tildefriends/deps/libuv/src/unix/sunos.c
2023-07-04 00:24:48 +00:00

908 lines
22 KiB
C

/* Copyright Joyent, Inc. and other Node contributors. All rights reserved.
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "uv.h"
#include "internal.h"
#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <errno.h>
#ifndef SUNOS_NO_IFADDRS
# include <ifaddrs.h>
#endif
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_arp.h>
#include <sys/sockio.h>
#include <sys/loadavg.h>
#include <sys/time.h>
#include <unistd.h>
#include <kstat.h>
#include <fcntl.h>
#include <sys/port.h>
#include <port.h>
#define PORT_FIRED 0x69
#define PORT_UNUSED 0x0
#define PORT_LOADED 0x99
#define PORT_DELETED -1
#if (!defined(_LP64)) && (_FILE_OFFSET_BITS - 0 == 64)
#define PROCFS_FILE_OFFSET_BITS_HACK 1
#undef _FILE_OFFSET_BITS
#else
#define PROCFS_FILE_OFFSET_BITS_HACK 0
#endif
#include <procfs.h>
#if (PROCFS_FILE_OFFSET_BITS_HACK - 0 == 1)
#define _FILE_OFFSET_BITS 64
#endif
int uv__platform_loop_init(uv_loop_t* loop) {
int err;
int fd;
loop->fs_fd = -1;
loop->backend_fd = -1;
fd = port_create();
if (fd == -1)
return UV__ERR(errno);
err = uv__cloexec(fd, 1);
if (err) {
uv__close(fd);
return err;
}
loop->backend_fd = fd;
return 0;
}
void uv__platform_loop_delete(uv_loop_t* loop) {
if (loop->fs_fd != -1) {
uv__close(loop->fs_fd);
loop->fs_fd = -1;
}
if (loop->backend_fd != -1) {
uv__close(loop->backend_fd);
loop->backend_fd = -1;
}
}
int uv__io_fork(uv_loop_t* loop) {
#if defined(PORT_SOURCE_FILE)
if (loop->fs_fd != -1) {
/* stop the watcher before we blow away its fileno */
uv__io_stop(loop, &loop->fs_event_watcher, POLLIN);
}
#endif
uv__platform_loop_delete(loop);
return uv__platform_loop_init(loop);
}
void uv__platform_invalidate_fd(uv_loop_t* loop, int fd) {
struct port_event* events;
uintptr_t i;
uintptr_t nfds;
assert(loop->watchers != NULL);
assert(fd >= 0);
events = (struct port_event*) loop->watchers[loop->nwatchers];
nfds = (uintptr_t) loop->watchers[loop->nwatchers + 1];
if (events == NULL)
return;
/* Invalidate events with same file descriptor */
for (i = 0; i < nfds; i++)
if ((int) events[i].portev_object == fd)
events[i].portev_object = -1;
}
int uv__io_check_fd(uv_loop_t* loop, int fd) {
if (port_associate(loop->backend_fd, PORT_SOURCE_FD, fd, POLLIN, 0))
return UV__ERR(errno);
if (port_dissociate(loop->backend_fd, PORT_SOURCE_FD, fd)) {
perror("(libuv) port_dissociate()");
abort();
}
return 0;
}
void uv__io_poll(uv_loop_t* loop, int timeout) {
struct port_event events[1024];
struct port_event* pe;
struct timespec spec;
struct uv__queue* q;
uv__io_t* w;
sigset_t* pset;
sigset_t set;
uint64_t base;
uint64_t diff;
unsigned int nfds;
unsigned int i;
int saved_errno;
int have_signals;
int nevents;
int count;
int err;
int fd;
int user_timeout;
int reset_timeout;
if (loop->nfds == 0) {
assert(uv__queue_empty(&loop->watcher_queue));
return;
}
while (!uv__queue_empty(&loop->watcher_queue)) {
q = uv__queue_head(&loop->watcher_queue);
uv__queue_remove(q);
uv__queue_init(q);
w = uv__queue_data(q, uv__io_t, watcher_queue);
assert(w->pevents != 0);
if (port_associate(loop->backend_fd,
PORT_SOURCE_FD,
w->fd,
w->pevents,
0)) {
perror("(libuv) port_associate()");
abort();
}
w->events = w->pevents;
}
pset = NULL;
if (loop->flags & UV_LOOP_BLOCK_SIGPROF) {
pset = &set;
sigemptyset(pset);
sigaddset(pset, SIGPROF);
}
assert(timeout >= -1);
base = loop->time;
count = 48; /* Benchmarks suggest this gives the best throughput. */
if (uv__get_internal_fields(loop)->flags & UV_METRICS_IDLE_TIME) {
reset_timeout = 1;
user_timeout = timeout;
timeout = 0;
} else {
reset_timeout = 0;
}
for (;;) {
/* Only need to set the provider_entry_time if timeout != 0. The function
* will return early if the loop isn't configured with UV_METRICS_IDLE_TIME.
