/* DO NOT EDIT! ** This file is automatically generated by the script in the canonical ** SQLite source tree at tool/mkshellc.tcl. That script combines source ** code from various constituent source files of SQLite into this single ** "shell.c" file used to implement the SQLite command-line shell. ** ** Most of the code found below comes from the "src/shell.c.in" file in ** the canonical SQLite source tree. That main file contains "INCLUDE" ** lines that specify other files in the canonical source tree that are ** inserted to getnerate this complete program source file. ** ** The code from multiple files is combined into this single "shell.c" ** source file to help make the command-line program easier to compile. ** ** To modify this program, get a copy of the canonical SQLite source tree, ** edit the src/shell.c.in" and/or some of the other files that are included ** by "src/shell.c.in", then rerun the tool/mkshellc.tcl script. */ /* ** 2001 September 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains code to implement the "sqlite" command line ** utility for accessing SQLite databases. */ #if (defined(_WIN32) || defined(WIN32)) && !defined(_CRT_SECURE_NO_WARNINGS) /* This needs to come before any includes for MSVC compiler */ #define _CRT_SECURE_NO_WARNINGS #endif typedef unsigned int u32; typedef unsigned short int u16; /* ** Optionally #include a user-defined header, whereby compilation options ** may be set prior to where they take effect, but after platform setup. ** If SQLITE_CUSTOM_INCLUDE=? is defined, its value names the #include ** file. Note that this macro has a like effect on sqlite3.c compilation. */ # define SHELL_STRINGIFY_(f) #f # define SHELL_STRINGIFY(f) SHELL_STRINGIFY_(f) #ifdef SQLITE_CUSTOM_INCLUDE # include SHELL_STRINGIFY(SQLITE_CUSTOM_INCLUDE) #endif /* ** Determine if we are dealing with WinRT, which provides only a subset of ** the full Win32 API. */ #if !defined(SQLITE_OS_WINRT) # define SQLITE_OS_WINRT 0 #endif /* ** If SQLITE_SHELL_FIDDLE is defined then the shell is modified ** somewhat for use as a WASM module in a web browser. This flag ** should only be used when building the "fiddle" web application, as ** the browser-mode build has much different user input requirements ** and this build mode rewires the user input subsystem to account for ** that. */ /* ** Warning pragmas copied from msvc.h in the core. */ #if defined(_MSC_VER) #pragma warning(disable : 4054) #pragma warning(disable : 4055) #pragma warning(disable : 4100) #pragma warning(disable : 4127) #pragma warning(disable : 4130) #pragma warning(disable : 4152) #pragma warning(disable : 4189) #pragma warning(disable : 4206) #pragma warning(disable : 4210) #pragma warning(disable : 4232) #pragma warning(disable : 4244) #pragma warning(disable : 4305) #pragma warning(disable : 4306) #pragma warning(disable : 4702) #pragma warning(disable : 4706) #endif /* defined(_MSC_VER) */ /* ** No support for loadable extensions in VxWorks. */ #if (defined(__RTP__) || defined(_WRS_KERNEL)) && !SQLITE_OMIT_LOAD_EXTENSION # define SQLITE_OMIT_LOAD_EXTENSION 1 #endif /* ** Enable large-file support for fopen() and friends on unix. */ #ifndef SQLITE_DISABLE_LFS # define _LARGE_FILE 1 # ifndef _FILE_OFFSET_BITS # define _FILE_OFFSET_BITS 64 # endif # define _LARGEFILE_SOURCE 1 #endif #if defined(SQLITE_SHELL_FIDDLE) && !defined(_POSIX_SOURCE) /* ** emcc requires _POSIX_SOURCE (or one of several similar defines) ** to expose strdup(). */ # define _POSIX_SOURCE #endif #include #include #include #include #include #include "sqlite3.h" typedef sqlite3_int64 i64; typedef sqlite3_uint64 u64; typedef unsigned char u8; #if SQLITE_USER_AUTHENTICATION # include "sqlite3userauth.h" #endif #include #include #if !defined(_WIN32) && !defined(WIN32) # include # if !defined(__RTP__) && !defined(_WRS_KERNEL) && !defined(SQLITE_WASI) # include # endif #endif #if (!defined(_WIN32) && !defined(WIN32)) || defined(__MINGW32__) # include # include # define GETPID getpid # if defined(__MINGW32__) # define DIRENT dirent # ifndef S_ISLNK # define S_ISLNK(mode) (0) # endif # endif #else # define GETPID (int)GetCurrentProcessId #endif #include #include #if HAVE_READLINE # include # include #endif #if HAVE_EDITLINE # include #endif #if HAVE_EDITLINE || HAVE_READLINE # define shell_add_history(X) add_history(X) # define shell_read_history(X) read_history(X) # define shell_write_history(X) write_history(X) # define shell_stifle_history(X) stifle_history(X) # define shell_readline(X) readline(X) #elif HAVE_LINENOISE # include "linenoise.h" # define shell_add_history(X) linenoiseHistoryAdd(X) # define shell_read_history(X) linenoiseHistoryLoad(X) # define shell_write_history(X) linenoiseHistorySave(X) # define shell_stifle_history(X) linenoiseHistorySetMaxLen(X) # define shell_readline(X) linenoise(X) #else # define shell_read_history(X) # define shell_write_history(X) # define shell_stifle_history(X) # define SHELL_USE_LOCAL_GETLINE 1 #endif #ifndef deliberate_fall_through /* Quiet some compilers about some of our intentional code. */ # if defined(GCC_VERSION) && GCC_VERSION>=7000000 # define deliberate_fall_through __attribute__((fallthrough)); # else # define deliberate_fall_through # endif #endif #if defined(_WIN32) || defined(WIN32) # if SQLITE_OS_WINRT # define SQLITE_OMIT_POPEN 1 # else # include # include # define isatty(h) _isatty(h) # ifndef access # define access(f,m) _access((f),(m)) # endif # ifndef unlink # define unlink _unlink # endif # ifndef strdup # define strdup _strdup # endif # undef pclose # define pclose _pclose # endif #else /* Make sure isatty() has a prototype. */ extern int isatty(int); # if !defined(__RTP__) && !defined(_WRS_KERNEL) && !defined(SQLITE_WASI) /* popen and pclose are not C89 functions and so are ** sometimes omitted from the header */ extern FILE *popen(const char*,const char*); extern int pclose(FILE*); # else # define SQLITE_OMIT_POPEN 1 # endif #endif #if defined(_WIN32_WCE) /* Windows CE (arm-wince-mingw32ce-gcc) does not provide isatty() * thus we always assume that we have a console. That can be * overridden with the -batch command line option. */ #define isatty(x) 1 #endif /* ctype macros that work with signed characters */ #define IsSpace(X) isspace((unsigned char)X) #define IsDigit(X) isdigit((unsigned char)X) #define ToLower(X) (char)tolower((unsigned char)X) #if defined(_WIN32) || defined(WIN32) #if SQLITE_OS_WINRT #include #endif #undef WIN32_LEAN_AND_MEAN #define WIN32_LEAN_AND_MEAN #include /* string conversion routines only needed on Win32 */ extern char *sqlite3_win32_unicode_to_utf8(LPCWSTR); extern LPWSTR sqlite3_win32_utf8_to_unicode(const char *zText); #endif /************************* Begin ../ext/misc/sqlite3_stdio.h ******************/ /* ** 2024-09-24 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** ** This header file contains definitions of interfaces that provide ** cross-platform I/O for UTF-8 content. ** ** On most platforms, the interfaces definitions in this file are ** just #defines. For example sqlite3_fopen() is a macro that resolves ** to the standard fopen() in the C-library. ** ** But Windows does not have a standard C-library, at least not one that ** can handle UTF-8. So for windows build, the interfaces resolve to new ** C-language routines contained in the separate sqlite3_stdio.c source file. ** ** So on all non-Windows platforms, simply #include this header file and ** use the interfaces defined herein. Then to run your application on Windows, ** also link in the accompanying sqlite3_stdio.c source file when compiling ** to get compatible interfaces. */ #ifndef _SQLITE3_STDIO_H_ #define _SQLITE3_STDIO_H_ 1 #ifdef _WIN32 /**** Definitions For Windows ****/ #include #include FILE *sqlite3_fopen(const char *zFilename, const char *zMode); FILE *sqlite3_popen(const char *zCommand, const char *type); char *sqlite3_fgets(char *s, int size, FILE *stream); int sqlite3_fputs(const char *s, FILE *stream); int sqlite3_fprintf(FILE *stream, const char *format, ...); void sqlite3_fsetmode(FILE *stream, int mode); #else /**** Definitions For All Other Platforms ****/ #include #define sqlite3_fopen fopen #define sqlite3_popen popen #define sqlite3_fgets fgets #define sqlite3_fputs fputs #define sqlite3_fprintf fprintf #define sqlite3_fsetmode(F,X) /*no-op*/ #endif #endif /* _SQLITE3_STDIO_H_ */ /************************* End ../ext/misc/sqlite3_stdio.h ********************/ /************************* Begin ../ext/misc/sqlite3_stdio.c ******************/ /* ** 2024-09-24 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** ** Implementation of standard I/O interfaces for UTF-8 that are missing ** on Windows. */ #ifdef _WIN32 /* This file is a no-op on all platforms except Windows */ #ifndef _SQLITE3_STDIO_H_ /* #include "sqlite3_stdio.h" */ #endif #undef WIN32_LEAN_AND_MEAN #define WIN32_LEAN_AND_MEAN #include #include #include #include #include /* #include "sqlite3.h" */ #include #include #include #include /* ** If the SQLITE_U8TEXT_ONLY option is defined, then use O_U8TEXT ** when appropriate on all output. (Sometimes use O_BINARY when ** rendering ASCII text in cases where NL-to-CRLF expansion would ** not be correct.) ** ** If the SQLITE_U8TEXT_STDIO option is defined, then use O_U8TEXT ** when appropriate when writing to stdout or stderr. Use O_BINARY ** or O_TEXT (depending on things like the .mode and the .crlf setting ** in the CLI, or other context clues in other applications) for all ** other output channels. ** ** The default behavior, if neither of the above is defined is to ** use O_U8TEXT when writing to the Windows console (or anything ** else for which _isatty() returns true) and to use O_BINARY or O_TEXT ** for all other output channels. */ #if defined(SQLITE_U8TEXT_ONLY) # define UseWtextForOutput(fd) 1 # define UseWtextForInput(fd) 1 # define IsConsole(fd) _isatty(_fileno(fd)) #elif defined(SQLITE_U8TEXT_STDIO) # define UseWtextForOutput(fd) ((fd)==stdout || (fd)==stderr) # define UseWtextForInput(fd) ((fd)==stdin) # define IsConsole(fd) _isatty(_fileno(fd)) #else # define UseWtextForOutput(fd) _isatty(_fileno(fd)) # define UseWtextForInput(fd) _isatty(_fileno(fd)) # define IsConsole(fd) 1 #endif /* ** Global variables determine if simulated O_BINARY mode is to be ** used for stdout or other, respectively. Simulated O_BINARY mode ** means the mode is usually O_BINARY, but switches to O_U8TEXT for ** unicode characters U+0080 or greater (any character that has a ** multi-byte representation in UTF-8). This is the only way we ** have found to render Unicode characters on a Windows console while ** at the same time avoiding undesirable \n to \r\n translation. */ static int simBinaryStdout = 0; static int simBinaryOther = 0; /* ** Determine if simulated binary mode should be used for output to fd */ static int UseBinaryWText(FILE *fd){ if( fd==stdout || fd==stderr ){ return simBinaryStdout; }else{ return simBinaryOther; } } /* ** Work-alike for the fopen() routine from the standard C library. */ FILE *sqlite3_fopen(const char *zFilename, const char *zMode){ FILE *fp = 0; wchar_t *b1, *b2; int sz1, sz2; sz1 = (int)strlen(zFilename); sz2 = (int)strlen(zMode); b1 = malloc( (sz1+1)*sizeof(b1[0]) ); b2 = malloc( (sz2+1)*sizeof(b1[0]) ); if( b1 && b2 ){ sz1 = MultiByteToWideChar(CP_UTF8, 0, zFilename, sz1, b1, sz1); b1[sz1] = 0; sz2 = MultiByteToWideChar(CP_UTF8, 0, zMode, sz2, b2, sz2); b2[sz2] = 0; fp = _wfopen(b1, b2); } free(b1); free(b2); simBinaryOther = 0; return fp; } /* ** Work-alike for the popen() routine from the standard C library. */ FILE *sqlite3_popen(const char *zCommand, const char *zMode){ FILE *fp = 0; wchar_t *b1, *b2; int sz1, sz2; sz1 = (int)strlen(zCommand); sz2 = (int)strlen(zMode); b1 = malloc( (sz1+1)*sizeof(b1[0]) ); b2 = malloc( (sz2+1)*sizeof(b1[0]) ); if( b1 && b2 ){ sz1 = MultiByteToWideChar(CP_UTF8, 0, zCommand, sz1, b1, sz1); b1[sz1] = 0; sz2 = MultiByteToWideChar(CP_UTF8, 0, zMode, sz2, b2, sz2); b2[sz2] = 0; fp = _wpopen(b1, b2); } free(b1); free(b2); return fp; } /* ** Work-alike for fgets() from the standard C library. */ char *sqlite3_fgets(char *buf, int sz, FILE *in){ if( UseWtextForInput(in) ){ /* When reading from the command-prompt in Windows, it is necessary ** to use _O_WTEXT input mode to read UTF-16 characters, then translate ** that into UTF-8. Otherwise, non-ASCII characters all get translated ** into '?'. */ wchar_t *b1 = sqlite3_malloc( sz*sizeof(wchar_t) ); if( b1==0 ) return 0; _setmode(_fileno(in), IsConsole(in) ? _O_WTEXT : _O_U8TEXT); if( fgetws(b1, sz/4, in)==0 ){ sqlite3_free(b1); return 0; } WideCharToMultiByte(CP_UTF8, 0, b1, -1, buf, sz, 0, 0); sqlite3_free(b1); return buf; }else{ /* Reading from a file or other input source, just read bytes without ** any translation. */ return fgets(buf, sz, in); } } /* ** Send ASCII text as O_BINARY. But for Unicode characters U+0080 and ** greater, switch to O_U8TEXT. */ static void piecemealOutput(wchar_t *b1, int sz, FILE *out){ int i; wchar_t c; while( sz>0 ){ for(i=0; i=0x80; i++){} if( i>0 ){ c = b1[i]; b1[i] = 0; fflush(out); _setmode(_fileno(out), _O_U8TEXT); fputws(b1, out); fflush(out); b1 += i; b1[0] = c; sz -= i; }else{ fflush(out); _setmode(_fileno(out), _O_TEXT); _setmode(_fileno(out), _O_BINARY); fwrite(&b1[0], 1, 1, out); for(i=1; iiVersion>=2 && clockVfs->xCurrentTimeInt64!