#include "mem.h" #include "util.js.h" #include "uv.h" #include "quickjs.h" #include "sqlite3.h" #include "uv.h" #include #include #include typedef struct _tf_mem_node_t tf_mem_node_t; static uv_mutex_t s_tracking_mutex; static bool s_mem_tracking; static tf_mem_node_t* s_mem_tracked; static int64_t s_tf_malloc_size; static int64_t s_uv_malloc_size; static int64_t s_tls_malloc_size; static int64_t s_js_malloc_size; static int64_t s_sqlite_malloc_size; extern uint32_t fnv32a(const void* buffer, int length, uint32_t start); static size_t _tf_mem_round_up(size_t size) { return (size + 7) & ~7; } void tf_mem_startup(bool tracking) { s_mem_tracking = tracking; uv_mutex_init(&s_tracking_mutex); } void tf_mem_shutdown() { s_mem_tracking = false; s_mem_tracked = NULL; uv_mutex_destroy(&s_tracking_mutex); } typedef struct _tf_mem_node_t { void* ptr; tf_mem_node_t* next; tf_mem_node_t* previous; int frames_count; void* frames[]; } tf_mem_node_t; static void _tf_mem_add_tracked_allocation(tf_mem_node_t* node) { if (s_mem_tracking) { uv_mutex_lock(&s_tracking_mutex); if (s_mem_tracked) { node->next = s_mem_tracked; node->previous = s_mem_tracked->previous; s_mem_tracked->previous->next = node; s_mem_tracked->previous = node; } else { s_mem_tracked = node; node->next = node->previous = node; } uv_mutex_unlock(&s_tracking_mutex); } } static void _tf_mem_remove_tracked_allocation(tf_mem_node_t* node) { if (s_mem_tracking) { uv_mutex_lock(&s_tracking_mutex); tf_mem_node_t* previous = node->previous; tf_mem_node_t* next = node->next; next->previous = previous; previous->next = next; node->next = NULL; node->previous = NULL; if (node == s_mem_tracked) { s_mem_tracked = next != node ? next : NULL; } uv_mutex_unlock(&s_tracking_mutex); } } void tf_mem_walk_allocations(void (*callback)(void* ptr, size_t size, int frames_count, void* const* frames, void* user_data), void* user_data) { uv_mutex_lock(&s_tracking_mutex); for (tf_mem_node_t* node = s_mem_tracked ? s_mem_tracked->next : NULL; node; node = node->next) { size_t size = 0; void* frames[32]; memcpy(&size, node->ptr, sizeof(size)); if (s_mem_tracking) { if (node->frames_count) { memcpy(frames, node->frames, sizeof(void*) * node->frames_count); } } callback( (void*)((intptr_t)node->ptr + sizeof(size_t)), size, node->frames_count, node->frames_count ? frames : NULL, user_data); if (node == s_mem_tracked) { break; } } uv_mutex_unlock(&s_tracking_mutex); } typedef struct _summary_t { tf_mem_allocation_t* allocations; int count; int capacity; } summary_t; static int _tf_mem_hash_stack_compare(const void* a, const void* b) { const tf_mem_allocation_t* aa = a; const tf_mem_allocation_t* ab = b; if (aa->stack_hash != ab->stack_hash) { return aa->stack_hash < ab->stack_hash ? -1 : 1; } if (aa->frames_count != ab->frames_count) { return aa->frames_count < ab->frames_count ? -1 : 1; } return memcmp(aa->frames, ab->frames, sizeof(void*) * aa->frames_count); } static int _tf_mem_size_compare(const void* a, const void* b) { const tf_mem_allocation_t* aa = a; const tf_mem_allocation_t* ab = b; if (aa->size > ab->size) { return -1; } else if (ab->size > aa->size) { return 1; } return 0; } static void _tf_mem_summarize(void* ptr, size_t size, int frames_count, void* const* frames, void* user_data) { summary_t* summary = user_data; tf_mem_allocation_t