*/
if (timeout != 0)
uv__metrics_set_provider_entry_time(loop);
if (timeout != -1) {
spec.tv_sec = timeout / 1000;
spec.tv_nsec = (timeout % 1000) * 1000000;
}
/* Work around a kernel bug where nfds is not updated. */
events[0].portev_source = 0;
nfds = 1;
saved_errno = 0;
if (pset != NULL)
pthread_sigmask(SIG_BLOCK, pset, NULL);
err = port_getn(loop->backend_fd,
events,
ARRAY_SIZE(events),
&nfds,
timeout == -1 ? NULL : &spec);
if (pset != NULL)
pthread_sigmask(SIG_UNBLOCK, pset, NULL);
if (err) {
/* Work around another kernel bug: port_getn() may return events even
* on error.
*/
if (errno == EINTR || errno == ETIME) {
saved_errno = errno;
} else {
perror("(libuv) port_getn()");
abort();
}
}
/* Update loop->time unconditionally. It's tempting to skip the update when
* timeout == 0 (i.e. non-blocking poll) but there is no guarantee that the
* operating system didn't reschedule our process while in the syscall.
*/
SAVE_ERRNO(uv__update_time(loop));
if (events[0].portev_source == 0) {
if (reset_timeout != 0) {
timeout = user_timeout;
reset_timeout = 0;
}
if (timeout == 0)
return;
if (timeout == -1)
continue;
goto update_timeout;
}
if (nfds == 0) {
assert(timeout != -1);
return;
}
have_signals = 0;
nevents = 0;
assert(loop->watchers != NULL);
loop->watchers[loop->nwatchers] = (void*) events;
loop->watchers[loop->nwatchers + 1] = (void*) (uintptr_t) nfds;
for (i = 0; i < nfds; i++) {
pe = events + i;
fd = pe->portev_object;
/* Skip invalidated events, see uv__platform_invalidate_fd */
if (fd == -1)
continue;
assert(fd >= 0);
assert((unsigned) fd < loop->nwatchers);
w = loop->watchers[fd];
/* File descriptor that we've stopped watching, ignore. */
if (w == NULL)
continue;
/* Run signal watchers last. This also affects child process watchers
* because those are implemented in terms of signal watchers.
*/
if (w == &loop->signal_io_watcher) {
have_signals = 1;
} else {
uv__metrics_update_idle_time(loop);
w->cb(loop, w, pe->portev_events);
}
nevents++;
if (w != loop->watchers[fd])
continue; /* Disabled by callback. */
/* Events Ports operates in oneshot mode, rearm timer on next run. */
if (w->pevents != 0 && uv__queue_empty(&w->watcher_queue))
uv__queue_insert_tail(&loop->watcher_queue, &w->watcher_queue);
}
uv__metrics_inc_events(loop, nevents);
if (reset_timeout != 0) {
timeout = user_timeout;
reset_timeout = 0;
uv__metrics_inc_events_waiting(loop, nevents);
}
if (have_signals != 0) {
uv__metrics_update_idle_time(loop);
loop->signal_io_watcher.cb(loop, &loop->signal_io_watcher, POLLIN);
}
loop->watchers[loop->nwatchers] = NULL;
loop->watchers[loop->nwatchers + 1] = NULL;
if (have_signals != 0)
return; /* Event loop should cycle now so don't poll again. */
if (nevents != 0) {
if (nfds == ARRAY_SIZE(events) && --count != 0) {
/* Poll for more events but don't block this time. */
timeout = 0;
continue;
}
return;
}
if (saved_errno == ETIME) {
assert(timeout != -1);
return;
}
if (timeout == 0)
return;
if (timeout == -1)
continue;
update_timeout:
assert(timeout > 0);
diff = loop->time - base;
if (diff >= (uint64_t) timeout)
return;
timeout -= diff;
}
}
uint64_t uv__hrtime(uv_clocktype_t type) {
return gethrtime();
}
/*
* We could use a static buffer for the path manipulations that we need outside
* of the function, but this function could be called by multiple consumers and
* we don't want to potentially create a race condition in the use of snprintf.