=0 ){ clockVfs->xCurrentTimeInt64(clockVfs, &t); }else{ double r; clockVfs->xCurrentTime(clockVfs, &r); t = (sqlite3_int64)(r*86400000.0); } return t; } #if !defined(_WIN32) && !defined(WIN32) && !defined(__minux) #include #include /* VxWorks does not support getrusage() as far as we can determine */ #if defined(_WRS_KERNEL) || defined(__RTP__) struct rusage { struct timeval ru_utime; /* user CPU time used */ struct timeval ru_stime; /* system CPU time used */ }; #define getrusage(A,B) memset(B,0,sizeof(*B)) #endif /* Saved resource information for the beginning of an operation */ static struct rusage sBegin; /* CPU time at start */ static sqlite3_int64 iBegin; /* Wall-clock time at start */ /* ** Begin timing an operation */ static void beginTimer(void){ if( enableTimer ){ getrusage(RUSAGE_SELF, &sBegin); iBegin = timeOfDay(); } } /* Return the difference of two time_structs in seconds */ static double timeDiff(struct timeval *pStart, struct timeval *pEnd){ return (pEnd->tv_usec - pStart->tv_usec)*0.000001 + (double)(pEnd->tv_sec - pStart->tv_sec); } /* ** Print the timing results. */ static void endTimer(FILE *out){ if( enableTimer ){ sqlite3_int64 iEnd = timeOfDay(); struct rusage sEnd; getrusage(RUSAGE_SELF, &sEnd); sqlite3_fprintf(out, "Run Time: real %.3f user %f sys %f\n", (iEnd - iBegin)*0.001, timeDiff(&sBegin.ru_utime, &sEnd.ru_utime), timeDiff(&sBegin.ru_stime, &sEnd.ru_stime)); } } #define BEGIN_TIMER beginTimer() #define END_TIMER(X) endTimer(X) #define HAS_TIMER 1 #elif (defined(_WIN32) || defined(WIN32)) /* Saved resource information for the beginning of an operation */ static HANDLE hProcess; static FILETIME ftKernelBegin; static FILETIME ftUserBegin; static sqlite3_int64 ftWallBegin; typedef BOOL (WINAPI *GETPROCTIMES)(HANDLE, LPFILETIME, LPFILETIME, LPFILETIME, LPFILETIME); static GETPROCTIMES getProcessTimesAddr = NULL; /* ** Check to see if we have timer support. Return 1 if necessary ** support found (or found previously). */ static int hasTimer(void){ if( getProcessTimesAddr ){ return 1; } else { #if !SQLITE_OS_WINRT /* GetProcessTimes() isn't supported in WIN95 and some other Windows ** versions. See if the version we are running on has it, and if it ** does, save off a pointer to it and the current process handle. */ hProcess = GetCurrentProcess(); if( hProcess ){ HINSTANCE hinstLib = LoadLibrary(TEXT("Kernel32.dll")); if( NULL != hinstLib ){ getProcessTimesAddr = (GETPROCTIMES) GetProcAddress(hinstLib, "GetProcessTimes"); if( NULL != getProcessTimesAddr ){ return 1; } FreeLibrary(hinstLib); } } #endif } return 0; } /* ** Begin timing an operation */ static void beginTimer(void){ if( enableTimer && getProcessTimesAddr ){ FILETIME ftCreation, ftExit; getProcessTimesAddr(hProcess,&ftCreation,&ftExit, &ftKernelBegin,&ftUserBegin); ftWallBegin = timeOfDay(); } } /* Return the difference of two FILETIME structs in seconds */ static double timeDiff(FILETIME *pStart, FILETIME *pEnd){ sqlite_int64 i64Start = *((sqlite_int64 *) pStart); sqlite_int64 i64End = *((sqlite_int64 *) pEnd); return (double) ((i64End - i64Start) / 10000000.0); } /* ** Print the timing results. */ static void endTimer(FILE *out){ if( enableTimer && getProcessTimesAddr){ FILETIME ftCreation, ftExit, ftKernelEnd, ftUserEnd; sqlite3_int64 ftWallEnd = timeOfDay(); getProcessTimesAddr(hProcess,&ftCreation,&ftExit,&ftKernelEnd,&ftUserEnd); sqlite3_fprintf(out, "Run Time: real %.3f user %f sys %f\n", (ftWallEnd - ftWallBegin)*0.001, timeDiff(&ftUserBegin, &ftUserEnd), timeDiff(&ftKernelBegin, &ftKernelEnd)); } } #define BEGIN_TIMER beginTimer() #define END_TIMER(X) endTimer(X) #define HAS_TIMER hasTimer() #else #define BEGIN_TIMER #define END_TIMER(X) /*no-op*/ #define HAS_TIMER 0 #endif /* ** Used to prevent warnings about unused parameters */ #define UNUSED_PARAMETER(x) (void)(x) /* ** Number of elements in an array */ #define ArraySize(X) (int)(sizeof(X)/sizeof(X[0])) /* ** If the following flag is set, then command execution stops ** at an error if we are not interactive. */ static int bail_on_error = 0; /* ** Treat stdin as an interactive input if the following variable ** is true. Otherwise, assume stdin is connected to a file or pipe. */ static int stdin_is_interactive = 1; /* ** On Windows systems we need to know if standard output is a console ** in order to show that UTF-16 translation is done in the sign-on ** banner. The following variable is true if it is the console. */ static int stdout_is_console = 1; /* ** The following is the open SQLite database. We make a pointer ** to this database a static variable so that it can be accessed ** by the SIGINT handler to interrupt database processing. */ static sqlite3 *globalDb = 0; /* ** True if an interrupt (Control-C) has been received. */ static volatile int seenInterrupt = 0; /* ** This is the name of our program. It is set in main(), used ** in a number of other places, mostly for error messages. */ static char *Argv0; /* ** Prompt strings. Initialized in main. Settable with ** .prompt main continue */ #define PROMPT_LEN_MAX 20 /* First line prompt. default: "sqlite> " */ static char mainPrompt[PROMPT_LEN_MAX]; /* Continuation prompt. default: " ...> " */ static char continuePrompt[PROMPT_LEN_MAX]; /* This is variant of the standard-library strncpy() routine with the ** one change that the destination string is always zero-terminated, even ** if there is no zero-terminator in the first n-1 characters of the source ** string. */ static char *shell_strncpy(char *dest, const char *src, size_t n){ size_t i; for(i=0; iinParenLevel += ni; if( ni==0 ) p->inParenLevel = 0; p->zScannerAwaits = 0; } /* Record that a lexeme is opened, or closed with args==0. */ static void setLexemeOpen(struct DynaPrompt *p, char *s, char c){ if( s!=0 || c==0 ){ p->zScannerAwaits = s; p->acAwait[0] = 0; }else{ p->acAwait[0] = c; p->zScannerAwaits = p->acAwait; } } /* Upon demand, derive the continuation prompt to display. */ static char *dynamicContinuePrompt(void){ if( continuePrompt[0]==0 || (dynPrompt.zScannerAwaits==0 && dynPrompt.inParenLevel == 0) ){ return continuePrompt; }else{ if( dynPrompt.zScannerAwaits ){ size_t ncp = strlen(continuePrompt); size_t ndp = strlen(dynPrompt.zScannerAwaits); if( ndp > ncp-3 ) return continuePrompt; shell_strcpy(dynPrompt.dynamicPrompt, dynPrompt.zScannerAwaits); while( ndp<3 ) dynPrompt.dynamicPrompt[ndp++] = ' '; shell_strncpy(dynPrompt.dynamicPrompt+3, continuePrompt+3, PROMPT_LEN_MAX-4); }else{ if( dynPrompt.inParenLevel>9 ){ shell_strncpy(dynPrompt.dynamicPrompt, "(..", 4); }else if( dynPrompt.inParenLevel<0 ){ shell_strncpy(dynPrompt.dynamicPrompt, ")x!", 4); }else{ shell_strncpy(dynPrompt.dynamicPrompt, "(x.", 4); dynPrompt.dynamicPrompt[2] = (char)('0'+dynPrompt.inParenLevel); } shell_strncpy(dynPrompt.dynamicPrompt+3, continuePrompt+3, PROMPT_LEN_MAX-4); } } return dynPrompt.dynamicPrompt; } #endif /* !defined(SQLITE_OMIT_DYNAPROMPT) */ /* Indicate out-of-memory and exit. */ static void shell_out_of_memory(void){ eputz("Error: out of memory\n"); exit(1); } /* Check a pointer to see if it is NULL. If it is NULL, exit with an ** out-of-memory error. */ static void shell_check_oom(const void *p){ if( p==0 ) shell_out_of_memory(); } /* ** Write I/O traces to the following stream. */ #ifdef SQLITE_ENABLE_IOTRACE static FILE *iotrace = 0; #endif /* ** This routine works like printf in that its first argument is a ** format string and subsequent arguments are values to be substituted ** in place of % fields. The result of formatting this string ** is written to iotrace. */ #ifdef SQLITE_ENABLE_IOTRACE static void SQLITE_CDECL iotracePrintf(const char *zFormat, ...){ va_list ap; char *z; if( iotrace==0 ) return; va_start(ap, zFormat); z = sqlite3_vmprintf(zFormat, ap); va_end(ap); sqlite3_fprintf(iotrace, "%s", z); sqlite3_free(z); } #endif /* Lookup table to estimate the number of columns consumed by a Unicode ** character. */ static const struct { unsigned char w; /* Width of the character in columns */ int iFirst; /* First character in a span having this width */ } aUWidth[] = { /* {1, 0x00000}, */ {0, 0x00300}, {1, 0x00370}, {0, 0x00483}, {1, 0x00487}, {0, 0x00488}, {1, 0x0048a}, {0, 0x00591}, {1, 0x005be}, {0, 0x005bf}, {1, 0x005c0}, {0, 0x005c1}, {1, 0x005c3}, {0, 0x005c4}, {1, 0x005c6}, {0, 0x005c7}, {1, 0x005c8}, {0, 0x00600}, {1, 0x00604}, {0, 0x00610}, {1, 0x00616}, {0, 0x0064b}, {1, 0x0065f}, {0, 0x00670}, {1, 0x00671}, {0, 0x006d6}, {1, 0x006e5}, {0, 0x006e7}, {1, 0x006e9}, {0, 0x006ea}, {1, 0x006ee}, {0, 0x0070f}, {1, 0x00710}, {0, 0x00711}, {1, 0x00712}, {0, 0x00730}, {1, 0x0074b}, {0, 0x007a6}, {1, 0x007b1}, {0, 0x007eb}, {1, 0x007f4}, {0, 0x00901}, {1, 0x00903}, {0, 0x0093c}, {1, 0x0093d}, {0, 0x00941}, {1, 0x00949}, {0, 0x0094d}, {1, 0x0094e}, {0, 0x00951}, {1, 0x00955}, {0, 0x00962}, {1, 0x00964}, {0, 0x00981}, {1, 0x00982}, {0, 0x009bc}, {1, 0x009bd}, {0, 0x009c1}, {1, 0x009c5}, {0, 0x009cd}, {1, 0x009ce}, {0, 0x009e2}, {1, 0x009e4}, {0, 0x00a01}, {1, 0x00a03}, {0, 0x00a3c}, {1, 0x00a3d}, {0, 0x00a41}, {1, 0x00a43}, {0, 0x00a47}, {1, 0x00a49}, {0, 0x00a4b}, {1, 0x00a4e}, {0, 0x00a70}, {1, 0x00a72}, {0, 0x00a81}, {1, 0x00a83}, {0, 0x00abc}, {1, 0x00abd}, {0, 0x00ac1}, {1, 0x00ac6}, {0, 0x00ac7}, {1, 0x00ac9}, {0, 0x00acd}, {1, 0x00ace}, {0, 0x00ae2}, {1, 0x00ae4}, {0, 0x00b01}, {1, 0x00b02}, {0, 0x00b3c}, {1, 0x00b3d}, {0, 0x00b3f}, {1, 0x00b40}, {0, 0x00b41}, {1, 0x00b44}, {0, 0x00b4d}, {1, 0x00b4e}, {0, 0x00b56}, {1, 0x00b57}, {0, 0x00b82}, {1, 0x00b83}, {0, 0x00bc0}, {1, 0x00bc1}, {0, 0x00bcd}, {1, 0x00bce}, {0, 0x00c3e}, {1, 0x00c41}, {0, 0x00c46}, {1, 0x00c49}, {0, 0x00c4a}, {1, 0x00c4e}, {0, 0x00c55}, {1, 0x00c57}, {0, 0x00cbc}, {1, 0x00cbd}, {0, 0x00cbf}, {1, 0x00cc0}, {0, 0x00cc6}, {1, 0x00cc7}, {0, 0x00ccc}, {1, 0x00cce}, {0, 0x00ce2}, {1, 0x00ce4}, {0, 0x00d41}, {1, 0x00d44}, {0, 0x00d4d}, {1, 0x00d4e}, {0, 0x00dca}, {1, 0x00dcb}, {0, 0x00dd2}, {1, 0x00dd5}, {0, 0x00dd6}, {1, 0x00dd7}, {0, 0x00e31}, {1, 0x00e32}, {0, 0x00e34}, {1, 0x00e3b}, {0, 0x00e47}, {1, 0x00e4f}, {0, 0x00eb1}, {1, 0x00eb2}, {0, 0x00eb4}, {1, 0x00eba}, {0, 0x00ebb}, {1, 0x00ebd}, {0, 0x00ec8}, {1, 0x00ece}, {0, 0x00f18}, {1, 0x00f1a}, {0, 0x00f35}, {1, 0x00f36}, {0, 0x00f37}, {1, 0x00f38}, {0, 0x00f39}, {1, 0x00f3a}, {0, 0x00f71}, {1, 0x00f7f}, {0, 0x00f80}, {1, 0x00f85}, {0, 0x00f86}, {1, 0x00f88}, {0, 0x00f90}, {1, 0x00f98}, {0, 0x00f99}, {1, 0x00fbd}, {0, 0x00fc6}, {1, 0x00fc7}, {0, 0x0102d}, {1, 0x01031}, {0, 0x01032}, {1, 0x01033}, {0, 0x01036}, {1, 0x01038}, {0, 0x01039}, {1, 0x0103a}, {0, 0x01058}, {1, 0x0105a}, {2, 0x01100}, {0, 0x01160}, {1, 0x01200}, {0, 0x0135f}, {1, 0x01360}, {0, 0x01712}, {1, 0x01715}, {0, 0x01732}, {1, 0x01735}, {0, 0x01752}, {1, 0x01754}, {0, 0x01772}, {1, 0x01774}, {0, 0x017b4}, {1, 0x017b6}, {0, 0x017b7}, {1, 0x017be}, {0, 0x017c6}, {1, 0x017c7}, {0, 0x017c9}, {1, 0x017d4}, {0, 0x017dd}, {1, 0x017de}, {0, 0x0180b}, {1, 0x0180e}, {0, 0x018a9}, {1, 0x018aa}, {0, 0x01920}, {1, 0x01923}, {0, 0x01927}, {1, 0x01929}, {0, 0x01932}, {1, 0x01933}, {0, 0x01939}, {1, 0x0193c}, {0, 0x01a17}, {1, 0x01a19}, {0, 0x01b00}, {1, 0x01b04}, {0, 0x01b34}, {1, 0x01b35}, {0, 0x01b36}, {1, 0x01b3b}, {0, 0x01b3c}, {1, 0x01b3d}, {0, 0x01b42}, {1, 0x01b43}, {0, 0x01b6b}, {1, 0x01b74}, {0, 0x01dc0}, {1, 0x01dcb}, {0, 0x01dfe}, {1, 0x01e00}, {0, 0x0200b}, {1, 0x02010}, {0, 0x0202a}, {1, 0x0202f}, {0, 0x02060}, {1, 0x02064}, {0, 0x0206a}, {1, 0x02070}, {0, 0x020d0}, {1, 0x020f0}, {2, 0x02329}, {1, 0x0232b}, {2, 0x02e80}, {0, 0x0302a}, {2, 0x03030}, {1, 0x0303f}, {2, 0x03040}, {0, 0x03099}, {2, 0x0309b}, {1, 0x0a4d0}, {0, 0x0a806}, {1, 0x0a807}, {0, 0x0a80b}, {1, 0x0a80c}, {0, 0x0a825}, {1, 0x0a827}, {2, 0x0ac00}, {1, 0x0d7a4}, {2, 0x0f900}, {1, 0x0fb00}, {0, 0x0fb1e}, {1, 0x0fb1f}, {0, 0x0fe00}, {2, 0x0fe10}, {1, 0x0fe1a}, {0, 0x0fe20}, {1, 0x0fe24}, {2, 0x0fe30}, {1, 0x0fe70}, {0, 0x0feff}, {2, 0x0ff00}, {1, 0x0ff61}, {2, 0x0ffe0}, {1, 0x0ffe7}, {0, 0x0fff9}, {1, 0x0fffc}, {0, 0x10a01}, {1, 0x10a04}, {0, 0x10a05}, {1, 0x10a07}, {0, 0x10a0c}, {1, 0x10a10}, {0, 0x10a38}, {1, 0x10a3b}, {0, 0x10a3f}, {1, 0x10a40}, {0, 0x1d167}, {1, 0x1d16a}, {0, 0x1d173}, {1, 0x1d183}, {0, 0x1d185}, {1, 0x1d18c}, {0, 0x1d1aa}, {1, 0x1d1ae}, {0, 0x1d242}, {1, 0x1d245}, {2, 0x20000}, {1, 0x2fffe}, {2, 0x30000}, {1, 0x3fffe}, {0, 0xe0001}, {1, 0xe0002}, {0, 0xe0020}, {1, 0xe0080}, {0, 0xe0100}, {1, 0xe01f0} }; /* ** Return an estimate of the width, in columns, for the single Unicode ** character c. For normal characters, the answer is always 1. But the ** estimate might be 0 or 2 for zero-width and double-width characters. ** ** Different display devices display unicode using different widths. So ** it is impossible to know that true display width with 100% accuracy. ** Inaccuracies in the width estimates might cause columns to be misaligned. ** Unfortunately, there is nothing we can do about that. */ int cli_wcwidth(int c){ int iFirst, iLast; /* Fast path for common characters */ if( c<=0x300 ) return 1; /* The general case */ iFirst = 0; iLast = sizeof(aUWidth)/sizeof(aUWidth[0]) - 1; while( iFirst c ){ iLast = iMid - 1; }else{ return aUWidth[iMid].w; } } if( aUWidth[iLast].iFirst > c ) return aUWidth[iFirst].w; return aUWidth[iLast].w; } /* ** Compute the value and length of a multi-byte UTF-8 character that ** begins at z[0]. Return the length. Write the Unicode value into *pU. ** ** This routine only works for *multi-byte* UTF-8 characters. */ static int decodeUtf8(const unsigned char *z, int *pU){ if( (z[0] & 0xe0)==0xc0 && (z[1] & 0xc0)==0x80 ){ *pU = ((z[0] & 0x1f)<<6) | (z[1] & 0x3f); return 2; } if( (z[0] & 0xf0)==0xe0 && (z[1] & 0xc0)==0x80 && (z[2] & 0xc0)==0x80 ){ *pU = ((z[0] & 0x0f)<<12) | ((z[1] & 0x3f)<<6) | (z[2] & 0x3f); return 3; } if( (z[0] & 0xf8)==0xf0 && (z[1] & 0xc0)==0x80 && (z[2] & 0xc0)==0x80 && (z[3] & 0xc0)==0x80 ){ *pU = ((z[0] & 0x0f)<<18) | ((z[1] & 0x3f)<<12) | ((z[2] & 0x3f))<<6 | (z[4] & 0x3f); return 4; } *pU = 0; return 1; } #if 0 /* NOT USED */ /* ** Return the width, in display columns, of a UTF-8 string. ** ** Each normal character counts as 1. Zero-width characters count ** as zero, and double-width characters count as 2. */ int cli_wcswidth(const char *z){ const unsigned char *a = (const unsigned char*)z; int n = 0; int i = 0; unsigned char c; while( (c = a[i])!