** the "msteveb" version of linenoise, not the "antirez" version.
*/
static void linenoise_completion(
const char *zLine,
linenoiseCompletions *lc
#if HAVE_LINENOISE==2
,void *pUserData
#endif
){
i64 nLine = strlen(zLine);
i64 i, iStart;
sqlite3_stmt *pStmt = 0;
char *zSql;
char zBuf[1000];
#if HAVE_LINENOISE==2
UNUSED_PARAMETER(pUserData);
#endif
if( nLine>(i64)sizeof(zBuf)-30 ) return;
if( zLine[0]=='.' || zLine[0]=='#') return;
for(i=nLine-1; i>=0 && (isalnum(zLine[i]) || zLine[i]=='_'); i--){}
if( i==nLine-1 ) return;
iStart = i+1;
memcpy(zBuf, zLine, iStart);
zSql = sqlite3_mprintf("SELECT DISTINCT candidate COLLATE nocase"
" FROM completion(%Q,%Q) ORDER BY 1",
&zLine[iStart], zLine);
shell_check_oom(zSql);
sqlite3_prepare_v2(globalDb, zSql, -1, &pStmt, 0);
sqlite3_free(zSql);
sqlite3_exec(globalDb, "PRAGMA page_count", 0, 0, 0); /* Load the schema */
while( sqlite3_step(pStmt)==SQLITE_ROW ){
const char *zCompletion = (const char*)sqlite3_column_text(pStmt, 0);
int nCompletion = sqlite3_column_bytes(pStmt, 0);
if( iStart+nCompletion < (i64)sizeof(zBuf)-1 && zCompletion ){
memcpy(zBuf+iStart, zCompletion, nCompletion+1);
linenoiseAddCompletion(lc, zBuf);
}
}
sqlite3_finalize(pStmt);
}
#endif
/*
** Do C-language style dequoting.
**
** \a -> alarm
** \b -> backspace
** \t -> tab
** \n -> newline
** \v -> vertical tab
** \f -> form feed
** \r -> carriage return
** \s -> space
** \" -> "
** \' -> '
** \\ -> backslash
** \NNN -> ascii character NNN in octal
** \xHH -> ascii character HH in hexadecimal
*/
static void resolve_backslashes(char *z){
int i, j;
char c;
while( *z && *z!='\\' ) z++;
for(i=j=0; (c = z[i])!=0; i++, j++){
if( c=='\\' && z[i+1]!=0 ){
c = z[++i];
if( c=='a' ){
c = '\a';
}else if( c=='b' ){
c = '\b';
}else if( c=='t' ){
c = '\t';
}else if( c=='n' ){
c = '\n';
}else if( c=='v' ){
c = '\v';
}else if( c=='f' ){
c = '\f';
}else if( c=='r' ){
c = '\r';
}else if( c=='"' ){
c = '"';
}else if( c=='\'' ){
c = '\'';
}else if( c=='\\' ){
c = '\\';
}else if( c=='x' ){
int nhd = 0, hdv;
u8 hv = 0;
while( nhd<2 && (c=z[i+1+nhd])!=0 && (hdv=hexDigitValue(c))>=0 ){
hv = (u8)((hv<<4)|hdv);
++nhd;
}
i += nhd;
c = (u8)hv;
}else if( c>='0' && c<='7' ){
c -= '0';
if( z[i+1]>='0' && z[i+1]<='7' ){
i++;
c = (c<<3) + z[i] - '0';
if( z[i+1]>='0' && z[i+1]<='7' ){
i++;
c = (c<<3) + z[i] - '0';
}
}
}
}
z[j] = c;
}
if( j<i ) z[j] = 0;
}
/*
** Interpret zArg as either an integer or a boolean value. Return 1 or 0
** for TRUE and FALSE. Return the integer value if appropriate.
*/
static int booleanValue(const char *zArg){
int i;
if( zArg[0]=='0' && zArg[1]=='x' ){
for(i=2; hexDigitValue(zArg[i])>=0; i++){}
}else{
for(i=0; zArg[i]>='0' && zArg[i]<='9'; i++){}
}
if( i>0 && zArg[i]==0 ) return (int)(integerValue(zArg) & 0xffffffff);
if( sqlite3_stricmp(zArg, "on")==0 || sqlite3_stricmp(zArg,"yes")==0 ){
return 1;
}
if( sqlite3_stricmp(zArg, "off")==0 || sqlite3_stricmp(zArg,"no")==0 ){
return 0;
}
sqlite3_fprintf(stderr,
"ERROR: Not a boolean value: \"%s\". Assuming \"no\".\n", zArg);
return 0;
}
/*
** Set or clear a shell flag according to a boolean value.
*/
static void setOrClearFlag(ShellState *p, unsigned mFlag, const char *zArg){
if( booleanValue(zArg) ){
ShellSetFlag(p, mFlag);
}else{
ShellClearFlag(p, mFlag);
}
}
/*
** Close an output file, assuming it is not stderr or stdout
*/
static void output_file_close(FILE *f){
if( f && f!=stdout && f!=stderr ) fclose(f);
}
/*
** Try to open an output file. The names "stdout" and "stderr" are
** recognized and do the right thing. NULL is returned if the output
** filename is "off".
*/
static FILE *output_file_open(const char *zFile){
FILE *f;
if( cli_strcmp(zFile,"stdout")==0 ){
f = stdout;
}else if( cli_strcmp(zFile, "stderr")==0 ){
f = stderr;
}else if( cli_strcmp(zFile, "off")==0 ){
f = 0;
}else{
f = sqlite3_fopen(zFile, "w");
if( f==0 ){
sqlite3_fprintf(stderr,"Error: cannot open \"%s\"\n", zFile);
}
}
return f;
}
#ifndef SQLITE_OMIT_TRACE
/*
** A routine for handling output from sqlite3_trace().
*/
static int sql_trace_callback(
unsigned mType, /* The trace type */
void *pArg, /* The ShellState pointer */
void *pP, /* Usually a pointer to sqlite_stmt */
void *pX /* Auxiliary output */
){
ShellState *p = (ShellState*)pArg;
sqlite3_stmt *pStmt;
const char *zSql;
i64 nSql;
if( p->traceOut==0 ) return 0;
if( mType==SQLITE_TRACE_CLOSE ){
sputz(p->traceOut, "-- closing database connection\n");
return 0;
}
if( mType!=SQLITE_TRACE_ROW && pX!=0 && ((const char*)pX)[0]=='-' ){
zSql = (const char*)pX;
}else{
pStmt = (sqlite3_stmt*)pP;
switch( p->eTraceType ){
case SHELL_TRACE_EXPANDED: {
zSql = sqlite3_expanded_sql(pStmt);
break;
}
#ifdef SQLITE_ENABLE_NORMALIZE
case SHELL_TRACE_NORMALIZED: {
zSql = sqlite3_normalized_sql(pStmt);
break;
}
#endif
default: {
zSql = sqlite3_sql(pStmt);
break;
}
}
}
if( zSql==0 ) return 0;
nSql = strlen(zSql);
if( nSql>1000000000 ) nSql = 1000000000;
while( nSql>0 && zSql[nSql-1]==';' ){ nSql--; }
switch( mType ){
case SQLITE_TRACE_ROW:
case SQLITE_TRACE_STMT: {
sqlite3_fprintf(p->traceOut, "%.*s;\n", (int)nSql, zSql);
break;
}
case SQLITE_TRACE_PROFILE: {
sqlite3_int64 nNanosec = pX ? *(sqlite3_int64*)pX : 0;
sqlite3_fprintf(p->traceOut,
"%.*s; -- %lld ns\n", (int)nSql, zSql, nNanosec);
break;
}
}
return 0;
}
#endif
/*
** A no-op routine that runs with the ".breakpoint" doc-command. This is
** a useful spot to set a debugger breakpoint.
**
** This routine does not do anything practical. The code are there simply
** to prevent the compiler from optimizing this routine out.
*/
static void test_breakpoint(void){
static unsigned int nCall = 0;
if( (nCall++)==0xffffffff ) printf("Many .breakpoints have run\n");
}
/*
** An object used to read a CSV and other files for import.
*/
typedef struct ImportCtx ImportCtx;
struct ImportCtx {
const char *zFile; /* Name of the input file */
FILE *in; /* Read the CSV text from this input stream */
int (SQLITE_CDECL *xCloser)(FILE*); /* Func to close in */
char *z; /* Accumulated text for a field */
int n; /* Number of bytes in z */
int nAlloc; /* Space allocated for z[] */
int nLine; /* Current line number */
int nRow; /* Number of rows imported */
int nErr; /* Number of errors encountered */
int bNotFirst; /* True if one or more bytes already read */
int cTerm; /* Character that terminated the most recent field */
int cColSep; /* The column separator character. (Usually ",") */
int cRowSep; /* The row separator character. (Usually "\n") */
};
/* Clean up resourced used by an ImportCtx */
static void import_cleanup(ImportCtx *p){
if( p->in!=0 && p->xCloser!=0 ){
p->xCloser(p->in);
p->in = 0;
}
sqlite3_free(p->z);
p->z = 0;
}
/* Append a single byte to z[] */
static void import_append_char(ImportCtx *p, int c){
if( p->n+1>=p->nAlloc ){
p->nAlloc += p->nAlloc + 100;
p->z = sqlite3_realloc64(p->z, p->nAlloc);
shell_check_oom(p->z);
}
p->z[p->n++] = (char)c;
}
/* Read a single field of CSV text. Compatible with rfc4180 and extended
** with the option of having a separator other than ",".
**
** + Input comes from p->in.
** + Store results in p->z of length p->n. Space to hold p->z comes
** from sqlite3_malloc64().
** + Use p->cSep as the column separator. The default is ",".
** + Use p->rSep as the row separator. The default is "\n".
** + Keep track of the line number in p->nLine.
** + Store the character that terminates the field in p->cTerm. Store
** EOF on end-of-file.
** + Report syntax errors on stderr
*/
static char *SQLITE_CDECL csv_read_one_field(ImportCtx *p){
int c;
int cSep = (u8)p->cColSep;
int rSep = (u8)p->cRowSep;
p->n = 0;
c = fgetc(p->in);
if( c==EOF || seenInterrupt ){
p->cTerm = EOF;
return 0;
}
if( c=='"' ){
int pc, ppc;
int startLine = p->nLine;
int cQuote = c;
pc = ppc = 0;
while( 1 ){
c = fgetc(p->in);
if( c==rSep ) p->nLine++;
if( c==cQuote ){
if( pc==cQuote ){
pc = 0;
continue;
}
}
if( (c==cSep && pc==cQuote)
|| (c==rSep && pc==cQuote)
|| (c==rSep && pc=='\r' && ppc==cQuote)
|| (c==EOF && pc==cQuote)
){
do{ p->n--; }while( p->z[p->n]!=cQuote );
p->cTerm = c;
break;
}
if( pc==cQuote && c!='\r' ){
sqlite3_fprintf(stderr,"%s:%d: unescaped %c character\n",
p->zFile, p->nLine, cQuote);
}
if( c==EOF ){
sqlite3_fprintf(stderr,"%s:%d: unterminated %c-quoted field\n",
p->zFile, startLine, cQuote);
p->cTerm = c;
break;
}
import_append_char(p, c);
ppc = pc;
pc = c;
}
}else{
/* If this is the first field being parsed and it begins with the
** UTF-8 BOM (0xEF BB BF) then skip the BOM */
if( (c&0xff)==0xef && p->bNotFirst==0 ){
import_append_char(p, c);
c = fgetc(p->in);
if( (c&0xff)==0xbb ){
import_append_char(p, c);
c = fgetc(p->in);
if( (c&0xff)==0xbf ){
p->bNotFirst = 1;
p->n = 0;
return csv_read_one_field(p);
}
}
}
while( c!=EOF && c!=cSep && c!=rSep ){
import_append_char(p, c);
c = fgetc(p->in);
}
if( c==rSep ){
p->nLine++;
if( p->n>0 && p->z[p->n-1]=='\r' ) p->n--;
}
p->cTerm = c;
}
if( p->z ) p->z[p->n] = 0;
p->bNotFirst = 1;
return p->z;
}
/* Read a single field of ASCII delimited text.
**
** + Input comes from p->in.
** + Store results in p->z of length p->n. Space to hold p->z comes
** from sqlite3_malloc64().
** + Use p->cSep as the column separator. The default is "\x1F".
** + Use p->rSep as the row separator. The default is "\x1E".
** + Keep track of the row number in p->nLine.
** + Store the character that terminates the field in p->cTerm. Store
** EOF on end-of-file.
** + Report syntax errors on stderr
*/
static char *SQLITE_CDECL ascii_read_one_field(ImportCtx *p){
int c;
int cSep = (u8)p->cColSep;
int rSep = (u8)p->cRowSep;
p->n = 0;
c = fgetc(p->in);
if( c==EOF || seenInterrupt ){
p->cTerm = EOF;
return 0;
}
while( c!=EOF && c!=cSep && c!=rSep ){
import_append_char(p, c);
c = fgetc(p->in);
}
if( c==rSep ){
p->nLine++;
}
p->cTerm = c;
if( p->z ) p->z[p->n] = 0;
return p->z;
}
/*
** Try to transfer data for table zTable. If an error is seen while
** moving forward, try to go backwards. The backwards movement won't
** work for WITHOUT ROWID tables.
*/
static void tryToCloneData(
ShellState *p,
sqlite3 *newDb,
const char *zTable
){
sqlite3_stmt *pQuery = 0;
sqlite3_stmt *pInsert = 0;
char *zQuery = 0;
char *zInsert = 0;
int rc;
int i, j, n;
int nTable = strlen30(zTable);
int k = 0;
int cnt = 0;
const int spinRate = 10000;
zQuery = sqlite3_mprintf("SELECT * FROM \"%w\"", zTable);
shell_check_oom(zQuery);
rc = sqlite3_prepare_v2(p->db, zQuery, -1, &pQuery, 0);
if( rc ){
sqlite3_fprintf(stderr,"Error %d: %s on [%s]\n",
sqlite3_extended_errcode(p->db), sqlite3_errmsg(p->db), zQuery);
goto end_data_xfer;
}
n = sqlite3_column_count(pQuery);
zInsert = sqlite3_malloc64(200 + nTable + n*3);
shell_check_oom(zInsert);
sqlite3_snprintf(200+nTable,zInsert,
"INSERT OR IGNORE INTO \"%s\" VALUES(?", zTable);
i = strlen30(zInsert);
for(j=1; j<n; j++){
memcpy(zInsert+i, ",?", 2);
i += 2;
}
memcpy(zInsert+i, ");", 3);
rc = sqlite3_prepare_v2(newDb, zInsert, -1, &pInsert, 0);
if( rc ){
sqlite3_fprintf(stderr,"Error %d: %s on [%s]\n",
sqlite3_extended_errcode(newDb), sqlite3_errmsg(newDb), zInsert);
goto end_data_xfer;
}
for(k=0; k<2; k++){
while( (rc = sqlite3_step(pQuery))==SQLITE_ROW ){
for(i=0; i<n; i++){
switch( sqlite3_column_type(pQuery, i) ){
case SQLITE_NULL: {
sqlite3_bind_null(pInsert, i+1);
break;
}
case SQLITE_INTEGER: {
sqlite3_bind_int64(pInsert, i+1, sqlite3_column_int64(pQuery,i));
break;
}
case SQLITE_FLOAT: {
sqlite3_bind_double(pInsert, i+1, sqlite3_column_double(pQuery,i));
break;
}
case SQLITE_TEXT: {
sqlite3_bind_text(pInsert, i+1,
(const char*)sqlite3_column_text(pQuery,i),
-1, SQLITE_STATIC);
break;
}
case SQLITE_BLOB: {
sqlite3_bind_blob(pInsert, i+1, sqlite3_column_blob(pQuery,i),
sqlite3_column_bytes(pQuery,i),
SQLITE_STATIC);
break;
}
}
} /* End for */
rc = sqlite3_step(pInsert);
if( rc!=SQLITE_OK && rc!=SQLITE_ROW && rc!=SQLITE_DONE ){
sqlite3_fprintf(stderr,"Error %d: %s\n",
sqlite3_extended_errcode(newDb), sqlite3_errmsg(newDb));
}
sqlite3_reset(pInsert);
cnt++;
if( (cnt%spinRate)==0 ){
printf("%c\b", "|/-\\"[(cnt/spinRate)%4]);
fflush(stdout);
}
} /* End while */
if( rc==SQLITE_DONE ) break;
sqlite3_finalize(pQuery);
sqlite3_free(zQuery);
zQuery = sqlite3_mprintf("SELECT * FROM \"%w\" ORDER BY rowid DESC;",
zTable);
shell_check_oom(zQuery);
rc = sqlite3_prepare_v2(p->db, zQuery, -1, &pQuery, 0);
if( rc ){
sqlite3_fprintf(stderr,"Warning: cannot step \"%s\" backwards", zTable);
break;
}
} /* End for(k=0...) */
end_data_xfer:
sqlite3_finalize(pQuery);
sqlite3_finalize(pInsert);
sqlite3_free(zQuery);
sqlite3_free(zInsert);
}
/*
** Try to transfer all rows of the schema that match zWhere. For
** each row, invoke xForEach() on the object defined by that row.
** If an error is encountered while moving forward through the
** sqlite_schema table, try again moving backwards.
*/
static void tryToCloneSchema(
ShellState *p,
sqlite3 *newDb,
const char *zWhere,
void (*xForEach)(ShellState*,sqlite3*,const char*)
){
sqlite3_stmt *pQuery = 0;
char *zQuery = 0;
int rc;
const unsigned char *zName;
const unsigned char *zSql;
char *zErrMsg = 0;
zQuery = sqlite3_mprintf("SELECT name, sql FROM sqlite_schema"
" WHERE %s ORDER BY rowid ASC", zWhere);
shell_check_oom(zQuery);
rc = sqlite3_prepare_v2(p->db, zQuery, -1, &pQuery, 0);
if( rc ){
sqlite3_fprintf(stderr,
"Error: (%d) %s on [%s]\n", sqlite3_extended_errcode(p->db),
sqlite3_errmsg(p->db), zQuery);
goto end_schema_xfer;
}
while( (rc = sqlite3_step(pQuery))==SQLITE_ROW ){
zName = sqlite3_column_text(pQuery, 0);
zSql = sqlite3_column_text(pQuery, 1);
if( zName==0 || zSql==0 ) continue;
if( sqlite3_stricmp((char*)zName, "sqlite_sequence")!=0 ){
sqlite3_fprintf(stdout, "%s... ", zName); fflush(stdout);
sqlite3_exec(newDb, (const char*)zSql, 0, 0, &zErrMsg);
if( zErrMsg ){
sqlite3_fprintf(stderr,"Error: %s\nSQL: [%s]\n", zErrMsg, zSql);
sqlite3_free(zErrMsg);
zErrMsg = 0;
}
}
if( xForEach ){
xForEach(p, newDb, (const char*)zName);
}
sputz(stdout, "done\n");
}
if( rc!=SQLITE_DONE ){
sqlite3_finalize(pQuery);
sqlite3_free(zQuery);
zQuery = sqlite3_mprintf("SELECT name, sql FROM sqlite_schema"
" WHERE %s ORDER BY rowid DESC", zWhere);
shell_check_oom(zQuery);
rc = sqlite3_prepare_v2(p->db, zQuery, -1, &pQuery, 0);
if( rc ){
sqlite3_fprintf(stderr,"Error: (%d) %s on [%s]\n",
sqlite3_extended_errcode(p->db), sqlite3_errmsg(p->db), zQuery);
goto end_schema_xfer;
}
while( sqlite3_step(pQuery)==SQLITE_ROW ){
zName = sqlite3_column_text(pQuery, 0);
zSql = sqlite3_column_text(pQuery, 1);
if( zName==0 || zSql==0 ) continue;
if( sqlite3_stricmp((char*)zName, "sqlite_sequence")==0 ) continue;
sqlite3_fprintf(stdout, "%s... ", zName); fflush(stdout);
sqlite3_exec(newDb, (const char*)zSql, 0, 0, &zErrMsg);
if( zErrMsg ){
sqlite3_fprintf(stderr,"Error: %s\nSQL: [%s]\n", zErrMsg, zSql);
sqlite3_free(zErrMsg);
zErrMsg = 0;
}
if( xForEach ){
xForEach(p, newDb, (const char*)zName);
}
sputz(stdout, "done\n");
}
}
end_schema_xfer:
sqlite3_finalize(pQuery);
sqlite3_free(zQuery);
}
/*
** Open a new database file named "zNewDb". Try to recover as much information
** as possible out of the main database (which might be corrupt) and write it
** into zNewDb.
*/
static void tryToClone(ShellState *p, const char *zNewDb){
int rc;
sqlite3 *newDb = 0;
if( access(zNewDb,0)==0 ){
sqlite3_fprintf(stderr,"File \"%s\" already exists.\n", zNewDb);
return;
}
rc = sqlite3_open(zNewDb, &newDb);
if( rc ){
sqlite3_fprintf(stderr,
"Cannot create output database: %s\n", sqlite3_errmsg(newDb));
}else{
sqlite3_exec(p->db, "PRAGMA writable_schema=ON;", 0, 0, 0);
sqlite3_exec(newDb, "BEGIN EXCLUSIVE;", 0, 0, 0);
tryToCloneSchema(p, newDb, "type='table'", tryToCloneData);
tryToCloneSchema(p, newDb, "type!='table'", 0);
sqlite3_exec(newDb, "COMMIT;", 0, 0, 0);
sqlite3_exec(p->db, "PRAGMA writable_schema=OFF;", 0, 0, 0);
}
close_db(newDb);
}
#ifndef SQLITE_SHELL_FIDDLE
/*
** Change the output stream (file or pipe or console) to something else.
*/
static void output_redir(ShellState *p, FILE *pfNew){
if( p->out != stdout ){
sqlite3_fputs("Output already redirected.\n", stderr);
}else{
p->out = pfNew;
setCrlfMode(p);
if( p->mode==MODE_Www ){
sqlite3_fputs(
"<!DOCTYPE html>\n"
"<HTML><BODY><PRE>\n",
p->out
);
}
}
}
/*
** Change the output file back to stdout.
**
** If the p->doXdgOpen flag is set, that means the output was being
** redirected to a temporary file named by p->zTempFile. In that case,
** launch start/open/xdg-open on that temporary file.
*/
static void output_reset(ShellState *p){
if( p->outfile[0]=='|' ){
#ifndef SQLITE_OMIT_POPEN
pclose(p->out);
#endif
}else{
if( p->mode==MODE_Www ){
sqlite3_fputs("</PRE></BODY></HTML>\n", p->out);
}
output_file_close(p->out);
#ifndef SQLITE_NOHAVE_SYSTEM
if( p->doXdgOpen ){
const char *zXdgOpenCmd =
#if defined(_WIN32)
"start";
#elif defined(__APPLE__)
"open";
#else
"xdg-open";
#endif
char *zCmd;
zCmd = sqlite3_mprintf("%s %s", zXdgOpenCmd, p->zTempFile);
if( system(zCmd) ){
sqlite3_fprintf(stderr,"Failed: [%s]\n", zCmd);
}else{
/* Give the start/open/xdg-open command some time to get
** going before we continue, and potential delete the
** p->zTempFile data file out from under it */
sqlite3_sleep(2000);
}
sqlite3_free(zCmd);
outputModePop(p);
p->doXdgOpen = 0;
}
#endif /* !defined(SQLITE_NOHAVE_SYSTEM) */
}
p->outfile[0] = 0;
p->out = stdout;
setCrlfMode(p);
}
#else
# define output_redir(SS,pfO)
# define output_reset(SS)
#endif
/*
** Run an SQL command and return the single integer result.
*/
static int db_int(sqlite3 *db, const char *zSql, ...){
sqlite3_stmt *pStmt;
int res = 0;
char *z;
va_list ap;
va_start(ap, zSql);
z = sqlite3_vmprintf(zSql, ap);
va_end(ap);
sqlite3_prepare_v2(db, z, -1, &pStmt, 0);
if( pStmt && sqlite3_step(pStmt)==SQLITE_ROW ){
res = sqlite3_column_int(pStmt,0);
}
sqlite3_finalize(pStmt);
sqlite3_free(z);
return res;
}
#if SQLITE_SHELL_HAVE_RECOVER
/*
** Convert a 2-byte or 4-byte big-endian integer into a native integer
*/
static unsigned int get2byteInt(unsigned char *a){
return (a[0]<<8) + a[1];
}
static unsigned int get4byteInt(unsigned char *a){
return (a[0]<<24) + (a[1]<<16) + (a[2]<<8) + a[3];
}
/*
** Implementation of the ".dbinfo" command.
**
** Return 1 on error, 2 to exit, and 0 otherwise.
*/
static int shell_dbinfo_command(ShellState *p, int nArg, char **azArg){
static const struct { const char *zName; int ofst; } aField[] = {
{ "file change counter:", 24 },
{ "database page count:", 28 },
{ "freelist page count:", 36 },
{ "schema cookie:", 40 },
{ "schema format:", 44 },
{ "default cache size:", 48 },
{ "autovacuum top root:", 52 },
{ "incremental vacuum:", 64 },
{ "text encoding:", 56 },
{ "user version:", 60 },
{ "application id:", 68 },
{ "software version:", 96 },
};
static const struct { const char *zName; const char *zSql; } aQuery[] = {
{ "number of tables:",
"SELECT count(*) FROM %s WHERE type='table'" },
{ "number of indexes:",
"SELECT count(*) FROM %s WHERE type='index'" },
{ "number of triggers:",
"SELECT count(*) FROM %s WHERE type='trigger'" },
{ "number of views:",
"SELECT count(*) FROM %s WHERE type='view'" },
{ "schema size:",
"SELECT total(length(sql)) FROM %s" },
};
int i, rc;
unsigned iDataVersion;
char *zSchemaTab;
char *zDb = nArg>=2 ? azArg[1] : "main";
sqlite3_stmt *pStmt = 0;
unsigned char aHdr[100];
open_db(p, 0);
if( p->db==0 ) return 1;
rc = sqlite3_prepare_v2(p->db,
"SELECT data FROM sqlite_dbpage(?1) WHERE pgno=1",
-1, &pStmt, 0);
if( rc ){
sqlite3_fprintf(stderr,"error: %s\n", sqlite3_errmsg(p->db));
sqlite3_finalize(pStmt);
return 1;
}
sqlite3_bind_text(pStmt, 1, zDb, -1, SQLITE_STATIC);
if( sqlite3_step(pStmt)==SQLITE_ROW
&& sqlite3_column_bytes(pStmt,0)>100
){
const u8 *pb = sqlite3_column_blob(pStmt,0);
shell_check_oom(pb);
memcpy(aHdr, pb, 100);
sqlite3_finalize(pStmt);
}else{
sqlite3_fputs("unable to read database header\n", stderr);
sqlite3_finalize(pStmt);
return 1;
}
i = get2byteInt(aHdr+16);
if( i==1 ) i = 65536;
sqlite3_fprintf(p->out, "%-20s %d\n", "database page size:", i);
sqlite3_fprintf(p->out, "%-20s %d\n", "write format:", aHdr[18]);
sqlite3_fprintf(p->out, "%-20s %d\n", "read format:", aHdr[19]);
sqlite3_fprintf(p->out, "%-20s %d\n", "reserved bytes:", aHdr[20]);
for(i=0; i<ArraySize(aField); i++){
int ofst = aField[i].ofst;
unsigned int val = get4byteInt(aHdr + ofst);
sqlite3_fprintf(p->out, "%-20s %u", aField[i].zName, val);
switch( ofst ){
case 56: {
if( val==1 ) sqlite3_fputs(" (utf8)", p->out);
if( val==2 ) sqlite3_fputs(" (utf16le)", p->out);
if( val==3 ) sqlite3_fputs(" (utf16be)", p->out);
}
}
sqlite3_fputs("\n", p->out);
}
if( zDb==0 ){
zSchemaTab = sqlite3_mprintf("main.sqlite_schema");
}else if( cli_strcmp(zDb,"temp")==0 ){
zSchemaTab = sqlite3_mprintf("%s", "sqlite_temp_schema");
}else{
zSchemaTab = sqlite3_mprintf("\"%w\".sqlite_schema", zDb);
}
for(i=0; i<ArraySize(aQuery); i++){
int val = db_int(p->db, aQuery[i].zSql, zSchemaTab);
sqlite3_fprintf(p->out, "%-20s %d\n", aQuery[i].zName, val);
}
sqlite3_free(zSchemaTab);
sqlite3_file_control(p->db, zDb, SQLITE_FCNTL_DATA_VERSION, &iDataVersion);
sqlite3_fprintf(p->out, "%-20s %u\n", "data version", iDataVersion);
return 0;
}
#endif /* SQLITE_SHELL_HAVE_RECOVER */
/*
** Implementation of the ".dbtotxt" command.
**
** Return 1 on error, 2 to exit, and 0 otherwise.
*/
static int shell_dbtotxt_command(ShellState *p, int nArg, char **azArg){
sqlite3_stmt *pStmt = 0;
sqlite3_int64 nPage = 0;
int pgSz = 0;
const char *zTail;
char *zName = 0;
int rc, i, j;
unsigned char bShow[256]; /* Characters ok to display */
UNUSED_PARAMETER(nArg);
UNUSED_PARAMETER(azArg);
memset(bShow, '.', sizeof(bShow));
for(i=' '; i<='~'; i++){
if( i!='{' && i!='}' && i!='"' && i!='\\' ) bShow[i] = (unsigned char)i;
}
rc = sqlite3_prepare_v2(p->db, "PRAGMA page_size", -1, &pStmt, 0);
if( rc ) goto dbtotxt_error;
rc = 0;
if( sqlite3_step(pStmt)!=SQLITE_ROW ) goto dbtotxt_error;
pgSz = sqlite3_column_int(pStmt, 0);
sqlite3_finalize(pStmt);
pStmt = 0;
if( pgSz<512 || pgSz>65536 || (pgSz&(pgSz-1))!=0 ) goto dbtotxt_error;
rc = sqlite3_prepare_v2(p->db, "PRAGMA page_count", -1, &pStmt, 0);
if( rc ) goto dbtotxt_error;
rc = 0;
if( sqlite3_step(pStmt)!=SQLITE_ROW ) goto dbtotxt_error;
nPage = sqlite3_column_int64(pStmt, 0);
sqlite3_finalize(pStmt);
pStmt = 0;
if( nPage<1 ) goto dbtotxt_error;
rc = sqlite3_prepare_v2(p->db, "PRAGMA databases", -1, &pStmt, 0);
if( rc ) goto dbtotxt_error;
if( sqlite3_step(pStmt)!=SQLITE_ROW ){
zTail = "unk.db";
}else{
const char *zFilename = (const char*)sqlite3_column_text(pStmt, 2);
if( zFilename==0 || zFilename[0]==0 ) zFilename = "unk.db";
zTail = strrchr(zFilename, '/');
#if defined(_WIN32)
if( zTail==0 ) zTail = strrchr(zFilename, '\\');
#endif
}
zName = strdup(zTail);
shell_check_oom(zName);
sqlite3_fprintf(p->out, "| size %lld pagesize %d filename %s\n",
nPage*pgSz, pgSz, zName);
sqlite3_finalize(pStmt);
pStmt = 0;
rc = sqlite3_prepare_v2(p->db,
"SELECT pgno, data FROM sqlite_dbpage ORDER BY pgno", -1, &pStmt, 0);
if( rc ) goto dbtotxt_error;
while( sqlite3_step(pStmt)==SQLITE_ROW ){
sqlite3_int64 pgno = sqlite3_column_int64(pStmt, 0);
const u8 *aData = sqlite3_column_blob(pStmt, 1);
int seenPageLabel = 0;
for(i=0; i<pgSz; i+=16){
const u8 *aLine = aData+i;
for(j=0; j<16 && aLine[j]==0; j++){}
if( j==16 ) continue;
if( !seenPageLabel ){
sqlite3_fprintf(p->out, "| page %lld offset %lld\n", pgno, pgno*pgSz);
seenPageLabel = 1;
}
sqlite3_fprintf(p->out, "| %5d:", i);
for(j=0; j<16; j++) sqlite3_fprintf(p->out, " %02x", aLine[j]);
sqlite3_fprintf(p->out, " ");
for(j=0; j<16; j++){
unsigned char c = (unsigned char)aLine[j];
sqlite3_fprintf(p->out, "%c", bShow[c]);
}
sqlite3_fprintf(p->out, "\n");
}
}
sqlite3_finalize(pStmt);
sqlite3_fprintf(p->out, "| end %s\n", zName);
free(zName);
return 0;
dbtotxt_error:
if( rc ){
sqlite3_fprintf(stderr, "ERROR: %s\n", sqlite3_errmsg(p->db));
}
sqlite3_finalize(pStmt);
free(zName);
return 1;
}
/*
** Print the given string as an error message.
*/
static void shellEmitError(const char *zErr){
sqlite3_fprintf(stderr,"Error: %s\n", zErr);
}
/*
** Print the current sqlite3_errmsg() value to stderr and return 1.
*/
static int shellDatabaseError(sqlite3 *db){
shellEmitError(sqlite3_errmsg(db));
return 1;
}
/*
** Compare the pattern in zGlob[] against the text in z[]. Return TRUE
** if they match and FALSE (0) if they do not match.
**
** Globbing rules:
**
** '*' Matches any sequence of zero or more characters.
**
** '?' Matches exactly one character.
**
** [...] Matches one character from the enclosed list of
** characters.
**
** [^...] Matches one character not in the enclosed list.
**
** '#' Matches any sequence of one or more digits with an
** optional + or - sign in front
**
** ' ' Any span of whitespace matches any other span of
** whitespace.
**
** Extra whitespace at the end of z[] is ignored.
*/
static int testcase_glob(const char *zGlob, const char *z){
int c, c2;
int invert;
int seen;
while( (c = (*(zGlob++)))!=0 ){
if( IsSpace(c) ){
if( !IsSpace(*z) ) return 0;
while( IsSpace(*zGlob) ) zGlob++;
while( IsSpace(*z) ) z++;
}else if( c=='*' ){
while( (c=(*(zGlob++))) == '*' || c=='?' ){
if( c=='?' && (*(z++))==0 ) return 0;
}
if( c==0 ){
return 1;
}else if( c=='[' ){
while( *z && testcase_glob(zGlob-1,z)==0 ){
z++;
}
return (*z)!=0;
}
while( (c2 = (*(z++)))!=0 ){
while( c2!=c ){
c2 = *(z++);
if( c2==0 ) return 0;
}
if( testcase_glob(zGlob,z) ) return 1;
}
return 0;
}else if( c=='?' ){
if( (*(z++))==0 ) return 0;
}else if( c=='[' ){
int prior_c = 0;
seen = 0;
invert = 0;
c = *(z++);
if( c==0 ) return 0;
c2 = *(zGlob++);
if( c2=='^' ){
invert = 1;
c2 = *(zGlob++);
}
if( c2==']' ){
if( c==']' ) seen = 1;
c2 = *(zGlob++);
}
while( c2 && c2!=']' ){
if( c2=='-' && zGlob[0]!=']' && zGlob[0]!=0 && prior_c>0 ){
c2 = *(zGlob++);
if( c>=prior_c && c<=c2 ) seen = 1;
prior_c = 0;
}else{
if( c==c2 ){
seen = 1;
}
prior_c = c2;
}
c2 = *(zGlob++);
}
if( c2==0 || (seen ^ invert)==0 ) return 0;
}else if( c=='#' ){
if( (z[0]=='-' || z[0]=='+') && IsDigit(z[1]) ) z++;
if( !IsDigit(z[0]) ) return 0;
z++;
while( IsDigit(z[0]) ){ z++; }
}else{
if( c!=(*(z++)) ) return 0;
}
}
while( IsSpace(*z) ){ z++; }
return *z==0;
}
/*
** Compare the string as a command-line option with either one or two
** initial "-" characters.
*/
static int optionMatch(const char *zStr, const char *zOpt){
if( zStr[0]!='-' ) return 0;
zStr++;
if( zStr[0]=='-' ) zStr++;
return cli_strcmp(zStr, zOpt)==0;
}
/*
** Delete a file.
*/
int shellDeleteFile(const char *zFilename){
int rc;
#ifdef _WIN32
wchar_t *z = sqlite3_win32_utf8_to_unicode(zFilename);
rc = _wunlink(z);
sqlite3_free(z);
#else
rc = unlink(zFilename);
#endif
return rc;
