/* Copyright Joyent, Inc. and other Node contributors. All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include "uv.h" #include "task.h" #include <stdio.h> #include <string.h> /* See test-ipc.c */ void spawn_helper(uv_pipe_t* channel, uv_process_t* process, const char* helper); void ipc_send_recv_helper_threadproc(void* arg); union handles { uv_handle_t handle; uv_stream_t stream; uv_pipe_t pipe; uv_tcp_t tcp; uv_tty_t tty; }; struct test_ctx { uv_pipe_t channel; uv_connect_t connect_req; uv_write_t write_req; uv_write_t write_req2; uv_handle_type expected_type; union handles send; union handles send2; union handles recv; union handles recv2; }; struct echo_ctx { uv_pipe_t listen; uv_pipe_t channel; uv_write_t write_req; uv_write_t write_req2; uv_handle_type expected_type; union handles recv; union handles recv2; }; static struct test_ctx ctx; static struct echo_ctx ctx2; /* Used in write2_cb to decide if we need to cleanup or not */ static int is_child_process; static int is_in_process; static int read_cb_count; static int recv_cb_count; static int write2_cb_called; static void alloc_cb(uv_handle_t* handle, size_t suggested_size, uv_buf_t* buf) { /* We're not actually reading anything so a small buffer is okay * but it needs to be heap-allocated to appease TSan. */ buf->len = 8; buf->base = malloc(buf->len); ASSERT_NOT_NULL(buf->base); } static void recv_cb(uv_stream_t* handle, ssize_t nread, const uv_buf_t* buf) { uv_handle_type pending; uv_pipe_t* pipe; int r; union handles* recv; free(buf->base); pipe = (uv_pipe_t*) handle; ASSERT_PTR_EQ(pipe, &ctx.channel); do { if (++recv_cb_count == 1) { recv = &ctx.recv; } else { recv = &ctx.recv2; } /* Depending on the OS, the final recv_cb can be called after * the child process has terminated which can result in nread * being UV_EOF instead of the number of bytes read. Since * the other end of the pipe has closed this UV_EOF is an * acceptable value. */ if (nread == UV_EOF) { /* UV_EOF is only acceptable for the final recv_cb call */ ASSERT_EQ(2, recv_cb_count); } else { ASSERT_GE(nread, 0); ASSERT_GT(uv_pipe_pending_count(pipe), 0); pending = uv_pipe_pending_type(pipe); ASSERT_EQ(pending, ctx.expected_type); if (pending == UV_NAMED_PIPE) r = uv_pipe_init(ctx.channel.loop, &recv->pipe, 0); else if (pending == UV_TCP) r = uv_tcp_init(ctx.channel.loop, &recv->tcp); else abort(); ASSERT_OK(r); r = uv_accept(handle, &recv->stream); ASSERT_OK(r); } } while (uv_pipe_pending_count(pipe) > 0); /* Close after two writes received */ if (recv_cb_count == 2) { uv_close((uv_handle_t*)&ctx.channel, NULL); } } static void connect_cb(uv_connect_t* req, int status) { int r; uv_buf_t buf; ASSERT_PTR_EQ(req, &ctx.connect_req); ASSERT_OK(status); buf = uv_buf_init(".", 1); r = uv_write2(&ctx.write_req, (uv_stream_t*)&ctx.channel, &buf, 