*/
int uv_exepath(char* buffer, size_t* size) {
ssize_t res;
char buf[128];
if (buffer == NULL || size == NULL || *size == 0)
return UV_EINVAL;
snprintf(buf, sizeof(buf), "/proc/%lu/path/a.out", (unsigned long) getpid());
res = *size - 1;
if (res > 0)
res = readlink(buf, buffer, res);
if (res == -1)
return UV__ERR(errno);
buffer[res] = '\0';
*size = res;
return 0;
}
uint64_t uv_get_free_memory(void) {
return (uint64_t) sysconf(_SC_PAGESIZE) * sysconf(_SC_AVPHYS_PAGES);
}
uint64_t uv_get_total_memory(void) {
return (uint64_t) sysconf(_SC_PAGESIZE) * sysconf(_SC_PHYS_PAGES);
}
uint64_t uv_get_constrained_memory(void) {
return 0; /* Memory constraints are unknown. */
}
uint64_t uv_get_available_memory(void) {
return uv_get_free_memory();
}
void uv_loadavg(double avg[3]) {
(void) getloadavg(avg, 3);
}
#if defined(PORT_SOURCE_FILE)
static int uv__fs_event_rearm(uv_fs_event_t *handle) {
if (handle->fd == PORT_DELETED)
return UV_EBADF;
if (port_associate(handle->loop->fs_fd,
PORT_SOURCE_FILE,
(uintptr_t) &handle->fo,
FILE_ATTRIB | FILE_MODIFIED,
handle) == -1) {
return UV__ERR(errno);
}
handle->fd = PORT_LOADED;
return 0;
}
static void uv__fs_event_read(uv_loop_t* loop,
uv__io_t* w,
unsigned int revents) {
uv_fs_event_t *handle = NULL;
timespec_t timeout;
port_event_t pe;
int events;
int r;
(void) w;
(void) revents;
do {
uint_t n = 1;
/*
* Note that our use of port_getn() here (and not port_get()) is deliberate:
* there is a bug in event ports (Sun bug 6456558) whereby a zeroed timeout
* causes port_get() to return success instead of ETIME when there aren't
* actually any events (!); by using port_getn() in lieu of port_get(),
* we can at least workaround the bug by checking for zero returned events
* and treating it as we would ETIME.