}
/*
** Try to delete the temporary file (if there is one) and free the
** memory used to hold the name of the temp file.
*/
static void clearTempFile(ShellState *p){
if( p->zTempFile==0 ) return;
if( p->doXdgOpen ) return;
if( shellDeleteFile(p->zTempFile) ) return;
sqlite3_free(p->zTempFile);
p->zTempFile = 0;
}
/*
** Create a new temp file name with the given suffix.
*/
static void newTempFile(ShellState *p, const char *zSuffix){
clearTempFile(p);
sqlite3_free(p->zTempFile);
p->zTempFile = 0;
if( p->db ){
sqlite3_file_control(p->db, 0, SQLITE_FCNTL_TEMPFILENAME, &p->zTempFile);
}
if( p->zTempFile==0 ){
/* If p->db is an in-memory database then the TEMPFILENAME file-control
** will not work and we will need to fallback to guessing */
char *zTemp;
sqlite3_uint64 r;
sqlite3_randomness(sizeof(r), &r);
zTemp = getenv("TEMP");
if( zTemp==0 ) zTemp = getenv("TMP");
if( zTemp==0 ){
#ifdef _WIN32
zTemp = "\\tmp";
#else
zTemp = "/tmp";
#endif
}
p->zTempFile = sqlite3_mprintf("%s/temp%llx.%s", zTemp, r, zSuffix);
}else{
p->zTempFile = sqlite3_mprintf("%z.%s", p->zTempFile, zSuffix);
}
shell_check_oom(p->zTempFile);
}
/*
** The implementation of SQL scalar function fkey_collate_clause(), used
** by the ".lint fkey-indexes" command. This scalar function is always
** called with four arguments - the parent table name, the parent column name,
** the child table name and the child column name.
**
** fkey_collate_clause('parent-tab', 'parent-col', 'child-tab', 'child-col')
**
** If either of the named tables or columns do not exist, this function
** returns an empty string. An empty string is also returned if both tables
** and columns exist but have the same default collation sequence. Or,
** if both exist but the default collation sequences are different, this
** function returns the string " COLLATE <parent-collation>", where
** <parent-collation> is the default collation sequence of the parent column.
*/
static void shellFkeyCollateClause(
sqlite3_context *pCtx,
int nVal,
sqlite3_value **apVal
){
sqlite3 *db = sqlite3_context_db_handle(pCtx);
const char *zParent;
const char *zParentCol;
const char *zParentSeq;
const char *zChild;
const char *zChildCol;
const char *zChildSeq = 0; /* Initialize to avoid false-positive warning */
int rc;
assert( nVal==4 );
zParent = (const char*)sqlite3_value_text(apVal[0]);
zParentCol = (const char*)sqlite3_value_text(apVal[1]);
zChild = (const char*)sqlite3_value_text(apVal[2]);
zChildCol = (const char*)sqlite3_value_text(apVal[3]);
sqlite3_result_text(pCtx, "", -1, SQLITE_STATIC);
rc = sqlite3_table_column_metadata(
db, "main", zParent, zParentCol, 0, &zParentSeq, 0, 0, 0
);
if( rc==SQLITE_OK ){
rc = sqlite3_table_column_metadata(
db, "main", zChild, zChildCol, 0, &zChildSeq, 0, 0, 0
);
}
if( rc==SQLITE_OK && sqlite3_stricmp(zParentSeq, zChildSeq) ){
char *z = sqlite3_mprintf(" COLLATE %s", zParentSeq);
sqlite3_result_text(pCtx, z, -1, SQLITE_TRANSIENT);
sqlite3_free(z);
}
}
/*
** The implementation of dot-command ".lint fkey-indexes".
*/
static int lintFkeyIndexes(
ShellState *pState, /* Current shell tool state */
char **azArg, /* Array of arguments passed to dot command */
int nArg /* Number of entries in azArg[] */
){
sqlite3 *db = pState->db; /* Database handle to query "main" db of */
int bVerbose = 0; /* If -verbose is present */
int bGroupByParent = 0; /* If -groupbyparent is present */
int i; /* To iterate through azArg[] */
const char *zIndent = ""; /* How much to indent CREATE INDEX by */
int rc; /* Return code */
sqlite3_stmt *pSql = 0; /* Compiled version of SQL statement below */
FILE *out = pState->out; /* Send output here */
/*
** This SELECT statement returns one row for each foreign key constraint
** in the schema of the main database. The column values are:
**
** 0. The text of an SQL statement similar to:
**
** "EXPLAIN QUERY PLAN SELECT 1 FROM child_table WHERE child_key=?"
**
** This SELECT is similar to the one that the foreign keys implementation
** needs to run internally on child tables. If there is an index that can
** be used to optimize this query, then it can also be used by the FK
** implementation to optimize DELETE or UPDATE statements on the parent
** table.
**
** 1. A GLOB pattern suitable for sqlite3_strglob(). If the plan output by
** the EXPLAIN QUERY PLAN command matches this pattern, then the schema
** contains an index that can be used to optimize the query.
**
** 2. Human readable text that describes the child table and columns. e.g.
**
** "child_table(child_key1, child_key2)"
**
** 3. Human readable text that describes the parent table and columns. e.g.
**
** "parent_table(parent_key1, parent_key2)"
**
** 4. A full CREATE INDEX statement for an index that could be used to
** optimize DELETE or UPDATE statements on the parent table. e.g.
**
** "CREATE INDEX child_table_child_key ON child_table(child_key)"
**
** 5. The name of the parent table.
**
** These six values are used by the C logic below to generate the report.
*/
const char *zSql =
"SELECT "
" 'EXPLAIN QUERY PLAN SELECT 1 FROM ' || quote(s.name) || ' WHERE '"
" || group_concat(quote(s.name) || '.' || quote(f.[from]) || '=?' "
" || fkey_collate_clause("
" f.[table], COALESCE(f.[to], p.[name]), s.name, f.[from]),' AND ')"
", "
" 'SEARCH ' || s.name || ' USING COVERING INDEX*('"
" || group_concat('*=?', ' AND ') || ')'"
", "
" s.name || '(' || group_concat(f.[from], ', ') || ')'"
", "
" f.[table] || '(' || group_concat(COALESCE(f.[to], p.[name])) || ')'"
", "
" 'CREATE INDEX ' || quote(s.name ||'_'|| group_concat(f.[from], '_'))"
" || ' ON ' || quote(s.name) || '('"
" || group_concat(quote(f.[from]) ||"
" fkey_collate_clause("
" f.[table], COALESCE(f.[to], p.[name]), s.name, f.[from]), ', ')"
" || ');'"
", "
" f.[table] "
"FROM sqlite_schema AS s, pragma_foreign_key_list(s.name) AS f "
"LEFT JOIN pragma_table_info AS p ON (pk-1=seq AND p.arg=f.[table]) "
"GROUP BY s.name, f.id "
"ORDER BY (CASE WHEN ? THEN f.[table] ELSE s.name END)"
;
const char *zGlobIPK = "SEARCH * USING INTEGER PRIMARY KEY (rowid=?)";
for(i=2; i<nArg; i++){
int n = strlen30(azArg[i]);
if( n>1 && sqlite3_strnicmp("-verbose", azArg[i], n)==0 ){
bVerbose = 1;
}
else if( n>1 && sqlite3_strnicmp("-groupbyparent", azArg[i], n)==0 ){
bGroupByParent = 1;
zIndent = " ";
}
else{
sqlite3_fprintf(stderr,
"Usage: %s %s ?-verbose? ?-groupbyparent?\n", azArg[0], azArg[1]);
return SQLITE_ERROR;
}
}
/* Register the fkey_collate_clause() SQL function */
rc = sqlite3_create_function(db, "fkey_collate_clause", 4, SQLITE_UTF8,
0, shellFkeyCollateClause, 0, 0
);
if( rc==SQLITE_OK ){
rc = sqlite3_prepare_v2(db, zSql, -1, &pSql, 0);
}
if( rc==SQLITE_OK ){
sqlite3_bind_int(pSql, 1, bGroupByParent);
}
if( rc==SQLITE_OK ){
int rc2;
char *zPrev = 0;
while( SQLITE_ROW==sqlite3_step(pSql) ){
int res = -1;
sqlite3_stmt *pExplain = 0;
const char *zEQP = (const char*)sqlite3_column_text(pSql, 0);
const char *zGlob = (const char*)sqlite3_column_text(pSql, 1);
const char *zFrom = (const char*)sqlite3_column_text(pSql, 2);
const char *zTarget = (const char*)sqlite3_column_text(pSql, 3);
const char *zCI = (const char*)sqlite3_column_text(pSql, 4);
const char *zParent = (const char*)sqlite3_column_text(pSql, 5);
if( zEQP==0 ) continue;
if( zGlob==0 ) continue;
rc = sqlite3_prepare_v2(db, zEQP, -1, &pExplain, 0);
if( rc!=SQLITE_OK ) break;
if( SQLITE_ROW==sqlite3_step(pExplain) ){
const char *zPlan = (const char*)sqlite3_column_text(pExplain, 3);
res = zPlan!=0 && ( 0==sqlite3_strglob(zGlob, zPlan)
|| 0==sqlite3_strglob(zGlobIPK, zPlan));
}
rc = sqlite3_finalize(pExplain);
if( rc!=SQLITE_OK ) break;
if( res<0 ){
sqlite3_fputs("Error: internal error", stderr);
break;
}else{
if( bGroupByParent
&& (bVerbose || res==0)
&& (zPrev==0 || sqlite3_stricmp(zParent, zPrev))
){
sqlite3_fprintf(out, "-- Parent table %s\n", zParent);
sqlite3_free(zPrev);
zPrev = sqlite3_mprintf("%s", zParent);
}
if( res==0 ){
sqlite3_fprintf(out, "%s%s --> %s\n", zIndent, zCI, zTarget);
}else if( bVerbose ){
sqlite3_fprintf(out,
"%s/* no extra indexes required for %s -> %s */\n",
zIndent, zFrom, zTarget
);
}
}
}
sqlite3_free(zPrev);
if( rc!=SQLITE_OK ){
sqlite3_fprintf(stderr,"%s\n", sqlite3_errmsg(db));
}
rc2 = sqlite3_finalize(pSql);
if( rc==SQLITE_OK && rc2!=SQLITE_OK ){
rc = rc2;
sqlite3_fprintf(stderr,"%s\n", sqlite3_errmsg(db));
}
}else{
sqlite3_fprintf(stderr,"%s\n", sqlite3_errmsg(db));
}
return rc;
}
/*
** Implementation of ".lint" dot command.
*/
static int lintDotCommand(
ShellState *pState, /* Current shell tool state */
char **azArg, /* Array of arguments passed to dot command */
int nArg /* Number of entries in azArg[] */
){
int n;
n = (nArg>=2 ? strlen30(azArg[1]) : 0);
if( n<1 || sqlite3_strnicmp(azArg[1], "fkey-indexes", n) ) goto usage;
return lintFkeyIndexes(pState, azArg, nArg);
usage:
sqlite3_fprintf(stderr,"Usage %s sub-command ?switches...?\n", azArg[0]);
sqlite3_fprintf(stderr, "Where sub-commands are:\n");
sqlite3_fprintf(stderr, " fkey-indexes\n");
return SQLITE_ERROR;
}
static void shellPrepare(
sqlite3 *db,
int *pRc,
const char *zSql,
sqlite3_stmt **ppStmt
){
*ppStmt = 0;
if( *pRc==SQLITE_OK ){
int rc = sqlite3_prepare_v2(db, zSql, -1, ppStmt, 0);
if( rc!=SQLITE_OK ){
sqlite3_fprintf(stderr,
"sql error: %s (%d)\n", sqlite3_errmsg(db), sqlite3_errcode(db));
*pRc = rc;
}
}
}
/*
** Create a prepared statement using printf-style arguments for the SQL.
*/
static void shellPreparePrintf(
sqlite3 *db,
int *pRc,
sqlite3_stmt **ppStmt,
const char *zFmt,
...
){
*ppStmt = 0;
if( *pRc==SQLITE_OK ){
va_list ap;
char *z;
va_start(ap, zFmt);
z = sqlite3_vmprintf(zFmt, ap);
va_end(ap);
if( z==0 ){
*pRc = SQLITE_NOMEM;
}else{
shellPrepare(db, pRc, z, ppStmt);
sqlite3_free(z);
}
}
}
/*
** Finalize the prepared statement created using shellPreparePrintf().
*/
static void shellFinalize(
int *pRc,
sqlite3_stmt *pStmt
){
if( pStmt ){
sqlite3 *db = sqlite3_db_handle(pStmt);
int rc = sqlite3_finalize(pStmt);
if( *pRc==SQLITE_OK ){
if( rc!=SQLITE_OK ){
sqlite3_fprintf(stderr,"SQL error: %s\n", sqlite3_errmsg(db));
}
*pRc = rc;
}
}
}
#if !defined SQLITE_OMIT_VIRTUALTABLE
/* Reset the prepared statement created using shellPreparePrintf().
**
** This routine is could be marked "static". But it is not always used,
** depending on compile-time options. By omitting the "static", we avoid
** nuisance compiler warnings about "defined but not used".
*/
void shellReset(
int *pRc,
sqlite3_stmt *pStmt
){
int rc = sqlite3_reset(pStmt);
if( *pRc==SQLITE_OK ){
if( rc!=SQLITE_OK ){
sqlite3 *db = sqlite3_db_handle(pStmt);
sqlite3_fprintf(stderr,"SQL error: %s\n", sqlite3_errmsg(db));
}
*pRc = rc;
}
}
#endif /* !defined SQLITE_OMIT_VIRTUALTABLE */
#if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(SQLITE_HAVE_ZLIB)
/******************************************************************************
** The ".archive" or ".ar" command.
*/
/*
** Structure representing a single ".ar" command.
*/
typedef struct ArCommand ArCommand;
struct ArCommand {
u8 eCmd; /* An AR_CMD_* value */
u8 bVerbose; /* True if --verbose */
u8 bZip; /* True if the archive is a ZIP */
u8 bDryRun; /* True if --dry-run */
u8 bAppend; /* True if --append */
u8 bGlob; /* True if --glob */
u8 fromCmdLine; /* Run from -A instead of .archive */
int nArg; /* Number of command arguments */
char *zSrcTable; /* "sqlar", "zipfile($file)" or "zip" */
const char *zFile; /* --file argument, or NULL */
const char *zDir; /* --directory argument, or NULL */
char **azArg; /* Array of command arguments */
ShellState *p; /* Shell state */
FILE *out; /* Output to this stream */
sqlite3 *db; /* Database containing the archive */
};
/*
** Print a usage message for the .ar command to stderr and return SQLITE_ERROR.
*/
static int arUsage(FILE *f){
showHelp(f,"archive");
return SQLITE_ERROR;
}
/*
** Print an error message for the .ar command to stderr and return
** SQLITE_ERROR.
*/
static int arErrorMsg(ArCommand *pAr, const char *zFmt, ...){
va_list ap;
char *z;
va_start(ap, zFmt);
z = sqlite3_vmprintf(zFmt, ap);
va_end(ap);
shellEmitError(z);
if( pAr->fromCmdLine ){
sqlite3_fputs("Use \"-A\" for more help\n", stderr);
}else{
sqlite3_fputs("Use \".archive --help\" for more help\n", stderr);
}
sqlite3_free(z);
return SQLITE_ERROR;
}
/*
** Values for ArCommand.eCmd.
*/
#define AR_CMD_CREATE 1
#define AR_CMD_UPDATE 2
#define AR_CMD_INSERT 3
#define AR_CMD_EXTRACT 4
#define AR_CMD_LIST 5
#define AR_CMD_HELP 6
#define AR_CMD_REMOVE 7
/*
** Other (non-command) switches.
*/
#define AR_SWITCH_VERBOSE 8
#define AR_SWITCH_FILE 9
#define AR_SWITCH_DIRECTORY 10
#define AR_SWITCH_APPEND 11
#define AR_SWITCH_DRYRUN 12
#define AR_SWITCH_GLOB 13
static int arProcessSwitch(ArCommand *pAr, int eSwitch, const char *zArg){
switch( eSwitch ){
case AR_CMD_CREATE:
case AR_CMD_EXTRACT:
case AR_CMD_LIST:
case AR_CMD_REMOVE:
case AR_CMD_UPDATE:
case AR_CMD_INSERT:
case AR_CMD_HELP:
if( pAr->eCmd ){
return arErrorMsg(pAr, "multiple command options");
}
pAr->eCmd = eSwitch;
break;
case AR_SWITCH_DRYRUN:
pAr->bDryRun = 1;
break;
case AR_SWITCH_GLOB:
pAr->bGlob = 1;
break;
case AR_SWITCH_VERBOSE:
pAr->bVerbose = 1;
break;
case AR_SWITCH_APPEND:
pAr->bAppend = 1;
deliberate_fall_through; /* FALLTHRU */
case AR_SWITCH_FILE:
pAr->zFile = zArg;
break;
case AR_SWITCH_DIRECTORY:
pAr->zDir = zArg;
break;
}
return SQLITE_OK;
}
/*
** Parse the command line for an ".ar" command. The results are written into
** structure (*pAr). SQLITE_OK is returned if the command line is parsed
** successfully, otherwise an error message is written to stderr and
** SQLITE_ERROR returned.
*/
static int arParseCommand(
char **azArg, /* Array of arguments passed to dot command */
int nArg, /* Number of entries in azArg[] */
ArCommand *pAr /* Populate this object */
){
struct ArSwitch {
const char *zLong;
char cShort;
u8 eSwitch;
u8 bArg;
} aSwitch[] = {
{ "create", 'c', AR_CMD_CREATE, 0 },
{ "extract", 'x', AR_CMD_EXTRACT, 0 },
{ "insert", 'i', AR_CMD_INSERT, 0 },
{ "list", 't', AR_CMD_LIST, 0 },
{ "remove", 'r', AR_CMD_REMOVE, 0 },
{ "update", 'u', AR_CMD_UPDATE, 0 },
{ "help", 'h', AR_CMD_HELP, 0 },
{ "verbose", 'v', AR_SWITCH_VERBOSE, 0 },
{ "file", 'f', AR_SWITCH_FILE, 1 },
{ "append", 'a', AR_SWITCH_APPEND, 1 },
{ "directory", 'C', AR_SWITCH_DIRECTORY, 1 },
{ "dryrun", 'n', AR_SWITCH_DRYRUN, 0 },
{ "glob", 'g', AR_SWITCH_GLOB, 0 },
};
int nSwitch = sizeof(aSwitch) / sizeof(struct ArSwitch);
struct ArSwitch *pEnd = &aSwitch[nSwitch];
if( nArg<=1 ){
sqlite3_fprintf(stderr, "Wrong number of arguments. Usage:\n");
return arUsage(stderr);
}else{
char *z = azArg[1];
if( z[0]!='-' ){
/* Traditional style [tar] invocation */
int i;
int iArg = 2;
for(i=0; z[i]; i++){
const char *zArg = 0;
struct ArSwitch *pOpt;
for(pOpt=&aSwitch[0]; pOpt<pEnd; pOpt++){
if( z[i]==pOpt->cShort ) break;
}
if( pOpt==pEnd ){
return arErrorMsg(pAr, "unrecognized option: %c", z[i]);
}
if( pOpt->bArg ){
if( iArg>=nArg ){
return arErrorMsg(pAr, "option requires an argument: %c",z[i]);
}
zArg = azArg[iArg++];
}
if( arProcessSwitch(pAr, pOpt->eSwitch, zArg) ) return SQLITE_ERROR;
}
pAr->nArg = nArg-iArg;
if( pAr->nArg>0 ){
pAr->azArg = &azArg[iArg];
}
}else{
/* Non-traditional invocation */
int iArg;
for(iArg=1; iArg<nArg; iArg++){
int n;
z = azArg[iArg];
if( z[0]!='-' ){
/* All remaining command line words are command arguments. */
pAr->azArg = &azArg[iArg];
pAr->nArg = nArg-iArg;
break;
}
n = strlen30(z);
if( z[1]!='-' ){
int i;
/* One or more short options */
for(i=1; i<n; i++){
const char *zArg = 0;
struct ArSwitch *pOpt;
for(pOpt=&aSwitch[0]; pOpt<pEnd; pOpt++){
if( z[i]==pOpt->cShort ) break;
}
if( pOpt==pEnd ){
return arErrorMsg(pAr, "unrecognized option: %c", z[i]);
}
if( pOpt->bArg ){
if( i<(n-1) ){
zArg = &z[i+1];
i = n;
}else{
if( iArg>=(nArg-1) ){
return arErrorMsg(pAr, "option requires an argument: %c",
z[i]);
}
zArg = azArg[++iArg];
}
}
if( arProcessSwitch(pAr, pOpt->eSwitch, zArg) ) return SQLITE_ERROR;
}
}else if( z[2]=='\0' ){
/* A -- option, indicating that all remaining command line words
** are command arguments. */
pAr->azArg = &azArg[iArg+1];
pAr->nArg = nArg-iArg-1;
break;
}else{
/* A long option */
const char *zArg = 0; /* Argument for option, if any */
struct ArSwitch *pMatch = 0; /* Matching option */
struct ArSwitch *pOpt; /* Iterator */
for(pOpt=&aSwitch[0]; pOpt<pEnd; pOpt++){
const char *zLong = pOpt->zLong;
if( (n-2)<=strlen30(zLong) && 0==memcmp(&z[2], zLong, n-2) ){
if( pMatch ){
return arErrorMsg(pAr, "ambiguous option: %s",z);
}else{
pMatch = pOpt;
}
}
}
if( pMatch==0 ){
return arErrorMsg(pAr, "unrecognized option: %s", z);
}
if( pMatch->bArg ){
if( iArg>=(nArg-1) ){
return arErrorMsg(pAr, "option requires an argument: %s", z);
}
zArg = azArg[++iArg];
}
if( arProcessSwitch(pAr, pMatch->eSwitch, zArg) ) return SQLITE_ERROR;
}
}
}
}
if( pAr->eCmd==0 ){
sqlite3_fprintf(stderr, "Required argument missing. Usage:\n");
return arUsage(stderr);
}
return SQLITE_OK;
}
/*
** This function assumes that all arguments within the ArCommand.azArg[]
** array refer to archive members, as for the --extract, --list or --remove
** commands. It checks that each of them are "present". If any specified
** file is not present in the archive, an error is printed to stderr and an
** error code returned. Otherwise, if all specified arguments are present
** in the archive, SQLITE_OK is returned. Here, "present" means either an
** exact equality when pAr->bGlob is false or a "name GLOB pattern" match
** when pAr->bGlob is true.
**
** This function strips any trailing '/' characters from each argument.
** This is consistent with the way the [tar] command seems to work on
** Linux.
*/
static int arCheckEntries(ArCommand *pAr){
int rc = SQLITE_OK;
if( pAr->nArg ){
int i, j;
sqlite3_stmt *pTest = 0;
const char *zSel = (pAr->bGlob)
? "SELECT name FROM %s WHERE glob($name,name)"
: "SELECT name FROM %s WHERE name=$name";
shellPreparePrintf(pAr->db, &rc, &pTest, zSel, pAr->zSrcTable);
j = sqlite3_bind_parameter_index(pTest, "$name");
for(i=0; i<pAr->nArg && rc==SQLITE_OK; i++){
char *z = pAr->azArg[i];
int n = strlen30(z);
int bOk = 0;
while( n>0 && z[n-1]=='/' ) n--;
z[n] = '\0';
sqlite3_bind_text(pTest, j, z, -1, SQLITE_STATIC);
if( SQLITE_ROW==sqlite3_step(pTest) ){
bOk = 1;
}
shellReset(&rc, pTest);
if( rc==SQLITE_OK && bOk==0 ){
sqlite3_fprintf(stderr,"not found in archive: %s\n", z);
rc = SQLITE_ERROR;
}
}
shellFinalize(&rc, pTest);
}
return rc;
}
/*
** Format a WHERE clause that can be used against the "sqlar" table to
** identify all archive members that match the command arguments held
** in (*pAr). Leave this WHERE clause in (*pzWhere) before returning.
** The caller is responsible for eventually calling sqlite3_free() on
** any non-NULL (*pzWhere) value. Here, "match" means strict equality
** when pAr->bGlob is false and GLOB match when pAr->bGlob is true.
*/
static void arWhereClause(
int *pRc,
ArCommand *pAr,
char **pzWhere /* OUT: New WHERE clause */
){
char *zWhere = 0;
const char *zSameOp = (pAr->bGlob)? "GLOB" : "=";
if( *pRc==SQLITE_OK ){
if( pAr->nArg==0 ){
zWhere = sqlite3_mprintf("1");
}else{
int i;
const char *zSep = "";
for(i=0; i<pAr->nArg; i++){
const char *z = pAr->azArg[i];
zWhere = sqlite3_mprintf(
"%z%s name %s '%q' OR substr(name,1,%d) %s '%q/'",
zWhere, zSep, zSameOp, z, strlen30(z)+1, zSameOp, z
);
if( zWhere==0 ){
*pRc = SQLITE_NOMEM;
break;
}
zSep = " OR ";
}
}
}
*pzWhere = zWhere;
}
/*
** Implementation of .ar "lisT" command.
*/
static int arListCommand(ArCommand *pAr){
const char *zSql = "SELECT %s FROM %s WHERE %s";
const char *azCols[] = {
"name",
"lsmode(mode), sz, datetime(mtime, 'unixepoch'), name"
};
char *zWhere = 0;
sqlite3_stmt *pSql = 0;
int rc;
rc = arCheckEntries(pAr);
arWhereClause(&rc, pAr, &zWhere);
shellPreparePrintf(pAr->db, &rc, &pSql, zSql, azCols[pAr->bVerbose],
pAr->zSrcTable, zWhere);
if( pAr->bDryRun ){
sqlite3_fprintf(pAr->out, "%s\n", sqlite3_sql(pSql));
}else{
while( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pSql) ){
if( pAr->bVerbose ){
sqlite3_fprintf(pAr->out, "%s % 10d %s %s\n",
sqlite3_column_text(pSql, 0), sqlite3_column_int(pSql, 1),
sqlite3_column_text(pSql, 2),sqlite3_column_text(pSql, 3));
}else{
sqlite3_fprintf(pAr->out, "%s\n", sqlite3_column_text(pSql, 0));
}
}
}
shellFinalize(&rc, pSql);
sqlite3_free(zWhere);
return rc;
}
/*
** Implementation of .ar "Remove" command.
*/
static int arRemoveCommand(ArCommand *pAr){
int rc = 0;
char *zSql = 0;
char *zWhere = 0;
if( pAr->nArg ){
/* Verify that args actually exist within the archive before proceeding.
** And formulate a WHERE clause to match them. */
rc = arCheckEntries(pAr);
arWhereClause(&rc, pAr, &zWhere);
}
if( rc==SQLITE_OK ){
zSql = sqlite3_mprintf("DELETE FROM %s WHERE %s;",
pAr->zSrcTable, zWhere);
if( pAr->bDryRun ){
sqlite3_fprintf(pAr->out, "%s\n", zSql);
}else{
char *zErr = 0;
rc = sqlite3_exec(pAr->db, "SAVEPOINT ar;", 0, 0, 0);
if( rc==SQLITE_OK ){
rc = sqlite3_exec(pAr->db, zSql, 0, 0, &zErr);
if( rc!=SQLITE_OK ){
sqlite3_exec(pAr->db, "ROLLBACK TO ar; RELEASE ar;", 0, 0, 0);
}else{
rc = sqlite3_exec(pAr->db, "RELEASE ar;", 0, 0, 0);
}
}
if( zErr ){
sqlite3_fprintf(stdout, "ERROR: %s\n", zErr); /* stdout? */
sqlite3_free(zErr);
}
}
}
sqlite3_free(zWhere);
sqlite3_free(zSql);
return rc;
}
/*
** Implementation of .ar "eXtract" command.
*/
static int arExtractCommand(ArCommand *pAr){
const char *zSql1 =
"SELECT "
" ($dir || name),"
" writefile(($dir || name), %s, mode, mtime) "
"FROM %s WHERE (%s) AND (data IS NULL OR $dirOnly = 0)"
" AND name NOT GLOB '*..[/\\]*'";
const char *azExtraArg[] = {
"sqlar_uncompress(data, sz)",
"data"
};
sqlite3_stmt *pSql = 0;
int rc = SQLITE_OK;
char *zDir = 0;
char *zWhere = 0;
int i, j;
/* If arguments are specified, check that they actually exist within
** the archive before proceeding. And formulate a WHERE clause to
** match them. */
rc = arCheckEntries(pAr);
arWhereClause(&rc, pAr, &zWhere);
if( rc==SQLITE_OK ){
if( pAr->zDir ){
zDir = sqlite3_mprintf("%s/", pAr->zDir);
}else{
zDir = sqlite3_mprintf("");
}
if( zDir==0 ) rc = SQLITE_NOMEM;
}
shellPreparePrintf(pAr->db, &rc, &pSql, zSql1,
azExtraArg[pAr->bZip], pAr->zSrcTable, zWhere
);
if( rc==SQLITE_OK ){
j = sqlite3_bind_parameter_index(pSql, "$dir");
sqlite3_bind_text(pSql, j, zDir, -1, SQLITE_STATIC);
/* Run the SELECT statement twice. The first time, writefile() is called
** for all archive members that should be extracted. The second time,
** only for the directories. This is because the timestamps for
** extracted directories must be reset after they are populated (as
** populating them changes the timestamp). */
for(i=0; i<2; i++){
j = sqlite3_bind_parameter_index(pSql, "$dirOnly");
sqlite3_bind_int(pSql, j, i);
if( pAr->bDryRun ){
sqlite3_fprintf(pAr->out, "%s\n", sqlite3_sql(pSql));
}else{
while( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pSql) ){
if( i==0 && pAr->bVerbose ){
sqlite3_fprintf(pAr->out, "%s\n", sqlite3_column_text(pSql, 0));
}
}
}
shellReset(&rc, pSql);
}
shellFinalize(&rc, pSql);
}
sqlite3_free(zDir);
sqlite3_free(zWhere);
return rc;
}
/*
** Run the SQL statement in zSql. Or if doing a --dryrun, merely print it out.
*/
static int arExecSql(ArCommand *pAr, const char *zSql){
int rc;
if( pAr->bDryRun ){
sqlite3_fprintf(pAr->out, "%s\n", zSql);
rc = SQLITE_OK;
}else{
char *zErr = 0;
rc = sqlite3_exec(pAr->db, zSql, 0, 0, &zErr);
if( zErr ){
sqlite3_fprintf(stdout, "ERROR: %s\n", zErr);
sqlite3_free(zErr);
}
}
return rc;
}
/*
** Implementation of .ar "create", "insert", and "update" commands.
**
** create -> Create a new SQL archive
** insert -> Insert or reinsert all files listed
** update -> Insert files that have changed or that were not
** previously in the archive
**
** Create the "sqlar" table in the database if it does not already exist.
** Then add each file in the azFile[] array to the archive. Directories
** are added recursively. If argument bVerbose is non-zero, a message is
** printed on stdout for each file archived.
**
** The create command is the same as update, except that it drops
** any existing "sqlar" table before beginning. The "insert" command
** always overwrites every file named on the command-line, where as
** "update" only overwrites if the size or mtime or mode has changed.
*/
static int arCreateOrUpdateCommand(
ArCommand *pAr, /* Command arguments and options */
int bUpdate, /* true for a --create. */
int bOnlyIfChanged /* Only update if file has changed */
){
const char *zCreate =
"CREATE TABLE IF NOT EXISTS sqlar(\n"
" name TEXT PRIMARY KEY, -- name of the file\n"
" mode INT, -- access permissions\n"
" mtime INT, -- last modification time\n"
" sz INT, -- original file size\n"
" data BLOB -- compressed content\n"
")";
const char *zDrop = "DROP TABLE IF EXISTS sqlar";
const char *zInsertFmt[2] = {
"REPLACE INTO %s(name,mode,mtime,sz,data)\n"
" SELECT\n"
" %s,\n"
" mode,\n"
" mtime,\n"
" CASE substr(lsmode(mode),1,1)\n"
" WHEN '-' THEN length(data)\n"
" WHEN 'd' THEN 0\n"
" ELSE -1 END,\n"
" sqlar_compress(data)\n"
" FROM fsdir(%Q,%Q) AS disk\n"
" WHERE lsmode(mode) NOT LIKE '?%%'%s;"
,
"REPLACE INTO %s(name,mode,mtime,data)\n"
" SELECT\n"
" %s,\n"
" mode,\n"
" mtime,\n"
" data\n"
" FROM fsdir(%Q,%Q) AS disk\n"
" WHERE lsmode(mode) NOT LIKE '?%%'%s;"
};
int i; /* For iterating through azFile[] */
int rc; /* Return code */
const char *zTab = 0; /* SQL table into which to insert */
char *zSql;
char zTemp[50];
char *zExists = 0;
arExecSql(pAr, "PRAGMA page_size=512");
rc = arExecSql(pAr, "SAVEPOINT ar;");
if( rc!=SQLITE_OK ) return rc;
zTemp[0] = 0;
if( pAr->bZip ){
/* Initialize the zipfile virtual table, if necessary */
if( pAr->zFile ){
sqlite3_uint64 r;
sqlite3_randomness(sizeof(r),&r);
sqlite3_snprintf(sizeof(zTemp),zTemp,"zip%016llx",r);
zTab = zTemp;
zSql = sqlite3_mprintf(
"CREATE VIRTUAL TABLE temp.%s USING zipfile(%Q)",
zTab, pAr->zFile
);
rc = arExecSql(pAr, zSql);
sqlite3_free(zSql);
}else{
zTab = "zip";
}
}else{
/* Initialize the table for an SQLAR */
zTab = "sqlar";
if( bUpdate==0 ){
rc = arExecSql(pAr, zDrop);
if( rc!=SQLITE_OK ) goto end_ar_transaction;
}
rc = arExecSql(pAr, zCreate);
}
if( bOnlyIfChanged ){
zExists = sqlite3_mprintf(
" AND NOT EXISTS("
"SELECT 1 FROM %s AS mem"
" WHERE mem.name=disk.name"
" AND mem.mtime=disk.mtime"
" AND mem.mode=disk.mode)", zTab);
}else{
zExists = sqlite3_mprintf("");
}
if( zExists==0 ) rc = SQLITE_NOMEM;
for(i=0; i<pAr->nArg && rc==SQLITE_OK; i++){
char *zSql2 = sqlite3_mprintf(zInsertFmt[pAr->bZip], zTab,
pAr->bVerbose ? "shell_putsnl(name)" : "name",
pAr->azArg[i], pAr->zDir, zExists);
rc = arExecSql(pAr, zSql2);
sqlite3_free(zSql2);
}
end_ar_transaction:
if( rc!=SQLITE_OK ){
sqlite3_exec(pAr->db, "ROLLBACK TO ar; RELEASE ar;", 0, 0, 0);
}else{
rc = arExecSql(pAr, "RELEASE ar;");
if( pAr->bZip && pAr->zFile ){
zSql = sqlite3_mprintf("DROP TABLE %s", zTemp);
arExecSql(pAr, zSql);
sqlite3_free(zSql);
}
}
sqlite3_free(zExists);
return rc;