1, &ctx.send.stream, NULL); ASSERT_OK(r); /* Perform two writes to the same pipe to make sure that on Windows we are * not running into issue 505: * https://github.com/libuv/libuv/issues/505 */ buf = uv_buf_init(".", 1); r = uv_write2(&ctx.write_req2, (uv_stream_t*)&ctx.channel, &buf, 1, &ctx.send2.stream, NULL); ASSERT_OK(r); r = uv_read_start((uv_stream_t*)&ctx.channel, alloc_cb, recv_cb); ASSERT_OK(r); } static int run_test(int inprocess) { uv_process_t process; uv_thread_t tid; int r; if (inprocess) { r = uv_thread_create(&tid, ipc_send_recv_helper_threadproc, (void *) 42); ASSERT_OK(r); uv_sleep(1000); r = uv_pipe_init(uv_default_loop(), &ctx.channel, 1); ASSERT_OK(r); uv_pipe_connect(&ctx.connect_req, &ctx.channel, TEST_PIPENAME_3, connect_cb); } else { spawn_helper(&ctx.channel, &process, "ipc_send_recv_helper"); connect_cb(&ctx.connect_req, 0); } r = uv_run(uv_default_loop(), UV_RUN_DEFAULT); ASSERT_OK(r); ASSERT_EQ(2, recv_cb_count); if (inprocess) { r = uv_thread_join(&tid); ASSERT_OK(r); } return 0; } static int run_ipc_send_recv_pipe(int inprocess) { int r; ctx.expected_type = UV_NAMED_PIPE; r = uv_pipe_init(uv_default_loop(), &ctx.send.pipe, 1); ASSERT_OK(r); r = uv_pipe_bind(&ctx.send.pipe, TEST_PIPENAME); ASSERT_OK(r); r = uv_pipe_init(uv_default_loop(), &ctx.send2.pipe, 1); ASSERT_OK(r); r = uv_pipe_bind(&ctx.send2.pipe, TEST_PIPENAME_2); ASSERT_OK(r); r = run_test(inprocess); ASSERT_OK(r); MAKE_VALGRIND_HAPPY(uv_default_loop()); return 0; } TEST_IMPL(ipc_send_recv_pipe) { #if defined(NO_SEND_HANDLE_ON_PIPE) RETURN_SKIP(NO_SEND_HANDLE_ON_PIPE); #endif return run_ipc_send_recv_pipe(0); } TEST_IMPL(ipc_send_recv_pipe_inprocess) { #if defined(NO_SEND_HANDLE_ON_PIPE) RETURN_SKIP(NO_SEND_HANDLE_ON_PIPE); #endif return run_ipc_send_recv_pipe(1); } static int run_ipc_send_recv_tcp(int inprocess) { struct sockaddr_in addr; int r; ASSERT_OK(uv_ip4_addr("127.0.0.1", TEST_PORT, &addr)); ctx.expected_type = UV_TCP; r = uv_tcp_init(uv_default_loop(), &ctx.send.tcp); ASSERT_OK(r); r = uv_tcp_init(uv_default_loop(), &ctx.send2.tcp); ASSERT_OK(r); r = uv_tcp_bind(&ctx.send.tcp, (const struct sockaddr*) &addr, 0); ASSERT_OK(r); r = uv_tcp_bind(&ctx.send2.tcp, (const struct sockaddr*) &addr, 0); ASSERT_OK(r); r = run_test(inprocess); ASSERT_OK(r); MAKE_VALGRIND_HAPPY(uv_default_loop()); return 0; } TEST_IMPL(ipc_send_recv_tcp) { #if defined(NO_SEND_HANDLE_ON_PIPE) RETURN_SKIP(NO_SEND_HANDLE_ON_PIPE); #endif return run_ipc_send_recv_tcp(0); } TEST_IMPL(ipc_send_recv_tcp_inprocess) { #if defined(NO_SEND_HANDLE_ON_PIPE) RETURN_SKIP(NO_SEND_HANDLE_ON_PIPE); #endif return run_ipc_send_recv_tcp(1); } /* Everything here runs in a child process or second thread. */ static void write2_cb(uv_write_t* req, int status) { ASSERT_OK(status); /* After two successful writes in the child process, allow the child * process