=0 ){ if( c>=0xc0 ){ int u; int len = decodeUtf8(&a[i], &u); i += len; n += cli_wcwidth(u); }else if( c>=' ' ){ n++; i++; }else{ i++; } } return n; } #endif /* ** Output string zUtf to stdout as w characters. If w is negative, ** then right-justify the text. W is the width in UTF-8 characters, not ** in bytes. This is different from the %*.*s specification in printf ** since with %*.*s the width is measured in bytes, not characters. ** ** Take into account zero-width and double-width Unicode characters. ** In other words, a zero-width character does not count toward the ** the w limit. A double-width character counts as two. */ static void utf8_width_print(FILE *out, int w, const char *zUtf){ const unsigned char *a = (const unsigned char*)zUtf; unsigned char c; int i = 0; int n = 0; int aw = w<0 ? -w : w; if( zUtf==0 ) zUtf = ""; while( (c = a[i])!=0 ){ if( (c&0xc0)==0xc0 ){ int u; int len = decodeUtf8(a+i, &u); int x = cli_wcwidth(u); if( x+n>aw ){ break; } i += len; n += x; }else if( n>=aw ){ break; }else{ n++; i++; } } if( n>=aw ){ sqlite3_fprintf(out, "%.*s", i, zUtf); }else if( w<0 ){ sqlite3_fprintf(out, "%*s%s", aw-n, "", zUtf); }else{ sqlite3_fprintf(out, "%s%*s", zUtf, aw-n, ""); } } /* ** Determines if a string is a number of not. */ static int isNumber(const char *z, int *realnum){ if( *z=='-' || *z=='+' ) z++; if( !IsDigit(*z) ){ return 0; } z++; if( realnum ) *realnum = 0; while( IsDigit(*z) ){ z++; } if( *z=='.' ){ z++; if( !IsDigit(*z) ) return 0; while( IsDigit(*z) ){ z++; } if( realnum ) *realnum = 1; } if( *z=='e' || *z=='E' ){ z++; if( *z=='+' || *z=='-' ) z++; if( !IsDigit(*z) ) return 0; while( IsDigit(*z) ){ z++; } if( realnum ) *realnum = 1; } return *z==0; } /* ** Compute a string length that is limited to what can be stored in ** lower 30 bits of a 32-bit signed integer. */ static int strlen30(const char *z){ const char *z2 = z; while( *z2 ){ z2++; } return 0x3fffffff & (int)(z2 - z); } /* ** Return the length of a string in characters. Multibyte UTF8 characters ** count as a single character. */ static int strlenChar(const char *z){ int n = 0; while( *z ){ if( (0xc0&*(z++))!=0x80 ) n++; } return n; } /* ** Return open FILE * if zFile exists, can be opened for read ** and is an ordinary file or a character stream source. ** Otherwise return 0. */ static FILE * openChrSource(const char *zFile){ #if defined(_WIN32) || defined(WIN32) struct __stat64 x = {0}; # define STAT_CHR_SRC(mode) ((mode & (_S_IFCHR|_S_IFIFO|_S_IFREG))!=0) /* On Windows, open first, then check the stream nature. This order ** is necessary because _stat() and sibs, when checking a named pipe, ** effectively break the pipe as its supplier sees it. */ FILE *rv = sqlite3_fopen(zFile, "rb"); if( rv==0 ) return 0; if( _fstat64(_fileno(rv), &x) != 0 || !STAT_CHR_SRC(x.st_mode)){ fclose(rv); rv = 0; } return rv; #else struct stat x = {0}; int rc = stat(zFile, &x); # define STAT_CHR_SRC(mode) (S_ISREG(mode)||S_ISFIFO(mode)||S_ISCHR(mode)) if( rc!=0 ) return 0; if( STAT_CHR_SRC(x.st_mode) ){ return sqlite3_fopen(zFile, "rb"); }else{ return 0; } #endif #undef STAT_CHR_SRC } /* ** This routine reads a line of text from FILE in, stores ** the text in memory obtained from malloc() and returns a pointer ** to the text. NULL is returned at end of file, or if malloc() ** fails. ** ** If zLine is not NULL then it is a malloced buffer returned from ** a previous call to this routine that may be reused. */ static char *local_getline(char *zLine, FILE *in){ int nLine = zLine==0 ? 0 : 100; int n = 0; while( 1 ){ if( n+100>nLine ){ nLine = nLine*2 + 100; zLine = realloc(zLine, nLine); shell_check_oom(zLine); } if( sqlite3_fgets(&zLine[n], nLine - n, in)==0 ){ if( n==0 ){ free(zLine); return 0; } zLine[n] = 0; break; } while( zLine[n] ) n++; if( n>0 && zLine[n-1]=='\n' ){ n--; if( n>0 && zLine[n-1]=='\r' ) n--; zLine[n] = 0; break; } } return zLine; } /* ** Retrieve a single line of input text. ** ** If in==0 then read from standard input and prompt before each line. ** If isContinuation is true, then a continuation prompt is appropriate. ** If isContinuation is zero, then the main prompt should be used. ** ** If zPrior is not NULL then it is a buffer from a prior call to this ** routine that can be reused. ** ** The result is stored in space obtained from malloc() and must either ** be freed by the caller or else passed back into this routine via the ** zPrior argument for reuse. */ #ifndef SQLITE_SHELL_FIDDLE static char *one_input_line(FILE *in, char *zPrior, int isContinuation){ char *zPrompt; char *zResult; if( in!=0 ){ zResult = local_getline(zPrior, in); }else{ zPrompt = isContinuation ? CONTINUATION_PROMPT : mainPrompt; #if SHELL_USE_LOCAL_GETLINE sputz(stdout, zPrompt); fflush(stdout); do{ zResult = local_getline(zPrior, stdin); zPrior = 0; /* ^C trap creates a false EOF, so let "interrupt" thread catch up. */ if( zResult==0 ) sqlite3_sleep(50); }while( zResult==0 && seenInterrupt>0 ); #else free(zPrior); zResult = shell_readline(zPrompt); while( zResult==0 ){ /* ^C trap creates a false EOF, so let "interrupt" thread catch up. */ sqlite3_sleep(50); if( seenInterrupt==0 ) break; zResult = shell_readline(""); } if( zResult && *zResult ) shell_add_history(zResult); #endif } return zResult; } #endif /* !SQLITE_SHELL_FIDDLE */ /* ** Return the value of a hexadecimal digit. Return -1 if the input ** is not a hex digit. */ static int hexDigitValue(char c){ if( c>='0' && c<='9' ) return c - '0'; if( c>='a' && c<='f' ) return c - 'a' + 10; if( c>='A' && c<='F' ) return c - 'A' + 10; return -1; } /* ** Interpret zArg as an integer value, possibly with suffixes. */ static sqlite3_int64 integerValue(const char *zArg){ sqlite3_int64 v = 0; static const struct { char *zSuffix; int iMult; } aMult[] = { { "KiB", 1024 }, { "MiB", 1024*1024 }, { "GiB", 1024*1024*1024 }, { "KB", 1000 }, { "MB", 1000000 }, { "GB", 1000000000 }, { "K", 1000 }, { "M", 1000000 }, { "G", 1000000000 }, }; int i; int isNeg = 0; if( zArg[0]=='-' ){ isNeg = 1; zArg++; }else if( zArg[0]=='+' ){ zArg++; } if( zArg[0]=='0' && zArg[1]=='x' ){ int x; zArg += 2; while( (x = hexDigitValue(zArg[0]))>=0 ){ v = (v<<4) + x; zArg++; } }else{ while( IsDigit(zArg[0]) ){ v = v*10 + zArg[0] - '0'; zArg++; } } for(i=0; iz); initText(p); } /* zIn is either a pointer to a NULL-terminated string in memory obtained ** from malloc(), or a NULL pointer. The string pointed to by zAppend is ** added to zIn, and the result returned in memory obtained from malloc(). ** zIn, if it was not NULL, is freed. ** ** If the third argument, quote, is not '\0', then it is used as a ** quote character for zAppend. */ static void appendText(ShellText *p, const char *zAppend, char quote){ i64 len; i64 i; i64 nAppend = strlen30(zAppend); len = nAppend+p->n+1; if( quote ){ len += 2; for(i=0; iz==0 || p->n+len>=p->nAlloc ){ p->nAlloc = p->nAlloc*2 + len + 20; p->z = realloc(p->z, p->nAlloc); shell_check_oom(p->z); } if( quote ){ char *zCsr = p->z+p->n; *zCsr++ = quote; for(i=0; in = (int)(zCsr - p->z); *zCsr = '\0'; }else{ memcpy(p->z+p->n, zAppend, nAppend); p->n += nAppend; p->z[p->n] = '\0'; } } /* ** Attempt to determine if identifier zName needs to be quoted, either ** because it contains non-alphanumeric characters, or because it is an ** SQLite keyword. Be conservative in this estimate: When in doubt assume ** that quoting is required. ** ** Return '"' if quoting is required. Return 0 if no quoting is required. */ static char quoteChar(const char *zName){ int i; if( zName==0 ) return '"'; if( !isalpha((unsigned char)zName[0]) && zName[0]!='_' ) return '"'; for(i=0; zName[i]; i++){ if( !isalnum((unsigned char)zName[i]) && zName[i]!='_' ) return '"'; } return sqlite3_keyword_check(zName, i) ? '"' : 0; } /* ** Construct a fake object name and column list to describe the structure ** of the view, virtual table, or table valued function zSchema.zName. */ static char *shellFakeSchema( sqlite3 *db, /* The database connection containing the vtab */ const char *zSchema, /* Schema of the database holding the vtab */ const char *zName /* The name of the virtual table */ ){ sqlite3_stmt *pStmt = 0; char *zSql; ShellText s; char cQuote; char *zDiv = "("; int nRow = 0; zSql = sqlite3_mprintf("PRAGMA \"%w\".table_info=%Q;", zSchema ? zSchema : "main", zName); shell_check_oom(zSql); sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0); sqlite3_free(zSql); initText(&s); if( zSchema ){ cQuote = quoteChar(zSchema); if( cQuote && sqlite3_stricmp(zSchema,"temp")==0 ) cQuote = 0; appendText(&s, zSchema, cQuote); appendText(&s, ".", 0); } cQuote = quoteChar(zName); appendText(&s, zName, cQuote); while( sqlite3_step(pStmt)==SQLITE_ROW ){ const char *zCol = (const char*)sqlite3_column_text(pStmt, 1); nRow++; appendText(&s, zDiv, 0); zDiv = ","; if( zCol==0 ) zCol = ""; cQuote = quoteChar(zCol); appendText(&s, zCol, cQuote); } appendText(&s, ")", 0); sqlite3_finalize(pStmt); if( nRow==0 ){ freeText(&s); s.z = 0; } return s.z; } /* ** SQL function: strtod(X) ** ** Use the C-library strtod() function to convert string X into a double. ** Used for comparing the accuracy of SQLite's internal text-to-float conversion ** routines against the C-library. */ static void shellStrtod( sqlite3_context *pCtx, int nVal, sqlite3_value **apVal ){ char *z = (char*)sqlite3_value_text(apVal[0]); UNUSED_PARAMETER(nVal); if( z==0 ) return; sqlite3_result_double(pCtx, strtod(z,0)); } /* ** SQL function: dtostr(X) ** ** Use the C-library printf() function to convert real value X into a string. ** Used for comparing the accuracy of SQLite's internal float-to-text conversion ** routines against the C-library. */ static void shellDtostr( sqlite3_context *pCtx, int nVal, sqlite3_value **apVal ){ double r = sqlite3_value_double(apVal[0]); int n = nVal>=2 ? sqlite3_value_int(apVal[1]) : 26; char z[400]; if( n<1 ) n = 1; if( n>350 ) n = 350; sqlite3_snprintf(sizeof(z), z, "%#+.*e", n, r); sqlite3_result_text(pCtx, z, -1, SQLITE_TRANSIENT); } /* ** SQL function: shell_module_schema(X) ** ** Return a fake schema for the table-valued function or eponymous virtual ** table X. */ static void shellModuleSchema( sqlite3_context *pCtx, int nVal, sqlite3_value **apVal ){ const char *zName; char *zFake; UNUSED_PARAMETER(nVal); zName = (const char*)sqlite3_value_text(apVal[0]); zFake = zName? shellFakeSchema(sqlite3_context_db_handle(pCtx), 0, zName) : 0; if( zFake ){ sqlite3_result_text(pCtx, sqlite3_mprintf("/* %s */", zFake), -1, sqlite3_free); free(zFake); } } /* ** SQL function: shell_add_schema(S,X) ** ** Add the schema name X to the CREATE statement in S and return the result. ** Examples: ** ** CREATE TABLE t1(x) -> CREATE TABLE xyz.t1(x); ** ** Also works on ** ** CREATE INDEX ** CREATE UNIQUE INDEX ** CREATE VIEW ** CREATE TRIGGER ** CREATE VIRTUAL TABLE ** ** This UDF is used by the .schema command to insert the schema name of ** attached databases into the middle of the sqlite_schema.sql field. */ static void shellAddSchemaName( sqlite3_context *pCtx, int nVal, sqlite3_value **apVal ){ static const char *aPrefix[] = { "TABLE", "INDEX", "UNIQUE INDEX", "VIEW", "TRIGGER", "VIRTUAL TABLE" }; int i = 0; const char *zIn = (const char*)sqlite3_value_text(apVal[0]); const char *zSchema = (const char*)sqlite3_value_text(apVal[1]); const char *zName = (const char*)sqlite3_value_text(apVal[2]); sqlite3 *db = sqlite3_context_db_handle(pCtx); UNUSED_PARAMETER(nVal); if( zIn!=0 && cli_strncmp(zIn, "CREATE ", 7)==0 ){ for(i=0; i #include #include #include #include #include #include /* ** We may need several defines that should have been in "sys/stat.h". */ #ifndef S_ISREG #define S_ISREG(mode) (((mode) & S_IFMT) == S_IFREG) #endif #ifndef S_ISDIR #define S_ISDIR(mode) (((mode) & S_IFMT) == S_IFDIR) #endif #ifndef S_ISLNK #define S_ISLNK(mode) (0) #endif /* ** We may need to provide the "mode_t" type. */ #ifndef MODE_T_DEFINED #define MODE_T_DEFINED typedef unsigned short mode_t; #endif /* ** We may need to provide the "ino_t" type. */ #ifndef INO_T_DEFINED #define INO_T_DEFINED typedef unsigned short ino_t; #endif /* ** We need to define "NAME_MAX" if it was not present in "limits.h". */ #ifndef NAME_MAX # ifdef FILENAME_MAX # define NAME_MAX (FILENAME_MAX) # else # define NAME_MAX (260) # endif #endif /* ** We need to define "NULL_INTPTR_T" and "BAD_INTPTR_T". */ #ifndef NULL_INTPTR_T # define NULL_INTPTR_T ((intptr_t)(0)) #endif #ifndef BAD_INTPTR_T # define BAD_INTPTR_T ((intptr_t)(-1)) #endif /* ** We need to provide the necessary structures and related types. */ #ifndef DIRENT_DEFINED #define DIRENT_DEFINED typedef struct DIRENT DIRENT; typedef DIRENT *LPDIRENT; struct DIRENT { ino_t d_ino; /* Sequence number, do not use. */ unsigned d_attributes; /* Win32 file attributes. */ char d_name[NAME_MAX + 1]; /* Name within the directory. */ }; #endif #ifndef DIR_DEFINED #define DIR_DEFINED typedef struct DIR DIR; typedef DIR *LPDIR; struct DIR { intptr_t d_handle; /* Value returned by "_findfirst". */ DIRENT d_first; /* DIRENT constructed based on "_findfirst". */ DIRENT d_next; /* DIRENT constructed based on "_findnext". */ }; #endif /* ** Provide a macro, for use by the implementation, to determine if a ** particular directory entry should be skipped over when searching for ** the next directory entry that should be returned by the readdir() or ** readdir_r() functions. */ #ifndef is_filtered # define is_filtered(a) ((((a).attrib)&_A_HIDDEN) || (((a).attrib)&_A_SYSTEM)) #endif /* ** Provide the function prototype for the POSIX compatible getenv() ** function. This function is not thread-safe. */ extern const char *windirent_getenv(const char *name); /* ** Finally, we can provide the function prototypes for the