}
/*
** Implementation of ".ar" dot command.
*/
static int arDotCommand(
ShellState *pState, /* Current shell tool state */
int fromCmdLine, /* True if -A command-line option, not .ar cmd */
char **azArg, /* Array of arguments passed to dot command */
int nArg /* Number of entries in azArg[] */
){
ArCommand cmd;
int rc;
memset(&cmd, 0, sizeof(cmd));
cmd.fromCmdLine = fromCmdLine;
rc = arParseCommand(azArg, nArg, &cmd);
if( rc==SQLITE_OK ){
int eDbType = SHELL_OPEN_UNSPEC;
cmd.p = pState;
cmd.out = pState->out;
cmd.db = pState->db;
if( cmd.zFile ){
eDbType = deduceDatabaseType(cmd.zFile, 1);
}else{
eDbType = pState->openMode;
}
if( eDbType==SHELL_OPEN_ZIPFILE ){
if( cmd.eCmd==AR_CMD_EXTRACT || cmd.eCmd==AR_CMD_LIST ){
if( cmd.zFile==0 ){
cmd.zSrcTable = sqlite3_mprintf("zip");
}else{
cmd.zSrcTable = sqlite3_mprintf("zipfile(%Q)", cmd.zFile);
}
}
cmd.bZip = 1;
}else if( cmd.zFile ){
int flags;
if( cmd.bAppend ) eDbType = SHELL_OPEN_APPENDVFS;
if( cmd.eCmd==AR_CMD_CREATE || cmd.eCmd==AR_CMD_INSERT
|| cmd.eCmd==AR_CMD_REMOVE || cmd.eCmd==AR_CMD_UPDATE ){
flags = SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE;
}else{
flags = SQLITE_OPEN_READONLY;
}
cmd.db = 0;
if( cmd.bDryRun ){
sqlite3_fprintf(cmd.out, "-- open database '%s'%s\n", cmd.zFile,
eDbType==SHELL_OPEN_APPENDVFS ? " using 'apndvfs'" : "");
}
rc = sqlite3_open_v2(cmd.zFile, &cmd.db, flags,
eDbType==SHELL_OPEN_APPENDVFS ? "apndvfs" : 0);
if( rc!=SQLITE_OK ){
sqlite3_fprintf(stderr, "cannot open file: %s (%s)\n",
cmd.zFile, sqlite3_errmsg(cmd.db));
goto end_ar_command;
}
sqlite3_fileio_init(cmd.db, 0, 0);
sqlite3_sqlar_init(cmd.db, 0, 0);
sqlite3_create_function(cmd.db, "shell_putsnl", 1, SQLITE_UTF8, cmd.p,
shellPutsFunc, 0, 0);
}
if( cmd.zSrcTable==0 && cmd.bZip==0 && cmd.eCmd!=AR_CMD_HELP ){
if( cmd.eCmd!=AR_CMD_CREATE
&& sqlite3_table_column_metadata(cmd.db,0,"sqlar","name",0,0,0,0,0)
){
sqlite3_fprintf(stderr, "database does not contain an 'sqlar' table\n");
rc = SQLITE_ERROR;
goto end_ar_command;
}
cmd.zSrcTable = sqlite3_mprintf("sqlar");
}
switch( cmd.eCmd ){
case AR_CMD_CREATE:
rc = arCreateOrUpdateCommand(&cmd, 0, 0);
break;
case AR_CMD_EXTRACT:
rc = arExtractCommand(&cmd);
break;
case AR_CMD_LIST:
rc = arListCommand(&cmd);
break;
case AR_CMD_HELP:
arUsage(pState->out);
break;
case AR_CMD_INSERT:
rc = arCreateOrUpdateCommand(&cmd, 1, 0);
break;
case AR_CMD_REMOVE:
rc = arRemoveCommand(&cmd);
break;
default:
assert( cmd.eCmd==AR_CMD_UPDATE );
rc = arCreateOrUpdateCommand(&cmd, 1, 1);
break;
}
}
end_ar_command:
if( cmd.db!=pState->db ){
close_db(cmd.db);
}
sqlite3_free(cmd.zSrcTable);
return rc;
}
/* End of the ".archive" or ".ar" command logic
*******************************************************************************/
#endif /* !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(SQLITE_HAVE_ZLIB) */
#if SQLITE_SHELL_HAVE_RECOVER
/*
** This function is used as a callback by the recover extension. Simply
** print the supplied SQL statement to stdout.
*/
static int recoverSqlCb(void *pCtx, const char *zSql){
ShellState *pState = (ShellState*)pCtx;
sqlite3_fprintf(pState->out, "%s;\n", zSql);
return SQLITE_OK;
}
/*
** This function is called to recover data from the database. A script
** to construct a new database containing all recovered data is output
** on stream pState->out.
*/
static int recoverDatabaseCmd(ShellState *pState, int nArg, char **azArg){
int rc = SQLITE_OK;
const char *zRecoveryDb = ""; /* Name of "recovery" database. Debug only */
const char *zLAF = "lost_and_found";
int bFreelist = 1; /* 0 if --ignore-freelist is specified */
int bRowids = 1; /* 0 if --no-rowids */
sqlite3_recover *p = 0;
int i = 0;
for(i=1; i<nArg; i++){
char *z = azArg[i];
int n;
if( z[0]=='-' && z[1]=='-' ) z++;
n = strlen30(z);
if( n<=17 && memcmp("-ignore-freelist", z, n)==0 ){
bFreelist = 0;
}else
if( n<=12 && memcmp("-recovery-db", z, n)==0 && i<(nArg-1) ){
/* This option determines the name of the ATTACH-ed database used
** internally by the recovery extension. The default is "" which
** means to use a temporary database that is automatically deleted
** when closed. This option is undocumented and might disappear at
** any moment. */
i++;
zRecoveryDb = azArg[i];
}else
if( n<=15 && memcmp("-lost-and-found", z, n)==0 && i<(nArg-1) ){
i++;
zLAF = azArg[i];
}else
if( n<=10 && memcmp("-no-rowids", z, n)==0 ){
bRowids = 0;
}
else{
sqlite3_fprintf(stderr,"unexpected option: %s\n", azArg[i]);
showHelp(pState->out, azArg[0]);
return 1;
}
}
p = sqlite3_recover_init_sql(
pState->db, "main", recoverSqlCb, (void*)pState
);
sqlite3_recover_config(p, 789, (void*)zRecoveryDb); /* Debug use only */
sqlite3_recover_config(p, SQLITE_RECOVER_LOST_AND_FOUND, (void*)zLAF);
sqlite3_recover_config(p, SQLITE_RECOVER_ROWIDS, (void*)&bRowids);
sqlite3_recover_config(p, SQLITE_RECOVER_FREELIST_CORRUPT,(void*)&bFreelist);
sqlite3_recover_run(p);
if( sqlite3_recover_errcode(p)!=SQLITE_OK ){
const char *zErr = sqlite3_recover_errmsg(p);
int errCode = sqlite3_recover_errcode(p);
sqlite3_fprintf(stderr,"sql error: %s (%d)\n", zErr, errCode);
}
rc = sqlite3_recover_finish(p);
return rc;
}
#endif /* SQLITE_SHELL_HAVE_RECOVER */
/*
** Implementation of ".intck STEPS_PER_UNLOCK" command.
*/
static int intckDatabaseCmd(ShellState *pState, i64 nStepPerUnlock){
sqlite3_intck *p = 0;
int rc = SQLITE_OK;
rc = sqlite3_intck_open(pState->db, "main", &p);
if( rc==SQLITE_OK ){
i64 nStep = 0;
i64 nError = 0;
const char *zErr = 0;
while( SQLITE_OK==sqlite3_intck_step(p) ){
const char *zMsg = sqlite3_intck_message(p);
if( zMsg ){
sqlite3_fprintf(pState->out, "%s\n", zMsg);
nError++;
}
nStep++;
if( nStepPerUnlock && (nStep % nStepPerUnlock)==0 ){
sqlite3_intck_unlock(p);
}
}
rc = sqlite3_intck_error(p, &zErr);
if( zErr ){
sqlite3_fprintf(stderr,"%s\n", zErr);
}
sqlite3_intck_close(p);
sqlite3_fprintf(pState->out, "%lld steps, %lld errors\n", nStep, nError);
}
return rc;
}
/*
* zAutoColumn(zCol, &db, ?) => Maybe init db, add column zCol to it.
* zAutoColumn(0, &db, ?) => (db!=0) Form columns spec for CREATE TABLE,
* close db and set it to 0, and return the columns spec, to later
* be sqlite3_free()'ed by the caller.
* The return is 0 when either:
* (a) The db was not initialized and zCol==0 (There are no columns.)
* (b) zCol!=0 (Column was added, db initialized as needed.)
* The 3rd argument, pRenamed, references an out parameter. If the
* pointer is non-zero, its referent will be set to a summary of renames
* done if renaming was necessary, or set to 0 if none was done. The out
* string (if any) must be sqlite3_free()'ed by the caller.
*/
#ifdef SHELL_DEBUG
#define rc_err_oom_die(rc) \
if( rc==SQLITE_NOMEM ) shell_check_oom(0); \
else if(!(rc==SQLITE_OK||rc==SQLITE_DONE)) \
sqlite3_fprintf(stderr,"E:%d\n",rc), assert(0)
#else
static void rc_err_oom_die(int rc){
if( rc==SQLITE_NOMEM ) shell_check_oom(0);
assert(rc==SQLITE_OK||rc==SQLITE_DONE);
}
#endif
#ifdef SHELL_COLFIX_DB /* If this is set, the DB can be in a file. */
static char zCOL_DB[] = SHELL_STRINGIFY(SHELL_COLFIX_DB);
#else /* Otherwise, memory is faster/better for the transient DB. */
static const char *zCOL_DB = ":memory:";
#endif
/* Define character (as C string) to separate generated column ordinal
* from protected part of incoming column names. This defaults to "_"
* so that incoming column identifiers that did not need not be quoted
* remain usable without being quoted. It must be one character.
*/
#ifndef SHELL_AUTOCOLUMN_SEP
# define AUTOCOLUMN_SEP "_"
#else
# define AUTOCOLUMN_SEP SHELL_STRINGIFY(SHELL_AUTOCOLUMN_SEP)
#endif
static char *zAutoColumn(const char *zColNew, sqlite3 **pDb, char **pzRenamed){
/* Queries and D{D,M}L used here */
static const char * const zTabMake = "\
CREATE TABLE ColNames(\
cpos INTEGER PRIMARY KEY,\
name TEXT, nlen INT, chop INT, reps INT, suff TEXT);\
CREATE VIEW RepeatedNames AS \
SELECT DISTINCT t.name FROM ColNames t \
WHERE t.name COLLATE NOCASE IN (\
SELECT o.name FROM ColNames o WHERE o.cpos<>t.cpos\
);\
";
static const char * const zTabFill = "\
INSERT INTO ColNames(name,nlen,chop,reps,suff)\
VALUES(iif(length(?1)>0,?1,'?'),max(length(?1),1),0,0,'')\
";
static const char * const zHasDupes = "\
SELECT count(DISTINCT (substring(name,1,nlen-chop)||suff) COLLATE NOCASE)\
<count(name) FROM ColNames\
";
#ifdef SHELL_COLUMN_RENAME_CLEAN
static const char * const zDedoctor = "\
UPDATE ColNames SET chop=iif(\
(substring(name,nlen,1) BETWEEN '0' AND '9')\
AND (rtrim(name,'0123456790') glob '*"AUTOCOLUMN_SEP"'),\
nlen-length(rtrim(name, '"AUTOCOLUMN_SEP"0123456789')),\
0\
)\
";
#endif
static const char * const zSetReps = "\
UPDATE ColNames AS t SET reps=\
(SELECT count(*) FROM ColNames d \
WHERE substring(t.name,1,t.nlen-t.chop)=substring(d.name,1,d.nlen-d.chop)\
COLLATE NOCASE\
)\
";
#ifdef SQLITE_ENABLE_MATH_FUNCTIONS
static const char * const zColDigits = "\
SELECT CAST(ceil(log(count(*)+0.5)) AS INT) FROM ColNames \
";
#else
/* Counting on SQLITE_MAX_COLUMN < 100,000 here. (32767 is the hard limit.) */
static const char * const zColDigits = "\
SELECT CASE WHEN (nc < 10) THEN 1 WHEN (nc < 100) THEN 2 \
WHEN (nc < 1000) THEN 3 WHEN (nc < 10000) THEN 4 \
ELSE 5 FROM (SELECT count(*) AS nc FROM ColNames) \
";
#endif
static const char * const zRenameRank =
#ifdef SHELL_COLUMN_RENAME_CLEAN
"UPDATE ColNames AS t SET suff="
"iif(reps>1, printf('%c%0*d', '"AUTOCOLUMN_SEP"', $1, cpos), '')"
#else /* ...RENAME_MINIMAL_ONE_PASS */
"WITH Lzn(nlz) AS (" /* Find minimum extraneous leading 0's for uniqueness */
" SELECT 0 AS nlz"
" UNION"
" SELECT nlz+1 AS nlz FROM Lzn"
" WHERE EXISTS("
" SELECT 1"
" FROM ColNames t, ColNames o"
" WHERE"
" iif(t.name IN (SELECT * FROM RepeatedNames),"
" printf('%s"AUTOCOLUMN_SEP"%s',"
" t.name, substring(printf('%.*c%0.*d',nlz+1,'0',$1,t.cpos),2)),"
" t.name"
" )"
" ="
" iif(o.name IN (SELECT * FROM RepeatedNames),"
" printf('%s"AUTOCOLUMN_SEP"%s',"
" o.name, substring(printf('%.*c%0.*d',nlz+1,'0',$1,o.cpos),2)),"
" o.name"
" )"
" COLLATE NOCASE"
" AND o.cpos<>t.cpos"
" GROUP BY t.cpos"
" )"
") UPDATE Colnames AS t SET"
" chop = 0," /* No chopping, never touch incoming names. */
" suff = iif(name IN (SELECT * FROM RepeatedNames),"
" printf('"AUTOCOLUMN_SEP"%s', substring("
" printf('%.*c%0.*d',(SELECT max(nlz) FROM Lzn)+1,'0',1,t.cpos),2)),"
" ''"
" )"
#endif
;
static const char * const zCollectVar = "\
SELECT\
'('||x'0a'\
|| group_concat(\
cname||' TEXT',\
','||iif((cpos-1)%4>0, ' ', x'0a'||' '))\
||')' AS ColsSpec \
FROM (\
SELECT cpos, printf('\"%w\"',printf('%!.*s%s', nlen-chop,name,suff)) AS cname \
FROM ColNames ORDER BY cpos\
)";
static const char * const zRenamesDone =
"SELECT group_concat("
" printf('\"%w\" to \"%w\"',name,printf('%!.*s%s', nlen-chop, name, suff)),"
" ','||x'0a')"
"FROM ColNames WHERE suff<>'' OR chop!=0"
;
int rc;
sqlite3_stmt *pStmt = 0;
assert(pDb!=0);
if( zColNew ){
/* Add initial or additional column. Init db if necessary. */
if( *pDb==0 ){
if( SQLITE_OK!=sqlite3_open(zCOL_DB, pDb) ) return 0;
#ifdef SHELL_COLFIX_DB
if(*zCOL_DB!=':')
sqlite3_exec(*pDb,"drop table if exists ColNames;"
"drop view if exists RepeatedNames;",0,0,0);
#endif
#undef SHELL_COLFIX_DB
rc = sqlite3_exec(*pDb, zTabMake, 0, 0, 0);
rc_err_oom_die(rc);
}
assert(*pDb!=0);
rc = sqlite3_prepare_v2(*pDb, zTabFill, -1, &pStmt, 0);
rc_err_oom_die(rc);
rc = sqlite3_bind_text(pStmt, 1, zColNew, -1, 0);
rc_err_oom_die(rc);
rc = sqlite3_step(pStmt);
rc_err_oom_die(rc);
sqlite3_finalize(pStmt);
return 0;
}else if( *pDb==0 ){
return 0;
}else{
/* Formulate the columns spec, close the DB, zero *pDb. */
char *zColsSpec = 0;
int hasDupes = db_int(*pDb, "%s", zHasDupes);
int nDigits = (hasDupes)? db_int(*pDb, "%s", zColDigits) : 0;
if( hasDupes ){
#ifdef SHELL_COLUMN_RENAME_CLEAN
rc = sqlite3_exec(*pDb, zDedoctor, 0, 0, 0);
rc_err_oom_die(rc);
#endif
rc = sqlite3_exec(*pDb, zSetReps, 0, 0, 0);
rc_err_oom_die(rc);
rc = sqlite3_prepare_v2(*pDb, zRenameRank, -1, &pStmt, 0);
rc_err_oom_die(rc);
sqlite3_bind_int(pStmt, 1, nDigits);
rc = sqlite3_step(pStmt);
sqlite3_finalize(pStmt);
if( rc!=SQLITE_DONE ) rc_err_oom_die(SQLITE_NOMEM);
}
assert(db_int(*pDb, "%s", zHasDupes)==0); /* Consider: remove this */
rc = sqlite3_prepare_v2(*pDb, zCollectVar, -1, &pStmt, 0);
rc_err_oom_die(rc);
rc = sqlite3_step(pStmt);
if( rc==SQLITE_ROW ){
zColsSpec = sqlite3_mprintf("%s", sqlite3_column_text(pStmt, 0));
}else{
zColsSpec = 0;
}
if( pzRenamed!=0 ){
if( !hasDupes ) *pzRenamed = 0;
else{
sqlite3_finalize(pStmt);
if( SQLITE_OK==sqlite3_prepare_v2(*pDb, zRenamesDone, -1, &pStmt, 0)
&& SQLITE_ROW==sqlite3_step(pStmt) ){
*pzRenamed = sqlite3_mprintf("%s", sqlite3_column_text(pStmt, 0));
}else
*pzRenamed = 0;
}
}
sqlite3_finalize(pStmt);
sqlite3_close(*pDb);
*pDb = 0;
return zColsSpec;
}
}
/*
** Check if the sqlite_schema table contains one or more virtual tables. If
** parameter zLike is not NULL, then it is an SQL expression that the
** sqlite_schema row must also match. If one or more such rows are found,
** print the following warning to the output:
**
** WARNING: Script requires that SQLITE_DBCONFIG_DEFENSIVE be disabled
*/
static int outputDumpWarning(ShellState *p, const char *zLike){
int rc = SQLITE_OK;
sqlite3_stmt *pStmt = 0;
shellPreparePrintf(p->db, &rc, &pStmt,
"SELECT 1 FROM sqlite_schema o WHERE "
"sql LIKE 'CREATE VIRTUAL TABLE%%' AND %s", zLike ? zLike : "true"
);
if( rc==SQLITE_OK && sqlite3_step(pStmt)==SQLITE_ROW ){
sqlite3_fputs("/* WARNING: "
"Script requires that SQLITE_DBCONFIG_DEFENSIVE be disabled */\n",
p->out
);
}
shellFinalize(&rc, pStmt);
return rc;
}
/*
** Fault-Simulator state and logic.
*/
static struct {
int iId; /* ID that triggers a simulated fault. -1 means "any" */
int iErr; /* The error code to return on a fault */
int iCnt; /* Trigger the fault only if iCnt is already zero */
int iInterval; /* Reset iCnt to this value after each fault */
int eVerbose; /* When to print output */
int nHit; /* Number of hits seen so far */
int nRepeat; /* Turn off after this many hits. 0 for never */
int nSkip; /* Skip this many before first fault */
} faultsim_state = {-1, 0, 0, 0, 0, 0, 0, 0};
/*
** This is the fault-sim callback
*/
static int faultsim_callback(int iArg){
if( faultsim_state.iId>0 && faultsim_state.iId!=iArg ){
return SQLITE_OK;
}
if( faultsim_state.iCnt ){
if( faultsim_state.iCnt>0 ) faultsim_state.iCnt--;
if( faultsim_state.eVerbose>=2 ){
sqlite3_fprintf(stdout,
"FAULT-SIM id=%d no-fault (cnt=%d)\n", iArg, faultsim_state.iCnt);
}
return SQLITE_OK;
}
if( faultsim_state.eVerbose>=1 ){
sqlite3_fprintf(stdout,
"FAULT-SIM id=%d returns %d\n", iArg, faultsim_state.iErr);
}
faultsim_state.iCnt = faultsim_state.iInterval;
faultsim_state.nHit++;
if( faultsim_state.nRepeat>0 && faultsim_state.nRepeat<=faultsim_state.nHit ){
faultsim_state.iCnt = -1;
}
return faultsim_state.iErr;
}
/*
** If an input line begins with "." then invoke this routine to
** process that line.
**
** Return 1 on error, 2 to exit, and 0 otherwise.
*/
static int do_meta_command(char *zLine, ShellState *p){
int h = 1;
int nArg = 0;
int n, c;
int rc = 0;
char *azArg[52];
#ifndef SQLITE_OMIT_VIRTUALTABLE
if( p->expert.pExpert ){
expertFinish(p, 1, 0);
}
#endif
/* Parse the input line into tokens.
*/
while( zLine[h] && nArg<ArraySize(azArg)-1 ){
while( IsSpace(zLine[h]) ){ h++; }
if( zLine[h]==0 ) break;
if( zLine[h]=='\'' || zLine[h]=='"' ){
int delim = zLine[h++];
azArg[nArg++] = &zLine[h];
while( zLine[h] && zLine[h]!=delim ){
if( zLine[h]=='\\' && delim=='"' && zLine[h+1]!=0 ) h++;
h++;
}
if( zLine[h]==delim ){
zLine[h++] = 0;
}
if( delim=='"' ) resolve_backslashes(azArg[nArg-1]);
}else{
azArg[nArg++] = &zLine[h];
while( zLine[h] && !IsSpace(zLine[h]) ){ h++; }
if( zLine[h] ) zLine[h++] = 0;
}
}
azArg[nArg] = 0;
/* Process the input line.
*/
if( nArg==0 ) return 0; /* no tokens, no error */
n = strlen30(azArg[0]);
c = azArg[0][0];
clearTempFile(p);
#ifndef SQLITE_OMIT_AUTHORIZATION
if( c=='a' && cli_strncmp(azArg[0], "auth", n)==0 ){
if( nArg!=2 ){
sqlite3_fprintf(stderr, "Usage: .auth ON|OFF\n");
rc = 1;
goto meta_command_exit;
}
open_db(p, 0);
if( booleanValue(azArg[1]) ){
sqlite3_set_authorizer(p->db, shellAuth, p);
}else if( p->bSafeModePersist ){
sqlite3_set_authorizer(p->db, safeModeAuth, p);
}else{
sqlite3_set_authorizer(p->db, 0, 0);
}
}else
#endif
#if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(SQLITE_HAVE_ZLIB) \
&& !defined(SQLITE_SHELL_FIDDLE)
if( c=='a' && cli_strncmp(azArg[0], "archive", n)==0 ){
open_db(p, 0);
failIfSafeMode(p, "cannot run .archive in safe mode");
rc = arDotCommand(p, 0, azArg, nArg);
}else
#endif
#ifndef SQLITE_SHELL_FIDDLE
if( (c=='b' && n>=3 && cli_strncmp(azArg[0], "backup", n)==0)
|| (c=='s' && n>=3 && cli_strncmp(azArg[0], "save", n)==0)
){
const char *zDestFile = 0;
const char *zDb = 0;
sqlite3 *pDest;
sqlite3_backup *pBackup;
int j;
int bAsync = 0;
const char *zVfs = 0;
failIfSafeMode(p, "cannot run .%s in safe mode", azArg[0]);
for(j=1; j<nArg; j++){
const char *z = azArg[j];
if( z[0]=='-' ){
if( z[1]=='-' ) z++;
if( cli_strcmp(z, "-append")==0 ){
zVfs = "apndvfs";
}else
if( cli_strcmp(z, "-async")==0 ){
bAsync = 1;
}else
{
sqlite3_fprintf(stderr,"unknown option: %s\n", azArg[j]);
return 1;
}
}else if( zDestFile==0 ){
zDestFile = azArg[j];
}else if( zDb==0 ){
zDb = zDestFile;
zDestFile = azArg[j];
}else{
sqlite3_fprintf(stderr, "Usage: .backup ?DB? ?OPTIONS? FILENAME\n");
return 1;
}
}
if( zDestFile==0 ){
sqlite3_fprintf(stderr, "missing FILENAME argument on .backup\n");
return 1;
}
if( zDb==0 ) zDb = "main";
rc = sqlite3_open_v2(zDestFile, &pDest,
SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE, zVfs);
if( rc!=SQLITE_OK ){
sqlite3_fprintf(stderr,"Error: cannot open \"%s\"\n", zDestFile);
close_db(pDest);
return 1;
}
if( bAsync ){
sqlite3_exec(pDest, "PRAGMA synchronous=OFF; PRAGMA journal_mode=OFF;",
0, 0, 0);
}
open_db(p, 0);
pBackup = sqlite3_backup_init(pDest, "main", p->db, zDb);
if( pBackup==0 ){
shellDatabaseError(pDest);
close_db(pDest);
return 1;
}
while( (rc = sqlite3_backup_step(pBackup,100))==SQLITE_OK ){}
sqlite3_backup_finish(pBackup);
if( rc==SQLITE_DONE ){
rc = 0;
}else{
shellDatabaseError(pDest);
rc = 1;
}
close_db(pDest);
}else
#endif /* !defined(SQLITE_SHELL_FIDDLE) */
if( c=='b' && n>=3 && cli_strncmp(azArg[0], "bail", n)==0 ){
if( nArg==2 ){
bail_on_error = booleanValue(azArg[1]);
}else{
eputz("Usage: .bail on|off\n");
rc = 1;
}
}else
/* Undocumented. Legacy only. See "crlf" below */
if( c=='b' && n>=3 && cli_strncmp(azArg[0], "binary", n)==0 ){
eputz("The \".binary\" command is deprecated.\n");
rc = 1;
}else
/* The undocumented ".breakpoint" command causes a call to the no-op
** routine named test_breakpoint().
*/
if( c=='b' && n>=3 && cli_strncmp(azArg[0], "breakpoint", n)==0 ){
test_breakpoint();
}else
#ifndef SQLITE_SHELL_FIDDLE
if( c=='c' && cli_strcmp(azArg[0],"cd")==0 ){
failIfSafeMode(p, "cannot run .cd in safe mode");
if( nArg==2 ){
#if defined(_WIN32) || defined(WIN32)
wchar_t *z = sqlite3_win32_utf8_to_unicode(azArg[1]);
rc = !SetCurrentDirectoryW(z);
sqlite3_free(z);
#else
rc = chdir(azArg[1]);
#endif
if( rc ){
sqlite3_fprintf(stderr,"Cannot change to directory \"%s\"\n", azArg[1]);
rc = 1;
}
}else{
eputz("Usage: .cd DIRECTORY\n");
rc = 1;
}
}else
#endif /* !defined(SQLITE_SHELL_FIDDLE) */
if( c=='c' && n>=3 && cli_strncmp(azArg[0], "changes", n)==0 ){
if( nArg==2 ){
setOrClearFlag(p, SHFLG_CountChanges, azArg[1]);
}else{
eputz("Usage: .changes on|off\n");
rc = 1;
}
}else
#ifndef SQLITE_SHELL_FIDDLE
/* Cancel output redirection, if it is currently set (by .testcase)
** Then read the content of the testcase-out.txt file and compare against
** azArg[1]. If there are differences, report an error and exit.
*/
if( c=='c' && n>=3 && cli_strncmp(azArg[0], "check", n)==0 ){
char *zRes = 0;
output_reset(p);
if( nArg!=2 ){
eputz("Usage: .check GLOB-PATTERN\n");
rc = 2;
}else if( (zRes = readFile("testcase-out.txt", 0))==0 ){
rc = 2;
}else if( testcase_glob(azArg[1],zRes)==0 ){
sqlite3_fprintf(stderr,
"testcase-%s FAILED\n Expected: [%s]\n Got: [%s]\n",
p->zTestcase, azArg[1], zRes);
rc = 1;
}else{
sqlite3_fprintf(p->out, "testcase-%s ok\n", p->zTestcase);
p->nCheck++;
}
sqlite3_free(zRes);
}else
#endif /* !defined(SQLITE_SHELL_FIDDLE) */
#ifndef SQLITE_SHELL_FIDDLE
if( c=='c' && cli_strncmp(azArg[0], "clone", n)==0 ){
failIfSafeMode(p, "cannot run .clone in safe mode");
if( nArg==2 ){
tryToClone(p, azArg[1]);
}else{
eputz("Usage: .clone FILENAME\n");
rc = 1;
}
}else
#endif /* !defined(SQLITE_SHELL_FIDDLE) */
if( c=='c' && cli_strncmp(azArg[0], "connection", n)==0 ){
if( nArg==1 ){
/* List available connections */
int i;
for(i=0; i<ArraySize(p->aAuxDb); i++){
const char *zFile = p->aAuxDb[i].zDbFilename;
if( p->aAuxDb[i].db==0 && p->pAuxDb!=&p->aAuxDb[i] ){
zFile = "(not open)";
}else if( zFile==0 ){
zFile = "(memory)";
}else if( zFile[0]==0 ){
zFile = "(temporary-file)";
}
if( p->pAuxDb == &p->aAuxDb[i] ){
sqlite3_fprintf(stdout, "ACTIVE %d: %s\n", i, zFile);
}else if( p->aAuxDb[i].db!=0 ){
sqlite3_fprintf(stdout, " %d: %s\n", i, zFile);
}
}
}else if( nArg==2 && IsDigit(azArg[1][0]) && azArg[1][1]==0 ){
int i = azArg[1][0] - '0';
if( p->pAuxDb != &p->aAuxDb[i] && i>=0 && i<ArraySize(p->aAuxDb) ){
p->pAuxDb->db = p->db;
p->pAuxDb = &p->aAuxDb[i];
globalDb = p->db = p->pAuxDb->db;
p->pAuxDb->db = 0;
}
}else if( nArg==3 && cli_strcmp(azArg[1], "close")==0
&& IsDigit(azArg[2][0]) && azArg[2][1]==0 ){
int i = azArg[2][0] - '0';
if( i<0 || i>=ArraySize(p->aAuxDb) ){
/* No-op */
}else if( p->pAuxDb == &p->aAuxDb[i] ){
eputz("cannot close the active database connection\n");
rc = 1;
}else if( p->aAuxDb[i].db ){
session_close_all(p, i);
close_db(p->aAuxDb[i].db);
p->aAuxDb[i].db = 0;
}
}else{
eputz("Usage: .connection [close] [CONNECTION-NUMBER]\n");
rc = 1;
}
}else
if( c=='c' && n==4
&& (cli_strncmp(azArg[0], "crlf", n)==0
|| cli_strncmp(azArg[0], "crnl",n)==0)
){
if( nArg==2 ){
#ifdef _WIN32
p->crlfMode = booleanValue(azArg[1]);
#else
p->crlfMode = 0;
#endif
}
sqlite3_fprintf(stderr, "crlf is %s\n", p->crlfMode ? "ON" : "OFF");
}else
if( c=='d' && n>1 && cli_strncmp(azArg[0], "databases", n)==0 ){
char **azName = 0;
int nName = 0;
sqlite3_stmt *pStmt;
int i;
open_db(p, 0);
rc = sqlite3_prepare_v2(p->db, "PRAGMA database_list", -1, &pStmt, 0);
if( rc ){
shellDatabaseError(p->db);
rc = 1;
}else{
while( sqlite3_step(pStmt)==SQLITE_ROW ){
const char *zSchema = (const char *)sqlite3_column_text(pStmt,1);
const char *zFile = (const char*)sqlite3_column_text(pStmt,2);
if( zSchema==0 || zFile==0 ) continue;
azName = sqlite3_realloc(azName, (nName+1)*2*sizeof(char*));
shell_check_oom(azName);
azName[nName*2] = strdup(zSchema);
azName[nName*2+1] = strdup(zFile);
nName++;
}
}
sqlite3_finalize(pStmt);
for(i=0; i<nName; i++){
int eTxn = sqlite3_txn_state(p->db, azName[i*2]);
int bRdonly = sqlite3_db_readonly(p->db, azName[i*2]);
const char *z = azName[i*2+1];
sqlite3_fprintf(p->out, "%s: %s %s%s\n",
azName[i*2], z && z[0] ? z : "\"\"", bRdonly ? "r/o" : "r/w",
eTxn==SQLITE_TXN_NONE ? "" :
eTxn==SQLITE_TXN_READ ? " read-txn" : " write-txn");
free(azName[i*2]);
free(azName[i*2+1]);
}
sqlite3_free(azName);
}else
if( c=='d' && n>=3 && cli_strncmp(azArg[0], "dbconfig", n)==0 ){
static const struct DbConfigChoices {
const char *zName;
int op;
} aDbConfig[] = {
{ "defensive", SQLITE_DBCONFIG_DEFENSIVE },
{ "dqs_ddl", SQLITE_DBCONFIG_DQS_DDL },
{ "dqs_dml", SQLITE_DBCONFIG_DQS_DML },
{ "enable_fkey", SQLITE_DBCONFIG_ENABLE_FKEY },
{ "enable_qpsg", SQLITE_DBCONFIG_ENABLE_QPSG },
{ "enable_trigger", SQLITE_DBCONFIG_ENABLE_TRIGGER },
{ "enable_view", SQLITE_DBCONFIG_ENABLE_VIEW },
{ "fts3_tokenizer", SQLITE_DBCONFIG_ENABLE_FTS3_TOKENIZER },
{ "legacy_alter_table", SQLITE_DBCONFIG_LEGACY_ALTER_TABLE },
{ "legacy_file_format", SQLITE_DBCONFIG_LEGACY_FILE_FORMAT },
{ "load_extension", SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION },
{ "no_ckpt_on_close", SQLITE_DBCONFIG_NO_CKPT_ON_CLOSE },
{ "reset_database", SQLITE_DBCONFIG_RESET_DATABASE },
{ "reverse_scanorder", SQLITE_DBCONFIG_REVERSE_SCANORDER },
{ "stmt_scanstatus", SQLITE_DBCONFIG_STMT_SCANSTATUS },
{ "trigger_eqp", SQLITE_DBCONFIG_TRIGGER_EQP },
{ "trusted_schema", SQLITE_DBCONFIG_TRUSTED_SCHEMA },
{ "writable_schema", SQLITE_DBCONFIG_WRITABLE_SCHEMA },
};
int ii, v;
open_db(p, 0);
for(ii=0; ii<ArraySize(aDbConfig); ii++){
if( nArg>1 && cli_strcmp(azArg[1], aDbConfig[ii].zName)!=0 ) continue;
if( nArg>=3 ){
sqlite3_db_config(p->db, aDbConfig[ii].op, booleanValue(azArg[2]), 0);
}
sqlite3_db_config(p->db, aDbConfig[ii].op, -1, &v);
sqlite3_fprintf(p->out, "%19s %s\n",
aDbConfig[ii].zName, v ? "on" : "off");
if( nArg>1 ) break;
}
if( nArg>1 && ii==ArraySize(aDbConfig) ){
sqlite3_fprintf(stderr,"Error: unknown dbconfig \"%s\"\n", azArg[1]);
eputz("Enter \".dbconfig\" with no arguments for a list\n");
}
}else
#if SQLITE_SHELL_HAVE_RECOVER
if( c=='d' && n>=3 && cli_strncmp(azArg[0], "dbinfo", n)==0 ){
rc = shell_dbinfo_command(p, nArg, azArg);
}else
if( c=='r' && cli_strncmp(azArg[0], "recover", n)==0 ){
open_db(p, 0);
rc = recoverDatabaseCmd(p, nArg, azArg);
}else
#endif /* SQLITE_SHELL_HAVE_RECOVER */
if( c=='d' && cli_strncmp(azArg[0], "dump", n)==0 ){
char *zLike = 0;
char *zSql;
int i;
int savedShowHeader = p->showHeader;
int savedShellFlags = p->shellFlgs;
ShellClearFlag(p,
SHFLG_PreserveRowid|SHFLG_Newlines|SHFLG_Echo
|SHFLG_DumpDataOnly|SHFLG_DumpNoSys);
for(i=1; i<nArg; i++){
if( azArg[i][0]=='-' ){
const char *z = azArg[i]+1;
if( z[0]=='-' ) z++;
if( cli_strcmp(z,"preserve-rowids")==0 ){
#ifdef SQLITE_OMIT_VIRTUALTABLE
eputz("The --preserve-rowids option is not compatible"
" with SQLITE_OMIT_VIRTUALTABLE\n");
rc = 1;
sqlite3_free(zLike);
goto meta_command_exit;
#else
ShellSetFlag(p, SHFLG_PreserveRowid);
#endif
}else
if( cli_strcmp(z,"newlines")==0 ){
ShellSetFlag(p, SHFLG_Newlines);
}else
if( cli_strcmp(z,"data-only")==0 ){
ShellSetFlag(p, SHFLG_DumpDataOnly);
}else
if( cli_strcmp(z,"nosys")==0 ){
ShellSetFlag(p, SHFLG_DumpNoSys);
}else
{
sqlite3_fprintf(stderr,
"Unknown option \"%s\" on \".dump\"\n", azArg[i]);
rc = 1;
sqlite3_free(zLike);
goto meta_command_exit;