to be closed. */ if (++write2_cb_called == 2 && (is_child_process || is_in_process)) { uv_close(&ctx2.recv.handle, NULL); uv_close(&ctx2.recv2.handle, NULL); uv_close((uv_handle_t*)&ctx2.channel, NULL); uv_close((uv_handle_t*)&ctx2.listen, NULL); } } static void read_cb(uv_stream_t* handle, ssize_t nread, const uv_buf_t* rdbuf) { uv_buf_t wrbuf; uv_pipe_t* pipe; uv_handle_type pending; int r; union handles* recv; uv_write_t* write_req; free(rdbuf->base); if (nread == UV_EOF || nread == UV_ECONNABORTED) { return; } ASSERT_GE(nread, 0); pipe = (uv_pipe_t*) handle; ASSERT_PTR_EQ(pipe, &ctx2.channel); while (uv_pipe_pending_count(pipe) > 0) { if (++read_cb_count == 2) { recv = &ctx2.recv; write_req = &ctx2.write_req; } else { recv = &ctx2.recv2; write_req = &ctx2.write_req2; } pending = uv_pipe_pending_type(pipe); ASSERT(pending == UV_NAMED_PIPE || pending == UV_TCP); if (pending == UV_NAMED_PIPE) r = uv_pipe_init(ctx2.channel.loop, &recv->pipe, 0); else if (pending == UV_TCP) r = uv_tcp_init(ctx2.channel.loop, &recv->tcp); else abort(); ASSERT_OK(r); r = uv_accept(handle, &recv->stream); ASSERT_OK(r); wrbuf = uv_buf_init(".", 1); r = uv_write2(write_req, (uv_stream_t*)&ctx2.channel, &wrbuf, 1, &recv->stream, write2_cb); ASSERT_OK(r); } } static void send_recv_start(void) { int r; ASSERT_EQ(1, uv_is_readable((uv_stream_t*)&ctx2.channel)); ASSERT_EQ(1, uv_is_writable((uv_stream_t*)&ctx2.channel)); ASSERT_OK(uv_is_closing((uv_handle_t*)&ctx2.channel)); r = uv_read_start((uv_stream_t*)&ctx2.channel, alloc_cb, read_cb); ASSERT_OK(r); } static void listen_cb(uv_stream_t* handle, int status) { int r; ASSERT_PTR_EQ(handle, (uv_stream_t*)&ctx2.listen); ASSERT_OK(status); r = uv_accept((uv_stream_t*)&ctx2.listen, (uv_stream_t*)&ctx2.channel); ASSERT_OK(r); send_recv_start(); } int run_ipc_send_recv_helper(uv_loop_t* loop, int inprocess) { int r; is_in_process = inprocess; memset(&ctx2, 0, sizeof(ctx2)); r = uv_pipe_init(loop, &ctx2.listen, 0); ASSERT_OK(r); r = uv_pipe_init(loop, &ctx2.channel, 1); ASSERT_OK(r); if (inprocess) { r = uv_pipe_bind(&ctx2.listen, TEST_PIPENAME_3); ASSERT_OK(r); r = uv_listen((uv_stream_t*)&ctx2.listen, SOMAXCONN, listen_cb); ASSERT_OK(r); } else { r = uv_pipe_open(&ctx2.channel, 0); ASSERT_OK(r); send_recv_start(); } notify_parent_process(); r = uv_run(loop, UV_RUN_DEFAULT); ASSERT_OK(r); return 0; } /* stdin is a duplex channel over which a handle is sent. * We receive it and send it back where it came from. */ int ipc_send_recv_helper(void) { int r; r = run_ipc_send_recv_helper(uv_default_loop(), 0); ASSERT_OK(r); MAKE_VALGRIND_HAPPY(uv_default_loop()); return 0; } void ipc_send_recv_helper_threadproc(void* arg) { int r; uv_loop_t loop; r = uv_loop_init(&loop); ASSERT_OK(r); r = run_ipc_send_recv_helper(&loop, 1); ASSERT_OK(r); r = uv_loop_close(&loop); ASSERT_OK(r); }