allocation = { .stack_hash = fnv32a(frames, sizeof(void*) * frames_count, 0), .count = 1, .size = size, .frames_count = frames_count, }; memcpy(allocation.frames, frames, sizeof(void*) * frames_count); int index = tf_util_insert_index(&allocation, summary->allocations, summary->count, sizeof(tf_mem_allocation_t), _tf_mem_hash_stack_compare); if (index < summary->count && allocation.stack_hash == summary->allocations[index].stack_hash && allocation.frames_count == summary->allocations[index].frames_count && memcmp(frames, summary->allocations[index].frames, sizeof(void*) * frames_count) == 0) { summary->allocations[index].count++; summary->allocations[index].size += size; } else { if (summary->count + 1 >= summary->capacity) { summary->capacity = summary->capacity ? summary->capacity * 2 : 256; summary->allocations = realloc(summary->allocations, sizeof(tf_mem_allocation_t) * summary->capacity); } if (index < summary->count) { memmove(summary->allocations + index + 1, summary->allocations + index, sizeof(tf_mem_allocation_t) * (summary->count - index)); } summary->allocations[index] = allocation; summary->count++; } } tf_mem_allocation_t* tf_mem_summarize_allocations(int* out_count) { summary_t summary = { 0 }; tf_mem_walk_allocations(_tf_mem_summarize, &summary); qsort(summary.allocations, summary.count, sizeof(tf_mem_allocation_t), _tf_mem_size_compare); *out_count = summary.count; tf_mem_allocation_t* result = tf_malloc(sizeof(tf_mem_allocation_t) * summary.count); memcpy(result, summary.allocations, sizeof(tf_mem_allocation_t) * summary.count); free(summary.allocations); return result; } #if defined(__GNUC__) #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wanalyzer-malloc-leak" #endif static void* _tf_alloc(int64_t* total, size_t size) { size_t overhead = sizeof(size_t); void* buffer[32]; int count = 0; if (s_mem_tracking) { count = tf_util_backtrace(buffer, sizeof(buffer) / sizeof(*buffer)); overhead += sizeof(tf_mem_node_t) + sizeof(void*) * count; } size_t rounded_up_size = _tf_mem_round_up(size); void* ptr = malloc(rounded_up_size + overhead); if (ptr) { __atomic_add_fetch(total, size, __ATOMIC_RELAXED); memcpy(ptr, &size, sizeof(size_t)); if (s_mem_tracking) { tf_mem_node_t* node = (tf_mem_node_t*)((intptr_t)ptr + sizeof(size_t) + rounded_up_size); memcpy(node, &(tf_mem_node_t) { .ptr = ptr, .frames_count = count }, sizeof(tf_mem_node_t)); if (count) { memcpy(node->frames, buffer, sizeof(void*) * count); } _tf_mem_add_tracked_allocation(node); } return (void*)((intptr_t)ptr + sizeof(size_t)); } else { return NULL; } } static void* _tf_realloc(int64_t* total, void* ptr, size_t size) { if (!ptr && !size) { return NULL; } void* buffer[32]; int count = 0; size_t overhead = sizeof(size_t); if (s_mem_tracking) { count = tf_util_backtrace(buffer, sizeof(buffer) / sizeof(*buffer)); overhead += sizeof(tf_mem_node_t) + sizeof(void*) * count; } void* old_ptr = ptr ? (void*)((intptr_t)ptr - sizeof(size_t)) : NULL; size_t old_size = 0; if (old_ptr) { memcpy(&old_size, old_ptr, sizeof(size_t)); } void* new_ptr = NULL; tf_mem_node_t* node = (void*)((intptr_t)ptr + _tf_mem_round_up(old_size)); size_t rounded_up_size = _tf_mem_round_up(size); if (old_ptr && !size) { _tf_mem_remove_tracked_allocation(node); free(old_ptr); } else { if (old_ptr) { _tf_mem_remove_tracked_allocation(node); } new_ptr = realloc(old_ptr, rounded_up_size + overhead); } if (new_ptr) { __atomic_add_fetch(total, (int64_t)size - (int64_t)old_size, __ATOMIC_RELAXED); memcpy(new_ptr, &size, sizeof(size_t)); if (s_mem_tracking) { tf_mem_node_t* node = (tf_mem_node_t*)((intptr_t)new_ptr + sizeof(size_t) + rounded_up_size); memcpy(node, &(tf_mem_node_t) { .ptr = new_ptr, .frames_count = count }, sizeof(tf_mem_node_t)); if (count) { memcpy(node->frames, buffer, sizeof(void*) * count); } _tf_mem_add_tracked_allocation(node); } return (void*)((intptr_t)new_ptr + sizeof(size_t)); } else { __atomic_sub_fetch(total, old_size, __ATOMIC_RELAXED); return NULL; } } #if defined(__GNUC__) #pragma GCC diagnostic pop #endif static void _tf_free(int64_t* total, void* ptr) { if (ptr) { void* old_ptr = (void*)((intptr_t)ptr - sizeof(size_t)); size_t size = 0; memcpy(&size, old_ptr, sizeof(size_t)); tf_mem_node_t* node = (void*)((intptr_t)ptr + _tf_mem_round_up(size)); __atomic_sub_fetch(total, size, __ATOMIC_RELAXED); _tf_mem_remove_tracked_allocation(node); free(old_ptr); } } static void* _tf_uv_alloc(size_t size) { return _tf_alloc(&s_uv_malloc_size, size); } static void* _tf_uv_realloc(void* ptr, size_t size) { return _tf_realloc(&s_uv_malloc_size, ptr, size); } #if defined(__GNUC__) #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wanalyzer-malloc-leak" #endif static void* _tf_uv_calloc(size_t nmemb, size_t size) { size_t total_size = nmemb * size; size_t rounded_up_size = _tf_mem_round_up(total_size); size_t overhead = sizeof(size_t); void* buffer[32]; int count = 0; if (s_mem_tracking) { count = tf_util_backtrace(buffer, sizeof(buffer) / sizeof(*buffer)); overhead += sizeof(tf_mem_node_t) + sizeof(void*) * count; } void* ptr = calloc(1, rounded_up_size + overhead); if (ptr) { __atomic_add_fetch(&s_uv_malloc_size, total_size, __ATOMIC_RELAXED); memcpy(ptr, &total_size, sizeof(size_t)); if (s_mem_tracking) { tf_mem_node_t* node = (tf_mem_node_t*)((intptr_t)ptr + sizeof(size_t) + rounded_up_size); memcpy(node, &(tf_mem_node_t) { .ptr = ptr, .frames_count = count }, sizeof(tf_mem_node_t)); if (count) { memcpy(node->frames, buffer, sizeof(void*) * count); } _tf_mem_add_tracked_allocation(node); } return (void*)((intptr_t)ptr + sizeof(size_t)); } else { return NULL; } } #if defined(__GNUC__) #pragma GCC diagnostic pop #endif static void _tf_uv_free(void* ptr) { _tf_free(&s_uv_malloc_size, ptr); } void tf_mem_replace_uv_allocator() { uv_replace_allocator(_tf_uv_alloc, _tf_uv_realloc, _tf_uv_calloc, _tf_uv_free); } size_t tf_mem_get_uv_malloc_size() { return s_uv_malloc_size; } void* _tf_tls_alloc(size_t size, const char* file, int line) { return _tf_alloc(&s_tls_malloc_size, size); } void* _tf_tls_realloc(void* ptr, size_t size, const char* file, int line) { return _tf_realloc(&s_tls_malloc_size, ptr, size); } void _tf_tls_free(void* ptr, const char* file, int line) { _tf_free(&s_tls_malloc_size, ptr); } void tf_mem_replace_tls_allocator() { CRYPTO_set_mem_functions(_tf_tls_alloc, _tf_tls_realloc, _tf_tls_free); } size_t tf_mem_get_tls_malloc_size() { return s_tls_malloc_size; } void* tf_malloc(size_t size) { return _tf_alloc(&s_tf_malloc_size, size); } void* tf_realloc(void* ptr, size_t size) { return _tf_realloc(&s_tf_malloc_size, ptr, size); } void