}
}else{
/* azArg[i] contains a LIKE pattern. This ".dump" request should
** only dump data for tables for which either the table name matches
** the LIKE pattern, or the table appears to be a shadow table of
** a virtual table for which the name matches the LIKE pattern.
*/
char *zExpr = sqlite3_mprintf(
"name LIKE %Q ESCAPE '\\' OR EXISTS ("
" SELECT 1 FROM sqlite_schema WHERE "
" name LIKE %Q ESCAPE '\\' AND"
" sql LIKE 'CREATE VIRTUAL TABLE%%' AND"
" substr(o.name, 1, length(name)+1) == (name||'_')"
")", azArg[i], azArg[i]
);
if( zLike ){
zLike = sqlite3_mprintf("%z OR %z", zLike, zExpr);
}else{
zLike = zExpr;
}
}
}
open_db(p, 0);
outputDumpWarning(p, zLike);
if( (p->shellFlgs & SHFLG_DumpDataOnly)==0 ){
/* When playing back a "dump", the content might appear in an order
** which causes immediate foreign key constraints to be violated.
** So disable foreign-key constraint enforcement to prevent problems. */
sqlite3_fputs("PRAGMA foreign_keys=OFF;\n", p->out);
sqlite3_fputs("BEGIN TRANSACTION;\n", p->out);
}
p->writableSchema = 0;
p->showHeader = 0;
/* Set writable_schema=ON since doing so forces SQLite to initialize
** as much of the schema as it can even if the sqlite_schema table is
** corrupt. */
sqlite3_exec(p->db, "SAVEPOINT dump; PRAGMA writable_schema=ON", 0, 0, 0);
p->nErr = 0;
if( zLike==0 ) zLike = sqlite3_mprintf("true");
zSql = sqlite3_mprintf(
"SELECT name, type, sql FROM sqlite_schema AS o "
"WHERE (%s) AND type=='table'"
" AND sql NOT NULL"
" ORDER BY tbl_name='sqlite_sequence', rowid",
zLike
);
run_schema_dump_query(p,zSql);
sqlite3_free(zSql);
if( (p->shellFlgs & SHFLG_DumpDataOnly)==0 ){
zSql = sqlite3_mprintf(
"SELECT sql FROM sqlite_schema AS o "
"WHERE (%s) AND sql NOT NULL"
" AND type IN ('index','trigger','view') "
"ORDER BY type COLLATE NOCASE DESC",
zLike
);
run_table_dump_query(p, zSql);
sqlite3_free(zSql);
}
sqlite3_free(zLike);
if( p->writableSchema ){
sqlite3_fputs("PRAGMA writable_schema=OFF;\n", p->out);
p->writableSchema = 0;
}
sqlite3_exec(p->db, "PRAGMA writable_schema=OFF;", 0, 0, 0);
sqlite3_exec(p->db, "RELEASE dump;", 0, 0, 0);
if( (p->shellFlgs & SHFLG_DumpDataOnly)==0 ){
sqlite3_fputs(p->nErr?"ROLLBACK; -- due to errors\n":"COMMIT;\n", p->out);
}
p->showHeader = savedShowHeader;
p->shellFlgs = savedShellFlags;
}else
if( c=='e' && cli_strncmp(azArg[0], "echo", n)==0 ){
if( nArg==2 ){
setOrClearFlag(p, SHFLG_Echo, azArg[1]);
}else{
eputz("Usage: .echo on|off\n");
rc = 1;
}
}else
if( c=='d' && n>=3 && cli_strncmp(azArg[0], "dbtotxt", n)==0 ){
rc = shell_dbtotxt_command(p, nArg, azArg);
}else
if( c=='e' && cli_strncmp(azArg[0], "eqp", n)==0 ){
if( nArg==2 ){
p->autoEQPtest = 0;
if( p->autoEQPtrace ){
if( p->db ) sqlite3_exec(p->db, "PRAGMA vdbe_trace=OFF;", 0, 0, 0);
p->autoEQPtrace = 0;
}
if( cli_strcmp(azArg[1],"full")==0 ){
p->autoEQP = AUTOEQP_full;
}else if( cli_strcmp(azArg[1],"trigger")==0 ){
p->autoEQP = AUTOEQP_trigger;
#ifdef SQLITE_DEBUG
}else if( cli_strcmp(azArg[1],"test")==0 ){
p->autoEQP = AUTOEQP_on;
p->autoEQPtest = 1;
}else if( cli_strcmp(azArg[1],"trace")==0 ){
p->autoEQP = AUTOEQP_full;
p->autoEQPtrace = 1;
open_db(p, 0);
sqlite3_exec(p->db, "SELECT name FROM sqlite_schema LIMIT 1", 0, 0, 0);
sqlite3_exec(p->db, "PRAGMA vdbe_trace=ON;", 0, 0, 0);
#endif
}else{
p->autoEQP = (u8)booleanValue(azArg[1]);
}
}else{
eputz("Usage: .eqp off|on|trace|trigger|full\n");
rc = 1;
}
}else
#ifndef SQLITE_SHELL_FIDDLE
if( c=='e' && cli_strncmp(azArg[0], "exit", n)==0 ){
if( nArg>1 && (rc = (int)integerValue(azArg[1]))!=0 ) exit(rc);
rc = 2;
}else
#endif
/* The ".explain" command is automatic now. It is largely pointless. It
** retained purely for backwards compatibility */
if( c=='e' && cli_strncmp(azArg[0], "explain", n)==0 ){
int val = 1;
if( nArg>=2 ){
if( cli_strcmp(azArg[1],"auto")==0 ){
val = 99;
}else{
val = booleanValue(azArg[1]);
}
}
if( val==1 && p->mode!=MODE_Explain ){
p->normalMode = p->mode;
p->mode = MODE_Explain;
p->autoExplain = 0;
}else if( val==0 ){
if( p->mode==MODE_Explain ) p->mode = p->normalMode;
p->autoExplain = 0;
}else if( val==99 ){
if( p->mode==MODE_Explain ) p->mode = p->normalMode;
p->autoExplain = 1;
}
}else
#ifndef SQLITE_OMIT_VIRTUALTABLE
if( c=='e' && cli_strncmp(azArg[0], "expert", n)==0 ){
if( p->bSafeMode ){
sqlite3_fprintf(stderr,
"Cannot run experimental commands such as \"%s\" in safe mode\n",
azArg[0]);
rc = 1;
}else{
open_db(p, 0);
expertDotCommand(p, azArg, nArg);
}
}else
#endif
if( c=='f' && cli_strncmp(azArg[0], "filectrl", n)==0 ){
static const struct {
const char *zCtrlName; /* Name of a test-control option */
int ctrlCode; /* Integer code for that option */
const char *zUsage; /* Usage notes */
} aCtrl[] = {
{ "chunk_size", SQLITE_FCNTL_CHUNK_SIZE, "SIZE" },
{ "data_version", SQLITE_FCNTL_DATA_VERSION, "" },
{ "has_moved", SQLITE_FCNTL_HAS_MOVED, "" },
{ "lock_timeout", SQLITE_FCNTL_LOCK_TIMEOUT, "MILLISEC" },
{ "persist_wal", SQLITE_FCNTL_PERSIST_WAL, "[BOOLEAN]" },
/* { "pragma", SQLITE_FCNTL_PRAGMA, "NAME ARG" },*/
{ "psow", SQLITE_FCNTL_POWERSAFE_OVERWRITE, "[BOOLEAN]" },
{ "reserve_bytes", SQLITE_FCNTL_RESERVE_BYTES, "[N]" },
{ "size_limit", SQLITE_FCNTL_SIZE_LIMIT, "[LIMIT]" },
{ "tempfilename", SQLITE_FCNTL_TEMPFILENAME, "" },
/* { "win32_av_retry", SQLITE_FCNTL_WIN32_AV_RETRY, "COUNT DELAY" },*/
};
int filectrl = -1;
int iCtrl = -1;
sqlite3_int64 iRes = 0; /* Integer result to display if rc2==1 */
int isOk = 0; /* 0: usage 1: %lld 2: no-result */
int n2, i;
const char *zCmd = 0;
const char *zSchema = 0;
open_db(p, 0);
zCmd = nArg>=2 ? azArg[1] : "help";
if( zCmd[0]=='-'
&& (cli_strcmp(zCmd,"--schema")==0 || cli_strcmp(zCmd,"-schema")==0)
&& nArg>=4
){
zSchema = azArg[2];
for(i=3; i<nArg; i++) azArg[i-2] = azArg[i];
nArg -= 2;
zCmd = azArg[1];
}
/* The argument can optionally begin with "-" or "--" */
if( zCmd[0]=='-' && zCmd[1] ){
zCmd++;
if( zCmd[0]=='-' && zCmd[1] ) zCmd++;
}
/* --help lists all file-controls */
if( cli_strcmp(zCmd,"help")==0 ){
sqlite3_fputs("Available file-controls:\n", p->out);
for(i=0; i<ArraySize(aCtrl); i++){
sqlite3_fprintf(p->out,
" .filectrl %s %s\n", aCtrl[i].zCtrlName, aCtrl[i].zUsage);
}
rc = 1;
goto meta_command_exit;
}
/* convert filectrl text option to value. allow any unique prefix
** of the option name, or a numerical value. */
n2 = strlen30(zCmd);
for(i=0; i<ArraySize(aCtrl); i++){
if( cli_strncmp(zCmd, aCtrl[i].zCtrlName, n2)==0 ){
if( filectrl<0 ){
filectrl = aCtrl[i].ctrlCode;
iCtrl = i;
}else{
sqlite3_fprintf(stderr,"Error: ambiguous file-control: \"%s\"\n"
"Use \".filectrl --help\" for help\n", zCmd);
rc = 1;
goto meta_command_exit;
}
}
}
if( filectrl<0 ){
sqlite3_fprintf(stderr,"Error: unknown file-control: %s\n"
"Use \".filectrl --help\" for help\n", zCmd);
}else{
switch(filectrl){
case SQLITE_FCNTL_SIZE_LIMIT: {
if( nArg!=2 && nArg!=3 ) break;
iRes = nArg==3 ? integerValue(azArg[2]) : -1;
sqlite3_file_control(p->db, zSchema, SQLITE_FCNTL_SIZE_LIMIT, &iRes);
isOk = 1;
break;
}
case SQLITE_FCNTL_LOCK_TIMEOUT:
case SQLITE_FCNTL_CHUNK_SIZE: {
int x;
if( nArg!=3 ) break;
x = (int)integerValue(azArg[2]);
sqlite3_file_control(p->db, zSchema, filectrl, &x);
isOk = 2;
break;
}
case SQLITE_FCNTL_PERSIST_WAL:
case SQLITE_FCNTL_POWERSAFE_OVERWRITE: {
int x;
if( nArg!=2 && nArg!=3 ) break;
x = nArg==3 ? booleanValue(azArg[2]) : -1;
sqlite3_file_control(p->db, zSchema, filectrl, &x);
iRes = x;
isOk = 1;
break;
}
case SQLITE_FCNTL_DATA_VERSION:
case SQLITE_FCNTL_HAS_MOVED: {
int x;
if( nArg!=2 ) break;
sqlite3_file_control(p->db, zSchema, filectrl, &x);
iRes = x;
isOk = 1;
break;
}
case SQLITE_FCNTL_TEMPFILENAME: {
char *z = 0;
if( nArg!=2 ) break;
sqlite3_file_control(p->db, zSchema, filectrl, &z);
if( z ){
sqlite3_fprintf(p->out, "%s\n", z);
sqlite3_free(z);
}
isOk = 2;
break;
}
case SQLITE_FCNTL_RESERVE_BYTES: {
int x;
if( nArg>=3 ){
x = atoi(azArg[2]);
sqlite3_file_control(p->db, zSchema, filectrl, &x);
}
x = -1;
sqlite3_file_control(p->db, zSchema, filectrl, &x);
sqlite3_fprintf(p->out, "%d\n", x);
isOk = 2;
break;
}
}
}
if( isOk==0 && iCtrl>=0 ){
sqlite3_fprintf(p->out, "Usage: .filectrl %s %s\n",
zCmd, aCtrl[iCtrl].zUsage);
rc = 1;
}else if( isOk==1 ){
char zBuf[100];
sqlite3_snprintf(sizeof(zBuf), zBuf, "%lld", iRes);
sqlite3_fprintf(p->out, "%s\n", zBuf);
}
}else
if( c=='f' && cli_strncmp(azArg[0], "fullschema", n)==0 ){
ShellState data;
int doStats = 0;
memcpy(&data, p, sizeof(data));
data.showHeader = 0;
data.cMode = data.mode = MODE_Semi;
if( nArg==2 && optionMatch(azArg[1], "indent") ){
data.cMode = data.mode = MODE_Pretty;
nArg = 1;
}
if( nArg!=1 ){
eputz("Usage: .fullschema ?--indent?\n");
rc = 1;
goto meta_command_exit;
}
open_db(p, 0);
rc = sqlite3_exec(p->db,
"SELECT sql FROM"
" (SELECT sql sql, type type, tbl_name tbl_name, name name, rowid x"
" FROM sqlite_schema UNION ALL"
" SELECT sql, type, tbl_name, name, rowid FROM sqlite_temp_schema) "
"WHERE type!='meta' AND sql NOTNULL AND name NOT LIKE 'sqlite_%' "
"ORDER BY x",
callback, &data, 0
);
if( rc==SQLITE_OK ){
sqlite3_stmt *pStmt;
rc = sqlite3_prepare_v2(p->db,
"SELECT rowid FROM sqlite_schema"
" WHERE name GLOB 'sqlite_stat[134]'",
-1, &pStmt, 0);
if( rc==SQLITE_OK ){
doStats = sqlite3_step(pStmt)==SQLITE_ROW;
sqlite3_finalize(pStmt);
}
}
if( doStats==0 ){
sqlite3_fputs("/* No STAT tables available */\n", p->out);
}else{
sqlite3_fputs("ANALYZE sqlite_schema;\n", p->out);
data.cMode = data.mode = MODE_Insert;
data.zDestTable = "sqlite_stat1";
shell_exec(&data, "SELECT * FROM sqlite_stat1", 0);
data.zDestTable = "sqlite_stat4";
shell_exec(&data, "SELECT * FROM sqlite_stat4", 0);
sqlite3_fputs("ANALYZE sqlite_schema;\n", p->out);
}
}else
if( c=='h' && cli_strncmp(azArg[0], "headers", n)==0 ){
if( nArg==2 ){
p->showHeader = booleanValue(azArg[1]);
p->shellFlgs |= SHFLG_HeaderSet;
}else{
eputz("Usage: .headers on|off\n");
rc = 1;
}
}else
if( c=='h' && cli_strncmp(azArg[0], "help", n)==0 ){
if( nArg>=2 ){
n = showHelp(p->out, azArg[1]);
if( n==0 ){
sqlite3_fprintf(p->out, "Nothing matches '%s'\n", azArg[1]);
}
}else{
showHelp(p->out, 0);
}
}else
#ifndef SQLITE_SHELL_FIDDLE
if( c=='i' && cli_strncmp(azArg[0], "import", n)==0 ){
char *zTable = 0; /* Insert data into this table */
char *zSchema = 0; /* Schema of zTable */
char *zFile = 0; /* Name of file to extra content from */
sqlite3_stmt *pStmt = NULL; /* A statement */
int nCol; /* Number of columns in the table */
i64 nByte; /* Number of bytes in an SQL string */
int i, j; /* Loop counters */
int needCommit; /* True to COMMIT or ROLLBACK at end */
int nSep; /* Number of bytes in p->colSeparator[] */
char *zSql = 0; /* An SQL statement */
ImportCtx sCtx; /* Reader context */
char *(SQLITE_CDECL *xRead)(ImportCtx*); /* Func to read one value */
int eVerbose = 0; /* Larger for more console output */
int nSkip = 0; /* Initial lines to skip */
int useOutputMode = 1; /* Use output mode to determine separators */
char *zCreate = 0; /* CREATE TABLE statement text */
failIfSafeMode(p, "cannot run .import in safe mode");
memset(&sCtx, 0, sizeof(sCtx));
if( p->mode==MODE_Ascii ){
xRead = ascii_read_one_field;
}else{
xRead = csv_read_one_field;
}
rc = 1;
for(i=1; i<nArg; i++){
char *z = azArg[i];
if( z[0]=='-' && z[1]=='-' ) z++;
if( z[0]!='-' ){
if( zFile==0 ){
zFile = z;
}else if( zTable==0 ){
zTable = z;
}else{
sqlite3_fprintf(p->out, "ERROR: extra argument: \"%s\". Usage:\n",z);
showHelp(p->out, "import");
goto meta_command_exit;
}
}else if( cli_strcmp(z,"-v")==0 ){
eVerbose++;
}else if( cli_strcmp(z,"-schema")==0 && i<nArg-1 ){
zSchema = azArg[++i];
}else if( cli_strcmp(z,"-skip")==0 && i<nArg-1 ){
nSkip = integerValue(azArg[++i]);
}else if( cli_strcmp(z,"-ascii")==0 ){
sCtx.cColSep = SEP_Unit[0];
sCtx.cRowSep = SEP_Record[0];
xRead = ascii_read_one_field;
useOutputMode = 0;
}else if( cli_strcmp(z,"-csv")==0 ){
sCtx.cColSep = ',';
sCtx.cRowSep = '\n';
xRead = csv_read_one_field;
useOutputMode = 0;
}else{
sqlite3_fprintf(p->out, "ERROR: unknown option: \"%s\". Usage:\n", z);
showHelp(p->out, "import");
goto meta_command_exit;
}
}
if( zTable==0 ){
sqlite3_fprintf(p->out, "ERROR: missing %s argument. Usage:\n",
zFile==0 ? "FILE" : "TABLE");
showHelp(p->out, "import");
goto meta_command_exit;
}
seenInterrupt = 0;
open_db(p, 0);
if( useOutputMode ){
/* If neither the --csv or --ascii options are specified, then set
** the column and row separator characters from the output mode. */
nSep = strlen30(p->colSeparator);
if( nSep==0 ){
eputz("Error: non-null column separator required for import\n");
goto meta_command_exit;
}
if( nSep>1 ){
eputz("Error: multi-character column separators not allowed"
" for import\n");
goto meta_command_exit;
}
nSep = strlen30(p->rowSeparator);
if( nSep==0 ){
eputz("Error: non-null row separator required for import\n");
goto meta_command_exit;
}
if( nSep==2 && p->mode==MODE_Csv
&& cli_strcmp(p->rowSeparator,SEP_CrLf)==0
){
/* When importing CSV (only), if the row separator is set to the
** default output row separator, change it to the default input
** row separator. This avoids having to maintain different input
** and output row separators. */
sqlite3_snprintf(sizeof(p->rowSeparator), p->rowSeparator, SEP_Row);
nSep = strlen30(p->rowSeparator);
}
if( nSep>1 ){
eputz("Error: multi-character row separators not allowed"
" for import\n");
goto meta_command_exit;
}
sCtx.cColSep = (u8)p->colSeparator[0];
sCtx.cRowSep = (u8)p->rowSeparator[0];
}
sCtx.zFile = zFile;
sCtx.nLine = 1;
if( sCtx.zFile[0]=='|' ){
#ifdef SQLITE_OMIT_POPEN
eputz("Error: pipes are not supported in this OS\n");
goto meta_command_exit;
#else
sCtx.in = sqlite3_popen(sCtx.zFile+1, "r");
sCtx.zFile = "<pipe>";
sCtx.xCloser = pclose;
#endif
}else{
sCtx.in = sqlite3_fopen(sCtx.zFile, "rb");
sCtx.xCloser = fclose;
}
if( sCtx.in==0 ){
sqlite3_fprintf(stderr,"Error: cannot open \"%s\"\n", zFile);
goto meta_command_exit;
}
if( eVerbose>=2 || (eVerbose>=1 && useOutputMode) ){
char zSep[2];
zSep[1] = 0;
zSep[0] = sCtx.cColSep;
sqlite3_fputs("Column separator ", p->out);
output_c_string(p->out, zSep);
sqlite3_fputs(", row separator ", p->out);
zSep[0] = sCtx.cRowSep;
output_c_string(p->out, zSep);
sqlite3_fputs("\n", p->out);
}
sCtx.z = sqlite3_malloc64(120);
if( sCtx.z==0 ){
import_cleanup(&sCtx);
shell_out_of_memory();
}
/* Below, resources must be freed before exit. */
while( (nSkip--)>0 ){
while( xRead(&sCtx) && sCtx.cTerm==sCtx.cColSep ){}
}
import_append_char(&sCtx, 0); /* To ensure sCtx.z is allocated */
if( sqlite3_table_column_metadata(p->db, zSchema, zTable,0,0,0,0,0,0)
&& 0==db_int(p->db, "SELECT count(*) FROM \"%w\".sqlite_schema"
" WHERE name=%Q AND type='view'",
zSchema ? zSchema : "main", zTable)
){
/* Table does not exist. Create it. */
sqlite3 *dbCols = 0;
char *zRenames = 0;
char *zColDefs;
zCreate = sqlite3_mprintf("CREATE TABLE \"%w\".\"%w\"",
zSchema ? zSchema : "main", zTable);
while( xRead(&sCtx) ){
zAutoColumn(sCtx.z, &dbCols, 0);
if( sCtx.cTerm!=sCtx.cColSep ) break;
}
zColDefs = zAutoColumn(0, &dbCols, &zRenames);
if( zRenames!=0 ){
sqlite3_fprintf((stdin_is_interactive && p->in==stdin)? p->out : stderr,
"Columns renamed during .import %s due to duplicates:\n"
"%s\n", sCtx.zFile, zRenames);
sqlite3_free(zRenames);
}
assert(dbCols==0);
if( zColDefs==0 ){
sqlite3_fprintf(stderr,"%s: empty file\n", sCtx.zFile);
import_cleanup(&sCtx);
rc = 1;
sqlite3_free(zCreate);
goto meta_command_exit;
}
zCreate = sqlite3_mprintf("%z%z\n", zCreate, zColDefs);
if( zCreate==0 ){
import_cleanup(&sCtx);
shell_out_of_memory();
}
if( eVerbose>=1 ){
sqlite3_fprintf(p->out, "%s\n", zCreate);
}
rc = sqlite3_exec(p->db, zCreate, 0, 0, 0);
if( rc ){
sqlite3_fprintf(stderr,
"%s failed:\n%s\n", zCreate, sqlite3_errmsg(p->db));
}
sqlite3_free(zCreate);
zCreate = 0;
if( rc ){
import_cleanup(&sCtx);
rc = 1;
goto meta_command_exit;
}
}
zSql = sqlite3_mprintf("SELECT count(*) FROM pragma_table_info(%Q,%Q);",
zTable, zSchema);
if( zSql==0 ){
import_cleanup(&sCtx);
shell_out_of_memory();
}
rc = sqlite3_prepare_v2(p->db, zSql, -1, &pStmt, 0);
sqlite3_free(zSql);
zSql = 0;
if( rc ){
if (pStmt) sqlite3_finalize(pStmt);
shellDatabaseError(p->db);
import_cleanup(&sCtx);
rc = 1;
goto meta_command_exit;
}
if( sqlite3_step(pStmt)==SQLITE_ROW ){
nCol = sqlite3_column_int(pStmt, 0);
}else{
nCol = 0;
}
sqlite3_finalize(pStmt);
pStmt = 0;
if( nCol==0 ) return 0; /* no columns, no error */
nByte = 64 /* space for "INSERT INTO", "VALUES(", ")\0" */
+ (zSchema ? strlen(zSchema)*2 + 2: 0) /* Quoted schema name */
+ strlen(zTable)*2 + 2 /* Quoted table name */
+ nCol*2; /* Space for ",?" for each column */
zSql = sqlite3_malloc64( nByte );
if( zSql==0 ){
import_cleanup(&sCtx);
shell_out_of_memory();
}
if( zSchema ){
sqlite3_snprintf(nByte, zSql, "INSERT INTO \"%w\".\"%w\" VALUES(?",
zSchema, zTable);
}else{
sqlite3_snprintf(nByte, zSql, "INSERT INTO \"%w\" VALUES(?", zTable);
}
j = strlen30(zSql);
for(i=1; i<nCol; i++){
zSql[j++] = ',';
zSql[j++] = '?';
}
zSql[j++] = ')';
zSql[j] = 0;
assert( j<nByte );
if( eVerbose>=2 ){
sqlite3_fprintf(p->out, "Insert using: %s\n", zSql);
}
rc = sqlite3_prepare_v2(p->db, zSql, -1, &pStmt, 0);
sqlite3_free(zSql);
zSql = 0;
if( rc ){
shellDatabaseError(p->db);
if (pStmt) sqlite3_finalize(pStmt);
import_cleanup(&sCtx);
rc = 1;
goto meta_command_exit;
}
needCommit = sqlite3_get_autocommit(p->db);
if( needCommit ) sqlite3_exec(p->db, "BEGIN", 0, 0, 0);
do{
int startLine = sCtx.nLine;
for(i=0; i<nCol; i++){
char *z = xRead(&sCtx);
/*
** Did we reach end-of-file before finding any columns?
** If so, stop instead of NULL filling the remaining columns.
*/
if( z==0 && i==0 ) break;
/*
** Did we reach end-of-file OR end-of-line before finding any
** columns in ASCII mode? If so, stop instead of NULL filling
** the remaining columns.
*/
if( p->mode==MODE_Ascii && (z==0 || z[0]==0) && i==0 ) break;
/*
** For CSV mode, per RFC 4180, accept EOF in lieu of final
** record terminator but only for last field of multi-field row.
** (If there are too few fields, it's not valid CSV anyway.)
*/
if( z==0 && (xRead==csv_read_one_field) && i==nCol-1 && i>0 ){
z = "";
}
sqlite3_bind_text(pStmt, i+1, z, -1, SQLITE_TRANSIENT);
if( i<nCol-1 && sCtx.cTerm!=sCtx.cColSep ){
sqlite3_fprintf(stderr,"%s:%d: expected %d columns but found %d"
" - filling the rest with NULL\n",
sCtx.zFile, startLine, nCol, i+1);
i += 2;
while( i<=nCol ){ sqlite3_bind_null(pStmt, i); i++; }
}
}
if( sCtx.cTerm==sCtx.cColSep ){
do{
xRead(&sCtx);
i++;
}while( sCtx.cTerm==sCtx.cColSep );
sqlite3_fprintf(stderr,
"%s:%d: expected %d columns but found %d - extras ignored\n",
sCtx.zFile, startLine, nCol, i);
}
if( i>=nCol ){
sqlite3_step(pStmt);
rc = sqlite3_reset(pStmt);
if( rc!=SQLITE_OK ){
sqlite3_fprintf(stderr,"%s:%d: INSERT failed: %s\n",
sCtx.zFile, startLine, sqlite3_errmsg(p->db));
sCtx.nErr++;
}else{
sCtx.nRow++;
}
}
}while( sCtx.cTerm!=EOF );
import_cleanup(&sCtx);
sqlite3_finalize(pStmt);
if( needCommit ) sqlite3_exec(p->db, "COMMIT", 0, 0, 0);
if( eVerbose>0 ){
sqlite3_fprintf(p->out,
"Added %d rows with %d errors using %d lines of input\n",
sCtx.nRow, sCtx.nErr, sCtx.nLine-1);
}
}else
#endif /* !defined(SQLITE_SHELL_FIDDLE) */
#ifndef SQLITE_UNTESTABLE
if( c=='i' && cli_strncmp(azArg[0], "imposter", n)==0 ){
char *zSql;
char *zCollist = 0;
sqlite3_stmt *pStmt;
int tnum = 0;
int isWO = 0; /* True if making an imposter of a WITHOUT ROWID table */
int lenPK = 0; /* Length of the PRIMARY KEY string for isWO tables */
int i;
if( !ShellHasFlag(p,SHFLG_TestingMode) ){
sqlite3_fprintf(stderr,".%s unavailable without --unsafe-testing\n",
"imposter");
rc = 1;
goto meta_command_exit;
}
if( !(nArg==3 || (nArg==2 && sqlite3_stricmp(azArg[1],"off")==0)) ){
eputz("Usage: .imposter INDEX IMPOSTER\n"
" .imposter off\n");
/* Also allowed, but not documented:
**
** .imposter TABLE IMPOSTER
**
** where TABLE is a WITHOUT ROWID table. In that case, the
** imposter is another WITHOUT ROWID table with the columns in
** storage order. */
rc = 1;
goto meta_command_exit;
}
open_db(p, 0);
if( nArg==2 ){
sqlite3_test_control(SQLITE_TESTCTRL_IMPOSTER, p->db, "main", 0, 1);
goto meta_command_exit;
}
zSql = sqlite3_mprintf(
"SELECT rootpage, 0 FROM sqlite_schema"
" WHERE name='%q' AND type='index'"
"UNION ALL "
"SELECT rootpage, 1 FROM sqlite_schema"
" WHERE name='%q' AND type='table'"
" AND sql LIKE '%%without%%rowid%%'",
azArg[1], azArg[1]
);
sqlite3_prepare_v2(p->db, zSql, -1, &pStmt, 0);
sqlite3_free(zSql);
if( sqlite3_step(pStmt)==SQLITE_ROW ){
tnum = sqlite3_column_int(pStmt, 0);
isWO = sqlite3_column_int(pStmt, 1);
}
sqlite3_finalize(pStmt);
zSql = sqlite3_mprintf("PRAGMA index_xinfo='%q'", azArg[1]);
rc = sqlite3_prepare_v2(p->db, zSql, -1, &pStmt, 0);
sqlite3_free(zSql);
i = 0;
while( rc==SQLITE_OK && sqlite3_step(pStmt)==SQLITE_ROW ){
char zLabel[20];
const char *zCol = (const char*)sqlite3_column_text(pStmt,2);
i++;
if( zCol==0 ){
if( sqlite3_column_int(pStmt,1)==-1 ){
zCol = "_ROWID_";
}else{
sqlite3_snprintf(sizeof(zLabel),zLabel,"expr%d",i);
zCol = zLabel;
}
}
if( isWO && lenPK==0 && sqlite3_column_int(pStmt,5)==0 && zCollist ){
lenPK = (int)strlen(zCollist);
}
if( zCollist==0 ){
zCollist = sqlite3_mprintf("\"%w\"", zCol);
}else{
zCollist = sqlite3_mprintf("%z,\"%w\"", zCollist, zCol);
}
}
sqlite3_finalize(pStmt);
if( i==0 || tnum==0 ){
sqlite3_fprintf(stderr,"no such index: \"%s\"\n", azArg[1]);
rc = 1;
sqlite3_free(zCollist);
goto meta_command_exit;
}
if( lenPK==0 ) lenPK = 100000;
zSql = sqlite3_mprintf(
"CREATE TABLE \"%w\"(%s,PRIMARY KEY(%.*s))WITHOUT ROWID",
azArg[2], zCollist, lenPK, zCollist);
sqlite3_free(zCollist);
rc = sqlite3_test_control(SQLITE_TESTCTRL_IMPOSTER, p->db, "main", 1, tnum);
if( rc==SQLITE_OK ){
rc = sqlite3_exec(p->db, zSql, 0, 0, 0);
sqlite3_test_control(SQLITE_TESTCTRL_IMPOSTER, p->db, "main", 0, 0);
if( rc ){
sqlite3_fprintf(stderr,
"Error in [%s]: %s\n", zSql, sqlite3_errmsg(p->db));
}else{
sqlite3_fprintf(stdout, "%s;\n", zSql);
sqlite3_fprintf(stdout,
"WARNING: writing to an imposter table will corrupt"
" the \"%s\" %s!\n", azArg[1], isWO ? "table" : "index");
}
}else{
sqlite3_fprintf(stderr,"SQLITE_TESTCTRL_IMPOSTER returns %d\n", rc);
rc = 1;
}
sqlite3_free(zSql);
}else
#endif /* !defined(SQLITE_OMIT_TEST_CONTROL) */
if( c=='i' && cli_strncmp(azArg[0], "intck", n)==0 ){
i64 iArg = 0;
if( nArg==2 ){
iArg = integerValue(azArg[1]);
if( iArg==0 ) iArg = -1;
}
if( (nArg!=1 && nArg!=2) || iArg<0 ){
sqlite3_fprintf(stderr,"%s","Usage: .intck STEPS_PER_UNLOCK\n");
rc = 1;
goto meta_command_exit;
}
open_db(p, 0);
rc = intckDatabaseCmd(p, iArg);
}else
#ifdef SQLITE_ENABLE_IOTRACE
if( c=='i' && cli_strncmp(azArg[0], "iotrace", n)==0 ){
SQLITE_API extern void (SQLITE_CDECL *sqlite3IoTrace)(const char*, ...);
if( iotrace && iotrace!=stdout ) fclose(iotrace);
iotrace = 0;
if( nArg<2 ){
sqlite3IoTrace = 0;
}else if( cli_strcmp(azArg[1], "-")==0 ){
sqlite3IoTrace = iotracePrintf;
iotrace = stdout;
}else{
iotrace = sqlite3_fopen(azArg[1], "w");
if( iotrace==0 ){
sqlite3_fprintf(stderr,"Error: cannot open \"%s\"\n", azArg[1]);
sqlite3IoTrace = 0;
rc = 1;
}else{
sqlite3IoTrace = iotracePrintf;
}
}
}else
#endif
if( c=='l' && n>=5 && cli_strncmp(azArg[0], "limits", n)==0 ){
static const struct {
const char *zLimitName; /* Name of a limit */
int limitCode; /* Integer code for that limit */
} aLimit[] = {
{ "length", SQLITE_LIMIT_LENGTH },
{ "sql_length", SQLITE_LIMIT_SQL_LENGTH },
{ "column", SQLITE_LIMIT_COLUMN },
{ "expr_depth", SQLITE_LIMIT_EXPR_DEPTH },
{ "compound_select", SQLITE_LIMIT_COMPOUND_SELECT },
{ "vdbe_op", SQLITE_LIMIT_VDBE_OP },
{ "function_arg", SQLITE_LIMIT_FUNCTION_ARG },
{ "attached", SQLITE_LIMIT_ATTACHED },
{ "like_pattern_length", SQLITE_LIMIT_LIKE_PATTERN_LENGTH },
{ "variable_number", SQLITE_LIMIT_VARIABLE_NUMBER },
{ "trigger_depth", SQLITE_LIMIT_TRIGGER_DEPTH },
{ "worker_threads", SQLITE_LIMIT_WORKER_THREADS },
};
int i, n2;
open_db(p, 0);
if( nArg==1 ){
for(i=0; i<ArraySize(aLimit); i++){
sqlite3_fprintf(stdout, "%20s %d\n", aLimit[i].zLimitName,
sqlite3_limit(p->db, aLimit[i].limitCode, -1));
}
}else if( nArg>3 ){
eputz("Usage: .limit NAME ?NEW-VALUE?\n");
rc = 1;
goto meta_command_exit;
}else{
int iLimit = -1;
n2 = strlen30(azArg[1]);
for(i=0; i<ArraySize(aLimit); i++){
if( sqlite3_strnicmp(aLimit[i].zLimitName, azArg[1], n2)==0 ){
if( iLimit<0 ){
iLimit = i;
}else{
sqlite3_fprintf(stderr,"ambiguous limit: \"%s\"\n", azArg[1]);
rc = 1;
goto meta_command_exit;
}
}
}
if( iLimit<0 ){
sqlite3_fprintf(stderr,"unknown limit: \"%s\"\n"
"enter \".limits\" with no arguments for a list.\n",
azArg[1]);
rc = 1;
goto meta_command_exit;
}
if( nArg==3 ){
sqlite3_limit(p->db, aLimit[iLimit].limitCode,
(int)integerValue(azArg[2]));
}
sqlite3_fprintf(stdout, "%20s %d\n", aLimit[iLimit].zLimitName,
sqlite3_limit(p->db, aLimit[iLimit].limitCode, -1));
}
}else
if( c=='l' && n>2 && cli_strncmp(azArg[0], "lint", n)==0 ){
open_db(p, 0);
lintDotCommand(p, azArg, nArg);
}else
#if !defined(SQLITE_OMIT_LOAD_EXTENSION) && !defined(SQLITE_SHELL_FIDDLE)
if( c=='l' && cli_strncmp(azArg[0], "load", n)==0 ){
const char *zFile, *zProc;
char *zErrMsg = 0;
failIfSafeMode(p, "cannot run .load in safe mode");
if( nArg<2 || azArg[1][0]==0 ){
/* Must have a non-empty FILE. (Will not load self.) */
eputz("Usage: .load FILE ?ENTRYPOINT?\n");
rc = 1;
goto meta_command_exit;
}
zFile = azArg[1];
zProc = nArg>=3 ? azArg[2] : 0;
open_db(p, 0);
rc = sqlite3_load_extension(p->db, zFile, zProc, &zErrMsg);
if( rc!=SQLITE_OK ){
shellEmitError(zErrMsg);
sqlite3_free(zErrMsg);
rc = 1;
}
}else
#endif
if( c=='l' && cli_strncmp(azArg[0], "log", n)==0 ){
if( nArg!=2 ){
eputz("Usage: .log FILENAME\n");
rc = 1;
}else{
const char *zFile = azArg[1];
if( p->bSafeMode
&& cli_strcmp(zFile,"on")!=0
&& cli_strcmp(zFile,"off")!=0
){
sputz(stdout, "cannot set .log to anything other"
" than \"on\" or \"off\"\n");
zFile = "off";
}
output_file_close(p->pLog);
if( cli_strcmp(zFile,"on")==0 ) zFile = "stdout";
p->pLog = output_file_open(zFile);
}
}else
if( c=='m' && cli_strncmp(azArg[0], "mode", n)==0 ){
const char *zMode = 0;
const char *zTabname = 0;
int i, n2;
ColModeOpts cmOpts = ColModeOpts_default;
for(i=1; i<nArg; i++){
const char *z = azArg[i];
if( optionMatch(z,"wrap") && i+1<nArg ){
cmOpts.iWrap = integerValue(azArg[++i]);
}else if( optionMatch(z,"ww") ){
cmOpts.bWordWrap = 1;
}else if( optionMatch(z,"wordwrap") && i+1<nArg ){
cmOpts.bWordWrap = (u8)booleanValue(azArg[++i]);
}else if( optionMatch(z,"quote") ){
cmOpts.bQuote = 1;
}else if( optionMatch(z,"noquote") ){
cmOpts.bQuote = 0;
}else if( zMode==0 ){
zMode = z;
/* Apply defaults for qbox pseudo-mode. If that
* overwrites already-set values, user was informed of this.