opendir(), ** readdir(), readdir_r(), and closedir() POSIX functions. */ extern LPDIR opendir(const char *dirname); extern LPDIRENT readdir(LPDIR dirp); extern INT readdir_r(LPDIR dirp, LPDIRENT entry, LPDIRENT *result); extern INT closedir(LPDIR dirp); #endif /* defined(WIN32) && defined(_MSC_VER) */ /************************* End test_windirent.h ********************/ /************************* Begin test_windirent.c ******************/ /* ** 2015 November 30 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains code to implement most of the opendir() family of ** POSIX functions on Win32 using the MSVCRT. */ #if defined(_WIN32) && defined(_MSC_VER) /* #include "test_windirent.h" */ /* ** Implementation of the POSIX getenv() function using the Win32 API. ** This function is not thread-safe. */ const char *windirent_getenv( const char *name ){ static char value[32768]; /* Maximum length, per MSDN */ DWORD dwSize = sizeof(value) / sizeof(char); /* Size in chars */ DWORD dwRet; /* Value returned by GetEnvironmentVariableA() */ memset(value, 0, sizeof(value)); dwRet = GetEnvironmentVariableA(name, value, dwSize); if( dwRet==0 || dwRet>dwSize ){ /* ** The function call to GetEnvironmentVariableA() failed -OR- ** the buffer is not large enough. Either way, return NULL. */ return 0; }else{ /* ** The function call to GetEnvironmentVariableA() succeeded ** -AND- the buffer contains the entire value. */ return value; } } /* ** Implementation of the POSIX opendir() function using the MSVCRT. */ LPDIR opendir( const char *dirname ){ struct _finddata_t data; LPDIR dirp = (LPDIR)sqlite3_malloc(sizeof(DIR)); SIZE_T namesize = sizeof(data.name) / sizeof(data.name[0]); if( dirp==NULL ) return NULL; memset(dirp, 0, sizeof(DIR)); /* TODO: Remove this if Unix-style root paths are not used. */ if( sqlite3_stricmp(dirname, "/")==0 ){ dirname = windirent_getenv("SystemDrive"); } memset(&data, 0, sizeof(struct _finddata_t)); _snprintf(data.name, namesize, "%s\\*", dirname); dirp->d_handle = _findfirst(data.name, &data); if( dirp->d_handle==BAD_INTPTR_T ){ closedir(dirp); return NULL; } /* TODO: Remove this block to allow hidden and/or system files. */ if( is_filtered(data) ){ next: memset(&data, 0, sizeof(struct _finddata_t)); if( _findnext(dirp->d_handle, &data)==-1 ){ closedir(dirp); return NULL; } /* TODO: Remove this block to allow hidden and/or system files. */ if( is_filtered(data) ) goto next; } dirp->d_first.d_attributes = data.attrib; strncpy(dirp->d_first.d_name, data.name, NAME_MAX); dirp->d_first.d_name[NAME_MAX] = '\0'; return dirp; } /* ** Implementation of the POSIX readdir() function using the MSVCRT. */ LPDIRENT readdir( LPDIR dirp ){ struct _finddata_t data; if( dirp==NULL ) return NULL; if( dirp->d_first.d_ino==0 ){ dirp->d_first.d_ino++; dirp->d_next.d_ino++; return &dirp->d_first; } next: memset(&data, 0, sizeof(struct _finddata_t)); if( _findnext(dirp->d_handle, &data)==-1 ) return NULL; /* TODO: Remove this block to allow hidden and/or system files. */ if( is_filtered(data) ) goto next; dirp->d_next.d_ino++; dirp->d_next.d_attributes = data.attrib; strncpy(dirp->d_next.d_name, data.name, NAME_MAX); dirp->d_next.d_name[NAME_MAX] = '\0'; return &dirp->d_next; } /* ** Implementation of the POSIX readdir_r() function using the MSVCRT. */ INT readdir_r( LPDIR dirp, LPDIRENT entry, LPDIRENT *result ){ struct _finddata_t data; if( dirp==NULL ) return EBADF; if( dirp->d_first.d_ino==0 ){ dirp->d_first.d_ino++; dirp->d_next.d_ino++; entry->d_ino = dirp->d_first.d_ino; entry->d_attributes = dirp->d_first.d_attributes; strncpy(entry->d_name, dirp->d_first.d_name, NAME_MAX); entry->d_name[NAME_MAX] = '\0'; *result = entry; return 0; } next: memset(&data, 0, sizeof(struct _finddata_t)); if( _findnext(dirp->d_handle, &data)==-1 ){ *result = NULL; return ENOENT; } /* TODO: Remove this block to allow hidden and/or system files. */ if( is_filtered(data) ) goto next; entry->d_ino = (ino_t)-1; /* not available */ entry->d_attributes = data.attrib; strncpy(entry->d_name, data.name, NAME_MAX); entry->d_name[NAME_MAX] = '\0'; *result = entry; return 0; } /* ** Implementation of the POSIX closedir() function using the MSVCRT. */ INT closedir( LPDIR dirp ){ INT result = 0; if( dirp==NULL ) return EINVAL; if( dirp->d_handle!=NULL_INTPTR_T && dirp->d_handle!=BAD_INTPTR_T ){ result = _findclose(dirp->d_handle); } sqlite3_free(dirp); return result; } #endif /* defined(WIN32) && defined(_MSC_VER) */ /************************* End test_windirent.c ********************/ #define dirent DIRENT #endif /************************* Begin ../ext/misc/memtrace.c ******************/ /* ** 2019-01-21 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** ** This file implements an extension that uses the SQLITE_CONFIG_MALLOC ** mechanism to add a tracing layer on top of SQLite. If this extension ** is registered prior to sqlite3_initialize(), it will cause all memory ** allocation activities to be logged on standard output, or to some other ** FILE specified by the initializer. ** ** This file needs to be compiled into the application that uses it. ** ** This extension is used to implement the --memtrace option of the ** command-line shell. */ #include #include #include /* The original memory allocation routines */ static sqlite3_mem_methods memtraceBase; static FILE *memtraceOut; /* Methods that trace memory allocations */ static void *memtraceMalloc(int n){ if( memtraceOut ){ fprintf(memtraceOut, "MEMTRACE: allocate %d bytes\n", memtraceBase.xRoundup(n)); } return memtraceBase.xMalloc(n); } static void memtraceFree(void *p){ if( p==0 ) return; if( memtraceOut ){ fprintf(memtraceOut, "MEMTRACE: free %d bytes\n", memtraceBase.xSize(p)); } memtraceBase.xFree(p); } static void *memtraceRealloc(void *p, int n){ if( p==0 ) return memtraceMalloc(n); if( n==0 ){ memtraceFree(p); return 0; } if( memtraceOut ){ fprintf(memtraceOut, "MEMTRACE: resize %d -> %d bytes\n", memtraceBase.xSize(p), memtraceBase.xRoundup(n)); } return memtraceBase.xRealloc(p, n); } static int memtraceSize(void *p){ return memtraceBase.xSize(p); } static int memtraceRoundup(int n){ return memtraceBase.xRoundup(n); } static int memtraceInit(void *p){ return memtraceBase.xInit(p); } static void memtraceShutdown(void *p){ memtraceBase.xShutdown(p); } /* The substitute memory allocator */ static sqlite3_mem_methods ersaztMethods = { memtraceMalloc, memtraceFree, memtraceRealloc, memtraceSize, memtraceRoundup, memtraceInit, memtraceShutdown, 0 }; /* Begin tracing memory allocations to out. */ int sqlite3MemTraceActivate(FILE *out){ int rc = SQLITE_OK; if( memtraceBase.xMalloc==0 ){ rc = sqlite3_config(SQLITE_CONFIG_GETMALLOC, &memtraceBase); if( rc==SQLITE_OK ){ rc = sqlite3_config(SQLITE_CONFIG_MALLOC, &ersaztMethods); } } memtraceOut = out; return rc; } /* Deactivate memory tracing */ int sqlite3MemTraceDeactivate(void){ int rc = SQLITE_OK; if( memtraceBase.xMalloc!=0 ){ rc = sqlite3_config(SQLITE_CONFIG_MALLOC, &memtraceBase); if( rc==SQLITE_OK ){ memset(&memtraceBase, 0, sizeof(memtraceBase)); } } memtraceOut = 0; return rc; } /************************* End ../ext/misc/memtrace.c ********************/ /************************* Begin ../ext/misc/pcachetrace.c ******************/ /* ** 2023-06-21 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** ** This file implements an extension that uses the SQLITE_CONFIG_PCACHE2 ** mechanism to add a tracing layer on top of pluggable page cache of ** SQLite. If this extension is registered prior to sqlite3_initialize(), ** it will cause all page cache activities to be logged on standard output, ** or to some other FILE specified by the initializer. ** ** This file needs to be compiled into the application that uses it. ** ** This extension is used to implement the --pcachetrace option of the ** command-line shell. */ #include #include #include /* The original page cache routines */ static sqlite3_pcache_methods2 pcacheBase; static FILE *pcachetraceOut; /* Methods that trace pcache activity */ static int pcachetraceInit(void *pArg){ int nRes; if( pcachetraceOut ){ fprintf(pcachetraceOut, "PCACHETRACE: xInit(%p)\n", pArg); } nRes = pcacheBase.xInit(pArg); if( pcachetraceOut ){ fprintf(pcachetraceOut, "PCACHETRACE: xInit(%p) -> %d\n", pArg, nRes); } return nRes; } static void pcachetraceShutdown(void *pArg){ if( pcachetraceOut ){ fprintf(pcachetraceOut, "PCACHETRACE: xShutdown(%p)\n", pArg); } pcacheBase.xShutdown(pArg); } static sqlite3_pcache *pcachetraceCreate(int szPage, int szExtra, int bPurge){ sqlite3_pcache *pRes; if( pcachetraceOut ){ fprintf(pcachetraceOut, "PCACHETRACE: xCreate(%d,%d,%d)\n", szPage, szExtra, bPurge); } pRes = pcacheBase.xCreate(szPage, szExtra, bPurge); if( pcachetraceOut ){ fprintf(pcachetraceOut, "PCACHETRACE: xCreate(%d,%d,%d) -> %p\n", szPage, szExtra, bPurge, pRes); } return pRes; } static void pcachetraceCachesize(sqlite3_pcache *p, int nCachesize){ if( pcachetraceOut ){ fprintf(pcachetraceOut, "PCACHETRACE: xCachesize(%p, %d)\n", p, nCachesize); } pcacheBase.xCachesize(p, nCachesize); } static int pcachetracePagecount(sqlite3_pcache *p){ int nRes; if( pcachetraceOut ){ fprintf(pcachetraceOut, "PCACHETRACE: xPagecount(%p)\n", p); } nRes = pcacheBase.xPagecount(p); if( pcachetraceOut ){ fprintf(pcachetraceOut, "PCACHETRACE: xPagecount(%p) -> %d\n", p, nRes); } return nRes; } static sqlite3_pcache_page *pcachetraceFetch( sqlite3_pcache *p, unsigned key, int crFg ){ sqlite3_pcache_page *pRes; if( pcachetraceOut ){ fprintf(pcachetraceOut, "PCACHETRACE: xFetch(%p,%u,%d)\n", p, key, crFg); } pRes = pcacheBase.xFetch(p, key, crFg); if( pcachetraceOut ){ fprintf(pcachetraceOut, "PCACHETRACE: xFetch(%p,%u,%d) -> %p\n", p, key, crFg, pRes); } return pRes; } static void pcachetraceUnpin( sqlite3_pcache *p, sqlite3_pcache_page *pPg, int bDiscard ){ if( pcachetraceOut ){ fprintf(pcachetraceOut, "PCACHETRACE: xUnpin(%p, %p, %d)\n", p, pPg, bDiscard); } pcacheBase.xUnpin(p, pPg, bDiscard); } static void pcachetraceRekey( sqlite3_pcache *p, sqlite3_pcache_page *pPg, unsigned oldKey, unsigned newKey ){ if( pcachetraceOut ){ fprintf(pcachetraceOut, "PCACHETRACE: xRekey(%p, %p, %u, %u)\n", p, pPg, oldKey, newKey); } pcacheBase.xRekey(p, pPg, oldKey, newKey); } static void pcachetraceTruncate(sqlite3_pcache *p, unsigned n){ if( pcachetraceOut ){ fprintf(pcachetraceOut, "PCACHETRACE: xTruncate(%p, %u)\n", p, n); } pcacheBase.xTruncate(p, n); } static void pcachetraceDestroy(sqlite3_pcache *p){ if( pcachetraceOut ){ fprintf(pcachetraceOut, "PCACHETRACE: xDestroy(%p)\n", p); } pcacheBase.xDestroy(p); } static void pcachetraceShrink(sqlite3_pcache *p){ if( pcachetraceOut ){ fprintf(pcachetraceOut, "PCACHETRACE: xShrink(%p)\n", p); } pcacheBase.xShrink(p); } /* The substitute pcache methods */ static sqlite3_pcache_methods2 ersaztPcacheMethods = { 0, 0, pcachetraceInit, pcachetraceShutdown, pcachetraceCreate, pcachetraceCachesize, pcachetracePagecount, pcachetraceFetch, pcachetraceUnpin, pcachetraceRekey, pcachetraceTruncate, pcachetraceDestroy, pcachetraceShrink }; /* Begin tracing memory allocations to out. */ int sqlite3PcacheTraceActivate(FILE *out){ int rc = SQLITE_OK; if( pcacheBase.xFetch==0 ){ rc = sqlite3_config(SQLITE_CONFIG_GETPCACHE2, &pcacheBase); if( rc==SQLITE_OK ){ rc = sqlite3_config(SQLITE_CONFIG_PCACHE2, &ersaztPcacheMethods); } } pcachetraceOut = out; return rc; } /* Deactivate memory tracing */ int sqlite3PcacheTraceDeactivate(void){ int rc = SQLITE_OK; if( pcacheBase.xFetch!=0 ){ rc = sqlite3_config(SQLITE_CONFIG_PCACHE2, &pcacheBase); if( rc==SQLITE_OK ){ memset(&pcacheBase, 0, sizeof(pcacheBase)); } } pcachetraceOut = 0; return rc; } /************************* End ../ext/misc/pcachetrace.c ********************/ /************************* Begin ../ext/misc/shathree.c ******************/ /* ** 2017-03-08 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ****************************************************************************** ** ** This SQLite extension implements functions that compute SHA3 hashes ** in the way described by the (U.S.) NIST FIPS 202 SHA-3 Standard. ** Two SQL functions are implemented: ** ** sha3(X,SIZE) ** sha3_agg(Y,SIZE) ** sha3_query(Z,SIZE) ** ** The sha3(X) function computes the SHA3 hash of the input X, or NULL if ** X is NULL. If inputs X is text, the UTF-8 rendering of that text is ** used to compute the hash. If X is a BLOB, then the binary data of the ** blob is used to compute the hash. If X is an integer or real number, ** then that number if converted into UTF-8 text and the hash is computed ** over the text. ** ** The sha3_agg(Y) function computes the SHA3 hash of all Y inputs. Since ** order is important for the hash, it is recommended that the Y expression ** by followed by an ORDER BY clause to guarantee that the inputs occur ** in the desired order. ** ** The sha3_query(Y) function evaluates all queries in the SQL statements of Y ** and returns a hash of their results. ** ** The SIZE argument is optional. If omitted, the SHA3-256 hash algorithm ** is used. If SIZE is included it must be one of the integers 224, 256, ** 384, or 512, to determine SHA3 hash variant that is computed. ** ** Because the sha3_agg() and sha3_query() functions compute a hash over ** multiple values, the values are encode to use include type information. ** ** In sha3_agg(), the sequence of bytes that gets hashed for each input ** Y depends on the datatype of Y: ** ** typeof(Y)='null' A single "N" is hashed. (One byte) ** ** typeof(Y)='integer' The data hash is the character "I" followed ** by an 8-byte big-endian binary of the ** 64-bit signed integer. (Nine bytes total.) ** ** typeof(Y)='real' The character "F" followed by an 8-byte ** big-ending binary of the double. (Nine ** bytes total.) ** ** typeof(Y)='text' The