*/
do {
memset(&timeout, 0, sizeof timeout);
r = port_getn(loop->fs_fd, &pe, 1, &n, &timeout);
}
while (r == -1 && errno == EINTR);
if ((r == -1 && errno == ETIME) || n == 0)
break;
handle = (uv_fs_event_t*) pe.portev_user;
assert((r == 0) && "unexpected port_get() error");
if (uv__is_closing(handle)) {
uv__handle_stop(handle);
uv__make_close_pending((uv_handle_t*) handle);
break;
}
events = 0;
if (pe.portev_events & (FILE_ATTRIB | FILE_MODIFIED))
events |= UV_CHANGE;
if (pe.portev_events & ~(FILE_ATTRIB | FILE_MODIFIED))
events |= UV_RENAME;
assert(events != 0);
handle->fd = PORT_FIRED;
handle->cb(handle, NULL, events, 0);
if (handle->fd != PORT_DELETED) {
r = uv__fs_event_rearm(handle);
if (r != 0)
handle->cb(handle, NULL, 0, r);
}
}
while (handle->fd != PORT_DELETED);
}
int uv_fs_event_init(uv_loop_t* loop, uv_fs_event_t* handle) {
uv__handle_init(loop, (uv_handle_t*)handle, UV_FS_EVENT);
return 0;
}
int uv_fs_event_start(uv_fs_event_t* handle,
uv_fs_event_cb cb,
const char* path,
unsigned int flags) {
int portfd;
int first_run;
int err;
if (uv__is_active(handle))
return UV_EINVAL;
first_run = 0;
if (handle->loop->fs_fd == -1) {
portfd = port_create();
if (portfd == -1)
return UV__ERR(errno);
handle->loop->fs_fd = portfd;
first_run = 1;
}
uv__handle_start(handle);
handle->path = uv__strdup(path);
handle->fd = PORT_UNUSED;
handle->cb = cb;
memset(&handle->fo, 0, sizeof handle->fo);
handle->fo.fo_name = handle->path;
err = uv__fs_event_rearm(handle);
if (err != 0) {
uv_fs_event_stop(handle);
return err;
}
if (first_run) {
uv__io_init(&handle->loop->fs_event_watcher, uv__fs_event_read, portfd);
uv__io_start(handle->loop, &handle->loop->fs_event_watcher, POLLIN);
}
return 0;
}
static int uv__fs_event_stop(uv_fs_event_t* handle) {
int ret = 0;
if (!uv__is_active(handle))
return 0;
if (handle->fd == PORT_LOADED) {
ret = port_dissociate(handle->loop->fs_fd,
PORT_SOURCE_FILE,
(uintptr_t) &handle->fo);
}
handle->fd = PORT_DELETED;
uv__free(handle->path);
handle->path = NULL;
handle->fo.fo_name = NULL;
if (ret == 0)
uv__handle_stop(handle);
return ret;
}
int uv_fs_event_stop(uv_fs_event_t* handle) {
(void) uv__fs_event_stop(handle);
return 0;
}
void uv__fs_event_close(uv_fs_event_t* handle) {
/*
* If we were unable to dissociate the port here, then it is most likely
* that there is a pending queued event. When this happens, we don't want
* to complete the close as it will free the underlying memory for the
* handle, causing a use-after-free problem when the event is processed.
* We defer the final cleanup until after the event is consumed in
* uv__fs_event_read().
*/
if (uv__fs_event_stop(handle) == 0)
uv__make_close_pending((uv_handle_t*) handle);
}
#else /* !defined(PORT_SOURCE_FILE) */
int uv_fs_event_init(uv_loop_t* loop, uv_fs_event_t* handle) {
return UV_ENOSYS;
}
int uv_fs_event_start(uv_fs_event_t* handle,
uv_fs_event_cb cb,
const char* filename,
unsigned int flags) {
return UV_ENOSYS;
}
int uv_fs_event_stop(uv_fs_event_t* handle) {
return UV_ENOSYS;
}
void uv__fs_event_close(uv_fs_event_t* handle) {
UNREACHABLE();
}
#endif /* defined(PORT_SOURCE_FILE) */
int uv_resident_set_memory(size_t* rss) {
psinfo_t psinfo;
int err;