*/
if( cli_strcmp(z, "qbox")==0 ){
ColModeOpts cmo = ColModeOpts_default_qbox;
zMode = "box";
cmOpts = cmo;
}
}else if( zTabname==0 ){
zTabname = z;
}else if( z[0]=='-' ){
sqlite3_fprintf(stderr,"unknown option: %s\n", z);
eputz("options:\n"
" --noquote\n"
" --quote\n"
" --wordwrap on/off\n"
" --wrap N\n"
" --ww\n");
rc = 1;
goto meta_command_exit;
}else{
sqlite3_fprintf(stderr,"extra argument: \"%s\"\n", z);
rc = 1;
goto meta_command_exit;
}
}
if( zMode==0 ){
if( p->mode==MODE_Column
|| (p->mode>=MODE_Markdown && p->mode<=MODE_Box)
){
sqlite3_fprintf(p->out,
"current output mode: %s --wrap %d --wordwrap %s --%squote\n",
modeDescr[p->mode], p->cmOpts.iWrap,
p->cmOpts.bWordWrap ? "on" : "off",
p->cmOpts.bQuote ? "" : "no");
}else{
sqlite3_fprintf(p->out,
"current output mode: %s\n", modeDescr[p->mode]);
}
zMode = modeDescr[p->mode];
}
n2 = strlen30(zMode);
if( cli_strncmp(zMode,"lines",n2)==0 ){
p->mode = MODE_Line;
sqlite3_snprintf(sizeof(p->rowSeparator), p->rowSeparator, SEP_Row);
}else if( cli_strncmp(zMode,"columns",n2)==0 ){
p->mode = MODE_Column;
if( (p->shellFlgs & SHFLG_HeaderSet)==0 ){
p->showHeader = 1;
}
sqlite3_snprintf(sizeof(p->rowSeparator), p->rowSeparator, SEP_Row);
p->cmOpts = cmOpts;
}else if( cli_strncmp(zMode,"list",n2)==0 ){
p->mode = MODE_List;
sqlite3_snprintf(sizeof(p->colSeparator), p->colSeparator, SEP_Column);
sqlite3_snprintf(sizeof(p->rowSeparator), p->rowSeparator, SEP_Row);
}else if( cli_strncmp(zMode,"html",n2)==0 ){
p->mode = MODE_Html;
}else if( cli_strncmp(zMode,"tcl",n2)==0 ){
p->mode = MODE_Tcl;
sqlite3_snprintf(sizeof(p->colSeparator), p->colSeparator, SEP_Space);
sqlite3_snprintf(sizeof(p->rowSeparator), p->rowSeparator, SEP_Row);
}else if( cli_strncmp(zMode,"csv",n2)==0 ){
p->mode = MODE_Csv;
sqlite3_snprintf(sizeof(p->colSeparator), p->colSeparator, SEP_Comma);
sqlite3_snprintf(sizeof(p->rowSeparator), p->rowSeparator, SEP_CrLf);
}else if( cli_strncmp(zMode,"tabs",n2)==0 ){
p->mode = MODE_List;
sqlite3_snprintf(sizeof(p->colSeparator), p->colSeparator, SEP_Tab);
}else if( cli_strncmp(zMode,"insert",n2)==0 ){
p->mode = MODE_Insert;
set_table_name(p, zTabname ? zTabname : "table");
}else if( cli_strncmp(zMode,"quote",n2)==0 ){
p->mode = MODE_Quote;
sqlite3_snprintf(sizeof(p->colSeparator), p->colSeparator, SEP_Comma);
sqlite3_snprintf(sizeof(p->rowSeparator), p->rowSeparator, SEP_Row);
}else if( cli_strncmp(zMode,"ascii",n2)==0 ){
p->mode = MODE_Ascii;
sqlite3_snprintf(sizeof(p->colSeparator), p->colSeparator, SEP_Unit);
sqlite3_snprintf(sizeof(p->rowSeparator), p->rowSeparator, SEP_Record);
}else if( cli_strncmp(zMode,"markdown",n2)==0 ){
p->mode = MODE_Markdown;
p->cmOpts = cmOpts;
}else if( cli_strncmp(zMode,"table",n2)==0 ){
p->mode = MODE_Table;
p->cmOpts = cmOpts;
}else if( cli_strncmp(zMode,"box",n2)==0 ){
p->mode = MODE_Box;
p->cmOpts = cmOpts;
}else if( cli_strncmp(zMode,"count",n2)==0 ){
p->mode = MODE_Count;
}else if( cli_strncmp(zMode,"off",n2)==0 ){
p->mode = MODE_Off;
}else if( cli_strncmp(zMode,"json",n2)==0 ){
p->mode = MODE_Json;
}else{
eputz("Error: mode should be one of: "
"ascii box column csv html insert json line list markdown "
"qbox quote table tabs tcl\n");
rc = 1;
}
p->cMode = p->mode;
}else
#ifndef SQLITE_SHELL_FIDDLE
if( c=='n' && cli_strcmp(azArg[0], "nonce")==0 ){
if( nArg!=2 ){
eputz("Usage: .nonce NONCE\n");
rc = 1;
}else if( p->zNonce==0 || cli_strcmp(azArg[1],p->zNonce)!=0 ){
sqlite3_fprintf(stderr,"line %d: incorrect nonce: \"%s\"\n",
p->lineno, azArg[1]);
exit(1);
}else{
p->bSafeMode = 0;
return 0; /* Return immediately to bypass the safe mode reset
** at the end of this procedure */
}
}else
#endif /* !defined(SQLITE_SHELL_FIDDLE) */
if( c=='n' && cli_strncmp(azArg[0], "nullvalue", n)==0 ){
if( nArg==2 ){
sqlite3_snprintf(sizeof(p->nullValue), p->nullValue,
"%.*s", (int)ArraySize(p->nullValue)-1, azArg[1]);
}else{
eputz("Usage: .nullvalue STRING\n");
rc = 1;
}
}else
if( c=='o' && cli_strncmp(azArg[0], "open", n)==0 && n>=2 ){
const char *zFN = 0; /* Pointer to constant filename */
char *zNewFilename = 0; /* Name of the database file to open */
int iName = 1; /* Index in azArg[] of the filename */
int newFlag = 0; /* True to delete file before opening */
int openMode = SHELL_OPEN_UNSPEC;
/* Check for command-line arguments */
for(iName=1; iName<nArg; iName++){
const char *z = azArg[iName];
#ifndef SQLITE_SHELL_FIDDLE
if( optionMatch(z,"new") ){
newFlag = 1;
#ifdef SQLITE_HAVE_ZLIB
}else if( optionMatch(z, "zip") ){
openMode = SHELL_OPEN_ZIPFILE;
#endif
}else if( optionMatch(z, "append") ){
openMode = SHELL_OPEN_APPENDVFS;
}else if( optionMatch(z, "readonly") ){
openMode = SHELL_OPEN_READONLY;
}else if( optionMatch(z, "nofollow") ){
p->openFlags |= SQLITE_OPEN_NOFOLLOW;
#ifndef SQLITE_OMIT_DESERIALIZE
}else if( optionMatch(z, "deserialize") ){
openMode = SHELL_OPEN_DESERIALIZE;
}else if( optionMatch(z, "hexdb") ){
openMode = SHELL_OPEN_HEXDB;
}else if( optionMatch(z, "maxsize") && iName+1<nArg ){
p->szMax = integerValue(azArg[++iName]);
#endif /* SQLITE_OMIT_DESERIALIZE */
}else
#endif /* !SQLITE_SHELL_FIDDLE */
if( z[0]=='-' ){
sqlite3_fprintf(stderr,"unknown option: %s\n", z);
rc = 1;
goto meta_command_exit;
}else if( zFN ){
sqlite3_fprintf(stderr,"extra argument: \"%s\"\n", z);
rc = 1;
goto meta_command_exit;
}else{
zFN = z;
}
}
/* Close the existing database */
session_close_all(p, -1);
close_db(p->db);
p->db = 0;
p->pAuxDb->zDbFilename = 0;
sqlite3_free(p->pAuxDb->zFreeOnClose);
p->pAuxDb->zFreeOnClose = 0;
p->openMode = openMode;
p->openFlags = 0;
p->szMax = 0;
/* If a filename is specified, try to open it first */
if( zFN || p->openMode==SHELL_OPEN_HEXDB ){
if( newFlag && zFN && !p->bSafeMode ) shellDeleteFile(zFN);
#ifndef SQLITE_SHELL_FIDDLE
if( p->bSafeMode
&& p->openMode!=SHELL_OPEN_HEXDB
&& zFN
&& cli_strcmp(zFN,":memory:")!=0
){
failIfSafeMode(p, "cannot open disk-based database files in safe mode");
}
#else
/* WASM mode has its own sandboxed pseudo-filesystem. */
#endif
if( zFN ){
zNewFilename = sqlite3_mprintf("%s", zFN);
shell_check_oom(zNewFilename);
}else{
zNewFilename = 0;
}
p->pAuxDb->zDbFilename = zNewFilename;
open_db(p, OPEN_DB_KEEPALIVE);
if( p->db==0 ){
sqlite3_fprintf(stderr,"Error: cannot open '%s'\n", zNewFilename);
sqlite3_free(zNewFilename);
}else{
p->pAuxDb->zFreeOnClose = zNewFilename;
}
}
if( p->db==0 ){
/* As a fall-back open a TEMP database */
p->pAuxDb->zDbFilename = 0;
open_db(p, 0);
}
}else
#ifndef SQLITE_SHELL_FIDDLE
if( (c=='o'
&& (cli_strncmp(azArg[0], "output", n)==0
|| cli_strncmp(azArg[0], "once", n)==0))
|| (c=='e' && n==5 && cli_strcmp(azArg[0],"excel")==0)
|| (c=='w' && n==3 && cli_strcmp(azArg[0],"www")==0)
){
char *zFile = 0;
int i;
int eMode = 0;
int bOnce = 0; /* 0: .output, 1: .once, 2: .excel/.www */
int bPlain = 0; /* --plain option */
static const char *zBomUtf8 = "\357\273\277";
const char *zBom = 0;
failIfSafeMode(p, "cannot run .%s in safe mode", azArg[0]);
if( c=='e' ){
eMode = 'x';
bOnce = 2;
}else if( c=='w' ){
eMode = 'w';
bOnce = 2;
}else if( cli_strncmp(azArg[0],"once",n)==0 ){
bOnce = 1;
}
for(i=1; i<nArg; i++){
char *z = azArg[i];
if( z[0]=='-' ){
if( z[1]=='-' ) z++;
if( cli_strcmp(z,"-bom")==0 ){
zBom = zBomUtf8;
}else if( cli_strcmp(z,"-plain")==0 ){
bPlain = 1;
}else if( c=='o' && cli_strcmp(z,"-x")==0 ){
eMode = 'x'; /* spreadsheet */
}else if( c=='o' && cli_strcmp(z,"-e")==0 ){
eMode = 'e'; /* text editor */
}else if( c=='o' && cli_strcmp(z,"-w")==0 ){
eMode = 'w'; /* Web browser */
}else{
sqlite3_fprintf(p->out,
"ERROR: unknown option: \"%s\". Usage:\n", azArg[i]);
showHelp(p->out, azArg[0]);
rc = 1;
goto meta_command_exit;
}
}else if( zFile==0 && eMode==0 ){
zFile = sqlite3_mprintf("%s", z);
if( zFile && zFile[0]=='|' ){
while( i+1<nArg ) zFile = sqlite3_mprintf("%z %s", zFile, azArg[++i]);
break;
}
}else{
sqlite3_fprintf(p->out,
"ERROR: extra parameter: \"%s\". Usage:\n", azArg[i]);
showHelp(p->out, azArg[0]);
rc = 1;
sqlite3_free(zFile);
goto meta_command_exit;
}
}
if( zFile==0 ){
zFile = sqlite3_mprintf("stdout");
}
shell_check_oom(zFile);
if( bOnce ){
p->outCount = 2;
}else{
p->outCount = 0;
}
output_reset(p);
#ifndef SQLITE_NOHAVE_SYSTEM
if( eMode=='e' || eMode=='x' || eMode=='w' ){
p->doXdgOpen = 1;
outputModePush(p);
if( eMode=='x' ){
/* spreadsheet mode. Output as CSV. */
newTempFile(p, "csv");
ShellClearFlag(p, SHFLG_Echo);
p->mode = MODE_Csv;
sqlite3_snprintf(sizeof(p->colSeparator), p->colSeparator, SEP_Comma);
sqlite3_snprintf(sizeof(p->rowSeparator), p->rowSeparator, SEP_CrLf);
#ifdef _WIN32
zBom = zBomUtf8; /* Always include the BOM on Windows, as Excel does
** not work without it. */
#endif
}else if( eMode=='w' ){
/* web-browser mode. */
newTempFile(p, "html");
if( !bPlain ) p->mode = MODE_Www;
}else{
/* text editor mode */
newTempFile(p, "txt");
}
sqlite3_free(zFile);
zFile = sqlite3_mprintf("%s", p->zTempFile);
}
#endif /* SQLITE_NOHAVE_SYSTEM */
shell_check_oom(zFile);
if( zFile[0]=='|' ){
#ifdef SQLITE_OMIT_POPEN
eputz("Error: pipes are not supported in this OS\n");
rc = 1;
output_redir(p, stdout);
#else
FILE *pfPipe = sqlite3_popen(zFile + 1, "w");
if( pfPipe==0 ){
assert( stderr!=NULL );
sqlite3_fprintf(stderr,"Error: cannot open pipe \"%s\"\n", zFile + 1);
rc = 1;
}else{
output_redir(p, pfPipe);
if( zBom ) sqlite3_fputs(zBom, pfPipe);
sqlite3_snprintf(sizeof(p->outfile), p->outfile, "%s", zFile);
}
#endif
}else{
FILE *pfFile = output_file_open(zFile);
if( pfFile==0 ){
if( cli_strcmp(zFile,"off")!=0 ){
assert( stderr!=NULL );
sqlite3_fprintf(stderr,"Error: cannot write to \"%s\"\n", zFile);
}
rc = 1;
} else {
output_redir(p, pfFile);
if( zBom ) sqlite3_fputs(zBom, pfFile);
if( bPlain && eMode=='w' ){
sqlite3_fputs(
"<!DOCTYPE html>\n<BODY>\n<PLAINTEXT>\n",
pfFile
);
}
sqlite3_snprintf(sizeof(p->outfile), p->outfile, "%s", zFile);
}
}
sqlite3_free(zFile);
}else
#endif /* !defined(SQLITE_SHELL_FIDDLE) */
if( c=='p' && n>=3 && cli_strncmp(azArg[0], "parameter", n)==0 ){
open_db(p,0);
if( nArg<=1 ) goto parameter_syntax_error;
/* .parameter clear
** Clear all bind parameters by dropping the TEMP table that holds them.
*/
if( nArg==2 && cli_strcmp(azArg[1],"clear")==0 ){
sqlite3_exec(p->db, "DROP TABLE IF EXISTS temp.sqlite_parameters;",
0, 0, 0);
}else
/* .parameter list
** List all bind parameters.
*/
if( nArg==2 && cli_strcmp(azArg[1],"list")==0 ){
sqlite3_stmt *pStmt = 0;
int rx;
int len = 0;
rx = sqlite3_prepare_v2(p->db,
"SELECT max(length(key)) "
"FROM temp.sqlite_parameters;", -1, &pStmt, 0);
if( rx==SQLITE_OK && sqlite3_step(pStmt)==SQLITE_ROW ){
len = sqlite3_column_int(pStmt, 0);
if( len>40 ) len = 40;
}
sqlite3_finalize(pStmt);
pStmt = 0;
if( len ){
rx = sqlite3_prepare_v2(p->db,
"SELECT key, quote(value) "
"FROM temp.sqlite_parameters;", -1, &pStmt, 0);
while( rx==SQLITE_OK && sqlite3_step(pStmt)==SQLITE_ROW ){
sqlite3_fprintf(p->out,
"%-*s %s\n", len, sqlite3_column_text(pStmt,0),
sqlite3_column_text(pStmt,1));
}
sqlite3_finalize(pStmt);
}
}else
/* .parameter init
** Make sure the TEMP table used to hold bind parameters exists.
** Create it if necessary.
*/
if( nArg==2 && cli_strcmp(azArg[1],"init")==0 ){
bind_table_init(p);
}else
/* .parameter set NAME VALUE
** Set or reset a bind parameter. NAME should be the full parameter
** name exactly as it appears in the query. (ex: $abc, @def). The
** VALUE can be in either SQL literal notation, or if not it will be
** understood to be a text string.
*/
if( nArg==4 && cli_strcmp(azArg[1],"set")==0 ){
int rx;
char *zSql;
sqlite3_stmt *pStmt;
const char *zKey = azArg[2];
const char *zValue = azArg[3];
bind_table_init(p);
zSql = sqlite3_mprintf(
"REPLACE INTO temp.sqlite_parameters(key,value)"
"VALUES(%Q,%s);", zKey, zValue);
shell_check_oom(zSql);
pStmt = 0;
rx = sqlite3_prepare_v2(p->db, zSql, -1, &pStmt, 0);
sqlite3_free(zSql);
if( rx!=SQLITE_OK ){
sqlite3_finalize(pStmt);
pStmt = 0;
zSql = sqlite3_mprintf(
"REPLACE INTO temp.sqlite_parameters(key,value)"
"VALUES(%Q,%Q);", zKey, zValue);
shell_check_oom(zSql);
rx = sqlite3_prepare_v2(p->db, zSql, -1, &pStmt, 0);
sqlite3_free(zSql);
if( rx!=SQLITE_OK ){
sqlite3_fprintf(p->out, "Error: %s\n", sqlite3_errmsg(p->db));
sqlite3_finalize(pStmt);
pStmt = 0;
rc = 1;
}
}
bind_prepared_stmt(p, pStmt);
sqlite3_step(pStmt);
sqlite3_finalize(pStmt);
}else
/* .parameter unset NAME
** Remove the NAME binding from the parameter binding table, if it
** exists.
*/
if( nArg==3 && cli_strcmp(azArg[1],"unset")==0 ){
char *zSql = sqlite3_mprintf(
"DELETE FROM temp.sqlite_parameters WHERE key=%Q", azArg[2]);
shell_check_oom(zSql);
sqlite3_exec(p->db, zSql, 0, 0, 0);
sqlite3_free(zSql);
}else
/* If no command name matches, show a syntax error */
parameter_syntax_error:
showHelp(p->out, "parameter");
}else
if( c=='p' && n>=3 && cli_strncmp(azArg[0], "print", n)==0 ){
int i;
for(i=1; i<nArg; i++){
if( i>1 ) sqlite3_fputs(" ", p->out);
sqlite3_fputs(azArg[i], p->out);
}
sqlite3_fputs("\n", p->out);
}else
#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
if( c=='p' && n>=3 && cli_strncmp(azArg[0], "progress", n)==0 ){
int i;
int nn = 0;
p->flgProgress = 0;
p->mxProgress = 0;
p->nProgress = 0;
for(i=1; i<nArg; i++){
const char *z = azArg[i];
if( z[0]=='-' ){
z++;
if( z[0]=='-' ) z++;
if( cli_strcmp(z,"quiet")==0 || cli_strcmp(z,"q")==0 ){
p->flgProgress |= SHELL_PROGRESS_QUIET;
continue;
}
if( cli_strcmp(z,"reset")==0 ){
p->flgProgress |= SHELL_PROGRESS_RESET;
continue;
}
if( cli_strcmp(z,"once")==0 ){
p->flgProgress |= SHELL_PROGRESS_ONCE;
continue;
}
if( cli_strcmp(z,"limit")==0 ){
if( i+1>=nArg ){
eputz("Error: missing argument on --limit\n");
rc = 1;
goto meta_command_exit;
}else{
p->mxProgress = (int)integerValue(azArg[++i]);
}
continue;
}
sqlite3_fprintf(stderr,"Error: unknown option: \"%s\"\n", azArg[i]);
rc = 1;
goto meta_command_exit;
}else{
nn = (int)integerValue(z);
}
}
open_db(p, 0);
sqlite3_progress_handler(p->db, nn, progress_handler, p);
}else
#endif /* SQLITE_OMIT_PROGRESS_CALLBACK */
if( c=='p' && cli_strncmp(azArg[0], "prompt", n)==0 ){
if( nArg >= 2) {
shell_strncpy(mainPrompt,azArg[1],(int)ArraySize(mainPrompt)-1);
}
if( nArg >= 3) {
shell_strncpy(continuePrompt,azArg[2],(int)ArraySize(continuePrompt)-1);
}
}else
#ifndef SQLITE_SHELL_FIDDLE
if( c=='q' && cli_strncmp(azArg[0], "quit", n)==0 ){
rc = 2;
}else
#endif
#ifndef SQLITE_SHELL_FIDDLE
if( c=='r' && n>=3 && cli_strncmp(azArg[0], "read", n)==0 ){
FILE *inSaved = p->in;
int savedLineno = p->lineno;
failIfSafeMode(p, "cannot run .read in safe mode");
if( nArg!=2 ){
eputz("Usage: .read FILE\n");
rc = 1;
goto meta_command_exit;
}
if( azArg[1][0]=='|' ){
#ifdef SQLITE_OMIT_POPEN
eputz("Error: pipes are not supported in this OS\n");
rc = 1;
#else
p->in = sqlite3_popen(azArg[1]+1, "r");
if( p->in==0 ){
sqlite3_fprintf(stderr,"Error: cannot open \"%s\"\n", azArg[1]);
rc = 1;
}else{
rc = process_input(p);
pclose(p->in);
}
#endif
}else if( (p->in = openChrSource(azArg[1]))==0 ){
sqlite3_fprintf(stderr,"Error: cannot open \"%s\"\n", azArg[1]);
rc = 1;
}else{
rc = process_input(p);
fclose(p->in);
}
p->in = inSaved;
p->lineno = savedLineno;
}else
#endif /* !defined(SQLITE_SHELL_FIDDLE) */
#ifndef SQLITE_SHELL_FIDDLE
if( c=='r' && n>=3 && cli_strncmp(azArg[0], "restore", n)==0 ){
const char *zSrcFile;
const char *zDb;
sqlite3 *pSrc;
sqlite3_backup *pBackup;
int nTimeout = 0;
failIfSafeMode(p, "cannot run .restore in safe mode");
if( nArg==2 ){
zSrcFile = azArg[1];
zDb = "main";
}else if( nArg==3 ){
zSrcFile = azArg[2];
zDb = azArg[1];
}else{
eputz("Usage: .restore ?DB? FILE\n");
rc = 1;
goto meta_command_exit;
}
rc = sqlite3_open(zSrcFile, &pSrc);
if( rc!=SQLITE_OK ){
sqlite3_fprintf(stderr,"Error: cannot open \"%s\"\n", zSrcFile);
close_db(pSrc);
return 1;
}
open_db(p, 0);
pBackup = sqlite3_backup_init(p->db, zDb, pSrc, "main");
if( pBackup==0 ){
shellDatabaseError(p->db);
close_db(pSrc);
return 1;
}
while( (rc = sqlite3_backup_step(pBackup,100))==SQLITE_OK
|| rc==SQLITE_BUSY ){
if( rc==SQLITE_BUSY ){
if( nTimeout++ >= 3 ) break;
sqlite3_sleep(100);
}
}
sqlite3_backup_finish(pBackup);
if( rc==SQLITE_DONE ){
rc = 0;
}else if( rc==SQLITE_BUSY || rc==SQLITE_LOCKED ){
eputz("Error: source database is busy\n");
rc = 1;
}else{
shellDatabaseError(p->db);
rc = 1;
}
close_db(pSrc);
}else
#endif /* !defined(SQLITE_SHELL_FIDDLE) */
if( c=='s' &&
(cli_strncmp(azArg[0], "scanstats", n)==0 ||
cli_strncmp(azArg[0], "scanstatus", n)==0)
){
if( nArg==2 ){
if( cli_strcmp(azArg[1], "vm")==0 ){
p->scanstatsOn = 3;
}else
if( cli_strcmp(azArg[1], "est")==0 ){
p->scanstatsOn = 2;
}else{
p->scanstatsOn = (u8)booleanValue(azArg[1]);
}
open_db(p, 0);
sqlite3_db_config(
p->db, SQLITE_DBCONFIG_STMT_SCANSTATUS, p->scanstatsOn, (int*)0
);
#if !defined(SQLITE_ENABLE_STMT_SCANSTATUS)
eputz("Warning: .scanstats not available in this build.\n");
#elif !defined(SQLITE_ENABLE_BYTECODE_VTAB)
if( p->scanstatsOn==3 ){
eputz("Warning: \".scanstats vm\" not available in this build.\n");
}
#endif
}else{
eputz("Usage: .scanstats on|off|est\n");
rc = 1;
}
}else
if( c=='s' && cli_strncmp(azArg[0], "schema", n)==0 ){
ShellText sSelect;
ShellState data;
char *zErrMsg = 0;
const char *zDiv = "(";
const char *zName = 0;
int iSchema = 0;
int bDebug = 0;
int bNoSystemTabs = 0;
int ii;
open_db(p, 0);
memcpy(&data, p, sizeof(data));
data.showHeader = 0;
data.cMode = data.mode = MODE_Semi;
initText(&sSelect);
for(ii=1; ii<nArg; ii++){
if( optionMatch(azArg[ii],"indent") ){
data.cMode = data.mode = MODE_Pretty;
}else if( optionMatch(azArg[ii],"debug") ){
bDebug = 1;
}else if( optionMatch(azArg[ii],"nosys") ){
bNoSystemTabs = 1;
}else if( azArg[ii][0]=='-' ){
sqlite3_fprintf(stderr,"Unknown option: \"%s\"\n", azArg[ii]);
rc = 1;
goto meta_command_exit;
}else if( zName==0 ){
zName = azArg[ii];
}else{
eputz("Usage: .schema ?--indent? ?--nosys? ?LIKE-PATTERN?\n");
rc = 1;
goto meta_command_exit;
}
}
if( zName!=0 ){
int isSchema = sqlite3_strlike(zName, "sqlite_master", '\\')==0
|| sqlite3_strlike(zName, "sqlite_schema", '\\')==0
|| sqlite3_strlike(zName,"sqlite_temp_master", '\\')==0
|| sqlite3_strlike(zName,"sqlite_temp_schema", '\\')==0;
if( isSchema ){
char *new_argv[2], *new_colv[2];
new_argv[0] = sqlite3_mprintf(
"CREATE TABLE %s (\n"
" type text,\n"
" name text,\n"
" tbl_name text,\n"
" rootpage integer,\n"
" sql text\n"
")", zName);
shell_check_oom(new_argv[0]);
new_argv[1] = 0;
new_colv[0] = "sql";
new_colv[1] = 0;
callback(&data, 1, new_argv, new_colv);
sqlite3_free(new_argv[0]);
}
}
if( zDiv ){
sqlite3_stmt *pStmt = 0;
rc = sqlite3_prepare_v2(p->db, "SELECT name FROM pragma_database_list",
-1, &pStmt, 0);
if( rc ){
shellDatabaseError(p->db);
sqlite3_finalize(pStmt);
rc = 1;
goto meta_command_exit;
}
appendText(&sSelect, "SELECT sql FROM", 0);
iSchema = 0;
while( sqlite3_step(pStmt)==SQLITE_ROW ){
const char *zDb = (const char*)sqlite3_column_text(pStmt, 0);
char zScNum[30];
sqlite3_snprintf(sizeof(zScNum), zScNum, "%d", ++iSchema);
appendText(&sSelect, zDiv, 0);
zDiv = " UNION ALL ";
appendText(&sSelect, "SELECT shell_add_schema(sql,", 0);
if( sqlite3_stricmp(zDb, "main")!=0 ){
appendText(&sSelect, zDb, '\'');
}else{
appendText(&sSelect, "NULL", 0);
}
appendText(&sSelect, ",name) AS sql, type, tbl_name, name, rowid,", 0);
appendText(&sSelect, zScNum, 0);
appendText(&sSelect, " AS snum, ", 0);
appendText(&sSelect, zDb, '\'');
appendText(&sSelect, " AS sname FROM ", 0);
appendText(&sSelect, zDb, quoteChar(zDb));
appendText(&sSelect, ".sqlite_schema", 0);
}
sqlite3_finalize(pStmt);
#ifndef SQLITE_OMIT_INTROSPECTION_PRAGMAS
if( zName ){
appendText(&sSelect,
" UNION ALL SELECT shell_module_schema(name),"
" 'table', name, name, name, 9e+99, 'main' FROM pragma_module_list",
0);
}
#endif
appendText(&sSelect, ") WHERE ", 0);
if( zName ){
char *zQarg = sqlite3_mprintf("%Q", zName);
int bGlob;
shell_check_oom(zQarg);
bGlob = strchr(zName, '*') != 0 || strchr(zName, '?') != 0 ||
strchr(zName, '[') != 0;
if( strchr(zName, '.') ){
appendText(&sSelect, "lower(printf('%s.%s',sname,tbl_name))", 0);
}else{
appendText(&sSelect, "lower(tbl_name)", 0);
}
appendText(&sSelect, bGlob ? " GLOB " : " LIKE ", 0);
appendText(&sSelect, zQarg, 0);
if( !bGlob ){
appendText(&sSelect, " ESCAPE '\\' ", 0);
}
appendText(&sSelect, " AND ", 0);
sqlite3_free(zQarg);
}
if( bNoSystemTabs ){
appendText(&sSelect, "name NOT LIKE 'sqlite_%%' AND ", 0);
}
appendText(&sSelect, "sql IS NOT NULL"
" ORDER BY snum, rowid", 0);
if( bDebug ){
sqlite3_fprintf(p->out, "SQL: %s;\n", sSelect.z);
}else{
rc = sqlite3_exec(p->db, sSelect.z, callback, &data, &zErrMsg);
}
freeText(&sSelect);
}
if( zErrMsg ){
shellEmitError(zErrMsg);
sqlite3_free(zErrMsg);
rc = 1;
}else if( rc != SQLITE_OK ){
eputz("Error: querying schema information\n");
rc = 1;
}else{
rc = 0;
}
}else
if( (c=='s' && n==11 && cli_strncmp(azArg[0], "selecttrace", n)==0)
|| (c=='t' && n==9 && cli_strncmp(azArg[0], "treetrace", n)==0)
){
unsigned int x = nArg>=2? (unsigned int)integerValue(azArg[1]) : 0xffffffff;
sqlite3_test_control(SQLITE_TESTCTRL_TRACEFLAGS, 1, &x);
}else
#if defined(SQLITE_ENABLE_SESSION)
if( c=='s' && cli_strncmp(azArg[0],"session",n)==0 && n>=3 ){
struct AuxDb *pAuxDb = p->pAuxDb;
OpenSession *pSession = &pAuxDb->aSession[0];
char **azCmd = &azArg[1];
int iSes = 0;
int nCmd = nArg - 1;
int i;
if( nArg<=1 ) goto session_syntax_error;
open_db(p, 0);
if( nArg>=3 ){
for(iSes=0; iSes<pAuxDb->nSession; iSes++){
if( cli_strcmp(pAuxDb->aSession[iSes].zName, azArg[1])==0 ) break;
}
if( iSes<pAuxDb->nSession ){
pSession = &pAuxDb->aSession[iSes];
azCmd++;
nCmd--;
}else{
pSession = &pAuxDb->aSession[0];
iSes = 0;
}
}
/* .session attach TABLE
** Invoke the sqlite3session_attach() interface to attach a particular
** table so that it is never filtered.
*/
if( cli_strcmp(azCmd[0],"attach")==0 ){
if( nCmd!=2 ) goto session_syntax_error;
if( pSession->p==0 ){
session_not_open:
eputz("ERROR: No sessions are open\n");
}else{
rc = sqlite3session_attach(pSession->p, azCmd[1]);
if( rc ){
sqlite3_fprintf(stderr,
"ERROR: sqlite3session_attach() returns %d\n",rc);
rc = 0;
}
}
}else
/* .session changeset FILE
** .session patchset FILE
** Write a changeset or patchset into a file. The file is overwritten.
*/
if( cli_strcmp(azCmd[0],"changeset")==0
|| cli_strcmp(azCmd[0],"patchset")==0
){
FILE *out = 0;
failIfSafeMode(p, "cannot run \".session %s\" in safe mode", azCmd[0]);
if( nCmd!=2 ) goto session_syntax_error;
if( pSession->p==0 ) goto session_not_open;
out = sqlite3_fopen(azCmd[1], "wb");
if( out==0 ){
sqlite3_fprintf(stderr,"ERROR: cannot open \"%s\" for writing\n",
azCmd[1]);
}else{
int szChng;
void *pChng;
if( azCmd[0][0]=='c' ){
rc = sqlite3session_changeset(pSession->p, &szChng, &pChng);
}else{
rc = sqlite3session_patchset(pSession->p, &szChng, &pChng);
}
if( rc ){
sqlite3_fprintf(stdout, "Error: error code %d\n", rc);
rc = 0;
}
if( pChng
&& fwrite(pChng, szChng, 1, out)!=1 ){
sqlite3_fprintf(stderr,
"ERROR: Failed to write entire %d-byte output\n", szChng);
}
sqlite3_free(pChng);
fclose(out);
}
}else
/* .session close
** Close the identified session
*/
if( cli_strcmp(azCmd[0], "close")==0 ){
if( nCmd!=1 ) goto session_syntax_error;
if( pAuxDb->nSession ){
session_close(pSession);
pAuxDb->aSession[iSes] = pAuxDb->aSession[--pAuxDb->nSession];
}
}else
/* .session enable ?BOOLEAN?
** Query or set the enable flag
*/
if( cli_strcmp(azCmd[0], "enable")==0 ){
int ii;
if( nCmd>2 ) goto session_syntax_error;
ii = nCmd==1 ? -1 : booleanValue(azCmd[1]);
if( pAuxDb->nSession ){
ii = sqlite3session_enable(pSession->p, ii);
sqlite3_fprintf(p->out,
"session %s enable flag = %d\n", pSession->zName, ii);
}
}else
/* .session filter GLOB ....
** Set a list of GLOB patterns of table names to be excluded.
*/
if( cli_strcmp(azCmd[0], "filter")==0 ){
int ii, nByte;
if( nCmd<2 ) goto session_syntax_error;
if( pAuxDb->nSession ){
for(ii=0; ii<pSession->nFilter; ii++){
sqlite3_free(pSession->azFilter[ii]);
}
sqlite3_free(pSession->azFilter);
nByte = sizeof(pSession->azFilter[0])*(nCmd-1);
pSession->azFilter = sqlite3_malloc( nByte );
shell_check_oom( pSession->azFilter );
for(ii=1; ii<nCmd; ii++){
char *x = pSession->azFilter[ii-1] = sqlite3_mprintf("%s", azCmd[ii]);
shell_check_oom(x);
}
pSession->nFilter = ii-1;
}
}else
/* .session indirect ?BOOLEAN?