tf_free(void* ptr) { _tf_free(&s_tf_malloc_size, ptr); } char* tf_strdup(const char* string) { size_t len = strlen(string); char* buffer = tf_malloc(len + 1); if ( buffer) { memcpy(buffer, string, len + 1); } return buffer; } void* tf_resize_vec(void* ptr, size_t size) { void* alloc_ptr = ptr ? (void*)((intptr_t)ptr - sizeof(size_t)) : NULL; size_t alloc_size = 0; if (alloc_ptr) { memcpy(&alloc_size, alloc_ptr, sizeof(size_t)); } if ((alloc_size >= 16 * size + sizeof(size_t)) || !size) { /* If we've dropped significantly in size or are freeing, resize down. */ return tf_realloc(ptr, size); } else if (alloc_size >= size + sizeof(size_t)) { /* Otherwise, if we're big enough, stay the same size. */ return ptr; } else { /* If we need to grow, overallocate 2x to give room to continue growing. */ return tf_realloc(ptr, size * 2); } } size_t tf_mem_get_tf_malloc_size() { return s_tf_malloc_size; } static void* _tf_js_malloc(JSMallocState* state, size_t size) { int64_t delta = 0; void* ptr = _tf_alloc(&delta, size); if (ptr) { __atomic_add_fetch(&s_js_malloc_size, delta, __ATOMIC_RELAXED); state->malloc_count++; state->malloc_size += delta; } return ptr; } static void _tf_js_free(JSMallocState* state, void* ptr) { if (ptr) { int64_t delta = 0; _tf_free(&delta, ptr); __atomic_add_fetch(&s_js_malloc_size, delta, __ATOMIC_RELAXED); state->malloc_count--; state->malloc_size += delta; } } static void* _tf_js_realloc(JSMallocState* state, void* ptr, size_t size) { int64_t delta = 0; void* result = _tf_realloc(&delta, ptr, size); __atomic_add_fetch(&s_js_malloc_size, delta, __ATOMIC_RELAXED); state->malloc_count += (ptr ? -1 : 0) + (result ? 1 : 0); state->malloc_size += delta; return result; } static size_t _tf_js_malloc_usable_size(const void* ptr) { void* old_ptr = ptr ? (void*)((intptr_t)ptr - sizeof(size_t)) : NULL; size_t old_size = 0; if (old_ptr) { memcpy(&old_size, old_ptr, sizeof(size_t)); } return old_size; } void tf_get_js_malloc_functions(JSMallocFunctions* out) { *out = (JSMallocFunctions) { .js_malloc = _tf_js_malloc, .js_free = _tf_js_free, .js_realloc = _tf_js_realloc, .js_malloc_usable_size = _tf_js_malloc_usable_size, }; } size_t tf_mem_get_js_malloc_size() { return s_js_malloc_size; } static void* _tf_sqlite_malloc(int size) { return _tf_alloc(&s_sqlite_malloc_size, size); } static void _tf_sqlite_free(void* ptr) { _tf_free(&s_sqlite_malloc_size, ptr); } static void* _tf_sqlite_realloc(void* ptr, int size) { return _tf_realloc(&s_sqlite_malloc_size, ptr, size); } static int _tf_sqlite_size(void* ptr) { void* old_ptr = ptr ? (void*)((intptr_t)ptr - sizeof(size_t)) : NULL; size_t old_size = 0; if (old_ptr) { memcpy(&old_size, old_ptr, sizeof(size_t)); } return (int)old_size; } static int _tf_sqlite_roundup(int size) { return (size + 7) & ~7; } static int _tf_sqlite_init(void* user_data) { return SQLITE_OK; } static void _tf_sqlite_shutdown(void* user_data) { } void tf_mem_replace_sqlite_allocator() { sqlite3_mem_methods methods = { .xMalloc = _tf_sqlite_malloc, .xFree = _tf_sqlite_free, .xRealloc = _tf_sqlite_realloc, .xSize = _tf_sqlite_size, .xRoundup = _tf_sqlite_roundup, .xInit = _tf_sqlite_init, .xShutdown = _tf_sqlite_shutdown, }; sqlite3_config(SQLITE_CONFIG_MALLOC, &methods); } size_t tf_mem_get_sqlite_malloc_size() { return s_sqlite_malloc_size; }