int fd;
fd = open("/proc/self/psinfo", O_RDONLY);
if (fd == -1)
return UV__ERR(errno);
/* FIXME(bnoordhuis) Handle EINTR. */
err = UV_EINVAL;
if (read(fd, &psinfo, sizeof(psinfo)) == sizeof(psinfo)) {
*rss = (size_t)psinfo.pr_rssize * 1024;
err = 0;
}
uv__close(fd);
return err;
}
int uv_uptime(double* uptime) {
kstat_ctl_t *kc;
kstat_t *ksp;
kstat_named_t *knp;
long hz = sysconf(_SC_CLK_TCK);
kc = kstat_open();
if (kc == NULL)
return UV_EPERM;
ksp = kstat_lookup(kc, (char*) "unix", 0, (char*) "system_misc");
if (kstat_read(kc, ksp, NULL) == -1) {
*uptime = -1;
} else {
knp = (kstat_named_t*) kstat_data_lookup(ksp, (char*) "clk_intr");
*uptime = knp->value.ul / hz;
}
kstat_close(kc);
return 0;
}
int uv_cpu_info(uv_cpu_info_t** cpu_infos, int* count) {
int lookup_instance;
kstat_ctl_t *kc;
kstat_t *ksp;
kstat_named_t *knp;
uv_cpu_info_t* cpu_info;
kc = kstat_open();
if (kc == NULL)
return UV_EPERM;
/* Get count of cpus */
lookup_instance = 0;
while ((ksp = kstat_lookup(kc, (char*) "cpu_info", lookup_instance, NULL))) {
lookup_instance++;
}
*cpu_infos = uv__malloc(lookup_instance * sizeof(**cpu_infos));
if (!(*cpu_infos)) {
kstat_close(kc);
return UV_ENOMEM;
}
*count = lookup_instance;
cpu_info = *cpu_infos;
lookup_instance = 0;
while ((ksp = kstat_lookup(kc, (char*) "cpu_info", lookup_instance, NULL))) {
if (kstat_read(kc, ksp, NULL) == -1) {
cpu_info->speed = 0;
cpu_info->model = NULL;
} else {
knp = kstat_data_lookup(ksp, (char*) "clock_MHz");
assert(knp->data_type == KSTAT_DATA_INT32 ||
knp->data_type == KSTAT_DATA_INT64);
cpu_info->speed = (knp->data_type == KSTAT_DATA_INT32) ? knp->value.i32
: knp->value.i64;
knp = kstat_data_lookup(ksp, (char*) "brand");
assert(knp->data_type == KSTAT_DATA_STRING);
cpu_info->model = uv__strdup(KSTAT_NAMED_STR_PTR(knp));
}
lookup_instance++;
cpu_info++;
}
cpu_info = *cpu_infos;
lookup_instance = 0;
for (;;) {
ksp = kstat_lookup(kc, (char*) "cpu", lookup_instance, (char*) "sys");
if (ksp == NULL)
break;
if (kstat_read(kc, ksp, NULL) == -1) {
cpu_info->cpu_times.user = 0;
cpu_info->cpu_times.nice = 0;
cpu_info->cpu_times.sys = 0;
cpu_info->cpu_times.idle = 0;
cpu_info->cpu_times.irq = 0;
} else {
knp = kstat_data_lookup(ksp, (char*) "cpu_ticks_user");
assert(knp->data_type == KSTAT_DATA_UINT64);
cpu_info->cpu_times.user = knp->value.ui64;
knp = kstat_data_lookup(ksp, (char*) "cpu_ticks_kernel");
assert(knp->data_type == KSTAT_DATA_UINT64);
cpu_info->cpu_times.sys = knp->value.ui64;
knp = kstat_data_lookup(ksp, (char*) "cpu_ticks_idle");
assert(knp->data_type == KSTAT_DATA_UINT64);
cpu_info->cpu_times.idle = knp->value.ui64;
knp = kstat_data_lookup(ksp, (char*) "intr");
assert(knp->data_type == KSTAT_DATA_UINT64);
cpu_info->cpu_times.irq = knp->value.ui64;
cpu_info->cpu_times.nice = 0;
}
lookup_instance++;
cpu_info++;
}
kstat_close(kc);
return 0;
}
#ifdef SUNOS_NO_IFADDRS
int uv_interface_addresses(uv_interface_address_t** addresses, int* count) {
*count = 0;
*addresses = NULL;
return UV_ENOSYS;
}
#else /* SUNOS_NO_IFADDRS */
/*
* Inspired By:
* https://blogs.oracle.com/paulie/entry/retrieving_mac_address_in_solaris
* http://www.pauliesworld.org/project/getmac.c
*/