** Query or set the indirect flag
*/
if( cli_strcmp(azCmd[0], "indirect")==0 ){
int ii;
if( nCmd>2 ) goto session_syntax_error;
ii = nCmd==1 ? -1 : booleanValue(azCmd[1]);
if( pAuxDb->nSession ){
ii = sqlite3session_indirect(pSession->p, ii);
sqlite3_fprintf(p->out,
"session %s indirect flag = %d\n", pSession->zName, ii);
}
}else
/* .session isempty
** Determine if the session is empty
*/
if( cli_strcmp(azCmd[0], "isempty")==0 ){
int ii;
if( nCmd!=1 ) goto session_syntax_error;
if( pAuxDb->nSession ){
ii = sqlite3session_isempty(pSession->p);
sqlite3_fprintf(p->out,
"session %s isempty flag = %d\n", pSession->zName, ii);
}
}else
/* .session list
** List all currently open sessions
*/
if( cli_strcmp(azCmd[0],"list")==0 ){
for(i=0; i<pAuxDb->nSession; i++){
sqlite3_fprintf(p->out, "%d %s\n", i, pAuxDb->aSession[i].zName);
}
}else
/* .session open DB NAME
** Open a new session called NAME on the attached database DB.
** DB is normally "main".
*/
if( cli_strcmp(azCmd[0],"open")==0 ){
char *zName;
if( nCmd!=3 ) goto session_syntax_error;
zName = azCmd[2];
if( zName[0]==0 ) goto session_syntax_error;
for(i=0; i<pAuxDb->nSession; i++){
if( cli_strcmp(pAuxDb->aSession[i].zName,zName)==0 ){
sqlite3_fprintf(stderr,"Session \"%s\" already exists\n", zName);
goto meta_command_exit;
}
}
if( pAuxDb->nSession>=ArraySize(pAuxDb->aSession) ){
sqlite3_fprintf(stderr,
"Maximum of %d sessions\n", ArraySize(pAuxDb->aSession));
goto meta_command_exit;
}
pSession = &pAuxDb->aSession[pAuxDb->nSession];
rc = sqlite3session_create(p->db, azCmd[1], &pSession->p);
if( rc ){
sqlite3_fprintf(stderr,"Cannot open session: error code=%d\n", rc);
rc = 0;
goto meta_command_exit;
}
pSession->nFilter = 0;
sqlite3session_table_filter(pSession->p, session_filter, pSession);
pAuxDb->nSession++;
pSession->zName = sqlite3_mprintf("%s", zName);
shell_check_oom(pSession->zName);
}else
/* If no command name matches, show a syntax error */
session_syntax_error:
showHelp(p->out, "session");
}else
#endif
#ifdef SQLITE_DEBUG
/* Undocumented commands for internal testing. Subject to change
** without notice. */
if( c=='s' && n>=10 && cli_strncmp(azArg[0], "selftest-", 9)==0 ){
if( cli_strncmp(azArg[0]+9, "boolean", n-9)==0 ){
int i, v;
for(i=1; i<nArg; i++){
v = booleanValue(azArg[i]);
sqlite3_fprintf(p->out, "%s: %d 0x%x\n", azArg[i], v, v);
}
}
if( cli_strncmp(azArg[0]+9, "integer", n-9)==0 ){
int i; sqlite3_int64 v;
for(i=1; i<nArg; i++){
char zBuf[200];
v = integerValue(azArg[i]);
sqlite3_snprintf(sizeof(zBuf),zBuf,"%s: %lld 0x%llx\n", azArg[i],v,v);
sqlite3_fputs(zBuf, p->out);
}
}
}else
#endif
if( c=='s' && n>=4 && cli_strncmp(azArg[0],"selftest",n)==0 ){
int bIsInit = 0; /* True to initialize the SELFTEST table */
int bVerbose = 0; /* Verbose output */
int bSelftestExists; /* True if SELFTEST already exists */
int i, k; /* Loop counters */
int nTest = 0; /* Number of tests runs */
int nErr = 0; /* Number of errors seen */
ShellText str; /* Answer for a query */
sqlite3_stmt *pStmt = 0; /* Query against the SELFTEST table */
open_db(p,0);
for(i=1; i<nArg; i++){
const char *z = azArg[i];
if( z[0]=='-' && z[1]=='-' ) z++;
if( cli_strcmp(z,"-init")==0 ){
bIsInit = 1;
}else
if( cli_strcmp(z,"-v")==0 ){
bVerbose++;
}else
{
sqlite3_fprintf(stderr,
"Unknown option \"%s\" on \"%s\"\n", azArg[i], azArg[0]);
sqlite3_fputs("Should be one of: --init -v\n", stderr);
rc = 1;
goto meta_command_exit;
}
}
if( sqlite3_table_column_metadata(p->db,"main","selftest",0,0,0,0,0,0)
!= SQLITE_OK ){
bSelftestExists = 0;
}else{
bSelftestExists = 1;
}
if( bIsInit ){
createSelftestTable(p);
bSelftestExists = 1;
}
initText(&str);
appendText(&str, "x", 0);
for(k=bSelftestExists; k>=0; k--){
if( k==1 ){
rc = sqlite3_prepare_v2(p->db,
"SELECT tno,op,cmd,ans FROM selftest ORDER BY tno",
-1, &pStmt, 0);
}else{
rc = sqlite3_prepare_v2(p->db,
"VALUES(0,'memo','Missing SELFTEST table - default checks only',''),"
" (1,'run','PRAGMA integrity_check','ok')",
-1, &pStmt, 0);
}
if( rc ){
eputz("Error querying the selftest table\n");
rc = 1;
sqlite3_finalize(pStmt);
goto meta_command_exit;
}
for(i=1; sqlite3_step(pStmt)==SQLITE_ROW; i++){
int tno = sqlite3_column_int(pStmt, 0);
const char *zOp = (const char*)sqlite3_column_text(pStmt, 1);
const char *zSql = (const char*)sqlite3_column_text(pStmt, 2);
const char *zAns = (const char*)sqlite3_column_text(pStmt, 3);
if( zOp==0 ) continue;
if( zSql==0 ) continue;
if( zAns==0 ) continue;
k = 0;
if( bVerbose>0 ){
sqlite3_fprintf(stdout, "%d: %s %s\n", tno, zOp, zSql);
}
if( cli_strcmp(zOp,"memo")==0 ){
sqlite3_fprintf(p->out, "%s\n", zSql);
}else
if( cli_strcmp(zOp,"run")==0 ){
char *zErrMsg = 0;
str.n = 0;
str.z[0] = 0;
rc = sqlite3_exec(p->db, zSql, captureOutputCallback, &str, &zErrMsg);
nTest++;
if( bVerbose ){
sqlite3_fprintf(p->out, "Result: %s\n", str.z);
}
if( rc || zErrMsg ){
nErr++;
rc = 1;
sqlite3_fprintf(p->out, "%d: error-code-%d: %s\n", tno, rc,zErrMsg);
sqlite3_free(zErrMsg);
}else if( cli_strcmp(zAns,str.z)!=0 ){
nErr++;
rc = 1;
sqlite3_fprintf(p->out, "%d: Expected: [%s]\n", tno, zAns);
sqlite3_fprintf(p->out, "%d: Got: [%s]\n", tno, str.z);
}
}
else{
sqlite3_fprintf(stderr,
"Unknown operation \"%s\" on selftest line %d\n", zOp, tno);
rc = 1;
break;
}
} /* End loop over rows of content from SELFTEST */
sqlite3_finalize(pStmt);
} /* End loop over k */
freeText(&str);
sqlite3_fprintf(p->out, "%d errors out of %d tests\n", nErr, nTest);
}else
if( c=='s' && cli_strncmp(azArg[0], "separator", n)==0 ){
if( nArg<2 || nArg>3 ){
eputz("Usage: .separator COL ?ROW?\n");
rc = 1;
}
if( nArg>=2 ){
sqlite3_snprintf(sizeof(p->colSeparator), p->colSeparator,
"%.*s", (int)ArraySize(p->colSeparator)-1, azArg[1]);
}
if( nArg>=3 ){
sqlite3_snprintf(sizeof(p->rowSeparator), p->rowSeparator,
"%.*s", (int)ArraySize(p->rowSeparator)-1, azArg[2]);
}
}else
if( c=='s' && n>=4 && cli_strncmp(azArg[0],"sha3sum",n)==0 ){
const char *zLike = 0; /* Which table to checksum. 0 means everything */
int i; /* Loop counter */
int bSchema = 0; /* Also hash the schema */
int bSeparate = 0; /* Hash each table separately */
int iSize = 224; /* Hash algorithm to use */
int bDebug = 0; /* Only show the query that would have run */
sqlite3_stmt *pStmt; /* For querying tables names */
char *zSql; /* SQL to be run */
char *zSep; /* Separator */
ShellText sSql; /* Complete SQL for the query to run the hash */
ShellText sQuery; /* Set of queries used to read all content */
open_db(p, 0);
for(i=1; i<nArg; i++){
const char *z = azArg[i];
if( z[0]=='-' ){
z++;
if( z[0]=='-' ) z++;
if( cli_strcmp(z,"schema")==0 ){
bSchema = 1;
}else
if( cli_strcmp(z,"sha3-224")==0 || cli_strcmp(z,"sha3-256")==0
|| cli_strcmp(z,"sha3-384")==0 || cli_strcmp(z,"sha3-512")==0
){
iSize = atoi(&z[5]);
}else
if( cli_strcmp(z,"debug")==0 ){
bDebug = 1;
}else
{
sqlite3_fprintf(stderr,
"Unknown option \"%s\" on \"%s\"\n", azArg[i], azArg[0]);
showHelp(p->out, azArg[0]);
rc = 1;
goto meta_command_exit;
}
}else if( zLike ){
eputz("Usage: .sha3sum ?OPTIONS? ?LIKE-PATTERN?\n");
rc = 1;
goto meta_command_exit;
}else{
zLike = z;
bSeparate = 1;
if( sqlite3_strlike("sqlite\\_%", zLike, '\\')==0 ) bSchema = 1;
}
}
if( bSchema ){
zSql = "SELECT lower(name) as tname FROM sqlite_schema"
" WHERE type='table' AND coalesce(rootpage,0)>1"
" UNION ALL SELECT 'sqlite_schema'"
" ORDER BY 1 collate nocase";
}else{
zSql = "SELECT lower(name) as tname FROM sqlite_schema"
" WHERE type='table' AND coalesce(rootpage,0)>1"
" AND name NOT LIKE 'sqlite_%'"
" ORDER BY 1 collate nocase";
}
sqlite3_prepare_v2(p->db, zSql, -1, &pStmt, 0);
initText(&sQuery);
initText(&sSql);
appendText(&sSql, "WITH [sha3sum$query](a,b) AS(",0);
zSep = "VALUES(";
while( SQLITE_ROW==sqlite3_step(pStmt) ){
const char *zTab = (const char*)sqlite3_column_text(pStmt,0);
if( zTab==0 ) continue;
if( zLike && sqlite3_strlike(zLike, zTab, 0)!=0 ) continue;
if( cli_strncmp(zTab, "sqlite_",7)!=0 ){
appendText(&sQuery,"SELECT * FROM ", 0);
appendText(&sQuery,zTab,'"');
appendText(&sQuery," NOT INDEXED;", 0);
}else if( cli_strcmp(zTab, "sqlite_schema")==0 ){
appendText(&sQuery,"SELECT type,name,tbl_name,sql FROM sqlite_schema"
" ORDER BY name;", 0);
}else if( cli_strcmp(zTab, "sqlite_sequence")==0 ){
appendText(&sQuery,"SELECT name,seq FROM sqlite_sequence"
" ORDER BY name;", 0);
}else if( cli_strcmp(zTab, "sqlite_stat1")==0 ){
appendText(&sQuery,"SELECT tbl,idx,stat FROM sqlite_stat1"
" ORDER BY tbl,idx;", 0);
}else if( cli_strcmp(zTab, "sqlite_stat4")==0 ){
appendText(&sQuery, "SELECT * FROM ", 0);
appendText(&sQuery, zTab, 0);
appendText(&sQuery, " ORDER BY tbl, idx, rowid;\n", 0);
}
appendText(&sSql, zSep, 0);
appendText(&sSql, sQuery.z, '\'');
sQuery.n = 0;
appendText(&sSql, ",", 0);
appendText(&sSql, zTab, '\'');
zSep = "),(";
}
sqlite3_finalize(pStmt);
if( bSeparate ){
zSql = sqlite3_mprintf(
"%s))"
" SELECT lower(hex(sha3_query(a,%d))) AS hash, b AS label"
" FROM [sha3sum$query]",
sSql.z, iSize);
}else{
zSql = sqlite3_mprintf(
"%s))"
" SELECT lower(hex(sha3_query(group_concat(a,''),%d))) AS hash"
" FROM [sha3sum$query]",
sSql.z, iSize);
}
shell_check_oom(zSql);
freeText(&sQuery);
freeText(&sSql);
if( bDebug ){
sqlite3_fprintf(p->out, "%s\n", zSql);
}else{
shell_exec(p, zSql, 0);
}
#if !defined(SQLITE_OMIT_SCHEMA_PRAGMAS) && !defined(SQLITE_OMIT_VIRTUALTABLE)
{
int lrc;
char *zRevText = /* Query for reversible to-blob-to-text check */
"SELECT lower(name) as tname FROM sqlite_schema\n"
"WHERE type='table' AND coalesce(rootpage,0)>1\n"
"AND name NOT LIKE 'sqlite_%%'%s\n"
"ORDER BY 1 collate nocase";
zRevText = sqlite3_mprintf(zRevText, zLike? " AND name LIKE $tspec" : "");
zRevText = sqlite3_mprintf(
/* lower-case query is first run, producing upper-case query. */
"with tabcols as materialized(\n"
"select tname, cname\n"
"from ("
" select printf('\"%%w\"',ss.tname) as tname,"
" printf('\"%%w\"',ti.name) as cname\n"
" from (%z) ss\n inner join pragma_table_info(tname) ti))\n"
"select 'SELECT total(bad_text_count) AS bad_text_count\n"
"FROM ('||group_concat(query, ' UNION ALL ')||')' as btc_query\n"
" from (select 'SELECT COUNT(*) AS bad_text_count\n"
"FROM '||tname||' WHERE '\n"
"||group_concat('CAST(CAST('||cname||' AS BLOB) AS TEXT)<>'||cname\n"
"|| ' AND typeof('||cname||')=''text'' ',\n"
"' OR ') as query, tname from tabcols group by tname)"
, zRevText);
shell_check_oom(zRevText);
if( bDebug ) sqlite3_fprintf(p->out, "%s\n", zRevText);
lrc = sqlite3_prepare_v2(p->db, zRevText, -1, &pStmt, 0);
if( lrc!=SQLITE_OK ){
/* assert(lrc==SQLITE_NOMEM); // might also be SQLITE_ERROR if the
** user does cruel and unnatural things like ".limit expr_depth 0". */
rc = 1;
}else{
if( zLike ) sqlite3_bind_text(pStmt,1,zLike,-1,SQLITE_STATIC);
lrc = SQLITE_ROW==sqlite3_step(pStmt);
if( lrc ){
const char *zGenQuery = (char*)sqlite3_column_text(pStmt,0);
sqlite3_stmt *pCheckStmt;
lrc = sqlite3_prepare_v2(p->db, zGenQuery, -1, &pCheckStmt, 0);
if( bDebug ) sqlite3_fprintf(p->out, "%s\n", zGenQuery);
if( lrc!=SQLITE_OK ){
rc = 1;
}else{
if( SQLITE_ROW==sqlite3_step(pCheckStmt) ){
double countIrreversible = sqlite3_column_double(pCheckStmt, 0);
if( countIrreversible>0 ){
int sz = (int)(countIrreversible + 0.5);
sqlite3_fprintf(stderr,
"Digest includes %d invalidly encoded text field%s.\n",
sz, (sz>1)? "s": "");
}
}
sqlite3_finalize(pCheckStmt);
}
sqlite3_finalize(pStmt);
}
}
if( rc ) eputz(".sha3sum failed.\n");
sqlite3_free(zRevText);
}
#endif /* !defined(*_OMIT_SCHEMA_PRAGMAS) && !defined(*_OMIT_VIRTUALTABLE) */
sqlite3_free(zSql);
}else
#if !defined(SQLITE_NOHAVE_SYSTEM) && !defined(SQLITE_SHELL_FIDDLE)
if( c=='s'
&& (cli_strncmp(azArg[0], "shell", n)==0
|| cli_strncmp(azArg[0],"system",n)==0)
){
char *zCmd;
int i, x;
failIfSafeMode(p, "cannot run .%s in safe mode", azArg[0]);
if( nArg<2 ){
eputz("Usage: .system COMMAND\n");
rc = 1;
goto meta_command_exit;
}
zCmd = sqlite3_mprintf(strchr(azArg[1],' ')==0?"%s":"\"%s\"", azArg[1]);
for(i=2; i<nArg && zCmd!=0; i++){
zCmd = sqlite3_mprintf(strchr(azArg[i],' ')==0?"%z %s":"%z \"%s\"",
zCmd, azArg[i]);
}
/*consoleRestore();*/
x = zCmd!=0 ? system(zCmd) : 1;
/*consoleRenewSetup();*/
sqlite3_free(zCmd);
if( x ) sqlite3_fprintf(stderr,"System command returns %d\n", x);
}else
#endif /* !defined(SQLITE_NOHAVE_SYSTEM) && !defined(SQLITE_SHELL_FIDDLE) */
if( c=='s' && cli_strncmp(azArg[0], "show", n)==0 ){
static const char *azBool[] = { "off", "on", "trigger", "full"};
const char *zOut;
int i;
if( nArg!=1 ){
eputz("Usage: .show\n");
rc = 1;
goto meta_command_exit;
}
sqlite3_fprintf(p->out, "%12.12s: %s\n","echo",
azBool[ShellHasFlag(p, SHFLG_Echo)]);
sqlite3_fprintf(p->out, "%12.12s: %s\n","eqp", azBool[p->autoEQP&3]);
sqlite3_fprintf(p->out, "%12.12s: %s\n","explain",
p->mode==MODE_Explain ? "on" : p->autoExplain ? "auto" : "off");
sqlite3_fprintf(p->out, "%12.12s: %s\n","headers",
azBool[p->showHeader!=0]);
if( p->mode==MODE_Column
|| (p->mode>=MODE_Markdown && p->mode<=MODE_Box)
){
sqlite3_fprintf(p->out,
"%12.12s: %s --wrap %d --wordwrap %s --%squote\n", "mode",
modeDescr[p->mode], p->cmOpts.iWrap,
p->cmOpts.bWordWrap ? "on" : "off",
p->cmOpts.bQuote ? "" : "no");
}else{
sqlite3_fprintf(p->out, "%12.12s: %s\n","mode", modeDescr[p->mode]);
}
sqlite3_fprintf(p->out, "%12.12s: ", "nullvalue");
output_c_string(p->out, p->nullValue);
sqlite3_fputs("\n", p->out);
sqlite3_fprintf(p->out, "%12.12s: %s\n","output",
strlen30(p->outfile) ? p->outfile : "stdout");
sqlite3_fprintf(p->out, "%12.12s: ", "colseparator");
output_c_string(p->out, p->colSeparator);
sqlite3_fputs("\n", p->out);
sqlite3_fprintf(p->out, "%12.12s: ", "rowseparator");
output_c_string(p->out, p->rowSeparator);
sqlite3_fputs("\n", p->out);
switch( p->statsOn ){
case 0: zOut = "off"; break;
default: zOut = "on"; break;
case 2: zOut = "stmt"; break;
case 3: zOut = "vmstep"; break;
}
sqlite3_fprintf(p->out, "%12.12s: %s\n","stats", zOut);
sqlite3_fprintf(p->out, "%12.12s: ", "width");
for (i=0;i<p->nWidth;i++) {
sqlite3_fprintf(p->out, "%d ", p->colWidth[i]);
}
sqlite3_fputs("\n", p->out);
sqlite3_fprintf(p->out, "%12.12s: %s\n", "filename",
p->pAuxDb->zDbFilename ? p->pAuxDb->zDbFilename : "");
}else
if( c=='s' && cli_strncmp(azArg[0], "stats", n)==0 ){
if( nArg==2 ){
if( cli_strcmp(azArg[1],"stmt")==0 ){
p->statsOn = 2;
}else if( cli_strcmp(azArg[1],"vmstep")==0 ){
p->statsOn = 3;
}else{
p->statsOn = (u8)booleanValue(azArg[1]);
}
}else if( nArg==1 ){
display_stats(p->db, p, 0);
}else{
eputz("Usage: .stats ?on|off|stmt|vmstep?\n");
rc = 1;
}
}else
if( (c=='t' && n>1 && cli_strncmp(azArg[0], "tables", n)==0)
|| (c=='i' && (cli_strncmp(azArg[0], "indices", n)==0
|| cli_strncmp(azArg[0], "indexes", n)==0) )
){
sqlite3_stmt *pStmt;
char **azResult;
int nRow, nAlloc;
int ii;
ShellText s;
initText(&s);
open_db(p, 0);
rc = sqlite3_prepare_v2(p->db, "PRAGMA database_list", -1, &pStmt, 0);
if( rc ){
sqlite3_finalize(pStmt);
return shellDatabaseError(p->db);
}
if( nArg>2 && c=='i' ){
/* It is an historical accident that the .indexes command shows an error
** when called with the wrong number of arguments whereas the .tables
** command does not. */
eputz("Usage: .indexes ?LIKE-PATTERN?\n");
rc = 1;
sqlite3_finalize(pStmt);
goto meta_command_exit;
}
for(ii=0; sqlite3_step(pStmt)==SQLITE_ROW; ii++){
const char *zDbName = (const char*)sqlite3_column_text(pStmt, 1);
if( zDbName==0 ) continue;
if( s.z && s.z[0] ) appendText(&s, " UNION ALL ", 0);
if( sqlite3_stricmp(zDbName, "main")==0 ){
appendText(&s, "SELECT name FROM ", 0);
}else{
appendText(&s, "SELECT ", 0);
appendText(&s, zDbName, '\'');
appendText(&s, "||'.'||name FROM ", 0);
}
appendText(&s, zDbName, '"');
appendText(&s, ".sqlite_schema ", 0);
if( c=='t' ){
appendText(&s," WHERE type IN ('table','view')"
" AND name NOT LIKE 'sqlite_%'"
" AND name LIKE ?1", 0);
}else{
appendText(&s," WHERE type='index'"
" AND tbl_name LIKE ?1", 0);
}
}
rc = sqlite3_finalize(pStmt);
if( rc==SQLITE_OK ){
appendText(&s, " ORDER BY 1", 0);
rc = sqlite3_prepare_v2(p->db, s.z, -1, &pStmt, 0);
}
freeText(&s);
if( rc ) return shellDatabaseError(p->db);
/* Run the SQL statement prepared by the above block. Store the results
** as an array of nul-terminated strings in azResult[]. */
nRow = nAlloc = 0;
azResult = 0;
if( nArg>1 ){
sqlite3_bind_text(pStmt, 1, azArg[1], -1, SQLITE_TRANSIENT);
}else{
sqlite3_bind_text(pStmt, 1, "%", -1, SQLITE_STATIC);
}
while( sqlite3_step(pStmt)==SQLITE_ROW ){
if( nRow>=nAlloc ){
char **azNew;
int n2 = nAlloc*2 + 10;
azNew = sqlite3_realloc64(azResult, sizeof(azResult[0])*n2);
shell_check_oom(azNew);
nAlloc = n2;
azResult = azNew;
}
azResult[nRow] = sqlite3_mprintf("%s", sqlite3_column_text(pStmt, 0));
shell_check_oom(azResult[nRow]);
nRow++;
}
if( sqlite3_finalize(pStmt)!=SQLITE_OK ){
rc = shellDatabaseError(p->db);
}
/* Pretty-print the contents of array azResult[] to the output */
if( rc==0 && nRow>0 ){
int len, maxlen = 0;
int i, j;
int nPrintCol, nPrintRow;
for(i=0; i<nRow; i++){
len = strlen30(azResult[i]);
if( len>maxlen ) maxlen = len;
}
nPrintCol = 80/(maxlen+2);
if( nPrintCol<1 ) nPrintCol = 1;
nPrintRow = (nRow + nPrintCol - 1)/nPrintCol;
for(i=0; i<nPrintRow; i++){
for(j=i; j<nRow; j+=nPrintRow){
char *zSp = j<nPrintRow ? "" : " ";
sqlite3_fprintf(p->out,
"%s%-*s", zSp, maxlen, azResult[j] ? azResult[j]:"");
}
sqlite3_fputs("\n", p->out);
}
}
for(ii=0; ii<nRow; ii++) sqlite3_free(azResult[ii]);
sqlite3_free(azResult);
}else
#ifndef SQLITE_SHELL_FIDDLE
/* Begin redirecting output to the file "testcase-out.txt" */
if( c=='t' && cli_strcmp(azArg[0],"testcase")==0 ){
output_reset(p);
p->out = output_file_open("testcase-out.txt");
if( p->out==0 ){
eputz("Error: cannot open 'testcase-out.txt'\n");
}
if( nArg>=2 ){
sqlite3_snprintf(sizeof(p->zTestcase), p->zTestcase, "%s", azArg[1]);
}else{
sqlite3_snprintf(sizeof(p->zTestcase), p->zTestcase, "?");
}
}else
#endif /* !defined(SQLITE_SHELL_FIDDLE) */
#ifndef SQLITE_UNTESTABLE
if( c=='t' && n>=8 && cli_strncmp(azArg[0], "testctrl", n)==0 ){
static const struct {
const char *zCtrlName; /* Name of a test-control option */
int ctrlCode; /* Integer code for that option */
int unSafe; /* Not valid unless --unsafe-testing */
const char *zUsage; /* Usage notes */
} aCtrl[] = {
{"always", SQLITE_TESTCTRL_ALWAYS, 1, "BOOLEAN" },
{"assert", SQLITE_TESTCTRL_ASSERT, 1, "BOOLEAN" },
/*{"benign_malloc_hooks",SQLITE_TESTCTRL_BENIGN_MALLOC_HOOKS,1, "" },*/
/*{"bitvec_test", SQLITE_TESTCTRL_BITVEC_TEST, 1, "" },*/
{"byteorder", SQLITE_TESTCTRL_BYTEORDER, 0, "" },
{"extra_schema_checks",SQLITE_TESTCTRL_EXTRA_SCHEMA_CHECKS,0,"BOOLEAN" },
{"fault_install", SQLITE_TESTCTRL_FAULT_INSTALL, 1,"args..." },
{"fk_no_action", SQLITE_TESTCTRL_FK_NO_ACTION, 0, "BOOLEAN" },
{"imposter", SQLITE_TESTCTRL_IMPOSTER,1,"SCHEMA ON/OFF ROOTPAGE"},
{"internal_functions", SQLITE_TESTCTRL_INTERNAL_FUNCTIONS,0,"" },
{"json_selfcheck", SQLITE_TESTCTRL_JSON_SELFCHECK ,0,"BOOLEAN" },
{"localtime_fault", SQLITE_TESTCTRL_LOCALTIME_FAULT,0,"BOOLEAN" },
{"never_corrupt", SQLITE_TESTCTRL_NEVER_CORRUPT,1, "BOOLEAN" },
{"optimizations", SQLITE_TESTCTRL_OPTIMIZATIONS,0,"DISABLE-MASK ..."},
#ifdef YYCOVERAGE
{"parser_coverage", SQLITE_TESTCTRL_PARSER_COVERAGE,0,"" },
#endif
{"pending_byte", SQLITE_TESTCTRL_PENDING_BYTE,1, "OFFSET " },
{"prng_restore", SQLITE_TESTCTRL_PRNG_RESTORE,0, "" },
{"prng_save", SQLITE_TESTCTRL_PRNG_SAVE, 0, "" },
{"prng_seed", SQLITE_TESTCTRL_PRNG_SEED, 0, "SEED ?db?" },
{"seek_count", SQLITE_TESTCTRL_SEEK_COUNT, 0, "" },
{"sorter_mmap", SQLITE_TESTCTRL_SORTER_MMAP, 0, "NMAX" },
{"tune", SQLITE_TESTCTRL_TUNE, 1, "ID VALUE" },
};
int testctrl = -1;
int iCtrl = -1;
int rc2 = 0; /* 0: usage. 1: %d 2: %x 3: no-output */
int isOk = 0;
int i, n2;
const char *zCmd = 0;
open_db(p, 0);
zCmd = nArg>=2 ? azArg[1] : "help";
/* The argument can optionally begin with "-" or "--" */
if( zCmd[0]=='-' && zCmd[1] ){
zCmd++;
if( zCmd[0]=='-' && zCmd[1] ) zCmd++;
}
/* --help lists all test-controls */
if( cli_strcmp(zCmd,"help")==0 ){
sqlite3_fputs("Available test-controls:\n", p->out);
for(i=0; i<ArraySize(aCtrl); i++){
if( aCtrl[i].unSafe && !ShellHasFlag(p,SHFLG_TestingMode) ) continue;
sqlite3_fprintf(p->out, " .testctrl %s %s\n",
aCtrl[i].zCtrlName, aCtrl[i].zUsage);
}
rc = 1;
goto meta_command_exit;
}
/* convert testctrl text option to value. allow any unique prefix
** of the option name, or a numerical value. */
n2 = strlen30(zCmd);
for(i=0; i<ArraySize(aCtrl); i++){
if( aCtrl[i].unSafe && !ShellHasFlag(p,SHFLG_TestingMode) ) continue;
if( cli_strncmp(zCmd, aCtrl[i].zCtrlName, n2)==0 ){
if( testctrl<0 ){
testctrl = aCtrl[i].ctrlCode;
iCtrl = i;
}else{
sqlite3_fprintf(stderr,"Error: ambiguous test-control: \"%s\"\n"
"Use \".testctrl --help\" for help\n", zCmd);
rc = 1;
goto meta_command_exit;
}
}
}
if( testctrl<0 ){
sqlite3_fprintf(stderr,"Error: unknown test-control: %s\n"
"Use \".testctrl --help\" for help\n", zCmd);
}else{
switch(testctrl){
/* Special processing for .testctrl opt MASK ...
