/* Copyright libuv project contributors. All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include "uv.h" #include "task.h" #include <string.h> /* memset */ #define UV_NS_TO_MS 1000000 typedef struct { uv_fs_t open_req; uv_fs_t write_req; uv_fs_t close_req; } fs_reqs_t; static uint64_t last_events_count; static char test_buf[] = "test-buffer\n"; static fs_reqs_t fs_reqs; static int pool_events_counter; static void timer_spin_cb(uv_timer_t* handle) { uint64_t t; (*(int*) handle->data)++; t = uv_hrtime(); /* Spin for 500 ms to spin loop time out of the delta check. */ while (uv_hrtime() - t < 600 * UV_NS_TO_MS) { } } TEST_IMPL(metrics_idle_time) { #if defined(__OpenBSD__) RETURN_SKIP("Test does not currently work in OpenBSD"); #endif const uint64_t timeout = 1000; uv_timer_t timer; uint64_t idle_time; int cntr; cntr = 0; timer.data = &cntr; ASSERT_OK(uv_loop_configure(uv_default_loop(), UV_METRICS_IDLE_TIME)); ASSERT_OK(uv_timer_init(uv_default_loop(), &timer)); ASSERT_OK(uv_timer_start(&timer, timer_spin_cb, timeout, 0)); ASSERT_OK(uv_run(uv_default_loop(), UV_RUN_DEFAULT)); ASSERT_GT(cntr, 0); idle_time = uv_metrics_idle_time(uv_default_loop()); /* Permissive check that the idle time matches within the timeout ±500 ms. */ ASSERT_LE(idle_time, (timeout + 500) * UV_NS_TO_MS); ASSERT_GE(idle_time, (timeout - 500) * UV_NS_TO_MS); MAKE_VALGRIND_HAPPY(uv_default_loop()); return 0; } static void metrics_routine_cb(void* arg) { const uint64_t timeout = 1000; uv_loop_t loop; uv_timer_t timer; uint64_t idle_time; int cntr; cntr = 0; timer.data = &cntr; ASSERT_OK(uv_loop_init(&loop)); ASSERT_OK(uv_loop_configure(&loop, UV_METRICS_IDLE_TIME)); ASSERT_OK(uv_timer_init(&loop, &timer)); ASSERT_OK(uv_timer_start(&timer, timer_spin_cb, timeout, 0)); ASSERT_OK(uv_run(&loop, UV_RUN_DEFAULT)); ASSERT_GT(cntr, 0); idle_time = uv_metrics_idle_time(&loop); /* Only checking that idle time is greater than the lower bound since there * may have been thread contention, causing the event loop to be delayed in * the idle phase longer than expected. */ ASSERT_GE(idle_time, (timeout - 500) * UV_NS_TO_MS); close_loop(&loop); ASSERT_OK(uv_loop_close(&loop)); } TEST_IMPL(metrics_idle_time_thread) { uv_thread_t threads[5]; int i; for (i = 0; i < 5; i++) { ASSERT_OK(uv_thread_create(&threads[i], metrics_routine_cb, NULL)); } for (i = 0; i < 5; i++) { uv_thread_join(&threads[i]); } return 0; } static void timer_noop_cb(uv_timer_t* handle) { (*(int*) handle->data)++; } TEST_IMPL(metrics_idle_time_zero) { uv_metrics_t metrics; uv_timer_t timer; int cntr; cntr = 0; timer.data = &cntr; ASSERT_OK(uv_loop_configure(uv_default_loop(), UV_METRICS_IDLE_TIME)); ASSERT_OK(uv_timer_init(uv_default_loop(), &timer)); ASSERT_OK(uv_timer_start(&timer, timer_noop_cb, 0, 0)); ASSERT_OK(uv_run(uv_default_loop(), UV_RUN_DEFAULT)); ASSERT_GT(cntr, 0); ASSERT_OK(uv_metrics_idle_time(uv_default_loop())); ASSERT_OK(uv_metrics_info(uv_default_loop(), &metrics)); ASSERT_UINT64_EQ(cntr, metrics.loop_count); MAKE_VALGRIND_HAPPY(uv_default_loop()); return 0; } static void close_cb(uv_fs_t* req) { uv_metrics_t metrics; ASSERT_OK(uv_metrics_info(uv_default_loop(), &metrics)); ASSERT_UINT64_EQ(3, metrics.loop_count); ASSERT_UINT64_GT(metrics.events, last_events_count); uv_fs_req_cleanup(req); last_events_count = metrics.events; } static void write_cb(uv_fs_t* req) { uv_metrics_t metrics; ASSERT_OK(uv_metrics_info(uv_default_loop(), &metrics)); ASSERT_UINT64_EQ(2, metrics.loop_count); ASSERT_UINT64_GT(metrics.events, last_events_count); ASSERT_EQ(req->result, sizeof(test_buf)); uv_fs_req_cleanup(req); last_events_count = metrics.events; ASSERT_OK(uv_fs_close(uv_default_loop(), &fs_reqs.close_req, fs_reqs.open_req.result, close_cb)); } static void create_cb(uv_fs_t* req) { uv_metrics_t metrics; ASSERT_OK(uv_metrics_info(uv_default_loop(), &metrics)); /* Event count here is still 0 so not going to check. */ ASSERT_UINT64_EQ(1, metrics.loop_count); ASSERT_GE(req->result, 0); uv_fs_req_cleanup(req); last_events_count = metrics.events; uv_buf_t iov = uv_buf_init(test_buf, sizeof(test_buf)); ASSERT_OK(uv_fs_write(uv_default_loop(), &fs_reqs.write_req, req->result, &iov, 