hash is over prefix "Tnnn:" followed ** by the UTF8 encoding of the text. The "nnn" ** in the prefix is the minimum-length decimal ** representation of the octet_length of the text. ** Notice the ":" at the end of the prefix, which ** is needed to separate the prefix from the ** content in cases where the content starts ** with a digit. ** ** typeof(Y)='blob' The hash is taken over prefix "Bnnn:" followed ** by the binary content of the blob. The "nnn" ** in the prefix is the mimimum-length decimal ** representation of the byte-length of the blob. ** ** According to the rules above, all of the following SELECT statements ** should return TRUE: ** ** SELECT sha3(1) = sha3('1'); ** ** SELECT sha3('hello') = sha3(x'68656c6c6f'); ** ** WITH a(x) AS (VALUES('xyzzy')) ** SELECT sha3_agg(x) = sha3('T5:xyzzy') FROM a; ** ** WITH a(x) AS (VALUES(x'010203')) ** SELECT sha3_agg(x) = sha3(x'42333a010203') FROM a; ** ** WITH a(x) AS (VALUES(0x123456)) ** SELECT sha3_agg(x) = sha3(x'490000000000123456') FROM a; ** ** WITH a(x) AS (VALUES(100.015625)) ** SELECT sha3_agg(x) = sha3(x'464059010000000000') FROM a; ** ** WITH a(x) AS (VALUES(NULL)) ** SELECT sha3_agg(x) = sha3('N') FROM a; ** ** ** In sha3_query(), individual column values are encoded as with ** sha3_agg(), but with the addition that a single "R" character is ** inserted at the start of each row. ** ** Note that sha3_agg() hashes rows for which Y is NULL. Add a FILTER ** clause if NULL rows should be excluded: ** ** SELECT sha3_agg(x ORDER BY rowid) FILTER(WHERE x NOT NULL) FROM t1; */ /* #include "sqlite3ext.h" */ SQLITE_EXTENSION_INIT1 #include #include #include #ifndef SQLITE_AMALGAMATION /* typedef sqlite3_uint64 u64; */ #endif /* SQLITE_AMALGAMATION */ /****************************************************************************** ** The Hash Engine */ /* ** Macros to determine whether the machine is big or little endian, ** and whether or not that determination is run-time or compile-time. ** ** For best performance, an attempt is made to guess at the byte-order ** using C-preprocessor macros. If that is unsuccessful, or if ** -DSHA3_BYTEORDER=0 is set, then byte-order is determined ** at run-time. */ #ifndef SHA3_BYTEORDER # if defined(i386) || defined(__i386__) || defined(_M_IX86) || \ defined(__x86_64) || defined(__x86_64__) || defined(_M_X64) || \ defined(_M_AMD64) || defined(_M_ARM) || defined(__x86) || \ defined(__arm__) # define SHA3_BYTEORDER 1234 # elif defined(sparc) || defined(__ppc__) # define SHA3_BYTEORDER 4321 # else # define SHA3_BYTEORDER 0 # endif #endif /* ** State structure for a SHA3 hash in progress */ typedef struct SHA3Context SHA3Context; struct SHA3Context { union { u64 s[25]; /* Keccak state. 5x5 lines of 64 bits each */ unsigned char x[1600]; /* ... or 1600 bytes */ } u; unsigned nRate; /* Bytes of input accepted per Keccak iteration */ unsigned nLoaded; /* Input bytes loaded into u.x[] so far this cycle */ unsigned ixMask; /* Insert next input into u.x[nLoaded^ixMask]. */ unsigned iSize; /* 224, 256, 358, or 512 */ }; /* ** A single step of the Keccak mixing function for a 1600-bit state */ static void KeccakF1600Step(SHA3Context *p){ int i; u64 b0, b1, b2, b3, b4; u64 c0, c1, c2, c3, c4; u64 d0, d1, d2, d3, d4; static const u64 RC[] = { 0x0000000000000001ULL, 0x0000000000008082ULL, 0x800000000000808aULL, 0x8000000080008000ULL, 0x000000000000808bULL, 0x0000000080000001ULL, 0x8000000080008081ULL, 0x8000000000008009ULL, 0x000000000000008aULL, 0x0000000000000088ULL, 0x0000000080008009ULL, 0x000000008000000aULL, 0x000000008000808bULL, 0x800000000000008bULL, 0x8000000000008089ULL, 0x8000000000008003ULL, 0x8000000000008002ULL, 0x8000000000000080ULL, 0x000000000000800aULL, 0x800000008000000aULL, 0x8000000080008081ULL, 0x8000000000008080ULL, 0x0000000080000001ULL, 0x8000000080008008ULL }; # define a00 (p->u.s[0]) # define a01 (p->u.s[1]) # define a02 (p->u.s[2]) # define a03 (p->u.s[3]) # define a04 (p->u.s[4]) # define a10 (p->u.s[5]) # define a11 (p->u.s[6]) # define a12 (p->u.s[7]) # define a13 (p->u.s[8]) # define a14 (p->u.s[9]) # define a20 (p->u.s[10]) # define a21 (p->u.s[11]) # define a22 (p->u.s[12]) # define a23 (p->u.s[13]) # define a24 (p->u.s[14]) # define a30 (p->u.s[15]) # define a31 (p->u.s[16]) # define a32 (p->u.s[17]) # define a33 (p->u.s[18]) # define a34 (p->u.s[19]) # define a40 (p->u.s[20]) # define a41 (p->u.s[21]) # define a42 (p->u.s[22]) # define a43 (p->u.s[23]) # define a44 (p->u.s[24]) # define ROL64(a,x) ((a<>(64-x))) for(i=0; i<24; i+=4){ c0 = a00^a10^a20^a30^a40; c1 = a01^a11^a21^a31^a41; c2 = a02^a12^a22^a32^a42; c3 = a03^a13^a23^a33^a43; c4 = a04^a14^a24^a34^a44; d0 = c4^ROL64(c1, 1); d1 = c0^ROL64(c2, 1); d2 = c1^ROL64(c3, 1); d3 = c2^ROL64(c4, 1); d4 = c3^ROL64(c0, 1); b0 = (a00^d0); b1 = ROL64((a11^d1), 44); b2 = ROL64((a22^d2), 43); b3 = ROL64((a33^d3), 21); b4 = ROL64((a44^d4), 14); a00 = b0 ^((~b1)& b2 ); a00 ^= RC[i]; a11 = b1 ^((~b2)& b3 ); a22 = b2 ^((~b3)& b4 ); a33 = b3 ^((~b4)& b0 ); a44 = b4 ^((~b0)& b1 ); b2 = ROL64((a20^d0), 3); b3 = ROL64((a31^d1), 45); b4 = ROL64((a42^d2), 61); b0 = ROL64((a03^d3), 28); b1 = ROL64((a14^d4), 20); a20 = b0 ^((~b1)& b2 ); a31 = b1 ^((~b2)& b3 ); a42 = b2 ^((~b3)& b4 ); a03 = b3 ^((~b4)& b0 ); a14 = b4 ^((~b0)& b1 ); b4 = ROL64((a40^d0), 18); b0 = ROL64((a01^d1), 1); b1 = ROL64((a12^d2), 6); b2 = ROL64((a23^d3), 25); b3 = ROL64((a34^d4), 8); a40 = b0 ^((~b1)& b2 ); a01 = b1 ^((~b2)& b3 ); a12 = b2 ^((~b3)& b4 ); a23 = b3 ^((~b4)& b0 ); a34 = b4 ^((~b0)& b1 ); b1 = ROL64((a10^d0), 36); b2 = ROL64((a21^d1), 10); b3 = ROL64((a32^d2), 15); b4 = ROL64((a43^d3), 56); b0 = ROL64((a04^d4), 27); a10 = b0 ^((~b1)& b2 ); a21 = b1 ^((~b2)& b3 ); a32 = b2 ^((~b3)& b4 ); a43 = b3 ^((~b4)& b0 ); a04 = b4 ^((~b0)& b1 ); b3 = ROL64((a30^d0), 41); b4 = ROL64((a41^d1), 2); b0 = ROL64((a02^d2), 62); b1 = ROL64((a13^d3), 55); b2 = ROL64((a24^d4), 39); a30 = b0 ^((~b1)& b2 ); a41 = b1 ^((~b2)& b3 ); a02 = b2 ^((~b3)& b4 ); a13 = b3 ^((~b4)& b0 ); a24 = b4 ^((~b0)& b1 ); c0 = a00^a20^a40^a10^a30; c1 = a11^a31^a01^a21^a41; c2 = a22^a42^a12^a32^a02; c3 = a33^a03^a23^a43^a13; c4 = a44^a14^a34^a04^a24; d0 = c4^ROL64(c1, 1); d1 = c0^ROL64(c2, 1); d2 = c1^ROL64(c3, 1); d3 = c2^ROL64(c4, 1); d4 = c3^ROL64(c0, 1); b0 = (a00^d0); b1 = ROL64((a31^d1), 44); b2 = ROL64((a12^d2), 43); b3 = ROL64((a43^d3), 21); b4 = ROL64((a24^d4), 14); a00 = b0 ^((~b1)& b2 ); a00 ^= RC[i+1]; a31 = b1 ^((~b2)& b3 ); a12 = b2 ^((~b3)& b4 ); a43 = b3 ^((~b4)& b0 ); a24 = b4 ^((~b0)& b1 ); b2 = ROL64((a40^d0), 3); b3 = ROL64((a21^d1), 45); b4 = ROL64((a02^d2), 61); b0 = ROL64((a33^d3), 28); b1 = ROL64((a14^d4), 20); a40 = b0 ^((~b1)& b2 ); a21 = b1 ^((~b2)& b3 ); a02 = b2 ^((~b3)& b4 ); a33 = b3 ^((~b4)& b0 ); a14 = b4 ^((~b0)& b1 ); b4 = ROL64((a30^d0), 18); b0 = ROL64((a11^d1), 1); b1 = ROL64((a42^d2), 6); b2 = ROL64((a23^d3), 25); b3 = ROL64((a04^d4), 8); a30 = b0 ^((~b1)& b2 ); a11 = b1 ^((~b2)& b3 ); a42 = b2 ^((~b3)& b4 ); a23 = b3 ^((~b4)& b0 ); a04 = b4 ^((~b0)& b1 ); b1 = ROL64((a20^d0), 36); b2 = ROL64((a01^d1), 10); b3 = ROL64((a32^d2), 15); b4 = ROL64((a13^d3), 56); b0 = ROL64((a44^d4), 27); a20 = b0 ^((~b1)& b2 ); a01 = b1 ^((~b2)& b3 ); a32 = b2 ^((~b3)& b4 ); a13 = b3 ^((~b4)& b0 ); a44 = b4 ^((~b0)& b1 ); b3 = ROL64((a10^d0), 41); b4 = ROL64((a41^d1), 2); b0 = ROL64((a22^d2), 62); b1 = ROL64((a03^d3), 55); b2 = ROL64((a34^d4), 39); a10 = b0 ^((~b1)& b2 ); a41 = b1 ^((~b2)& b3 ); a22 = b2 ^((~b3)& b4 ); a03 = b3 ^((~b4)& b0 ); a34 = b4 ^((~b0)& b1 ); c0 = a00^a40^a30^a20^a10; c1 = a31^a21^a11^a01^a41; c2 = a12^a02^a42^a32^a22; c3 = a43^a33^a23^a13^a03; c4 = a24^a14^a04^a44^a34; d0 = c4^ROL64(c1, 1); d1 = c0^ROL64(c2, 1); d2 = c1^ROL64(c3, 1); d3 = c2^ROL64(c4, 1); d4 = c3^ROL64(c0, 1); b0 = (a00^d0); b1 = ROL64((a21^d1), 44); b2 = ROL64((a42^d2), 43); b3 = ROL64((a13^d3), 21); b4 = ROL64((a34^d4), 14); a00 = b0 ^((~b1)& b2 ); a00 ^= RC[i+2]; a21 = b1 ^((~b2)& b3 ); a42 = b2 ^((~b3)& b4 ); a13 = b3 ^((~b4)& b0 ); a34 = b4 ^((~b0)& b1 ); b2 = ROL64((a30^d0), 3); b3 = ROL64((a01^d1), 45); b4 = ROL64((a22^d2), 61); b0 = ROL64((a43^d3), 28); b1 = ROL64((a14^d4), 20); a30 = b0 ^((~b1)& b2 ); a01 = b1 ^((~b2)& b3 ); a22 = b2 ^((~b3)& b4 ); a43 = b3 ^((~b4)& b0 ); a14 = b4 ^((~b0)& b1 ); b4 = ROL64((a10^d0), 18); b0 = ROL64((a31^d1), 1); b1 = ROL64((a02^d2), 6); b2 = ROL64((a23^d3), 25); b3 = ROL64((a44^d4), 8); a10 = b0 ^((~b1)& b2 ); a31 = b1 ^((~b2)& b3 ); a02 = b2 ^((~b3)& b4 ); a23 = b3 ^((~b4)& b0 ); a44 = b4 ^((~b0)& b1 ); b1 = ROL64((a40^d0), 36); b2 = ROL64((a11^d1), 10); b3 = ROL64((a32^d2), 15); b4 = ROL64((a03^d3), 56); b0 = ROL64((a24^d4), 27); a40 = b0 ^((~b1)& b2 ); a11 = b1 ^((~b2)& b3 ); a32 = b2 ^((~b3)& b4 ); a03 = b3 ^((~b4)& b0 ); a24 = b4 ^((~b0)& b1 ); b3 = ROL64((a20^d0), 41); b4 = ROL64((a41^d1), 2); b0 = ROL64((a12^d2), 62); b1 = ROL64((a33^d3), 55); b2 = ROL64((a04^d4), 39); a20 = b0 ^((~b1)& b2 ); a41 = b1 ^((~b2)& b3 ); a12 = b2 ^((~b3)& b4 ); a33 = b3 ^((~b4)& b0 ); a04 = b4 ^((~b0)& b1 ); c0 = a00^a30^a10^a40^a20; c1 = a21^a01^a31^a11^a41; c2 = a42^a22^a02^a32^a12; c3 = a13^a43^a23^a03^a33; c4 = a34^a14^a44^a24^a04; d0 = c4^ROL64(c1, 1); d1 = c0^ROL64(c2, 1); d2 = c1^ROL64(c3, 1); d3 = c2^ROL64(c4, 1); d4 = c3^ROL64(c0, 1); b0 = (a00^d0); b1 = ROL64((a01^d1), 44); b2 = ROL64((a02^d2), 43); b3 = ROL64((a03^d3), 21); b4 = ROL64((a04^d4), 14); a00 = b0 ^((~b1)& b2 ); a00 ^= RC[i+3]; a01 = b1 ^((~b2)& b3 ); a02 = b2 ^((~b3)& b4 ); a03 = b3 ^((~b4)& b0 ); a04 = b4 ^((~b0)& b1 ); b2 = ROL64((a10^d0), 3); b3 = ROL64((a11^d1), 45); b4 = ROL64((a12^d2), 61); b0 = ROL64((a13^d3), 28); b1 = ROL64((a14^d4), 20); a10 = b0 ^((~b1)& b2 ); a11 = b1 ^((~b2)& b3 ); a12 = b2 ^((~b3)& b4 ); a13 = b3 ^((~b4)& b0 ); a14 = b4 ^((~b0)& b1 ); b4 = ROL64((a20^d0), 18); b0 = ROL64((a21^d1), 1); b1 = ROL64((a22^d2), 6); b2 = ROL64((a23^d3), 25); b3 = ROL64((a24^d4), 8); a20 = b0 ^((~b1)& b2 ); a21 = b1 ^((~b2)& b3 ); a22 = b2 ^((~b3)& b4 ); a23 = b3 ^((~b4)& b0 ); a24 = b4 ^((~b0)& b1 ); b1 = ROL64((a30^d0), 36); b2 = ROL64((a31^d1), 10); b3 = ROL64((a32^d2), 15); b4 = ROL64((a33^d3), 56); b0 = ROL64((a34^d4), 27); a30 = b0 ^((~b1)& b2 ); a31 = b1 ^((~b2)& b3 ); a32 = b2 ^((~b3)& b4 ); a33 = b3 ^((~b4)& b0 ); a34 = b4 ^((~b0)& b1 ); b3 = ROL64((a40^d0), 41); b4 = ROL64((a41^d1), 2); b0 = ROL64((a42^d2), 62); b1 = ROL64((a43^d3), 55); b2 = ROL64((a44^d4), 39); a40 = b0 ^((~b1)& b2 ); a41 = b1 ^((~b2)& b3 ); a42 = b2 ^((~b3)& b4 ); a43 = b3 ^((~b4)& b0 ); a44 = b4 ^((~b0)& b1 ); } } /* ** Initialize a new hash. iSize determines the size of the hash ** in bits and should be one of 224, 256, 384, or 512. Or iSize ** can be zero to use the default hash size of 256 bits. */ static void SHA3Init(SHA3Context *p, int iSize){ memset(p, 0, sizeof(*p)); p->iSize = iSize; if( iSize>=128 && iSize<=512 ){ p->nRate = (1600 - ((iSize + 31)&~31)*2)/8; }else{ p->nRate = (1600 - 2*256)/8; } #if SHA3_BYTEORDER==1234 /* Known to be little-endian at compile-time. No-op */ #elif SHA3_BYTEORDER==4321 p->ixMask = 7; /* Big-endian */ #else { static unsigned int one = 1; if( 1==*(unsigned char*)&one ){ /* Little endian. No byte swapping. */ p->ixMask = 0; }else{ /* Big endian. Byte swap. */ p->ixMask = 7; } } #endif } /* ** Make consecutive calls to the SHA3Update function to add new content ** to the hash */ static void SHA3Update( SHA3Context *p, const unsigned char *aData, unsigned int nData ){ unsigned int i = 0; if( aData==0 ) return; #if SHA3_BYTEORDER==1234 if( (p->nLoaded % 8)==0 && ((aData - (const unsigned char*)0)&7)==0 ){ for(; i+7u.s[p->nLoaded/8] ^= *(u64*)&aData[i]; p->nLoaded += 8; if( p->nLoaded>=p->nRate ){ KeccakF1600Step(p); p->nLoaded = 0; } } } #endif for(; iu.x[p->nLoaded] ^= aData[i]; #elif SHA3_BYTEORDER==4321 p->u.x[p->nLoaded^0x07] ^= aData[i]; #else p->u.x[p->nLoaded^p->ixMask] ^= aData[i]; #endif p->nLoaded++; if( p->nLoaded==p->nRate ){ KeccakF1600Step(p); p->nLoaded = 0; } } } /* ** After all content has been added, invoke SHA3Final() to compute ** the final hash. The function returns a pointer to the binary ** hash value. */ static unsigned char *SHA3Final(SHA3Context *p){ unsigned int i; if( p->nLoaded==p->nRate-1 ){ const unsigned char c1 = 0x86; SHA3Update(p, &c1, 1); }else{ const unsigned char c2 = 0x06; const unsigned char c3 = 0x80; SHA3Update(p, &c2, 1); p->nLoaded = p->nRate - 1; SHA3Update(p, &c3, 1); } for(i=0; inRate; i++){ p->u.x[i+p->nRate] = p->u.x[i^p->ixMask]; } return &p->u.x[p->nRate]; } /* End of the hashing logic *****************************************************************************/ /* ** Implementation of the sha3(X,SIZE) function. ** ** Return a BLOB which is the SIZE-bit SHA3 hash of X. The default ** size is 256. If X is a BLOB, it is hashed as is. ** For all other non-NULL types of input, X is converted into a UTF-8 string ** and the string is hashed without the trailing 0x00 terminator. The hash ** of a NULL value is NULL. */ static void sha3Func( sqlite3_context *context, int argc, sqlite3_value **argv ){ SHA3Context cx; int eType = sqlite3_value_type(argv[0]); int nByte = sqlite3_value_bytes(argv[0]); int iSize; if( argc==1 ){ iSize = 256; }else{ iSize = sqlite3_value_int(argv[1]); if( iSize!=224 && iSize!=256 && iSize!=384 && iSize!