** Each MASK argument can be one of:
**
** +LABEL Enable the named optimization
**
** -LABEL Disable the named optimization
**
** INTEGER Mask of optimizations to disable
*/
case SQLITE_TESTCTRL_OPTIMIZATIONS: {
static const struct {
unsigned int mask; /* Mask for this optimization */
unsigned int bDsply; /* Display this on output */
const char *zLabel; /* Name of optimization */
} aLabel[] = {
{ 0x00000001, 1, "QueryFlattener" },
{ 0x00000001, 0, "Flatten" },
{ 0x00000002, 1, "WindowFunc" },
{ 0x00000004, 1, "GroupByOrder" },
{ 0x00000008, 1, "FactorOutConst" },
{ 0x00000010, 1, "DistinctOpt" },
{ 0x00000020, 1, "CoverIdxScan" },
{ 0x00000040, 1, "OrderByIdxJoin" },
{ 0x00000080, 1, "Transitive" },
{ 0x00000100, 1, "OmitNoopJoin" },
{ 0x00000200, 1, "CountOfView" },
{ 0x00000400, 1, "CurosrHints" },
{ 0x00000800, 1, "Stat4" },
{ 0x00001000, 1, "PushDown" },
{ 0x00002000, 1, "SimplifyJoin" },
{ 0x00004000, 1, "SkipScan" },
{ 0x00008000, 1, "PropagateConst" },
{ 0x00010000, 1, "MinMaxOpt" },
{ 0x00020000, 1, "SeekScan" },
{ 0x00040000, 1, "OmitOrderBy" },
{ 0x00080000, 1, "BloomFilter" },
{ 0x00100000, 1, "BloomPulldown" },
{ 0x00200000, 1, "BalancedMerge" },
{ 0x00400000, 1, "ReleaseReg" },
{ 0x00800000, 1, "FlttnUnionAll" },
{ 0x01000000, 1, "IndexedEXpr" },
{ 0x02000000, 1, "Coroutines" },
{ 0x04000000, 1, "NullUnusedCols" },
{ 0x08000000, 1, "OnePass" },
{ 0x10000000, 1, "OrderBySubq" },
{ 0xffffffff, 0, "All" },
};
unsigned int curOpt;
unsigned int newOpt;
unsigned int m;
int ii;
int nOff;
sqlite3_test_control(SQLITE_TESTCTRL_GETOPT, p->db, &curOpt);
newOpt = curOpt;
for(ii=2; ii<nArg; ii++){
const char *z = azArg[ii];
int useLabel = 0;
const char *zLabel = 0;
if( (z[0]=='+'|| z[0]=='-') && !IsDigit(z[1]) ){
useLabel = z[0];
zLabel = &z[1];
}else if( !IsDigit(z[0]) && z[0]!=0 && !IsDigit(z[1]) ){
useLabel = '+';
zLabel = z;
}else{
newOpt = (unsigned int)strtol(z,0,0);
}
if( useLabel ){
int jj;
for(jj=0; jj<ArraySize(aLabel); jj++){
if( sqlite3_stricmp(zLabel, aLabel[jj].zLabel)==0 ) break;
}
if( jj>=ArraySize(aLabel) ){
sqlite3_fprintf(stderr,
"Error: no such optimization: \"%s\"\n", zLabel);
sqlite3_fputs("Should be one of:", stderr);
for(jj=0; jj<ArraySize(aLabel); jj++){
sqlite3_fprintf(stderr," %s", aLabel[jj].zLabel);
}
sqlite3_fputs("\n", stderr);
rc = 1;
goto meta_command_exit;
}
if( useLabel=='+' ){
newOpt &= ~aLabel[jj].mask;
}else{
newOpt |= aLabel[jj].mask;
}
}
}
if( curOpt!=newOpt ){
sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS,p->db,newOpt);
}
for(ii=nOff=0, m=1; ii<32; ii++, m <<= 1){
if( m & newOpt ) nOff++;
}
if( nOff<12 ){
sqlite3_fputs("+All", p->out);
for(ii=0; ii<ArraySize(aLabel); ii++){
if( !aLabel[ii].bDsply ) continue;
if( (newOpt & aLabel[ii].mask)!=0 ){
sqlite3_fprintf(p->out, " -%s", aLabel[ii].zLabel);
}
}
}else{
sqlite3_fputs("-All", p->out);
for(ii=0; ii<ArraySize(aLabel); ii++){
if( !aLabel[ii].bDsply ) continue;
if( (newOpt & aLabel[ii].mask)==0 ){
sqlite3_fprintf(p->out, " +%s", aLabel[ii].zLabel);
}
}
}
sqlite3_fputs("\n", p->out);
rc2 = isOk = 3;
break;
}
/* sqlite3_test_control(int, db, int) */
case SQLITE_TESTCTRL_FK_NO_ACTION:
if( nArg==3 ){
unsigned int opt = (unsigned int)strtol(azArg[2], 0, 0);
rc2 = sqlite3_test_control(testctrl, p->db, opt);
isOk = 3;
}
break;
/* sqlite3_test_control(int) */
case SQLITE_TESTCTRL_PRNG_SAVE:
case SQLITE_TESTCTRL_PRNG_RESTORE:
case SQLITE_TESTCTRL_BYTEORDER:
if( nArg==2 ){
rc2 = sqlite3_test_control(testctrl);
isOk = testctrl==SQLITE_TESTCTRL_BYTEORDER ? 1 : 3;
}
break;
/* sqlite3_test_control(int, uint) */
case SQLITE_TESTCTRL_PENDING_BYTE:
if( nArg==3 ){
unsigned int opt = (unsigned int)integerValue(azArg[2]);
rc2 = sqlite3_test_control(testctrl, opt);
isOk = 3;
}
break;
/* sqlite3_test_control(int, int, sqlite3*) */
case SQLITE_TESTCTRL_PRNG_SEED:
if( nArg==3 || nArg==4 ){
int ii = (int)integerValue(azArg[2]);
sqlite3 *db;
if( ii==0 && cli_strcmp(azArg[2],"random")==0 ){
sqlite3_randomness(sizeof(ii),&ii);
sqlite3_fprintf(stdout, "-- random seed: %d\n", ii);
}
if( nArg==3 ){
db = 0;
}else{
db = p->db;
/* Make sure the schema has been loaded */
sqlite3_table_column_metadata(db, 0, "x", 0, 0, 0, 0, 0, 0);
}
rc2 = sqlite3_test_control(testctrl, ii, db);
isOk = 3;
}
break;
/* sqlite3_test_control(int, int) */
case SQLITE_TESTCTRL_ASSERT:
case SQLITE_TESTCTRL_ALWAYS:
if( nArg==3 ){
int opt = booleanValue(azArg[2]);
rc2 = sqlite3_test_control(testctrl, opt);
isOk = 1;
}
break;
/* sqlite3_test_control(int, int) */
case SQLITE_TESTCTRL_LOCALTIME_FAULT:
case SQLITE_TESTCTRL_NEVER_CORRUPT:
if( nArg==3 ){
int opt = booleanValue(azArg[2]);
rc2 = sqlite3_test_control(testctrl, opt);
isOk = 3;
}
break;
/* sqlite3_test_control(sqlite3*) */
case SQLITE_TESTCTRL_INTERNAL_FUNCTIONS:
rc2 = sqlite3_test_control(testctrl, p->db);
isOk = 3;
break;
case SQLITE_TESTCTRL_IMPOSTER:
if( nArg==5 ){
rc2 = sqlite3_test_control(testctrl, p->db,
azArg[2],
integerValue(azArg[3]),
integerValue(azArg[4]));
isOk = 3;
}
break;
case SQLITE_TESTCTRL_SEEK_COUNT: {
u64 x = 0;
rc2 = sqlite3_test_control(testctrl, p->db, &x);
sqlite3_fprintf(p->out, "%llu\n", x);
isOk = 3;
break;
}
#ifdef YYCOVERAGE
case SQLITE_TESTCTRL_PARSER_COVERAGE: {
if( nArg==2 ){
sqlite3_test_control(testctrl, p->out);
isOk = 3;
}
break;
}
#endif
#ifdef SQLITE_DEBUG
case SQLITE_TESTCTRL_TUNE: {
if( nArg==4 ){
int id = (int)integerValue(azArg[2]);
int val = (int)integerValue(azArg[3]);
sqlite3_test_control(testctrl, id, &val);
isOk = 3;
}else if( nArg==3 ){
int id = (int)integerValue(azArg[2]);
sqlite3_test_control(testctrl, -id, &rc2);
isOk = 1;
}else if( nArg==2 ){
int id = 1;
while(1){
int val = 0;
rc2 = sqlite3_test_control(testctrl, -id, &val);
if( rc2!=SQLITE_OK ) break;
if( id>1 ) sqlite3_fputs(" ", p->out);
sqlite3_fprintf(p->out, "%d: %d", id, val);
id++;
}
if( id>1 ) sqlite3_fputs("\n", p->out);
isOk = 3;
}
break;
}
#endif
case SQLITE_TESTCTRL_SORTER_MMAP:
if( nArg==3 ){
int opt = (unsigned int)integerValue(azArg[2]);
rc2 = sqlite3_test_control(testctrl, p->db, opt);
isOk = 3;
}
break;
case SQLITE_TESTCTRL_JSON_SELFCHECK:
if( nArg==2 ){
rc2 = -1;
isOk = 1;
}else{
rc2 = booleanValue(azArg[2]);
isOk = 3;
}
sqlite3_test_control(testctrl, &rc2);
break;
case SQLITE_TESTCTRL_FAULT_INSTALL: {
int kk;
int bShowHelp = nArg<=2;
isOk = 3;
for(kk=2; kk<nArg; kk++){
const char *z = azArg[kk];
if( z[0]=='-' && z[1]=='-' ) z++;
if( cli_strcmp(z,"off")==0 ){
sqlite3_test_control(testctrl, 0);
}else if( cli_strcmp(z,"on")==0 ){
faultsim_state.iCnt = faultsim_state.nSkip;
if( faultsim_state.iErr==0 ) faultsim_state.iErr = 1;
faultsim_state.nHit = 0;
sqlite3_test_control(testctrl, faultsim_callback);
}else if( cli_strcmp(z,"reset")==0 ){
faultsim_state.iCnt = faultsim_state.nSkip;
faultsim_state.nHit = 0;
sqlite3_test_control(testctrl, faultsim_callback);
}else if( cli_strcmp(z,"status")==0 ){
sqlite3_fprintf(p->out, "faultsim.iId: %d\n",
faultsim_state.iId);
sqlite3_fprintf(p->out, "faultsim.iErr: %d\n",
faultsim_state.iErr);
sqlite3_fprintf(p->out, "faultsim.iCnt: %d\n",
faultsim_state.iCnt);
sqlite3_fprintf(p->out, "faultsim.nHit: %d\n",
faultsim_state.nHit);
sqlite3_fprintf(p->out, "faultsim.iInterval: %d\n",
faultsim_state.iInterval);
sqlite3_fprintf(p->out, "faultsim.eVerbose: %d\n",
faultsim_state.eVerbose);
sqlite3_fprintf(p->out, "faultsim.nRepeat: %d\n",
faultsim_state.nRepeat);
sqlite3_fprintf(p->out, "faultsim.nSkip: %d\n",
faultsim_state.nSkip);
}else if( cli_strcmp(z,"-v")==0 ){
if( faultsim_state.eVerbose<2 ) faultsim_state.eVerbose++;
}else if( cli_strcmp(z,"-q")==0 ){
if( faultsim_state.eVerbose>0 ) faultsim_state.eVerbose--;
}else if( cli_strcmp(z,"-id")==0 && kk+1<nArg ){
faultsim_state.iId = atoi(azArg[++kk]);
}else if( cli_strcmp(z,"-errcode")==0 && kk+1<nArg ){
faultsim_state.iErr = atoi(azArg[++kk]);
}else if( cli_strcmp(z,"-interval")==0 && kk+1<nArg ){
faultsim_state.iInterval = atoi(azArg[++kk]);
}else if( cli_strcmp(z,"-repeat")==0 && kk+1<nArg ){
faultsim_state.nRepeat = atoi(azArg[++kk]);
}else if( cli_strcmp(z,"-skip")==0 && kk+1<nArg ){
faultsim_state.nSkip = atoi(azArg[++kk]);
}else if( cli_strcmp(z,"-?")==0 || sqlite3_strglob("*help*",z)==0){
bShowHelp = 1;
}else{
sqlite3_fprintf(stderr,
"Unrecognized fault_install argument: \"%s\"\n",
azArg[kk]);
rc = 1;
bShowHelp = 1;
break;
}
}
if( bShowHelp ){
sqlite3_fputs(
"Usage: .testctrl fault_install ARGS\n"
"Possible arguments:\n"
" off Disable faultsim\n"
" on Activate faultsim\n"
" reset Reset the trigger counter\n"
" status Show current status\n"
" -v Increase verbosity\n"
" -q Decrease verbosity\n"
" --errcode N When triggered, return N as error code\n"
" --id ID Trigger only for the ID specified\n"
" --interval N Trigger only after every N-th call\n"
" --repeat N Turn off after N hits. 0 means never\n"
" --skip N Skip the first N encounters\n"
,p->out
);
}
break;
}
}
}
if( isOk==0 && iCtrl>=0 ){
sqlite3_fprintf(p->out,
"Usage: .testctrl %s %s\n", zCmd,aCtrl[iCtrl].zUsage);
rc = 1;
}else if( isOk==1 ){
sqlite3_fprintf(p->out, "%d\n", rc2);
}else if( isOk==2 ){
sqlite3_fprintf(p->out, "0x%08x\n", rc2);
}
}else
#endif /* !defined(SQLITE_UNTESTABLE) */
if( c=='t' && n>4 && cli_strncmp(azArg[0], "timeout", n)==0 ){
open_db(p, 0);
sqlite3_busy_timeout(p->db, nArg>=2 ? (int)integerValue(azArg[1]) : 0);
}else
if( c=='t' && n>=5 && cli_strncmp(azArg[0], "timer", n)==0 ){
if( nArg==2 ){
enableTimer = booleanValue(azArg[1]);
if( enableTimer && !HAS_TIMER ){
eputz("Error: timer not available on this system.\n");
enableTimer = 0;
}
}else{
eputz("Usage: .timer on|off\n");
rc = 1;
}
}else
#ifndef SQLITE_OMIT_TRACE
if( c=='t' && cli_strncmp(azArg[0], "trace", n)==0 ){
int mType = 0;
int jj;
open_db(p, 0);
for(jj=1; jj<nArg; jj++){
const char *z = azArg[jj];
if( z[0]=='-' ){
if( optionMatch(z, "expanded") ){
p->eTraceType = SHELL_TRACE_EXPANDED;
}
#ifdef SQLITE_ENABLE_NORMALIZE
else if( optionMatch(z, "normalized") ){
p->eTraceType = SHELL_TRACE_NORMALIZED;
}
#endif
else if( optionMatch(z, "plain") ){
p->eTraceType = SHELL_TRACE_PLAIN;
}
else if( optionMatch(z, "profile") ){
mType |= SQLITE_TRACE_PROFILE;
}
else if( optionMatch(z, "row") ){
mType |= SQLITE_TRACE_ROW;
}
else if( optionMatch(z, "stmt") ){
mType |= SQLITE_TRACE_STMT;
}
else if( optionMatch(z, "close") ){
mType |= SQLITE_TRACE_CLOSE;
}
else {
sqlite3_fprintf(stderr,"Unknown option \"%s\" on \".trace\"\n", z);
rc = 1;
goto meta_command_exit;
}
}else{
output_file_close(p->traceOut);
p->traceOut = output_file_open(z);
}
}
if( p->traceOut==0 ){
sqlite3_trace_v2(p->db, 0, 0, 0);
}else{
if( mType==0 ) mType = SQLITE_TRACE_STMT;
sqlite3_trace_v2(p->db, mType, sql_trace_callback, p);
}
}else
#endif /* !defined(SQLITE_OMIT_TRACE) */
#if defined(SQLITE_DEBUG) && !defined(SQLITE_OMIT_VIRTUALTABLE)
if( c=='u' && cli_strncmp(azArg[0], "unmodule", n)==0 ){
int ii;
int lenOpt;
char *zOpt;
if( nArg<2 ){
eputz("Usage: .unmodule [--allexcept] NAME ...\n");
rc = 1;
goto meta_command_exit;
}
open_db(p, 0);
zOpt = azArg[1];
if( zOpt[0]=='-' && zOpt[1]=='-' && zOpt[2]!=0 ) zOpt++;
lenOpt = (int)strlen(zOpt);
if( lenOpt>=3 && cli_strncmp(zOpt, "-allexcept",lenOpt)==0 ){
assert( azArg[nArg]==0 );
sqlite3_drop_modules(p->db, nArg>2 ? (const char**)(azArg+2) : 0);
}else{
for(ii=1; ii<nArg; ii++){
sqlite3_create_module(p->db, azArg[ii], 0, 0);
}
}
}else
#endif
if( c=='v' && cli_strncmp(azArg[0], "version", n)==0 ){
char *zPtrSz = sizeof(void*)==8 ? "64-bit" : "32-bit";
sqlite3_fprintf(p->out, "SQLite %s %s\n" /*extra-version-info*/,
sqlite3_libversion(), sqlite3_sourceid());
#if SQLITE_HAVE_ZLIB
sqlite3_fprintf(p->out, "zlib version %s\n", zlibVersion());
#endif
#define CTIMEOPT_VAL_(opt) #opt
#define CTIMEOPT_VAL(opt) CTIMEOPT_VAL_(opt)
#if defined(__clang__) && defined(__clang_major__)
sqlite3_fprintf(p->out, "clang-" CTIMEOPT_VAL(__clang_major__) "."
CTIMEOPT_VAL(__clang_minor__) "."
CTIMEOPT_VAL(__clang_patchlevel__) " (%s)\n", zPtrSz);
#elif defined(_MSC_VER)
sqlite3_fprintf(p->out, "msvc-" CTIMEOPT_VAL(_MSC_VER) " (%s)\n", zPtrSz);
#elif defined(__GNUC__) && defined(__VERSION__)
sqlite3_fprintf(p->out, "gcc-" __VERSION__ " (%s)\n", zPtrSz);
#endif
}else
if( c=='v' && cli_strncmp(azArg[0], "vfsinfo", n)==0 ){
const char *zDbName = nArg==2 ? azArg[1] : "main";
sqlite3_vfs *pVfs = 0;
if( p->db ){
sqlite3_file_control(p->db, zDbName, SQLITE_FCNTL_VFS_POINTER, &pVfs);
if( pVfs ){
sqlite3_fprintf(p->out, "vfs.zName = \"%s\"\n", pVfs->zName);
sqlite3_fprintf(p->out, "vfs.iVersion = %d\n", pVfs->iVersion);
sqlite3_fprintf(p->out, "vfs.szOsFile = %d\n", pVfs->szOsFile);
sqlite3_fprintf(p->out, "vfs.mxPathname = %d\n", pVfs->mxPathname);
}
}
}else
if( c=='v' && cli_strncmp(azArg[0], "vfslist", n)==0 ){
sqlite3_vfs *pVfs;
sqlite3_vfs *pCurrent = 0;
if( p->db ){
sqlite3_file_control(p->db, "main", SQLITE_FCNTL_VFS_POINTER, &pCurrent);
}
for(pVfs=sqlite3_vfs_find(0); pVfs; pVfs=pVfs->pNext){
sqlite3_fprintf(p->out, "vfs.zName = \"%s\"%s\n", pVfs->zName,
pVfs==pCurrent ? " <--- CURRENT" : "");
sqlite3_fprintf(p->out, "vfs.iVersion = %d\n", pVfs->iVersion);
sqlite3_fprintf(p->out, "vfs.szOsFile = %d\n", pVfs->szOsFile);
sqlite3_fprintf(p->out, "vfs.mxPathname = %d\n", pVfs->mxPathname);
if( pVfs->pNext ){
sqlite3_fputs("-----------------------------------\n", p->out);
}
}
}else
if( c=='v' && cli_strncmp(azArg[0], "vfsname", n)==0 ){
const char *zDbName = nArg==2 ? azArg[1] : "main";
char *zVfsName = 0;
if( p->db ){
sqlite3_file_control(p->db, zDbName, SQLITE_FCNTL_VFSNAME, &zVfsName);
if( zVfsName ){
sqlite3_fprintf(p->out, "%s\n", zVfsName);
sqlite3_free(zVfsName);
}
}
}else
if( c=='w' && cli_strncmp(azArg[0], "wheretrace", n)==0 ){
unsigned int x = nArg>=2? (unsigned int)integerValue(azArg[1]) : 0xffffffff;
sqlite3_test_control(SQLITE_TESTCTRL_TRACEFLAGS, 3, &x);
}else
if( c=='w' && cli_strncmp(azArg[0], "width", n)==0 ){
int j;
assert( nArg<=ArraySize(azArg) );
p->nWidth = nArg-1;
p->colWidth = realloc(p->colWidth, (p->nWidth+1)*sizeof(int)*2);
if( p->colWidth==0 && p->nWidth>0 ) shell_out_of_memory();
if( p->nWidth ) p->actualWidth = &p->colWidth[p->nWidth];
for(j=1; j<nArg; j++){
p->colWidth[j-1] = (int)integerValue(azArg[j]);
}
}else
{
sqlite3_fprintf(stderr,"Error: unknown command or invalid arguments: "
" \"%s\". Enter \".help\" for help\n", azArg[0]);
rc = 1;
}
meta_command_exit:
if( p->outCount ){
p->outCount--;
if( p->outCount==0 ) output_reset(p);
}
p->bSafeMode = p->bSafeModePersist;
return rc;
}
/* Line scan result and intermediate states (supporting scan resumption)
*/
#ifndef CHAR_BIT
# define CHAR_BIT 8
#endif
typedef enum {
QSS_HasDark = 1<<CHAR_BIT, QSS_EndingSemi = 2<<CHAR_BIT,
QSS_CharMask = (1<<CHAR_BIT)-1, QSS_ScanMask = 3<<CHAR_BIT,
QSS_Start = 0
} QuickScanState;
#define QSS_SETV(qss, newst) ((newst) | ((qss) & QSS_ScanMask))
#define QSS_INPLAIN(qss) (((qss)&QSS_CharMask)==QSS_Start)
#define QSS_PLAINWHITE(qss) (((qss)&~QSS_EndingSemi)==QSS_Start)
#define QSS_PLAINDARK(qss) (((qss)&~QSS_EndingSemi)==QSS_HasDark)
#define QSS_SEMITERM(qss) (((qss)&~QSS_HasDark)==QSS_EndingSemi)
/*
** Scan line for classification to guide shell's handling.
** The scan is resumable for subsequent lines when prior
** return values are passed as the 2nd argument.
*/
static QuickScanState quickscan(char *zLine, QuickScanState qss,
SCAN_TRACKER_REFTYPE pst){
char cin;
char cWait = (char)qss; /* intentional narrowing loss */
if( cWait==0 ){
PlainScan:
while( (cin = *zLine++)!=0 ){
if( IsSpace(cin) )
continue;
switch (cin){
case '-':
if( *zLine!='-' )
break;
while((cin = *++zLine)!=0 )
if( cin=='\n')
goto PlainScan;
return qss;
case ';':
qss |= QSS_EndingSemi;
continue;
case '/':
if( *zLine=='*' ){
++zLine;
cWait = '*';
CONTINUE_PROMPT_AWAITS(pst, "/*");
qss = QSS_SETV(qss, cWait);
goto TermScan;
}
break;
case '[':
cin = ']';
deliberate_fall_through; /* FALLTHRU */
case '`': case '\'': case '"':
cWait = cin;
qss = QSS_HasDark | cWait;
CONTINUE_PROMPT_AWAITC(pst, cin);
goto TermScan;
case '(':
CONTINUE_PAREN_INCR(pst, 1);
break;
case ')':
CONTINUE_PAREN_INCR(pst, -1);
break;
default:
break;
}
qss = (qss & ~QSS_EndingSemi) | QSS_HasDark;
}
}else{
TermScan:
while( (cin = *zLine++)!=0 ){
if( cin==cWait ){
switch( cWait ){
case '*':
if( *zLine != '/' )
continue;
++zLine;
CONTINUE_PROMPT_AWAITC(pst, 0);
qss = QSS_SETV(qss, 0);
goto PlainScan;
case '`': case '\'': case '"':
if(*zLine==cWait){
/* Swallow doubled end-delimiter.*/
++zLine;
continue;
}
deliberate_fall_through; /* FALLTHRU */
case ']':
CONTINUE_PROMPT_AWAITC(pst, 0);
qss = QSS_SETV(qss, 0);
goto PlainScan;
default: assert(0);
}
}
}
}
return qss;
}
/*
** Return TRUE if the line typed in is an SQL command terminator other
** than a semi-colon. The SQL Server style "go" command is understood
** as is the Oracle "/".
*/
static int line_is_command_terminator(char *zLine){
while( IsSpace(zLine[0]) ){ zLine++; };
if( zLine[0]=='/' )
zLine += 1; /* Oracle */
else if ( ToLower(zLine[0])=='g' && ToLower(zLine[1])=='o' )
zLine += 2; /* SQL Server */
else
return 0;
return quickscan(zLine, QSS_Start, 0)==QSS_Start;
}
/*
** The CLI needs a working sqlite3_complete() to work properly. So error
** out of the build if compiling with SQLITE_OMIT_COMPLETE.
*/
#ifdef SQLITE_OMIT_COMPLETE
# error the CLI application is imcompatable with SQLITE_OMIT_COMPLETE.
#endif
/*
** Return true if zSql is a complete SQL statement. Return false if it
** ends in the middle of a string literal or C-style comment.
*/
static int line_is_complete(char *zSql, int nSql){
int rc;
if( zSql==0 ) return 1;
zSql[nSql] = ';';
zSql[nSql+1] = 0;
rc = sqlite3_complete(zSql);
zSql[nSql] = 0;
return rc;
}
/*
** This function is called after processing each line of SQL in the
** runOneSqlLine() function. Its purpose is to detect scenarios where
** defensive mode should be automatically turned off. Specifically, when
**
** 1. The first line of input is "PRAGMA foreign_keys=OFF;",
** 2. The second line of input is "BEGIN TRANSACTION;",
** 3. The database is empty, and
** 4. The shell is not running in --safe mode.
**
** The implementation uses the ShellState.eRestoreState to maintain state:
**
** 0: Have not seen any SQL.
** 1: Have seen "PRAGMA foreign_keys=OFF;".
** 2-6: Currently running .dump transaction. If the "2" bit is set,
** disable DEFENSIVE when done. If "4" is set, disable DQS_DDL.
** 7: Nothing left to do. This function becomes a no-op.
*/
static int doAutoDetectRestore(ShellState *p, const char *zSql){
int rc = SQLITE_OK;
if( p->eRestoreState<7 ){
switch( p->eRestoreState ){
case 0: {
const char *zExpect = "PRAGMA foreign_keys=OFF;";
assert( strlen(zExpect)==24 );
if( p->bSafeMode==0
&& strlen(zSql)>=24
&& memcmp(zSql, zExpect, 25)==0
){
p->eRestoreState = 1;
}else{
p->eRestoreState = 7;
}
break;
};
case 1: {
int bIsDump = 0;
const char *zExpect = "BEGIN TRANSACTION;";
assert( strlen(zExpect)==18 );
if( memcmp(zSql, zExpect, 19)==0 ){
/* Now check if the database is empty. */
const char *zQuery = "SELECT 1 FROM sqlite_schema LIMIT 1";
sqlite3_stmt *pStmt = 0;
bIsDump = 1;
shellPrepare(p->db, &rc, zQuery, &pStmt);
if( rc==SQLITE_OK && sqlite3_step(pStmt)==SQLITE_ROW ){
bIsDump = 0;
}
shellFinalize(&rc, pStmt);
}
if( bIsDump && rc==SQLITE_OK ){
int bDefense = 0;
int bDqsDdl = 0;
sqlite3_db_config(p->db, SQLITE_DBCONFIG_DEFENSIVE, -1, &bDefense);
sqlite3_db_config(p->db, SQLITE_DBCONFIG_DQS_DDL, -1, &bDqsDdl);
sqlite3_db_config(p->db, SQLITE_DBCONFIG_DEFENSIVE, 0, 0);
sqlite3_db_config(p->db, SQLITE_DBCONFIG_DQS_DDL, 1, 0);
p->eRestoreState = (bDefense ? 2 : 0) + (bDqsDdl ? 4 : 0);
}else{
p->eRestoreState = 7;
}
break;
}
default: {
if( sqlite3_get_autocommit(p->db) ){
if( (p->eRestoreState & 2) ){
sqlite3_db_config(p->db, SQLITE_DBCONFIG_DEFENSIVE, 1, 0);
}
if( (p->eRestoreState & 4) ){
sqlite3_db_config(p->db, SQLITE_DBCONFIG_DQS_DDL, 0, 0);
}
p->eRestoreState = 7;
}
break;
}
}
}
return rc;
}
/*
** Run a single line of SQL. Return the number of errors.
*/
static int runOneSqlLine(ShellState *p, char *zSql, FILE *in, int startline){
int rc;
char *zErrMsg = 0;
open_db(p, 0);
if( ShellHasFlag(p,SHFLG_Backslash) ) resolve_backslashes(zSql);
if( p->flgProgress & SHELL_PROGRESS_RESET ) p->nProgress = 0;
BEGIN_TIMER;
rc = shell_exec(p, zSql, &zErrMsg);
END_TIMER(p->out);
if( rc || zErrMsg ){
char zPrefix[100];
const char *zErrorTail;
const char *zErrorType;
if( zErrMsg==0 ){
zErrorType = "Error";
zErrorTail = sqlite3_errmsg(p->db);
}else if( cli_strncmp(zErrMsg, "in prepare, ",12)==0 ){
zErrorType = "Parse error";
zErrorTail = &zErrMsg[12];
}else if( cli_strncmp(zErrMsg, "stepping, ", 10)==0 ){
zErrorType = "Runtime error";
zErrorTail = &zErrMsg[10];
}else{
zErrorType = "Error";
zErrorTail = zErrMsg;
}
if( in!=0 || !stdin_is_interactive ){
sqlite3_snprintf(sizeof(zPrefix), zPrefix,
"%s near line %d:", zErrorType, startline);
}else{
sqlite3_snprintf(sizeof(zPrefix), zPrefix, "%s:", zErrorType);
}
sqlite3_fprintf(stderr,"%s %s\n", zPrefix, zErrorTail);
sqlite3_free(zErrMsg);
zErrMsg = 0;
return 1;
}else if( ShellHasFlag(p, SHFLG_CountChanges) ){
char zLineBuf[2000];
sqlite3_snprintf(sizeof(zLineBuf), zLineBuf,
"changes: %lld total_changes: %lld",
sqlite3_changes64(p->db), sqlite3_total_changes64(p->db));
sqlite3_fprintf(p->out, "%s\n", zLineBuf);
}
if( doAutoDetectRestore(p, zSql) ) return 1;
return 0;
}
static void echo_group_input(ShellState *p, const char *zDo){
if( ShellHasFlag(p, SHFLG_Echo) ){
sqlite3_fprintf(p->out, "%s\n", zDo);
fflush(p->out);
}
}
#ifdef SQLITE_SHELL_FIDDLE
/*
** Alternate one_input_line() impl for wasm mode. This is not in the primary
** impl because we need the global shellState and cannot access it from that
** function without moving lots of code around (creating a larger/messier diff).
*/
static char *one_input_line(FILE *in, char *zPrior, int isContinuation){
/* Parse the next line from shellState.wasm.zInput. */
const char *zBegin = shellState.wasm.zPos;
const char *z = zBegin;
char *zLine = 0;
i64 nZ = 0;
UNUSED_PARAMETER(in);
UNUSED_PARAMETER(isContinuation);
if(!z || !*z){
return 0;
}
while(*z && isspace(*z)) ++z;
zBegin = z;
for(; *z && '\n'!=*z; ++nZ, ++z){}
if(nZ>0 && '\r'==zBegin[nZ-1]){
--nZ;
}
shellState.wasm.zPos = z;
zLine = realloc(zPrior, nZ+1);
shell_check_oom(zLine);
memcpy(zLine, zBegin, nZ);
zLine[nZ] = 0;
return zLine;
}
#endif /* SQLITE_SHELL_FIDDLE */
/*
** Read input from *in and process it. If *in==0 then input
** is interactive - the user is typing it it. Otherwise, input
** is coming from a file or device. A prompt is issued and history
** is saved only if input is interactive. An interrupt signal will
** cause this routine to exit immediately, unless input is interactive.
**
** Return the number of errors.
*/
static int process_input(ShellState *p){
char *zLine = 0; /* A single input line */
char *zSql = 0; /* Accumulated SQL text */
i64 nLine; /* Length of current line */
i64 nSql = 0; /* Bytes of zSql[] used */
i64 nAlloc = 0; /* Allocated zSql[] space */
int rc; /* Error code */
int errCnt = 0; /* Number of errors seen */
i64 startline = 0; /* Line number for start of current input */
QuickScanState qss = QSS_Start; /* Accumulated line status (so far) */
if( p->inputNesting==MAX_INPUT_NESTING ){
/* This will be more informative in a later version. */
sqlite3_fprintf(stderr,"Input nesting limit (%d) reached at line %d."
" Check recursion.\n", MAX_INPUT_NESTING, p->lineno);
return 1;
}
++p->inputNesting;
p->lineno = 0;
CONTINUE_PROMPT_RESET;
while( errCnt==0 || !bail_on_error || (p->in==0 && stdin_is_interactive) ){
fflush(p->out);
zLine = one_input_line(p->in, zLine, nSql>0);
if( zLine==0 ){
/* End of input */
if( p->in==0 && stdin_is_interactive ) sqlite3_fputs("\n", p->out);
break;
}
if( seenInterrupt ){
if( p->in!=0 ) break;
seenInterrupt = 0;
}
p->lineno++;
if( QSS_INPLAIN(qss)
&& line_is_command_terminator(zLine)
&& line_is_complete(zSql, nSql) ){
memcpy(zLine,";",2);
}
qss = quickscan(zLine, qss, CONTINUE_PROMPT_PSTATE);
if( QSS_PLAINWHITE(qss) && nSql==0 ){
/* Just swallow single-line whitespace */
echo_group_input(p, zLine);
qss = QSS_Start;
continue;
}
if( zLine && (zLine[0]=='.' || zLine[0]=='#') && nSql==0 ){
CONTINUE_PROMPT_RESET;
echo_group_input(p, zLine);
if( zLine[0]=='.' ){
rc = do_meta_command(zLine, p);
if( rc==2 ){ /* exit requested */
break;
}else if( rc ){
errCnt++;
}
}
qss = QSS_Start;
continue;
}
/* No single-line dispositions remain; accumulate line(s). */
nLine = strlen(zLine);
if( nSql+nLine+2>=nAlloc ){
/* Grow buffer by half-again increments when big. */
nAlloc = nSql+(nSql>>1)+nLine+100;
zSql = realloc(zSql, nAlloc);
shell_check_oom(zSql);
}
if( nSql==0 ){
i64 i;
for(i=0; zLine[i] && IsSpace(zLine[i]); i++){}
assert( nAlloc>0 && zSql!=0 );
memcpy(zSql, zLine+i, nLine+1-i);
startline = p->lineno;
nSql = nLine-i;
}else{
zSql[nSql++] = '\n';
memcpy(zSql+nSql, zLine, nLine+1);
nSql += nLine;
}
if( nSql && QSS_SEMITERM(qss) && sqlite3_complete(zSql) ){
echo_group_input(p, zSql);
errCnt += runOneSqlLine(p, zSql, p->in, startline);
CONTINUE_PROMPT_RESET;
nSql = 0;
if( p->outCount ){
output_reset(p);
p->outCount = 0;
}else{
clearTempFile(p);
}
p->bSafeMode = p->bSafeModePersist;
qss = QSS_Start;
}else if( nSql && QSS_PLAINWHITE(qss) ){
echo_group_input(p, zSql);
nSql = 0;
qss = QSS_Start;
}
}
if( nSql ){
/* This may be incomplete. Let the SQL parser deal with that. */
echo_group_input(p, zSql);
errCnt += runOneSqlLine(p, zSql, p->in, startline);
CONTINUE_PROMPT_RESET;
}
free(zSql);
free(zLine);
--p->inputNesting;
return errCnt>0;
}
/*
** Return a pathname which is the user's home directory. A
** 0 return indicates an error of some kind.
*/
static char *find_home_dir(int clearFlag){
static char *home_dir = NULL;
if( clearFlag ){
free(home_dir);
home_dir = 0;
return 0;
}
if( home_dir ) return home_dir;
#if !defined(_WIN32) && !defined(WIN32) && !defined(_WIN32_WCE) \
&& !defined(__RTP__) && !defined(_WRS_KERNEL) && !defined(SQLITE_WASI)
{
struct passwd *pwent;
uid_t uid = getuid();
if( (pwent=getpwuid(uid)) != NULL) {
home_dir = pwent->pw_dir;
}
}
#endif
#if defined(_WIN32_WCE)
/* Windows CE (arm-wince-mingw32ce-gcc) does not provide getenv()
*/
home_dir = "/";
#else
#if defined(_WIN32) || defined(WIN32)
if (!home_dir) {
home_dir = getenv("USERPROFILE");
}
#endif
if (!home_dir) {
home_dir = getenv("HOME");
}
#if defined(_WIN32) || defined(WIN32)
if (!home_dir) {
char *zDrive, *zPath;
int n;
zDrive = getenv("HOMEDRIVE");
zPath = getenv("HOMEPATH");
if( zDrive && zPath ){
n = strlen30(zDrive) + strlen30(zPath) + 1;
home_dir = malloc( n );
if( home_dir==0 ) return 0;
sqlite3_snprintf(n, home_dir, "%s%s", zDrive, zPath);
return home_dir;
}
home_dir = "c:\\";
}
#endif
#endif /* !_WIN32_WCE */
if( home_dir ){
i64 n = strlen(home_dir) + 1;
char *z = malloc( n );
if( z ) memcpy(z, home_dir, n);
home_dir = z;
}
return home_dir;
}
/*
** On non-Windows platforms, look for $XDG_CONFIG_HOME.
** If ${XDG_CONFIG_HOME}/sqlite3/sqliterc is found, return
** the path to it. If there is no $(XDG_CONFIG_HOME) then
** look for $(HOME)/.config/sqlite3/sqliterc and if found
** return that. If none of these are found, return 0.
**
** The string returned is obtained from sqlite3_malloc() and
** should be freed by the caller.
*/
static char *find_xdg_config(void){
#if defined(_WIN32) || defined(WIN32) || defined(_WIN32_WCE) \
|| defined(__RTP__) || defined(_WRS_KERNEL)
return 0;
#else
char *zConfig = 0;
const char *zXdgHome;
zXdgHome = getenv("XDG_CONFIG_HOME");
if( zXdgHome==0 ){
const char *zHome = getenv("HOME");
if( zHome==0 ) return 0;
zConfig = sqlite3_mprintf("%s/.config/sqlite3/sqliterc", zHome);
}else{
zConfig = sqlite3_mprintf("%s/sqlite3/sqliterc", zXdgHome);
}
shell_check_oom(zConfig);
if( access(zConfig,0)!=0 ){
sqlite3_free(zConfig);
zConfig = 0;
}
return zConfig;
#endif
}
/*
** Read input from the file given by sqliterc_override. Or if that
** parameter is NULL, take input from the first of find_xdg_config()
** or ~/.sqliterc which is found.
**
** Returns the number of errors.
*/
static void process_sqliterc(
ShellState *p, /* Configuration data */
const char *sqliterc_override /* Name of config file. NULL to use default */
){
char *home_dir = NULL;
const char *sqliterc = sqliterc_override;
char *zBuf = 0;
FILE *inSaved = p->in;
int savedLineno = p->lineno;
if( sqliterc == NULL ){
sqliterc = zBuf = find_xdg_config();
}
if( sqliterc == NULL ){
home_dir = find_home_dir(0);
if( home_dir==0 ){
eputz("-- warning: cannot find home directory;"
" cannot read ~/.sqliterc\n");
return;
}
zBuf = sqlite3_mprintf("%s/.sqliterc",home_dir);
shell_check_oom(zBuf);
sqliterc = zBuf;
}
p->in = sqlite3_fopen(sqliterc,"rb");
if( p->in ){
if( stdin_is_interactive ){
sqlite3_fprintf(stderr,"-- Loading resources from %s\n", sqliterc);
}
if( process_input(p) && bail_on_error ) exit(1);
fclose(p->in);
}else if( sqliterc_override!=0 ){
sqlite3_fprintf(stderr,"cannot open: \"%s\"\n", sqliterc);
if( bail_on_error ) exit(1);
}
p->in = inSaved;
p->lineno = savedLineno;
sqlite3_free(zBuf);
}
/*
** Show available command line options
*/
static const char zOptions[] =
" -- treat no subsequent arguments as options\n"
#if defined(SQLITE_HAVE_ZLIB) && !defined(SQLITE_OMIT_VIRTUALTABLE)
" -A ARGS... run \".archive ARGS\" and exit\n"
#endif
" -append append the database to the end of the file\n"
" -ascii set output mode to 'ascii'\n"
" -bail stop after hitting an error\n"
" -batch force batch I/O\n"
" -box set output mode to 'box'\n"
" -column set output mode to 'column'\n"
" -cmd COMMAND run \"COMMAND\" before reading stdin\n"
" -csv set output mode to 'csv'\n"
#if !defined(SQLITE_OMIT_DESERIALIZE)
" -deserialize open the database using sqlite3_deserialize()\n"
#endif
" -echo print inputs before execution\n"
" -init FILENAME read/process named file\n"
" -[no]header turn headers on or off\n"
#if defined(SQLITE_ENABLE_MEMSYS3) || defined(SQLITE_ENABLE_MEMSYS5)
" -heap SIZE Size of heap for memsys3 or memsys5\n"
#endif
" -help show this message\n"
" -html set output mode to HTML\n"
" -interactive force interactive I/O\n"
" -json set output mode to 'json'\n"
" -line set output mode to 'line'\n"
" -list set output mode to 'list'\n"
" -lookaside SIZE N use N entries of SZ bytes for lookaside memory\n"
" -markdown set output mode to 'markdown'\n"
#if !defined(SQLITE_OMIT_DESERIALIZE)
" -maxsize N maximum size for a --deserialize database\n"
#endif
" -memtrace trace all memory allocations and deallocations\n"
" -mmap N default mmap size set to N\n"
#ifdef SQLITE_ENABLE_MULTIPLEX
" -multiplex enable the multiplexor VFS\n"
#endif
" -newline SEP set output row separator. Default: '\\n'\n"
" -nofollow refuse to open symbolic links to database files\n"
" -nonce STRING set the safe-mode escape nonce\n"
" -no-rowid-in-view Disable rowid-in-view using sqlite3_config()\n"
" -nullvalue TEXT set text string for NULL values. Default ''\n"
" -pagecache SIZE N use N slots of SZ bytes each for page cache memory\n"
" -pcachetrace trace all page cache operations\n"
" -quote set output mode to 'quote'\n"
" -readonly open the database read-only\n"
" -safe enable safe-mode\n"
" -separator SEP set output column separator. Default: '|'\n"
#ifdef SQLITE_ENABLE_SORTER_REFERENCES
" -sorterref SIZE sorter references threshold size\n"
#endif
" -stats print memory stats before each finalize\n"
" -table set output mode to 'table'\n"
" -tabs set output mode to 'tabs'\n"
" -unsafe-testing allow unsafe commands and modes for testing\n"
" -version show SQLite version\n"
" -vfs NAME use NAME as the default VFS\n"
" -vfstrace enable tracing of all VFS calls\n"
#ifdef SQLITE_HAVE_ZLIB
" -zip open the file as a ZIP Archive\n"
#endif
;
static void usage(int showDetail){
sqlite3_fprintf(stderr,"Usage: %s [OPTIONS] [FILENAME [SQL]]\n"
"FILENAME is the name of an SQLite database. A new database is created\n"
"if the file does not previously exist. Defaults to :memory:.\n", Argv0);
if( showDetail ){
sqlite3_fprintf(stderr,"OPTIONS include:\n%s", zOptions);
}else{
eputz("Use the -help option for additional information\n");
}
exit(0);