1, 0, write_cb)); } static void prepare_cb(uv_prepare_t* handle) { uv_metrics_t metrics; uv_prepare_stop(handle); ASSERT_OK(uv_metrics_info(uv_default_loop(), &metrics)); ASSERT_UINT64_EQ(0, metrics.loop_count); ASSERT_UINT64_EQ(0, metrics.events); ASSERT_OK(uv_fs_open(uv_default_loop(), &fs_reqs.open_req, "test_file", UV_FS_O_WRONLY | UV_FS_O_CREAT, S_IRUSR | S_IWUSR, create_cb)); } TEST_IMPL(metrics_info_check) { uv_fs_t unlink_req; uv_prepare_t prepare; uv_fs_unlink(NULL, &unlink_req, "test_file", NULL); uv_fs_req_cleanup(&unlink_req); ASSERT_OK(uv_prepare_init(uv_default_loop(), &prepare)); ASSERT_OK(uv_prepare_start(&prepare, prepare_cb)); ASSERT_OK(uv_run(uv_default_loop(), UV_RUN_DEFAULT)); uv_fs_unlink(NULL, &unlink_req, "test_file", NULL); uv_fs_req_cleanup(&unlink_req); MAKE_VALGRIND_HAPPY(uv_default_loop()); return 0; } static void fs_prepare_cb(uv_prepare_t* handle) { uv_metrics_t metrics; ASSERT_OK(uv_metrics_info(uv_default_loop(), &metrics)); if (pool_events_counter == 1) ASSERT_EQ(metrics.events, metrics.events_waiting); if (pool_events_counter < 7) return; uv_prepare_stop(handle); pool_events_counter = -42; } static void fs_stat_cb(uv_fs_t* req) { uv_fs_req_cleanup(req); pool_events_counter++; } static void fs_work_cb(uv_work_t* req) { } static void fs_after_work_cb(uv_work_t* req, int status) { free(req); pool_events_counter++; } static void fs_write_cb(uv_fs_t* req) { uv_work_t* work1 = malloc(sizeof(*work1)); uv_work_t* work2 = malloc(sizeof(*work2)); pool_events_counter++; uv_fs_req_cleanup(req); ASSERT_OK(uv_queue_work(uv_default_loop(), work1, fs_work_cb, fs_after_work_cb)); ASSERT_OK(uv_queue_work(uv_default_loop(), work2, fs_work_cb, fs_after_work_cb)); } static void fs_random_cb(uv_random_t* req, int status, void* buf, size_t len) { pool_events_counter++; } static void fs_addrinfo_cb(uv_getaddrinfo_t* req, int status, struct addrinfo* res) { uv_freeaddrinfo(req->addrinfo); pool_events_counter++; } TEST_IMPL(metrics_pool_events) { uv_buf_t iov; uv_fs_t open_req; uv_fs_t stat1_req; uv_fs_t stat2_req; uv_fs_t unlink_req; uv_fs_t write_req; uv_getaddrinfo_t addrinfo_req; uv_metrics_t metrics; uv_prepare_t prepare; uv_random_t random_req; int fd; char rdata; ASSERT_OK(uv_loop_configure(uv_default_loop(), UV_METRICS_IDLE_TIME)); uv_fs_unlink(NULL, &unlink_req, "test_file", NULL); uv_fs_req_cleanup(&unlink_req); ASSERT_OK(uv_prepare_init(uv_default_loop(), &prepare)); ASSERT_OK(uv_prepare_start(&prepare, fs_prepare_cb)); pool_events_counter = 0; fd = uv_fs_open(NULL, &open_req, "test_file", UV_FS_O_WRONLY | UV_FS_O_CREAT, S_IRUSR | S_IWUSR, NULL); ASSERT_GT(fd, 0); uv_fs_req_cleanup(&open_req); iov = uv_buf_init(test_buf, sizeof(test_buf)); ASSERT_OK(uv_fs_write(uv_default_loop(), &write_req, fd, &iov, 1, 0, fs_write_cb)); ASSERT_OK(uv_fs_stat(uv_default_loop(), &stat1_req, "test_file", fs_stat_cb)); ASSERT_OK(uv_fs_stat(uv_default_loop(), &stat2_req, "test_file", fs_stat_cb)); ASSERT_OK(uv_random(uv_default_loop(), &random_req, &rdata, 1, 0, fs_random_cb)); ASSERT_OK(uv_getaddrinfo(uv_default_loop(), &addrinfo_req, fs_addrinfo_cb, "example.invalid", NULL, NULL)); /* Sleep for a moment to hopefully force the events to complete before * entering the event loop. */ uv_sleep(100); ASSERT_OK(uv_run(uv_default_loop(), UV_RUN_DEFAULT)); ASSERT_OK(uv_metrics_info(uv_default_loop(), &metrics)); /* It's possible for uv__work_done() to execute one extra time even though the * QUEUE has already been cleared out. This has to do with the way we use an * uv_async to tell the event loop thread to process the worker pool QUEUE. */ ASSERT_GE(metrics.events, 7); /* It's possible one of the other events also got stuck in the event queue, so * check GE instead of EQ. Reason for 4 instead of 5 is because the call to * uv_getaddrinfo() is racey and slow. So can't guarantee that it'll always * execute before sleep completes. */ ASSERT_GE(metrics.events_waiting, 4); ASSERT_EQ(pool_events_counter, -42); uv_fs_unlink(NULL, &unlink_req, "test_file", NULL); uv_fs_req_cleanup(&unlink_req); MAKE_VALGRIND_HAPPY(uv_default_loop()); return 0; }