=512 ){ sqlite3_result_error(context, "SHA3 size should be one of: 224 256 " "384 512", -1); return; } } if( eType==SQLITE_NULL ) return; SHA3Init(&cx, iSize); if( eType==SQLITE_BLOB ){ SHA3Update(&cx, sqlite3_value_blob(argv[0]), nByte); }else{ SHA3Update(&cx, sqlite3_value_text(argv[0]), nByte); } sqlite3_result_blob(context, SHA3Final(&cx), iSize/8, SQLITE_TRANSIENT); } /* Compute a string using sqlite3_vsnprintf() with a maximum length ** of 50 bytes and add it to the hash. */ static void sha3_step_vformat( SHA3Context *p, /* Add content to this context */ const char *zFormat, ... ){ va_list ap; int n; char zBuf[50]; va_start(ap, zFormat); sqlite3_vsnprintf(sizeof(zBuf),zBuf,zFormat,ap); va_end(ap); n = (int)strlen(zBuf); SHA3Update(p, (unsigned char*)zBuf, n); } /* ** Update a SHA3Context using a single sqlite3_value. */ static void sha3UpdateFromValue(SHA3Context *p, sqlite3_value *pVal){ switch( sqlite3_value_type(pVal) ){ case SQLITE_NULL: { SHA3Update(p, (const unsigned char*)"N",1); break; } case SQLITE_INTEGER: { sqlite3_uint64 u; int j; unsigned char x[9]; sqlite3_int64 v = sqlite3_value_int64(pVal); memcpy(&u, &v, 8); for(j=8; j>=1; j--){ x[j] = u & 0xff; u >>= 8; } x[0] = 'I'; SHA3Update(p, x, 9); break; } case SQLITE_FLOAT: { sqlite3_uint64 u; int j; unsigned char x[9]; double r = sqlite3_value_double(pVal); memcpy(&u, &r, 8); for(j=8; j>=1; j--){ x[j] = u & 0xff; u >>= 8; } x[0] = 'F'; SHA3Update(p,x,9); break; } case SQLITE_TEXT: { int n2 = sqlite3_value_bytes(pVal); const unsigned char *z2 = sqlite3_value_text(pVal); sha3_step_vformat(p,"T%d:",n2); SHA3Update(p, z2, n2); break; } case SQLITE_BLOB: { int n2 = sqlite3_value_bytes(pVal); const unsigned char *z2 = sqlite3_value_blob(pVal); sha3_step_vformat(p,"B%d:",n2); SHA3Update(p, z2, n2); break; } } } /* ** Implementation of the sha3_query(SQL,SIZE) function. ** ** This function compiles and runs the SQL statement(s) given in the ** argument. The results are hashed using a SIZE-bit SHA3. The default ** size is 256. ** ** The format of the byte stream that is hashed is summarized as follows: ** ** S: ** R ** N ** I ** F ** B: ** T: ** ** is the original SQL text for each statement run and is ** the size of that text. The SQL text is UTF-8. A single R character ** occurs before the start of each row. N means a NULL value. ** I mean an 8-byte little-endian integer . F is a floating point ** number with an 8-byte little-endian IEEE floating point value . ** B means blobs of bytes. T means text rendered as ** bytes of UTF-8. The and values are expressed as an ASCII ** text integers. ** ** For each SQL statement in the X input, there is one S segment. Each ** S segment is followed by zero or more R segments, one for each row in the ** result set. After each R, there are one or more N, I, F, B, or T segments, ** one for each column in the result set. Segments are concatentated directly ** with no delimiters of any kind. */ static void sha3QueryFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ sqlite3 *db = sqlite3_context_db_handle(context); const char *zSql = (const char*)sqlite3_value_text(argv[0]); sqlite3_stmt *pStmt = 0; int nCol; /* Number of columns in the result set */ int i; /* Loop counter */ int rc; int n; const char *z; SHA3Context cx; int iSize; if( argc==1 ){ iSize = 256; }else{ iSize = sqlite3_value_int(argv[1]); if( iSize!=224 && iSize!=256 && iSize!=384 && iSize!=512 ){ sqlite3_result_error(context, "SHA3 size should be one of: 224 256 " "384 512", -1); return; } } if( zSql==0 ) return; SHA3Init(&cx, iSize); while( zSql[0] ){ rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, &zSql); if( rc ){ char *zMsg = sqlite3_mprintf("error SQL statement [%s]: %s", zSql, sqlite3_errmsg(db)); sqlite3_finalize(pStmt); sqlite3_result_error(context, zMsg, -1); sqlite3_free(zMsg); return; } if( !sqlite3_stmt_readonly(pStmt) ){ char *zMsg = sqlite3_mprintf("non-query: [%s]", sqlite3_sql(pStmt)); sqlite3_finalize(pStmt); sqlite3_result_error(context, zMsg, -1); sqlite3_free(zMsg); return; } nCol = sqlite3_column_count(pStmt); z = sqlite3_sql(pStmt); if( z ){ n = (int)strlen(z); sha3_step_vformat(&cx,"S%d:",n); SHA3Update(&cx,(unsigned char*)z,n); } /* Compute a hash over the result of the query */ while( SQLITE_ROW==sqlite3_step(pStmt) ){ SHA3Update(&cx,(const unsigned char*)"R",1); for(i=0; inRate==0 ){ int sz = 256; if( argc==2 ){ sz = sqlite3_value_int(argv[1]); if( sz!=224 && sz!=384 && sz!=512 ){ sz = 256; } } SHA3Init(p, sz); } sha3UpdateFromValue(p, argv[0]); } /* ** xFinal function for sha3_agg(). */ static void sha3AggFinal(sqlite3_context *context){ SHA3Context *p; p = (SHA3Context*)sqlite3_aggregate_context(context, sizeof(*p)); if( p==0 ) return; if( p->iSize ){ sqlite3_result_blob(context, SHA3Final(p), p->iSize/8, SQLITE_TRANSIENT); } } #ifdef _WIN32 #endif int sqlite3_shathree_init( sqlite3 *db, char **pzErrMsg, const sqlite3_api_routines *pApi ){ int rc = SQLITE_OK; SQLITE_EXTENSION_INIT2(pApi); (void)pzErrMsg; /* Unused parameter */ rc = sqlite3_create_function(db, "sha3", 1, SQLITE_UTF8 | SQLITE_INNOCUOUS | SQLITE_DETERMINISTIC, 0, sha3Func, 0, 0); if( rc==SQLITE_OK ){ rc = sqlite3_create_function(db, "sha3", 2, SQLITE_UTF8 | SQLITE_INNOCUOUS | SQLITE_DETERMINISTIC, 0, sha3Func, 0, 0); } if( rc==SQLITE_OK ){ rc = sqlite3_create_function(db, "sha3_agg", 1, SQLITE_UTF8 | SQLITE_INNOCUOUS | SQLITE_DETERMINISTIC, 0, 0, sha3AggStep, sha3AggFinal); } if( rc==SQLITE_OK ){ rc = sqlite3_create_function(db, "sha3_agg", 2, SQLITE_UTF8 | SQLITE_INNOCUOUS | SQLITE_DETERMINISTIC, 0, 0, sha3AggStep, sha3AggFinal); } if( rc==SQLITE_OK ){ rc = sqlite3_create_function(db, "sha3_query", 1, SQLITE_UTF8 | SQLITE_DIRECTONLY, 0, sha3QueryFunc, 0, 0); } if( rc==SQLITE_OK ){ rc = sqlite3_create_function(db, "sha3_query", 2, SQLITE_UTF8 | SQLITE_DIRECTONLY, 0, sha3QueryFunc, 0, 0); } return rc; } /************************* End ../ext/misc/shathree.c ********************/ /************************* Begin ../ext/misc/sha1.c ******************/ /* ** 2017-01-27 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ****************************************************************************** ** ** This SQLite extension implements functions that compute SHA1 hashes. ** Two SQL functions are implemented: ** ** sha1(X) ** sha1_query(Y) ** ** The sha1(X) function computes the SHA1 hash of the input X, or NULL if ** X is NULL. ** ** The sha1_query(Y) function evalutes all queries in the SQL statements of Y ** and returns a hash of their results. */ /* #include "sqlite3ext.h" */ SQLITE_EXTENSION_INIT1 #include #include #include /****************************************************************************** ** The Hash Engine */ /* Context for the SHA1 hash */ typedef struct SHA1Context SHA1Context; struct SHA1Context { unsigned int state[5]; unsigned int count[2]; unsigned char buffer[64]; }; #define SHA_ROT(x,l,r) ((x) << (l) | (x) >> (r)) #define rol(x,k) SHA_ROT(x,k,32-(k)) #define ror(x,k) SHA_ROT(x,32-(k),k) #define blk0le(i) (block[i] = (ror(block[i],8)&0xFF00FF00) \ |(rol(block[i],8)&0x00FF00FF)) #define blk0be(i) block[i] #define blk(i) (block[i&15] = rol(block[(i+13)&15]^block[(i+8)&15] \ ^block[(i+2)&15]^block[i&15],1)) /* * (R0+R1), R2, R3, R4 are the different operations (rounds) used in SHA1 * * Rl0() for little-endian and Rb0() for big-endian. Endianness is * determined at run-time. */ #define Rl0(v,w,x,y,z,i) \ z+=((w&(x^y))^y)+blk0le(i)+0x5A827999+rol(v,5);w=ror(w,2); #define Rb0(v,w,x,y,z,i) \ z+=((w&(x^y))^y)+blk0be(i)+0x5A827999+rol(v,5);w=ror(w,2); #define R1(v,w,x,y,z,i) \ z+=((w&(x^y))^y)+blk(i)+0x5A827999+rol(v,5);w=ror(w,2); #define R2(v,w,x,y,z,i) \ z+=(w^x^y)+blk(i)+0x6ED9EBA1+rol(v,5);w=ror(w,2); #define R3(v,w,x,y,z,i) \ z+=(((w|x)&y)|(w&x))+blk(i)+0x8F1BBCDC+rol(v,5);w=ror(w,2); #define R4(v,w,x,y,z,i) \ z+=(w^x^y)+blk(i)+0xCA62C1D6+rol(v,5);w=ror(w,2); /* * Hash a single 512-bit block. This is the core of the algorithm. */ static void SHA1Transform(unsigned int state[5], const unsigned char buffer[64]){ unsigned int qq[5]; /* a, b, c, d, e; */ static int one = 1; unsigned int block[16]; memcpy(block, buffer, 64); memcpy(qq,state,5*sizeof(unsigned int)); #define a qq[0] #define b qq[1] #define c qq[2] #define d qq[3] #define e qq[4] /* Copy p->state[] to working vars */ /* a = state[0]; b = state[1]; c = state[2]; d = state[3]; e = state[4]; */ /* 4 rounds of 20 operations each. Loop unrolled. */ if( 1 == *(unsigned char*)&one ){ Rl0(a,b,c,d,e, 0); Rl0(e,a,b,c,d, 1); Rl0(d,e,a,b,c, 2); Rl0(c,d,e,a,b, 3); Rl0(b,c,d,e,a, 4); Rl0(a,b,c,d,e, 5); Rl0(e,a,b,c,d, 6); Rl0(d,e,a,b,c, 7); Rl0(c,d,e,a,b, 8); Rl0(b,c,d,e,a, 9); Rl0(a,b,c,d,e,10); Rl0(e,a,b,c,d,11); Rl0(d,e,a,b,c,12); Rl0(c,d,e,a,b,13); Rl0(b,c,d,e,a,14); Rl0(a,b,c,d,e,15); }else{ Rb0(a,b,c,d,e, 0); Rb0(e,a,b,c,d, 1); Rb0(d,e,a,b,c, 2); Rb0(c,d,e,a,b, 3); Rb0(b,c,d,e,a, 4); Rb0(a,b,c,d,e, 5); Rb0(e,a,b,c,d, 6); Rb0(d,e,a,b,c, 7); Rb0(c,d,e,a,b, 8); Rb0(b,c,d,e,a, 9); Rb0(a,b,c,d,e,10); Rb0(e,a,b,c,d,11); Rb0(d,e,a,b,c,12); Rb0(c,d,e,a,b,13); Rb0(b,c,d,e,a,14); Rb0(a,b,c,d,e,15); } R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19); R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23); R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27); R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31); R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35); R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39); R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43); R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47); R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51); R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55); R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59); R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63); R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67); R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71); R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75); R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79); /* Add the working vars back into context.state[] */ state[0] += a; state[1] += b; state[2] += c; state[3] += d; state[4] += e; #undef a #undef b #undef c #undef d #undef e } /* Initialize a SHA1 context */ static void hash_init(SHA1Context *p){ /* SHA1 initialization constants */ p->state[0] = 0x67452301; p->state[1] = 0xEFCDAB89; p->state[2] = 0x98BADCFE; p->state[3] = 0x10325476; p->state[4] = 0xC3D2E1F0; p->count[0] = p->count[1] = 0; } /* Add new content to the SHA1 hash */ static void hash_step( SHA1Context *p, /* Add content to this context */ const unsigned char *data, /* Data to be added */ unsigned int len /* Number of bytes in data */ ){ unsigned int i, j; j = p->count[0]; if( (p->count[0] += len << 3) < j ){ p->count[1] += (len>>29)+1; } j = (j >> 3) & 63; if( (j + len) > 63 ){ (void)memcpy(&p->buffer[j], data, (i = 64-j)); SHA1Transform(p->state, p->buffer); for(; i + 63 < len; i += 64){ SHA1Transform(p->state, &data[i]); } j = 0; }else{ i = 0; } (void)memcpy(&p->buffer[j], &data[i], len - i); } /* Compute a string using sqlite3_vsnprintf() and hash it */ static void hash_step_vformat( SHA1Context *p, /* Add content to this context */ const char *zFormat, ... ){ va_list ap; int n; char zBuf[50]; va_start(ap, zFormat); sqlite3_vsnprintf(sizeof(zBuf),zBuf,zFormat,ap); va_end(ap); n = (int)strlen(zBuf); hash_step(p, (unsigned char*)zBuf, n); } /* Add padding and compute the message digest. Render the ** message digest as lower-case hexadecimal and put it into ** zOut[]. zOut[] must be at least 41 bytes long. */ static void hash_finish( SHA1Context *p, /* The SHA1 context to finish and render */ char *zOut, /* Store hex or binary hash here */ int bAsBinary /* 1 for binary hash, 0 for hex hash */ ){ unsigned int i; unsigned char finalcount[8]; unsigned char digest[20]; static const char zEncode[] = "0123456789abcdef"; for (i = 0; i < 8; i++){ finalcount[i] = (unsigned char)((p->count[(i >= 4 ? 0 : 1)] >> ((3-(i & 3)) * 8) ) & 255); /* Endian independent */ } hash_step(p, (const unsigned char *)"\200", 1); while ((p->count[0] & 504) != 448){ hash_step(p, (const unsigned char *)"\0", 1); } hash_step(p, finalcount, 8); /* Should cause a SHA1Transform() */ for (i = 0; i < 20; i++){ digest[i] = (unsigned char)((p->state[i>>2] >> ((3-(i & 3)) * 8) ) & 255); } if( bAsBinary ){ memcpy(zOut, digest, 20); }else{ for(i=0; i<20; i++){ zOut[i*2] = zEncode[(digest[i]>>4)&0xf]; zOut[i*2+1] = zEncode[digest[i] & 0xf]; } zOut[i*2]= 0; } } /* End of the hashing logic *****************************************************************************/ /* ** Implementation of the sha1(X) function. ** ** Return a lower-case hexadecimal rendering of the SHA1 hash of the ** argument X. If X is a BLOB, it is hashed as is. For all other ** types of input, X is converted into a UTF-8 string and the string ** is hash without the trailing 0x00 terminator. The hash of a NULL ** value is NULL. */ static void sha1Func( sqlite3_context *context, int argc, sqlite3_value **argv ){ SHA1Context cx; int eType = sqlite3_value_type(argv[0]); int nByte = sqlite3_value_bytes(argv[0]); char zOut[44]; assert( argc==1 ); if( eType==SQLITE_NULL ) return; hash_init(&cx); if( eType==SQLITE_BLOB ){ hash_step(&cx, sqlite3_value_blob(argv[0]), nByte); }else{ hash_step(&cx, sqlite3_value_text(argv[0]), nByte); } if( sqlite3_user_data(context)!