static int uv__set_phys_addr(uv_interface_address_t* address,
struct ifaddrs* ent) {
struct sockaddr_dl* sa_addr;
int sockfd;
size_t i;
struct arpreq arpreq;
/* This appears to only work as root */
sa_addr = (struct sockaddr_dl*)(ent->ifa_addr);
memcpy(address->phys_addr, LLADDR(sa_addr), sizeof(address->phys_addr));
for (i = 0; i < sizeof(address->phys_addr); i++) {
/* Check that all bytes of phys_addr are zero. */
if (address->phys_addr[i] != 0)
return 0;
}
memset(&arpreq, 0, sizeof(arpreq));
if (address->address.address4.sin_family == AF_INET) {
struct sockaddr_in* sin = ((struct sockaddr_in*)&arpreq.arp_pa);
sin->sin_addr.s_addr = address->address.address4.sin_addr.s_addr;
} else if (address->address.address4.sin_family == AF_INET6) {
struct sockaddr_in6* sin = ((struct sockaddr_in6*)&arpreq.arp_pa);
memcpy(sin->sin6_addr.s6_addr,
address->address.address6.sin6_addr.s6_addr,
sizeof(address->address.address6.sin6_addr.s6_addr));
} else {
return 0;
}
sockfd = socket(AF_INET, SOCK_DGRAM, 0);
if (sockfd < 0)
return UV__ERR(errno);
if (ioctl(sockfd, SIOCGARP, (char*)&arpreq) == -1) {
uv__close(sockfd);
return UV__ERR(errno);
}
memcpy(address->phys_addr, arpreq.arp_ha.sa_data, sizeof(address->phys_addr));
uv__close(sockfd);
return 0;
}
static int uv__ifaddr_exclude(struct ifaddrs *ent) {
if (!((ent->ifa_flags & IFF_UP) && (ent->ifa_flags & IFF_RUNNING)))
return 1;
if (ent->ifa_addr == NULL)
return 1;
if (ent->ifa_addr->sa_family != AF_INET &&
ent->ifa_addr->sa_family != AF_INET6)
return 1;
return 0;
}
int uv_interface_addresses(uv_interface_address_t** addresses, int* count) {
uv_interface_address_t* address;
struct ifaddrs* addrs;
struct ifaddrs* ent;
*count = 0;
*addresses = NULL;
if (getifaddrs(&addrs))
return UV__ERR(errno);
/* Count the number of interfaces */
for (ent = addrs; ent != NULL; ent = ent->ifa_next) {
if (uv__ifaddr_exclude(ent))
continue;
(*count)++;
}
if (*count == 0) {
freeifaddrs(addrs);
return 0;
}
*addresses = uv__malloc(*count * sizeof(**addresses));
if (!(*addresses)) {
freeifaddrs(addrs);
return UV_ENOMEM;
}
address = *addresses;
for (ent = addrs; ent != NULL; ent = ent->ifa_next) {
if (uv__ifaddr_exclude(ent))
continue;
address->name = uv__strdup(ent->ifa_name);
if (ent->ifa_addr->sa_family == AF_INET6) {
address->address.address6 = *((struct sockaddr_in6*) ent->ifa_addr);
} else {
address->address.address4 = *((struct sockaddr_in*) ent->ifa_addr);
}
if (ent->ifa_netmask->sa_family == AF_INET6) {
address->netmask.netmask6 = *((struct sockaddr_in6*) ent->ifa_netmask);
} else {
address->netmask.netmask4 = *((struct sockaddr_in*) ent->ifa_netmask);
}
address->is_internal = !!((ent->ifa_flags & IFF_PRIVATE) ||
(ent->ifa_flags & IFF_LOOPBACK));
uv__set_phys_addr(address, ent);
address++;
}
freeifaddrs(addrs);
return 0;
}
#endif /* SUNOS_NO_IFADDRS */
void uv_free_interface_addresses(uv_interface_address_t* addresses,
int count) {
int i;
for (i = 0; i < count; i++) {
uv__free(addresses[i].name);
}
uv__free(addresses);
}
#if !defined(_POSIX_VERSION) || _POSIX_VERSION < 200809L
size_t strnlen(const char* s, size_t maxlen) {
const char* end;
end = memchr(s, '\0', maxlen);
if (end == NULL)
return maxlen;
return end - s;
}
#endif