}
/*
** Internal check: Verify that the SQLite is uninitialized. Print a
** error message if it is initialized.
*/
static void verify_uninitialized(void){
if( sqlite3_config(-1)==SQLITE_MISUSE ){
sputz(stdout, "WARNING: attempt to configure SQLite after"
" initialization.\n");
}
}
/*
** Initialize the state information in data
*/
static void main_init(ShellState *data) {
memset(data, 0, sizeof(*data));
data->normalMode = data->cMode = data->mode = MODE_List;
data->autoExplain = 1;
#ifdef _WIN32
data->crlfMode = 1;
#endif
data->pAuxDb = &data->aAuxDb[0];
memcpy(data->colSeparator,SEP_Column, 2);
memcpy(data->rowSeparator,SEP_Row, 2);
data->showHeader = 0;
data->shellFlgs = SHFLG_Lookaside;
sqlite3_config(SQLITE_CONFIG_LOG, shellLog, data);
#if !defined(SQLITE_SHELL_FIDDLE)
verify_uninitialized();
#endif
sqlite3_config(SQLITE_CONFIG_URI, 1);
sqlite3_config(SQLITE_CONFIG_MULTITHREAD);
sqlite3_snprintf(sizeof(mainPrompt), mainPrompt,"sqlite> ");
sqlite3_snprintf(sizeof(continuePrompt), continuePrompt," ...> ");
}
/*
** Output text to the console in a font that attracts extra attention.
*/
#if defined(_WIN32) || defined(WIN32)
static void printBold(const char *zText){
#if !SQLITE_OS_WINRT
HANDLE out = GetStdHandle(STD_OUTPUT_HANDLE);
CONSOLE_SCREEN_BUFFER_INFO defaultScreenInfo;
GetConsoleScreenBufferInfo(out, &defaultScreenInfo);
SetConsoleTextAttribute(out,
FOREGROUND_RED|FOREGROUND_INTENSITY
);
#endif
sputz(stdout, zText);
#if !SQLITE_OS_WINRT
SetConsoleTextAttribute(out, defaultScreenInfo.wAttributes);
#endif
}
#else
static void printBold(const char *zText){
sqlite3_fprintf(stdout, "\033[1m%s\033[0m", zText);
}
#endif
/*
** Get the argument to an --option. Throw an error and die if no argument
** is available.
*/
static char *cmdline_option_value(int argc, char **argv, int i){
if( i==argc ){
sqlite3_fprintf(stderr,
"%s: Error: missing argument to %s\n", argv[0], argv[argc-1]);
exit(1);
}
return argv[i];
}
static void sayAbnormalExit(void){
if( seenInterrupt ) eputz("Program interrupted.\n");
}
/* Routine to output from vfstrace
*/
static int vfstraceOut(const char *z, void *pArg){
ShellState *p = (ShellState*)pArg;
sqlite3_fputs(z, p->out);
fflush(p->out);
return 1;
}
#ifndef SQLITE_SHELL_IS_UTF8
# if (defined(_WIN32) || defined(WIN32)) \
&& (defined(_MSC_VER) || (defined(UNICODE) && defined(__GNUC__)))
# define SQLITE_SHELL_IS_UTF8 (0)
# else
# define SQLITE_SHELL_IS_UTF8 (1)
# endif
#endif
#ifdef SQLITE_SHELL_FIDDLE
# define main fiddle_main
#endif
#if SQLITE_SHELL_IS_UTF8
int SQLITE_CDECL main(int argc, char **argv){
#else
int SQLITE_CDECL wmain(int argc, wchar_t **wargv){
char **argv;
#endif
#ifdef SQLITE_DEBUG
sqlite3_int64 mem_main_enter = 0;
#endif
char *zErrMsg = 0;
#ifdef SQLITE_SHELL_FIDDLE
# define data shellState
#else
ShellState data;
#endif
const char *zInitFile = 0;
int i;
int rc = 0;
int warnInmemoryDb = 0;
int readStdin = 1;
int nCmd = 0;
int nOptsEnd = argc;
int bEnableVfstrace = 0;
char **azCmd = 0;
const char *zVfs = 0; /* Value of -vfs command-line option */
#if !SQLITE_SHELL_IS_UTF8
char **argvToFree = 0;
int argcToFree = 0;
#endif
setvbuf(stderr, 0, _IONBF, 0); /* Make sure stderr is unbuffered */
#ifdef SQLITE_SHELL_FIDDLE
stdin_is_interactive = 0;
stdout_is_console = 1;
data.wasm.zDefaultDbName = "/fiddle.sqlite3";
#else
stdin_is_interactive = isatty(0);
stdout_is_console = isatty(1);
#endif
atexit(sayAbnormalExit);
#ifdef SQLITE_DEBUG
mem_main_enter = sqlite3_memory_used();
#endif
#if !defined(_WIN32_WCE)
if( getenv("SQLITE_DEBUG_BREAK") ){
if( isatty(0) && isatty(2) ){
char zLine[100];
sqlite3_fprintf(stderr,
"attach debugger to process %d and press ENTER to continue...",
GETPID());
if( sqlite3_fgets(zLine, sizeof(zLine), stdin)!=0
&& cli_strcmp(zLine,"stop")==0
){
exit(1);
}
}else{
#if defined(_WIN32) || defined(WIN32)
#if SQLITE_OS_WINRT
__debugbreak();
#else
DebugBreak();
#endif
#elif defined(SIGTRAP)
raise(SIGTRAP);
#endif
}
}
#endif
/* Register a valid signal handler early, before much else is done. */
#ifdef SIGINT
signal(SIGINT, interrupt_handler);
#elif (defined(_WIN32) || defined(WIN32)) && !defined(_WIN32_WCE)
if( !SetConsoleCtrlHandler(ConsoleCtrlHandler, TRUE) ){
eputz("No ^C handler.\n");
}
#endif
#if USE_SYSTEM_SQLITE+0!=1
if( cli_strncmp(sqlite3_sourceid(),SQLITE_SOURCE_ID,60)!=0 ){
sqlite3_fprintf(stderr,
"SQLite header and source version mismatch\n%s\n%s\n",
sqlite3_sourceid(), SQLITE_SOURCE_ID);
exit(1);
}
#endif
main_init(&data);
/* On Windows, we must translate command-line arguments into UTF-8.
** The SQLite memory allocator subsystem has to be enabled in order to
** do this. But we want to run an sqlite3_shutdown() afterwards so that
** subsequent sqlite3_config() calls will work. So copy all results into
** memory that does not come from the SQLite memory allocator.
*/
#if !SQLITE_SHELL_IS_UTF8
sqlite3_initialize();
argvToFree = malloc(sizeof(argv[0])*argc*2);
shell_check_oom(argvToFree);
argcToFree = argc;
argv = argvToFree + argc;
for(i=0; i<argc; i++){
char *z = sqlite3_win32_unicode_to_utf8(wargv[i]);
i64 n;
shell_check_oom(z);
n = strlen(z);
argv[i] = malloc( n+1 );
shell_check_oom(argv[i]);
memcpy(argv[i], z, n+1);
argvToFree[i] = argv[i];
sqlite3_free(z);
}
sqlite3_shutdown();
#endif
assert( argc>=1 && argv && argv[0] );
Argv0 = argv[0];
#ifdef SQLITE_SHELL_DBNAME_PROC
{
/* If the SQLITE_SHELL_DBNAME_PROC macro is defined, then it is the name
** of a C-function that will provide the name of the database file. Use
** this compile-time option to embed this shell program in larger
** applications. */
extern void SQLITE_SHELL_DBNAME_PROC(const char**);
SQLITE_SHELL_DBNAME_PROC(&data.pAuxDb->zDbFilename);
warnInmemoryDb = 0;
}
#endif
/* Do an initial pass through the command-line argument to locate
** the name of the database file, the name of the initialization file,
** the size of the alternative malloc heap, options affecting commands
** or SQL run from the command line, and the first command to execute.
*/
#ifndef SQLITE_SHELL_FIDDLE
verify_uninitialized();
#endif
for(i=1; i<argc; i++){
char *z;
z = argv[i];
if( z[0]!='-' || i>nOptsEnd ){
if( data.aAuxDb->zDbFilename==0 ){
data.aAuxDb->zDbFilename = z;
}else{
/* Excess arguments are interpreted as SQL (or dot-commands) and
** mean that nothing is read from stdin */
readStdin = 0;
nCmd++;
azCmd = realloc(azCmd, sizeof(azCmd[0])*nCmd);
shell_check_oom(azCmd);
azCmd[nCmd-1] = z;
}
continue;
}
if( z[1]=='-' ) z++;
if( cli_strcmp(z, "-")==0 ){
nOptsEnd = i;
continue;
}else if( cli_strcmp(z,"-separator")==0
|| cli_strcmp(z,"-nullvalue")==0
|| cli_strcmp(z,"-newline")==0
|| cli_strcmp(z,"-cmd")==0
){
(void)cmdline_option_value(argc, argv, ++i);
}else if( cli_strcmp(z,"-init")==0 ){
zInitFile = cmdline_option_value(argc, argv, ++i);
}else if( cli_strcmp(z,"-interactive")==0 ){
}else if( cli_strcmp(z,"-batch")==0 ){
/* Need to check for batch mode here to so we can avoid printing
** informational messages (like from process_sqliterc) before
** we do the actual processing of arguments later in a second pass.
*/
stdin_is_interactive = 0;
}else if( cli_strcmp(z,"-utf8")==0 ){
}else if( cli_strcmp(z,"-no-utf8")==0 ){
}else if( cli_strcmp(z,"-no-rowid-in-view")==0 ){
int val = 0;
sqlite3_config(SQLITE_CONFIG_ROWID_IN_VIEW, &val);
assert( val==0 );
}else if( cli_strcmp(z,"-heap")==0 ){
#if defined(SQLITE_ENABLE_MEMSYS3) || defined(SQLITE_ENABLE_MEMSYS5)
const char *zSize;
sqlite3_int64 szHeap;
zSize = cmdline_option_value(argc, argv, ++i);
szHeap = integerValue(zSize);
if( szHeap>0x7fff0000 ) szHeap = 0x7fff0000;
verify_uninitialized();
sqlite3_config(SQLITE_CONFIG_HEAP, malloc((int)szHeap), (int)szHeap, 64);
#else
(void)cmdline_option_value(argc, argv, ++i);
#endif
}else if( cli_strcmp(z,"-pagecache")==0 ){
sqlite3_int64 n, sz;
sz = integerValue(cmdline_option_value(argc,argv,++i));
if( sz>70000 ) sz = 70000;
if( sz<0 ) sz = 0;
n = integerValue(cmdline_option_value(argc,argv,++i));
if( sz>0 && n>0 && 0xffffffffffffLL/sz<n ){
n = 0xffffffffffffLL/sz;
}
verify_uninitialized();
sqlite3_config(SQLITE_CONFIG_PAGECACHE,
(n>0 && sz>0) ? malloc(n*sz) : 0, sz, n);
data.shellFlgs |= SHFLG_Pagecache;
}else if( cli_strcmp(z,"-lookaside")==0 ){
int n, sz;
sz = (int)integerValue(cmdline_option_value(argc,argv,++i));
if( sz<0 ) sz = 0;
n = (int)integerValue(cmdline_option_value(argc,argv,++i));
if( n<0 ) n = 0;
verify_uninitialized();
sqlite3_config(SQLITE_CONFIG_LOOKASIDE, sz, n);
if( sz*n==0 ) data.shellFlgs &= ~SHFLG_Lookaside;
}else if( cli_strcmp(z,"-threadsafe")==0 ){
int n;
n = (int)integerValue(cmdline_option_value(argc,argv,++i));
verify_uninitialized();
switch( n ){
case 0: sqlite3_config(SQLITE_CONFIG_SINGLETHREAD); break;
case 2: sqlite3_config(SQLITE_CONFIG_MULTITHREAD); break;
default: sqlite3_config(SQLITE_CONFIG_SERIALIZED); break;
}
}else if( cli_strcmp(z,"-vfstrace")==0 ){
bEnableVfstrace = 1;
#ifdef SQLITE_ENABLE_MULTIPLEX
}else if( cli_strcmp(z,"-multiplex")==0 ){
extern int sqlite3_multiplex_initialize(const char*,int);
sqlite3_multiplex_initialize(0, 1);
#endif
}else if( cli_strcmp(z,"-mmap")==0 ){
sqlite3_int64 sz = integerValue(cmdline_option_value(argc,argv,++i));
verify_uninitialized();
sqlite3_config(SQLITE_CONFIG_MMAP_SIZE, sz, sz);
#if defined(SQLITE_ENABLE_SORTER_REFERENCES)
}else if( cli_strcmp(z,"-sorterref")==0 ){
sqlite3_int64 sz = integerValue(cmdline_option_value(argc,argv,++i));
verify_uninitialized();
sqlite3_config(SQLITE_CONFIG_SORTERREF_SIZE, (int)sz);
#endif
}else if( cli_strcmp(z,"-vfs")==0 ){
zVfs = cmdline_option_value(argc, argv, ++i);
#ifdef SQLITE_HAVE_ZLIB
}else if( cli_strcmp(z,"-zip")==0 ){
data.openMode = SHELL_OPEN_ZIPFILE;
#endif
}else if( cli_strcmp(z,"-append")==0 ){
data.openMode = SHELL_OPEN_APPENDVFS;
#ifndef SQLITE_OMIT_DESERIALIZE
}else if( cli_strcmp(z,"-deserialize")==0 ){
data.openMode = SHELL_OPEN_DESERIALIZE;
}else if( cli_strcmp(z,"-maxsize")==0 && i+1<argc ){
data.szMax = integerValue(argv[++i]);
#endif
}else if( cli_strcmp(z,"-readonly")==0 ){
data.openMode = SHELL_OPEN_READONLY;
}else if( cli_strcmp(z,"-nofollow")==0 ){
data.openFlags = SQLITE_OPEN_NOFOLLOW;
#if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(SQLITE_HAVE_ZLIB)
}else if( cli_strncmp(z, "-A",2)==0 ){
/* All remaining command-line arguments are passed to the ".archive"
** command, so ignore them */
break;
#endif
}else if( cli_strcmp(z, "-memtrace")==0 ){
sqlite3MemTraceActivate(stderr);
}else if( cli_strcmp(z, "-pcachetrace")==0 ){
sqlite3PcacheTraceActivate(stderr);
}else if( cli_strcmp(z,"-bail")==0 ){
bail_on_error = 1;
}else if( cli_strcmp(z,"-nonce")==0 ){
free(data.zNonce);
data.zNonce = strdup(cmdline_option_value(argc, argv, ++i));
}else if( cli_strcmp(z,"-unsafe-testing")==0 ){
ShellSetFlag(&data,SHFLG_TestingMode);
}else if( cli_strcmp(z,"-safe")==0 ){
/* no-op - catch this on the second pass */
}
}
#ifndef SQLITE_SHELL_FIDDLE
if( !bEnableVfstrace ) verify_uninitialized();
#endif
#ifdef SQLITE_SHELL_INIT_PROC
{
/* If the SQLITE_SHELL_INIT_PROC macro is defined, then it is the name
** of a C-function that will perform initialization actions on SQLite that
** occur just before or after sqlite3_initialize(). Use this compile-time
** option to embed this shell program in larger applications. */
extern void SQLITE_SHELL_INIT_PROC(void);
SQLITE_SHELL_INIT_PROC();
}
#else
/* All the sqlite3_config() calls have now been made. So it is safe
** to call sqlite3_initialize() and process any command line -vfs option. */
sqlite3_initialize();
#endif
if( zVfs ){
sqlite3_vfs *pVfs = sqlite3_vfs_find(zVfs);
if( pVfs ){
sqlite3_vfs_register(pVfs, 1);
}else{
sqlite3_fprintf(stderr,"no such VFS: \"%s\"\n", zVfs);
exit(1);
}
}
if( data.pAuxDb->zDbFilename==0 ){
#ifndef SQLITE_OMIT_MEMORYDB
data.pAuxDb->zDbFilename = ":memory:";
warnInmemoryDb = argc==1;
#else
sqlite3_fprintf(stderr,
"%s: Error: no database filename specified\n", Argv0);
return 1;
#endif
}
data.out = stdout;
if( bEnableVfstrace ){
vfstrace_register("trace",0,vfstraceOut, &data, 1);
}
#ifndef SQLITE_SHELL_FIDDLE
sqlite3_appendvfs_init(0,0,0);
#endif
/* Go ahead and open the database file if it already exists. If the
** file does not exist, delay opening it. This prevents empty database
** files from being created if a user mistypes the database name argument
** to the sqlite command-line tool.
*/
if( access(data.pAuxDb->zDbFilename, 0)==0 ){
open_db(&data, 0);
}
/* Process the initialization file if there is one. If no -init option
** is given on the command line, look for a file named ~/.sqliterc and
** try to process it.
*/
process_sqliterc(&data,zInitFile);
/* Make a second pass through the command-line argument and set
** options. This second pass is delayed until after the initialization
** file is processed so that the command-line arguments will override
** settings in the initialization file.
*/
for(i=1; i<argc; i++){
char *z = argv[i];
if( z[0]!='-' || i>=nOptsEnd ) continue;
if( z[1]=='-' ){ z++; }
if( cli_strcmp(z,"-init")==0 ){
i++;
}else if( cli_strcmp(z,"-html")==0 ){
data.mode = MODE_Html;
}else if( cli_strcmp(z,"-list")==0 ){
data.mode = MODE_List;
}else if( cli_strcmp(z,"-quote")==0 ){
data.mode = MODE_Quote;
sqlite3_snprintf(sizeof(data.colSeparator), data.colSeparator, SEP_Comma);
sqlite3_snprintf(sizeof(data.rowSeparator), data.rowSeparator, SEP_Row);
}else if( cli_strcmp(z,"-line")==0 ){
data.mode = MODE_Line;
}else if( cli_strcmp(z,"-column")==0 ){
data.mode = MODE_Column;
}else if( cli_strcmp(z,"-json")==0 ){
data.mode = MODE_Json;
}else if( cli_strcmp(z,"-markdown")==0 ){
data.mode = MODE_Markdown;
}else if( cli_strcmp(z,"-table")==0 ){
data.mode = MODE_Table;
}else if( cli_strcmp(z,"-box")==0 ){
data.mode = MODE_Box;
}else if( cli_strcmp(z,"-csv")==0 ){
data.mode = MODE_Csv;
memcpy(data.colSeparator,",",2);
#ifdef SQLITE_HAVE_ZLIB
}else if( cli_strcmp(z,"-zip")==0 ){
data.openMode = SHELL_OPEN_ZIPFILE;
#endif
}else if( cli_strcmp(z,"-append")==0 ){
data.openMode = SHELL_OPEN_APPENDVFS;
#ifndef SQLITE_OMIT_DESERIALIZE
}else if( cli_strcmp(z,"-deserialize")==0 ){
data.openMode = SHELL_OPEN_DESERIALIZE;
}else if( cli_strcmp(z,"-maxsize")==0 && i+1<argc ){
data.szMax = integerValue(argv[++i]);
#endif
}else if( cli_strcmp(z,"-readonly")==0 ){
data.openMode = SHELL_OPEN_READONLY;
}else if( cli_strcmp(z,"-nofollow")==0 ){
data.openFlags |= SQLITE_OPEN_NOFOLLOW;
}else if( cli_strcmp(z,"-ascii")==0 ){
data.mode = MODE_Ascii;
sqlite3_snprintf(sizeof(data.colSeparator), data.colSeparator,SEP_Unit);
sqlite3_snprintf(sizeof(data.rowSeparator), data.rowSeparator,SEP_Record);
}else if( cli_strcmp(z,"-tabs")==0 ){
data.mode = MODE_List;
sqlite3_snprintf(sizeof(data.colSeparator), data.colSeparator,SEP_Tab);
sqlite3_snprintf(sizeof(data.rowSeparator), data.rowSeparator,SEP_Row);
}else if( cli_strcmp(z,"-separator")==0 ){
sqlite3_snprintf(sizeof(data.colSeparator), data.colSeparator,
"%s",cmdline_option_value(argc,argv,++i));
}else if( cli_strcmp(z,"-newline")==0 ){
sqlite3_snprintf(sizeof(data.rowSeparator), data.rowSeparator,
"%s",cmdline_option_value(argc,argv,++i));
}else if( cli_strcmp(z,"-nullvalue")==0 ){
sqlite3_snprintf(sizeof(data.nullValue), data.nullValue,
"%s",cmdline_option_value(argc,argv,++i));
}else if( cli_strcmp(z,"-header")==0 ){
data.showHeader = 1;
ShellSetFlag(&data, SHFLG_HeaderSet);
}else if( cli_strcmp(z,"-noheader")==0 ){
data.showHeader = 0;
ShellSetFlag(&data, SHFLG_HeaderSet);
}else if( cli_strcmp(z,"-echo")==0 ){
ShellSetFlag(&data, SHFLG_Echo);
}else if( cli_strcmp(z,"-eqp")==0 ){
data.autoEQP = AUTOEQP_on;
}else if( cli_strcmp(z,"-eqpfull")==0 ){
data.autoEQP = AUTOEQP_full;
}else if( cli_strcmp(z,"-stats")==0 ){
data.statsOn = 1;
}else if( cli_strcmp(z,"-scanstats")==0 ){
data.scanstatsOn = 1;
}else if( cli_strcmp(z,"-backslash")==0 ){
/* Undocumented command-line option: -backslash
** Causes C-style backslash escapes to be evaluated in SQL statements
** prior to sending the SQL into SQLite. Useful for injecting
** crazy bytes in the middle of SQL statements for testing and debugging.
*/
ShellSetFlag(&data, SHFLG_Backslash);
}else if( cli_strcmp(z,"-bail")==0 ){
/* No-op. The bail_on_error flag should already be set. */
}else if( cli_strcmp(z,"-version")==0 ){
sqlite3_fprintf(stdout, "%s %s (%d-bit)\n",
sqlite3_libversion(), sqlite3_sourceid(), 8*(int)sizeof(char*));
return 0;
}else if( cli_strcmp(z,"-interactive")==0 ){
/* Need to check for interactive override here to so that it can
** affect console setup (for Windows only) and testing thereof.
*/
stdin_is_interactive = 1;
}else if( cli_strcmp(z,"-batch")==0 ){
/* already handled */
}else if( cli_strcmp(z,"-utf8")==0 ){
/* already handled */
}else if( cli_strcmp(z,"-no-utf8")==0 ){
/* already handled */
}else if( cli_strcmp(z,"-no-rowid-in-view")==0 ){
/* already handled */
}else if( cli_strcmp(z,"-heap")==0 ){
i++;
}else if( cli_strcmp(z,"-pagecache")==0 ){
i+=2;
}else if( cli_strcmp(z,"-lookaside")==0 ){
i+=2;
}else if( cli_strcmp(z,"-threadsafe")==0 ){
i+=2;
}else if( cli_strcmp(z,"-nonce")==0 ){
i += 2;
}else if( cli_strcmp(z,"-mmap")==0 ){
i++;
}else if( cli_strcmp(z,"-memtrace")==0 ){
i++;
}else if( cli_strcmp(z,"-pcachetrace")==0 ){
i++;
#ifdef SQLITE_ENABLE_SORTER_REFERENCES
}else if( cli_strcmp(z,"-sorterref")==0 ){
i++;
#endif
}else if( cli_strcmp(z,"-vfs")==0 ){
i++;
}else if( cli_strcmp(z,"-vfstrace")==0 ){
i++;
#ifdef SQLITE_ENABLE_MULTIPLEX
}else if( cli_strcmp(z,"-multiplex")==0 ){
i++;
#endif
}else if( cli_strcmp(z,"-help")==0 ){
usage(1);
}else if( cli_strcmp(z,"-cmd")==0 ){
/* Run commands that follow -cmd first and separately from commands
** that simply appear on the command-line. This seems goofy. It would
** be better if all commands ran in the order that they appear. But
** we retain the goofy behavior for historical compatibility. */
if( i==argc-1 ) break;
z = cmdline_option_value(argc,argv,++i);
if( z[0]=='.' ){
rc = do_meta_command(z, &data);
if( rc && bail_on_error ) return rc==2 ? 0 : rc;
}else{
open_db(&data, 0);
rc = shell_exec(&data, z, &zErrMsg);
if( zErrMsg!=0 ){
shellEmitError(zErrMsg);
if( bail_on_error ) return rc!=0 ? rc : 1;
}else if( rc!=0 ){
sqlite3_fprintf(stderr,"Error: unable to process SQL \"%s\"\n", z);
if( bail_on_error ) return rc;
}
}
#if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(SQLITE_HAVE_ZLIB)
}else if( cli_strncmp(z, "-A", 2)==0 ){
if( nCmd>0 ){
sqlite3_fprintf(stderr,"Error: cannot mix regular SQL or dot-commands"
" with \"%s\"\n", z);
return 1;
}
open_db(&data, OPEN_DB_ZIPFILE);
if( z[2] ){
argv[i] = &z[2];
arDotCommand(&data, 1, argv+(i-1), argc-(i-1));
}else{
arDotCommand(&data, 1, argv+i, argc-i);
}
readStdin = 0;
break;
#endif
}else if( cli_strcmp(z,"-safe")==0 ){
data.bSafeMode = data.bSafeModePersist = 1;
}else if( cli_strcmp(z,"-unsafe-testing")==0 ){
/* Acted upon in first pass. */
}else{
sqlite3_fprintf(stderr,"%s: Error: unknown option: %s\n", Argv0, z);
eputz("Use -help for a list of options.\n");
return 1;
}
data.cMode = data.mode;
}
if( !readStdin ){
/* Run all arguments that do not begin with '-' as if they were separate
** command-line inputs, except for the argToSkip argument which contains
** the database filename.
*/
for(i=0; i<nCmd; i++){
if( azCmd[i][0]=='.' ){
rc = do_meta_command(azCmd[i], &data);
if( rc ){
if( rc==2 ) rc = 0;
goto shell_main_exit;
}
}else{
open_db(&data, 0);
echo_group_input(&data, azCmd[i]);
rc = shell_exec(&data, azCmd[i], &zErrMsg);
if( zErrMsg || rc ){
if( zErrMsg!=0 ){
shellEmitError(zErrMsg);
}else{
sqlite3_fprintf(stderr,
"Error: unable to process SQL: %s\n", azCmd[i]);
}
sqlite3_free(zErrMsg);
if( rc==0 ) rc = 1;
goto shell_main_exit;
}
}
}
}else{
/* Run commands received from standard input
*/
if( stdin_is_interactive ){
char *zHome;
char *zHistory;
int nHistory;
sqlite3_fprintf(stdout,
"SQLite version %s %.19s\n" /*extra-version-info*/
"Enter \".help\" for usage hints.\n",
sqlite3_libversion(), sqlite3_sourceid());
if( warnInmemoryDb ){
sputz(stdout, "Connected to a ");
printBold("transient in-memory database");
sputz(stdout, ".\nUse \".open FILENAME\" to reopen on a"
" persistent database.\n");
}
zHistory = getenv("SQLITE_HISTORY");
if( zHistory ){
zHistory = strdup(zHistory);
}else if( (zHome = find_home_dir(0))!=0 ){
nHistory = strlen30(zHome) + 20;
if( (zHistory = malloc(nHistory))!=0 ){
sqlite3_snprintf(nHistory, zHistory,"%s/.sqlite_history", zHome);
}
}
if( zHistory ){ shell_read_history(zHistory); }
#if (HAVE_READLINE || HAVE_EDITLINE) && !defined(SQLITE_OMIT_READLINE_COMPLETION)
rl_attempted_completion_function = readline_completion;
#elif HAVE_LINENOISE==1
linenoiseSetCompletionCallback(linenoise_completion);
#elif HAVE_LINENOISE==2
linenoiseSetCompletionCallback(linenoise_completion, NULL);
#endif
data.in = 0;
rc = process_input(&data);
if( zHistory ){
shell_stifle_history(2000);
shell_write_history(zHistory);
free(zHistory);
}
}else{
data.in = stdin;
rc = process_input(&data);
}
}
#ifndef SQLITE_SHELL_FIDDLE
/* In WASM mode we have to leave the db state in place so that
** client code can "push" SQL into it after this call returns. */
#ifndef SQLITE_OMIT_VIRTUALTABLE
if( data.expert.pExpert ){
expertFinish(&data, 1, 0);
}
#endif
shell_main_exit:
free(azCmd);
set_table_name(&data, 0);
if( data.db ){
session_close_all(&data, -1);
close_db(data.db);
}
for(i=0; i<ArraySize(data.aAuxDb); i++){
sqlite3_free(data.aAuxDb[i].zFreeOnClose);
if( data.aAuxDb[i].db ){
session_close_all(&data, i);
close_db(data.aAuxDb[i].db);
}
}
find_home_dir(1);
output_reset(&data);
data.doXdgOpen = 0;
clearTempFile(&data);
#if !SQLITE_SHELL_IS_UTF8
for(i=0; i<argcToFree; i++) free(argvToFree[i]);
free(argvToFree);
#endif
free(data.colWidth);
free(data.zNonce);
/* Clear the global data structure so that valgrind will detect memory
** leaks */
memset(&data, 0, sizeof(data));
if( bEnableVfstrace ){
vfstrace_unregister("trace");
}
#ifdef SQLITE_DEBUG
if( sqlite3_memory_used()>mem_main_enter ){
sqlite3_fprintf(stderr,"Memory leaked: %u bytes\n",
(unsigned int)(sqlite3_memory_used()-mem_main_enter));
}
#endif
#else /* SQLITE_SHELL_FIDDLE... */
shell_main_exit:
#endif
return rc;
}
#ifdef SQLITE_SHELL_FIDDLE
/* Only for emcc experimentation purposes. */
int fiddle_experiment(int a,int b){
return a + b;
}
/*
** Returns a pointer to the current DB handle.
*/
sqlite3 * fiddle_db_handle(){
return globalDb;
}
/*
** Returns a pointer to the given DB name's VFS. If zDbName is 0 then
** "main" is assumed. Returns 0 if no db with the given name is
** open.
*/
sqlite3_vfs * fiddle_db_vfs(const char *zDbName){
sqlite3_vfs * pVfs = 0;
if(globalDb){
sqlite3_file_control(globalDb, zDbName ? zDbName : "main",
SQLITE_FCNTL_VFS_POINTER, &pVfs);
}
return pVfs;
}
/* Only for emcc experimentation purposes. */
sqlite3 * fiddle_db_arg(sqlite3 *arg){
sqlite3_fprintf(stdout, "fiddle_db_arg(%p)\n", (const void*)arg);
return arg;
}
/*
** Intended to be called via a SharedWorker() while a separate
** SharedWorker() (which manages the wasm module) is performing work
** which should be interrupted. Unfortunately, SharedWorker is not
** portable enough to make real use of.
*/
void fiddle_interrupt(void){
if( globalDb ) sqlite3_interrupt(globalDb);
}
/*
** Returns the filename of the given db name, assuming "main" if
** zDbName is NULL. Returns NULL if globalDb is not opened.
*/
const char * fiddle_db_filename(const char * zDbName){
return globalDb
? sqlite3_db_filename(globalDb, zDbName ? zDbName : "main")
: NULL;
}
/*
** Completely wipes out the contents of the currently-opened database
** but leaves its storage intact for reuse. If any transactions are
** active, they are forcibly rolled back.
*/
void fiddle_reset_db(void){
if( globalDb ){
int rc;
while( sqlite3_txn_state(globalDb,0)>0 ){
/*
** Resolve problem reported in
** https://sqlite.org/forum/forumpost/0b41a25d65
*/
sqlite3_fputs("Rolling back in-progress transaction.\n", stdout);
sqlite3_exec(globalDb,"ROLLBACK", 0, 0, 0);
}
rc = sqlite3_db_config(globalDb, SQLITE_DBCONFIG_RESET_DATABASE, 1, 0);
if( 0==rc ) sqlite3_exec(globalDb, "VACUUM", 0, 0, 0);
sqlite3_db_config(globalDb, SQLITE_DBCONFIG_RESET_DATABASE, 0, 0);
}
}
/*
** Uses the current database's VFS xRead to stream the db file's
** contents out to the given callback. The callback gets a single
** chunk of size n (its 2nd argument) on each call and must return 0
** on success, non-0 on error. This function returns 0 on success,
** SQLITE_NOTFOUND if no db is open, or propagates any other non-0
** code from the callback. Note that this is not thread-friendly: it
** expects that it will be the only thread reading the db file and
** takes no measures to ensure that is the case.
*/
int fiddle_export_db( int (*xCallback)(unsigned const char *zOut, int n) ){
sqlite3_int64 nSize = 0;
sqlite3_int64 nPos = 0;
sqlite3_file * pFile = 0;
unsigned char buf[1024 * 8];
int nBuf = (int)sizeof(buf);
int rc = shellState.db
? sqlite3_file_control(shellState.db, "main",
SQLITE_FCNTL_FILE_POINTER, &pFile)
: SQLITE_NOTFOUND;
if( rc ) return rc;
rc = pFile->pMethods->xFileSize(pFile, &nSize);
if( rc ) return rc;
if(nSize % nBuf){
/* DB size is not an even multiple of the buffer size. Reduce
** buffer size so that we do not unduly inflate the db size when
** exporting. */
if(0 == nSize % 4096) nBuf = 4096;
else if(0 == nSize % 2048) nBuf = 2048;
else if(0 == nSize % 1024) nBuf = 1024;
else nBuf = 512;
}
for( ; 0==rc && nPos<nSize; nPos += nBuf ){
rc = pFile->pMethods->xRead(pFile, buf, nBuf, nPos);
if(SQLITE_IOERR_SHORT_READ == rc){
rc = (nPos + nBuf) < nSize ? rc : 0/*assume EOF*/;
}
if( 0==rc ) rc = xCallback(buf, nBuf);
}
return rc;
}
/*
** Trivial exportable function for emscripten. It processes zSql as if
** it were input to the sqlite3 shell and redirects all output to the
** wasm binding. fiddle_main() must have been called before this
** is called, or results are undefined.
*/
void fiddle_exec(const char * zSql){
if(zSql && *zSql){
if('.'==*zSql) puts(zSql);
shellState.wasm.zInput = zSql;
shellState.wasm.zPos = zSql;
process_input(&shellState);
shellState.wasm.zInput = shellState.wasm.zPos = 0;
}
}
#endif /* SQLITE_SHELL_FIDDLE */