=0 ){ hash_finish(&cx, zOut, 1); sqlite3_result_blob(context, zOut, 20, SQLITE_TRANSIENT); }else{ hash_finish(&cx, zOut, 0); sqlite3_result_blob(context, zOut, 40, SQLITE_TRANSIENT); } } /* ** Implementation of the sha1_query(SQL) function. ** ** This function compiles and runs the SQL statement(s) given in the ** argument. The results are hashed using SHA1 and that hash is returned. ** ** The original SQL text is included as part of the hash. ** ** The hash is not just a concatenation of the outputs. Each query ** is delimited and each row and value within the query is delimited, ** with all values being marked with their datatypes. */ static void sha1QueryFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ sqlite3 *db = sqlite3_context_db_handle(context); const char *zSql = (const char*)sqlite3_value_text(argv[0]); sqlite3_stmt *pStmt = 0; int nCol; /* Number of columns in the result set */ int i; /* Loop counter */ int rc; int n; const char *z; SHA1Context cx; char zOut[44]; assert( argc==1 ); if( zSql==0 ) return; hash_init(&cx); while( zSql[0] ){ rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, &zSql); if( rc ){ char *zMsg = sqlite3_mprintf("error SQL statement [%s]: %s", zSql, sqlite3_errmsg(db)); sqlite3_finalize(pStmt); sqlite3_result_error(context, zMsg, -1); sqlite3_free(zMsg); return; } if( !sqlite3_stmt_readonly(pStmt) ){ char *zMsg = sqlite3_mprintf("non-query: [%s]", sqlite3_sql(pStmt)); sqlite3_finalize(pStmt); sqlite3_result_error(context, zMsg, -1); sqlite3_free(zMsg); return; } nCol = sqlite3_column_count(pStmt); z = sqlite3_sql(pStmt); n = (int)strlen(z); hash_step_vformat(&cx,"S%d:",n); hash_step(&cx,(unsigned char*)z,n); /* Compute a hash over the result of the query */ while( SQLITE_ROW==sqlite3_step(pStmt) ){ hash_step(&cx,(const unsigned char*)"R",1); for(i=0; i=1; j--){ x[j] = u & 0xff; u >>= 8; } x[0] = 'I'; hash_step(&cx, x, 9); break; } case SQLITE_FLOAT: { sqlite3_uint64 u; int j; unsigned char x[9]; double r = sqlite3_column_double(pStmt,i); memcpy(&u, &r, 8); for(j=8; j>=1; j--){ x[j] = u & 0xff; u >>= 8; } x[0] = 'F'; hash_step(&cx,x,9); break; } case SQLITE_TEXT: { int n2 = sqlite3_column_bytes(pStmt, i); const unsigned char *z2 = sqlite3_column_text(pStmt, i); hash_step_vformat(&cx,"T%d:",n2); hash_step(&cx, z2, n2); break; } case SQLITE_BLOB: { int n2 = sqlite3_column_bytes(pStmt, i); const unsigned char *z2 = sqlite3_column_blob(pStmt, i); hash_step_vformat(&cx,"B%d:",n2); hash_step(&cx, z2, n2); break; } } } } sqlite3_finalize(pStmt); } hash_finish(&cx, zOut, 0); sqlite3_result_text(context, zOut, 40, SQLITE_TRANSIENT); } #ifdef _WIN32 #endif int sqlite3_sha_init( sqlite3 *db, char **pzErrMsg, const sqlite3_api_routines *pApi ){ int rc = SQLITE_OK; static int one = 1; SQLITE_EXTENSION_INIT2(pApi); (void)pzErrMsg; /* Unused parameter */ rc = sqlite3_create_function(db, "sha1", 1, SQLITE_UTF8 | SQLITE_INNOCUOUS | SQLITE_DETERMINISTIC, 0, sha1Func, 0, 0); if( rc==SQLITE_OK ){ rc = sqlite3_create_function(db, "sha1b", 1, SQLITE_UTF8 | SQLITE_INNOCUOUS | SQLITE_DETERMINISTIC, (void*)&one, sha1Func, 0, 0); } if( rc==SQLITE_OK ){ rc = sqlite3_create_function(db, "sha1_query", 1, SQLITE_UTF8|SQLITE_DIRECTONLY, 0, sha1QueryFunc, 0, 0); } return rc; } /************************* End ../ext/misc/sha1.c ********************/ /************************* Begin ../ext/misc/uint.c ******************/ /* ** 2020-04-14 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ****************************************************************************** ** ** This SQLite extension implements the UINT collating sequence. ** ** UINT works like BINARY for text, except that embedded strings ** of digits compare in numeric order. ** ** * Leading zeros are handled properly, in the sense that ** they do not mess of the maginitude comparison of embedded ** strings of digits. "x00123y" is equal to "x123y". ** ** * Only unsigned integers are recognized. Plus and minus ** signs are ignored. Decimal points and exponential notation ** are ignored. ** ** * Embedded integers can be of arbitrary length. Comparison ** is *not* limited integers that can be expressed as a ** 64-bit machine integer. */ /* #include "sqlite3ext.h" */ SQLITE_EXTENSION_INIT1 #include #include #include /* ** Compare text in lexicographic order, except strings of digits ** compare in numeric order. */ static int uintCollFunc( void *notUsed, int nKey1, const void *pKey1, int nKey2, const void *pKey2 ){ const unsigned char *zA = (const unsigned char*)pKey1; const unsigned char *zB = (const unsigned char*)pKey2; int i=0, j=0, x; (void)notUsed; while( i #include #include #include /* Mark a function parameter as unused, to suppress nuisance compiler ** warnings. */ #ifndef UNUSED_PARAMETER # define UNUSED_PARAMETER(X) (void)(X) #endif /* A decimal object */ typedef struct Decimal Decimal; struct Decimal { char sign; /* 0 for positive, 1 for negative */ char oom; /* True if an OOM is encountered */ char isNull; /* True if holds a NULL rather than a number */ char isInit; /* True upon initialization */ int nDigit; /* Total number of digits */ int nFrac; /* Number of digits to the right of the decimal point */ signed char *a; /* Array of digits. Most significant first. */ }; /* ** Release memory held by a Decimal, but do not free the object itself. */ static void decimal_clear(Decimal *p){ sqlite3_free(p->a); } /* ** Destroy a Decimal object */ static void decimal_free(Decimal *p){ if( p ){ decimal_clear(p); sqlite3_free(p); } } /* ** Allocate a new Decimal object initialized to the text in zIn[]. ** Return NULL if any kind of error occurs. */ static Decimal *decimalNewFromText(const char *zIn, int n){ Decimal *p = 0; int i; int iExp = 0; p = sqlite3_malloc( sizeof(*p) ); if( p==0 ) goto new_from_text_failed; p->sign = 0; p->oom = 0; p->isInit = 1; p->isNull = 0; p->nDigit = 0; p->nFrac = 0; p->a = sqlite3_malloc64( n+1 ); if( p->a==0 ) goto new_from_text_failed; for(i=0; isspace(zIn[i]); i++){} if( zIn[i]=='-' ){ p->sign = 1; i++; }else if( zIn[i]=='+' ){ i++; } while( i='0' && c<='9' ){ p->a[p->nDigit++] = c - '0'; }else if( c=='.' ){ p->nFrac = p->nDigit + 1; }else if( c=='e' || c=='E' ){ int j = i+1; int neg = 0; if( j>=n ) break; if( zIn[j]=='-' ){ neg = 1; j++; }else if( zIn[j]=='+' ){ j++; } while( j='0' && zIn[j]<='9' ){ iExp = iExp*10 + zIn[j] - '0'; } j++; } if( neg ) iExp = -iExp; break; } i++; } if( p->nFrac ){ p->nFrac = p->nDigit - (p->nFrac - 1); } if( iExp>0 ){ if( p->nFrac>0 ){ if( iExp<=p->nFrac ){ p->nFrac -= iExp; iExp = 0; }else{ iExp -= p->nFrac; p->nFrac = 0; } } if( iExp>0 ){ p->a = sqlite3_realloc64(p->a, p->nDigit + iExp + 1 ); if( p->a==0 ) goto new_from_text_failed; memset(p->a+p->nDigit, 0, iExp); p->nDigit += iExp; } }else if( iExp<0 ){ int nExtra; iExp = -iExp; nExtra = p->nDigit - p->nFrac - 1; if( nExtra ){ if( nExtra>=iExp ){ p->nFrac += iExp; iExp = 0; }else{ iExp -= nExtra; p->nFrac = p->nDigit - 1; } } if( iExp>0 ){ p->a = sqlite3_realloc64(p->a, p->nDigit + iExp + 1 ); if( p->a==0 ) goto new_from_text_failed; memmove(p->a+iExp, p->a, p->nDigit); memset(p->a, 0, iExp); p->nDigit += iExp; p->nFrac += iExp; } } return p; new_from_text_failed: if( p ){ if( p->a ) sqlite3_free(p->a); sqlite3_free(p); } return 0; } /* Forward reference */ static Decimal *decimalFromDouble(double); /* ** Allocate a new Decimal object from an sqlite3_value. Return a pointer ** to the new object, or NULL if there is an error. If the pCtx argument ** is not NULL, then errors are reported on it as well. ** ** If the pIn argument is SQLITE_TEXT or SQLITE_INTEGER, it is converted ** directly into a Decimal. For SQLITE_FLOAT or for SQLITE_BLOB of length ** 8 bytes, the resulting double value is expanded into its decimal equivalent. ** If pIn is NULL or if it is a BLOB that is not exactly 8 bytes in length, ** then NULL is returned. */ static Decimal *decimal_new( sqlite3_context *pCtx, /* Report error here, if not null */ sqlite3_value *pIn, /* Construct the decimal object from this */ int bTextOnly /* Always interpret pIn as text if true */ ){ Decimal *p = 0; int eType = sqlite3_value_type(pIn); if( bTextOnly && (eType==SQLITE_FLOAT || eType==SQLITE_BLOB) ){ eType = SQLITE_TEXT; } switch( eType ){ case SQLITE_TEXT: case SQLITE_INTEGER: { const char *zIn = (const char*)sqlite3_value_text(pIn); int n = sqlite3_value_bytes(pIn); p = decimalNewFromText(zIn, n); if( p==0 ) goto new_failed; break; } case SQLITE_FLOAT: { p = decimalFromDouble(sqlite3_value_double(pIn)); break; } case SQLITE_BLOB: { const unsigned char *x; unsigned int i; sqlite3_uint64 v = 0; double r; if( sqlite3_value_bytes(pIn)!=sizeof(r) ) break; x = sqlite3_value_blob(pIn); for(i=0; ioom ){ sqlite3_result_error_nomem(pCtx); return; } if( p->isNull ){ sqlite3_result_null(pCtx); return; } z = sqlite3_malloc( p->nDigit+4 ); if( z==0 ){ sqlite3_result_error_nomem(pCtx); return; } i = 0; if( p->nDigit==0 || (p->nDigit==1 && p->a[0]==0) ){ p->sign = 0; } if( p->sign ){ z[0] = '-'; i = 1; } n = p->nDigit - p->nFrac; if( n<=0 ){ z[i++] = '0'; } j = 0; while( n>1 && p->a[j]==0 ){ j++; n--; } while( n>0 ){ z[i++] = p->a[j] + '0'; j++; n--; } if( p->nFrac ){ z[i++] = '.'; do{ z[i++] = p->a[j] + '0'; j++; }while( jnDigit ); } z[i] = 0; sqlite3_result_text(pCtx, z, i, sqlite3_free); } /* ** Make the given Decimal the result in an format similar to '%+#e'. ** In other words, show exponential notation with leading and trailing ** zeros omitted. */ static void decimal_result_sci(sqlite3_context *pCtx, Decimal *p){ char *z; /* The output buffer */ int i; /* Loop counter */ int nZero; /* Number of leading zeros */ int nDigit; /* Number of digits not counting trailing zeros */ int nFrac; /* Digits to the right of the decimal point */ int exp; /* Exponent value */ signed char zero; /* Zero value */ signed char *a; /* Array of digits */ if( p==0 || p->oom ){ sqlite3_result_error_nomem(pCtx); return; } if( p->isNull ){ sqlite3_result_null(pCtx); return; } for(nDigit=p->nDigit; nDigit>0 && p->a[nDigit-1]==0; nDigit--){} for(nZero=0; nZeroa[nZero]==0; nZero++){} nFrac = p->nFrac + (nDigit - p->nDigit); nDigit -= nZero; z = sqlite3_malloc( nDigit+20 ); if( z==0 ){ sqlite3_result_error_nomem(pCtx); return; } if( nDigit==0 ){ zero = 0; a = &zero; nDigit = 1; nFrac = 0; }else{ a = &p->a[nZero]; } if( p->sign && nDigit>0 ){ z[0] = '-'; }else{ z[0] = '+'; } z[1] = a[0]+'0'; z[2] = '.'; if( nDigit==1 ){ z[3] = '0'; i = 4; }else{ for(i=1; iisNull==0 ** pB!=0 ** pB->isNull==0 */ static int decimal_cmp(const Decimal *pA, const Decimal *pB){ int nASig, nBSig, rc, n; if( pA->sign!=pB->sign ){ return pA->sign ? -1 : +1; } if( pA->sign ){ const Decimal *pTemp = pA; pA = pB; pB = pTemp; } nASig = pA->nDigit - pA->nFrac; nBSig = pB->nDigit - pB->nFrac; if( nASig!=nBSig ){ return nASig - nBSig; } n = pA->nDigit; if( n>pB->nDigit ) n = pB->nDigit; rc = memcmp(pA->a, pB->a, n); if( rc==0 ){ rc = pA->nDigit - pB->nDigit; } return rc; } /* ** SQL Function: decimal_cmp(X, Y) ** ** Return negative, zero, or positive if X is less then, equal to, or ** greater than Y. */ static void decimalCmpFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ Decimal *pA = 0, *pB = 0; int rc; UNUSED_PARAMETER(argc); pA = decimal_new(context, argv[0], 1); if( pA==0 || pA->isNull ) goto cmp_done; pB = decimal_new(context, argv[1], 1); if( pB==0 || pB->isNull ) goto cmp_done; rc = decimal_cmp(pA, pB); if( rc<0 ) rc = -1; else if( rc>0 ) rc = +1; sqlite3_result_int(context, rc); cmp_done: decimal_free(pA); decimal_free(pB); } /* ** Expand the Decimal so that it has a least nDigit digits and nFrac ** digits to the right of the decimal point. */ static void decimal_expand(Decimal *p, int nDigit, int nFrac){ int nAddSig; int nAddFrac; if( p==0 ) return; nAddFrac = nFrac - p->nFrac; nAddSig = (nDigit - p->nDigit) - nAddFrac; if( nAddFrac==0 && nAddSig==0 ) return; p->a = sqlite3_realloc64(p->a, nDigit+1); if( p->a==0 ){ p->oom = 1; return; } if( nAddSig ){ memmove(p->a+nAddSig, p->a, p->nDigit); memset(p->a, 0, nAddSig); p->nDigit += nAddSig; } if( nAddFrac ){ memset(p->a+p->nDigit, 0, nAddFrac); p->nDigit += nAddFrac; p->nFrac += nAddFrac; } } /* ** Add the value pB into pA. A := A + B. ** ** Both pA and pB might become denormalized by this routine. */ static void decimal_add(Decimal *pA, Decimal *pB){ int nSig, nFrac, nDigit; int i, rc; if( pA==0 ){ return; } if( pA->oom || pB==0 || pB->oom ){ pA->oom = 1; return; } if( pA->isNull || pB->isNull ){ pA->isNull = 1; return; } nSig = pA->nDigit - pA->nFrac; if( nSig && pA->a[0]==0 ) nSig--; if( nSignDigit-pB->nFrac ){ nSig = pB->nDigit - pB->nFrac; } nFrac = pA->nFrac; if( nFracnFrac ) nFrac = pB->nFrac; nDigit = nSig + nFrac + 1; decimal_expand(pA, nDigit, nFrac); decimal_expand(pB, nDigit, nFrac); if( pA->oom || pB->oom ){ pA->oom = 1; }else{ if( pA->sign==pB->sign ){ int carry = 0; for(i=nDigit-1; i>=0; i--){ int x = pA->a[i] + pB->a[i] + carry; if( x>=10 ){ carry = 1; pA->a[i] = x - 10; }else{ carry = 0; pA->a[i] = x; } } }else{ signed char *aA, *aB; int borrow = 0; rc = memcmp(pA->a, pB->a, nDigit); if( rc<0 ){ aA = pB->a; aB = pA->a; pA->sign = !pA->sign; }else{ aA = pA->a; aB = pB->a; } for(i=nDigit-1; i>=0; i--){ int x = aA[i] - aB[i] - borrow; if( x<0 ){ pA->a[i] = x+10; borrow = 1; }else{ pA->a[i] = x; borrow = 0; } } } } } /* ** Multiply A by B. A := A * B ** ** All significant digits after the decimal point are retained. ** Trailing zeros after the decimal point are omitted as long as ** the number of digits after the decimal point is no less than ** either the number of digits in either input. */ static void decimalMul(Decimal *pA, Decimal *pB){ signed char *acc = 0; int i, j, k; int minFrac; if( pA==0 || pA->oom || pA->isNull || pB==0 || pB->oom || pB->isNull ){ goto mul_end; } acc = sqlite3_malloc64( pA->nDigit + pB->nDigit + 2 ); if( acc==0 ){ pA->oom = 1; goto mul_end; } memset(acc, 0, pA->nDigit + pB->nDigit + 2); minFrac = pA->nFrac; if( pB->nFracnFrac; for(i=pA->nDigit-1; i>=0; i--){ signed char f = pA->a[i]; int carry = 0, x; for(j=pB->nDigit-1, k=i+j+3; j>=0; j--, k--){ x = acc[k] + f*pB->a[j] + carry; acc[k] = x%10; carry = x/10; } x = acc[k] + carry; acc[k] = x%10; acc[k-1] += x/10; } sqlite3_free(pA->a); pA->a = acc; acc = 0; pA->nDigit += pB->nDigit + 2; pA->nFrac += pB->nFrac; pA->sign ^= pB->sign; while( pA->nFrac>minFrac && pA->a[pA->nDigit-1]==0 ){ pA->nFrac--; pA->nDigit--; } mul_end: sqlite3_free(acc); } /* ** Create a new Decimal object that contains an integer power of 2. */ static Decimal *decimalPow2(int N){ Decimal *pA = 0; /* The result to be returned */ Decimal *pX = 0; /* Multiplier */ if( N<-20000 || N>20000 ) goto pow2_fault; pA = decimalNewFromText("1.0", 3); if( pA==0 || pA->oom ) goto pow2_fault; if( N==0 ) return pA; if( N>0 ){ pX = decimalNewFromText("2.0", 3); }else{ N = -N; pX = decimalNewFromText("0.5", 3); } if( pX==0 || pX->oom ) goto pow2_fault; while( 1 /* Exit by break */ ){ if( N & 1 ){ decimalMul(pA, pX); if( pA->oom ) goto pow2_fault; } N >>= 1; if( N==0 ) break; decimalMul(pX, pX); } decimal_free(pX); return pA; pow2_fault: decimal_free(pA); decimal_free(pX); return 0; } /* ** Use an IEEE754 binary64 ("double") to generate a new Decimal object. */ static Decimal *decimalFromDouble(double r){ sqlite3_int64 m, a; int e; int isNeg; Decimal *pA; Decimal *pX; char zNum[100]; if( r<0.0 ){ isNeg = 1; r = -r; }else{ isNeg = 0; } memcpy(&a,&r,sizeof(a)); if( a==0 ){ e = 0; m = 0; }else{ e = a>>52; m = a & ((((sqlite3_int64)1)<<52)-1); if( e==0 ){ m <<= 1; }else{ m |= ((sqlite3_int64)1)<<52; } while( e<1075 && m>0 && (m&1)==0 ){ m >>= 1; e++; } if( isNeg ) m = -m; e = e - 1075; if( e>971 ){ return 0; /* A NaN or an Infinity */ } } /* At this point m is the integer significand and e is the exponent */ sqlite3_snprintf(sizeof(zNum), zNum, "%lld", m); pA = decimalNewFromText(zNum, (int)strlen(zNum)); pX = decimalPow2(e); decimalMul(pA, pX); decimal_free(pX); return pA; } /* ** SQL Function: decimal(X) ** OR: decimal_exp(X) ** ** Convert input X into decimal and then back into text. ** ** If X is originally a float, then a full decimal expansion of that floating ** point value is done. Or if X is an 8-byte blob, it is interpreted ** as a float and similarly expanded. ** ** The decimal_exp(X) function returns the result in exponential notation. ** decimal(X) returns a complete decimal, without the e+NNN at the end. */ static void decimalFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ Decimal *p = decimal_new(context, argv[0], 0); UNUSED_PARAMETER(argc); if( p ){ if( sqlite3_user_data(context)!=0 ){ decimal_result_sci(context, p); }else{ decimal_result(context, p); } decimal_free(p); } } /* ** Compare text in decimal order. */ static int decimalCollFunc( void *notUsed, int nKey1, const void *pKey1, int nKey2, const void *pKey2 ){ const unsigned char *zA = (const unsigned char*)pKey1; const unsigned char *zB = (const unsigned char*)pKey2; Decimal *pA = decimalNewFromText((const char*)zA, nKey1); Decimal *pB = decimalNewFromText((const char*)zB, nKey2); int rc; UNUSED_PARAMETER(notUsed); if( pA==0 || pB==0 ){ rc = 0; }else{ rc = decimal_cmp(pA, pB); } decimal_free(pA); decimal_free(pB); return rc; } /* ** SQL Function: decimal_add(X, Y) ** decimal_sub(X, Y) ** ** Return the sum or difference of X and Y. */ static void decimalAddFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ Decimal *pA = decimal_new(context, argv[0], 1); Decimal *pB = decimal_new(context, argv[1], 1); UNUSED_PARAMETER(argc); decimal_add(pA, pB); decimal_result(context, pA); decimal_free(pA); decimal_free(pB); } static void decimalSubFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ Decimal *pA = decimal_new(context, argv[0], 1); Decimal *pB = decimal_new(context, argv[1], 1); UNUSED_PARAMETER(argc); if( pB ){ pB->sign = !pB->sign; decimal_add(pA, pB); decimal_result(context, pA); } decimal_free(pA); decimal_free(pB); } /* Aggregate funcion: decimal_sum(X) ** ** Works like sum() except that it uses decimal arithmetic for unlimited ** precision. */ static void decimalSumStep( sqlite3_context *context, int argc, sqlite3_value **argv ){ Decimal *p; Decimal *pArg; UNUSED_PARAMETER(argc); p = sqlite3_aggregate_context(context, sizeof(*p)); if( p==0 ) return; if( !p->isInit ){ p->isInit = 1; p->a = sqlite3_malloc(2); if( p->a==0 ){ p->oom = 1; }else{ p->a[0] = 0; } p->nDigit = 1; p->nFrac = 0; } if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return; pArg = decimal_new(context, argv[0], 1); decimal_add(p, pArg); decimal_free(pArg); } static void decimalSumInverse( sqlite3_context *context, int argc, sqlite3_value **argv ){ Decimal *p; Decimal *pArg; UNUSED_PARAMETER(argc); p = sqlite3_aggregate_context(context, sizeof(*p)); if( p==0 ) return; if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return; pArg = decimal_new(context, argv[0], 1); if( pArg ) pArg->sign = !pArg->sign; decimal_add(p, pArg); decimal_free(pArg); } static void decimalSumValue(sqlite3_context *context){ Decimal *p = sqlite3_aggregate_context(context, 0); if( p==0 ) return; decimal_result(context, p); } static void decimalSumFinalize(sqlite3_context *context){ Decimal *p = sqlite3_aggregate_context(context, 0); if( p==0 ) return; decimal_result(context, p); decimal_clear(p); } /* ** SQL Function: decimal_mul(X, Y) ** ** Return the product of X and Y. */ static void decimalMulFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ Decimal *pA = decimal_new(context, argv[0], 1); Decimal *pB = decimal_new(context, argv[1], 1); UNUSED_PARAMETER(argc); if( pA==0 || pA->oom || pA->isNull || pB==0 || pB->oom || pB->isNull ){ goto mul_end; } decimalMul(pA, pB); if( pA->oom ){ goto mul_end; } decimal_result(context, pA); mul_end: decimal_free(pA); decimal_free(pB); } /* ** SQL Function: decimal_pow2(N) ** ** Return the N-th power of 2. N must be an integer. */ static void decimalPow2Func( sqlite3_context *context, int argc, sqlite3_value **argv ){ UNUSED_PARAMETER(argc); if( sqlite3_value_type(argv[0])==SQLITE_INTEGER ){ Decimal *pA = decimalPow2(sqlite3_value_int(argv[0])); decimal_result_sci(context, pA); decimal_free(pA); } } #ifdef _WIN32 #endif int sqlite3_decimal_init( sqlite3 *db, char **pzErrMsg, const sqlite3_api_routines *pApi ){ int rc = SQLITE_OK; static const struct { const char *zFuncName; int nArg; int iArg; void (*xFunc)(sqlite3_context*,int,sqlite3_value**); } aFunc[] = { { "decimal", 1, 0, decimalFunc }, { "decimal_exp", 1, 1, decimalFunc }, { "decimal_cmp", 2, 0, decimalCmpFunc }, { "decimal_add", 2, 0, decimalAddFunc }, { "decimal_sub", 2, 0, decimalSubFunc }, { "decimal_mul", 2, 0, decimalMulFunc }, { "decimal_pow2", 1, 0, decimalPow2Func }, }; unsigned int i; (void)pzErrMsg; /* Unused parameter */ SQLITE_EXTENSION_INIT2(pApi); for(i=0; i<(int)(sizeof(aFunc)/sizeof(aFunc[0])) && rc==SQLITE_OK; i++){ rc = sqlite3_create_function(db, aFunc[i].zFuncName, aFunc[i].nArg, SQLITE_UTF8|SQLITE_INNOCUOUS|SQLITE_DETERMINISTIC, aFunc[i].iArg ? db : 0, aFunc[i].xFunc, 0, 0); } if( rc==SQLITE_OK ){ rc = sqlite3_create_window_function(db, "decimal_sum", 1, SQLITE_UTF8|SQLITE_INNOCUOUS|SQLITE_DETERMINISTIC, 0, decimalSumStep, decimalSumFinalize, decimalSumValue, decimalSumInverse, 0); } if( rc==SQLITE_OK ){ rc = sqlite3_create_collation(db, "decimal", SQLITE_UTF8, 0, decimalCollFunc); } return rc; } /************************* End ../ext/misc/decimal.c ********************/ /************************* Begin ../ext/misc/percentile.c ******************/ /* ** 2013-05-28 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ****************************************************************************** ** ** This file contains code to implement the percentile(Y,P) SQL function ** and similar as described below: ** ** (1) The percentile(Y,P) function is an aggregate function taking ** exactly two arguments. ** ** (2) If the P argument to percentile(Y,P) is not the same for every ** row in the aggregate then an error is thrown. The word "same" ** in the previous sentence means that the value differ by less ** than 0.001. ** ** (3) If the P argument to percentile(Y,P) evaluates to anything other ** than a number in the range of 0.0 to 100.0 inclusive then an ** error is thrown. ** ** (4) If any Y argument to percentile(Y,P) evaluates to a value that ** is not NULL and is not numeric then an error is thrown. ** ** (5) If any Y argument to percentile(Y,P) evaluates to plus or minus ** infinity then an error is thrown. (SQLite always interprets NaN ** values as NULL.) ** ** (6) Both Y and P in percentile(Y,P) can be arbitrary expressions, ** including CASE WHEN expressions. ** ** (7) The percentile(Y,P) aggregate is able to handle inputs of at least ** one million (1,000,000) rows. ** ** (8) If there are no non-NULL values for Y, then percentile(Y,P) ** returns NULL. ** ** (9) If there is exactly one non-NULL value for Y, the percentile(Y,P) ** returns the one Y value. ** ** (10) If there N non-NULL values of Y where N is two or more and ** the Y values are ordered from least to greatest and a graph is ** drawn from 0 to N-1 such that the height of the graph at J is ** the J-th Y value and such that straight lines are drawn between ** adjacent Y values, then the percentile(Y,P) function returns ** the height of the graph at P*(N-1)/100. ** ** (11) The percentile(Y,P) function always returns either a floating ** point number or NULL. ** ** (12) The percentile(Y,P) is implemented as a single C99 source-code ** file that compiles into a shared-library or DLL that can be loaded ** into SQLite using the sqlite3_load_extension() interface. ** ** (13) A separate median(Y) function is the equivalent percentile(Y,50). ** ** (14) A separate percentile_cont(Y,P) function is equivalent to ** percentile(Y,P/100.0). In other words, the fraction value in ** the second argument is in the range of 0 to 1 instead of 0 to 100. ** ** (15) A separate percentile_disc(Y,P) function is like ** percentile_cont(Y,P) except that instead of returning the weighted ** average of the nearest two input values, it returns the next lower ** value. So the percentile_disc(Y,P) will always return a value ** that was one of the inputs. ** ** (16) All of median(), percentile(Y,P), percentile_cont(Y,P) and ** percentile_disc(Y,P) can be used as window functions. ** ** Differences from standard SQL: ** ** * The percentile_cont(X,P) function is equivalent to the following in ** standard SQL: ** ** (percentile_cont(P) WITHIN GROUP (ORDER BY X)) ** ** The SQLite syntax is much more compact. The standard SQL syntax ** is also supported if SQLite is compiled with the ** -DSQLITE_ENABLE_ORDERED_SET_AGGREGATES option. ** ** * No median(X) function exists in the SQL standard. App developers ** are expected to write "percentile_cont(0.5)WITHIN GROUP(ORDER BY X)". ** ** * No percentile(Y,P) function exists in the SQL standard. Instead of ** percential(Y,P), developers must write this: ** "percentile_cont(P/100.0) WITHIN GROUP (ORDER BY Y)". Note that ** the fraction parameter to percentile() goes from 0 to 100 whereas ** the fraction parameter in SQL standard percentile_cont() goes from ** 0 to 1. ** ** Implementation notes as of 2024-08-31: ** ** * The regular aggregate-function versions of these routines work ** by accumulating all values in an array of doubles, then sorting ** that array using quicksort before computing the answer. Thus ** the runtime is O(NlogN) where N is the number of rows of input. ** ** * For the window-function versions of these routines, the array of ** inputs is sorted as soon as the first value is computed. Thereafter, ** the array is kept in sorted order using an insert-sort. This ** results in O(N*K) performance where K is the size of the window. ** One can imagine alternative implementations that give O(N*logN*logK) ** performance, but they require more complex logic and data structures. ** The developers have elected to keep the asymptotically slower ** algorithm for now, for simplicity, under the theory that window ** functions are seldom used and when they are, the window size K is ** often small. The developers might revisit that decision later, ** should the need arise. */ #if defined(SQLITE3_H) /* no-op */ #elif defined(SQLITE_STATIC_PERCENTILE) /* # include "sqlite3.h" */ #else /* # include "sqlite3ext.h" */ SQLITE_EXTENSION_INIT1 #endif #include #include #include /* The following object is the group context for a single percentile() ** aggregate. Remember all input Y values until the very end. ** Those values are accumulated in the Percentile.a[] array. */ typedef struct Percentile Percentile; struct Percentile { unsigned nAlloc; /* Number of slots allocated for a[] */ unsigned nUsed; /* Number of slots actually used in a[] */ char bSorted; /* True if a[] is already in sorted order */ char bKeepSorted; /* True if advantageous to keep a[] sorted */ char bPctValid; /* True if rPct is valid */ double rPct; /* Fraction. 0.0 to 1.0 */ double *a; /* Array of Y values */ }; /* Details of each function in the percentile family */ typedef struct PercentileFunc PercentileFunc; struct PercentileFunc { const char *zName; /* Function name */ char nArg; /* Number of arguments */ char mxFrac; /* Maximum value of the "fraction" input */ char bDiscrete; /* True for percentile_disc() */ }; static const PercentileFunc aPercentFunc[] = { { "median", 1, 1, 0 }, { "percentile", 2, 100, 0 }, { "percentile_cont", 2, 1, 0 }, { "percentile_disc", 2, 1, 1 }, }; /* ** Return TRUE if the input floating-point number is an infinity. */ static int percentIsInfinity(double r){ sqlite3_uint64 u; assert( sizeof(u)==sizeof(r) ); memcpy(&u, &r, sizeof(u)); return ((u>>52)&0x7ff)==0x7ff; } /* ** Return TRUE if two doubles differ by 0.001 or less. */ static int percentSameValue(double a, double b){ a -= b; return a>=-0.001 && a<=0.001; } /* ** Search p (which must have p->bSorted) looking for an entry with ** value y. Return the index of that entry. ** ** If bExact is true, return -1 if the entry is not found. ** ** If bExact is false, return the index at which a new entry with ** value y should be insert in order to keep the values in sorted ** order. The smallest return value in this case will be 0, and ** the largest return value will be p->nUsed. */ static int percentBinarySearch(Percentile *p, double y, int bExact){ int iFirst = 0; /* First element of search range */ int iLast = p->nUsed - 1; /* Last element of search range */ while( iLast>=iFirst ){ int iMid = (iFirst+iLast)/2; double x = p->a[iMid]; if( xy ){ iLast = iMid - 1; }else{ return iMid; } } if( bExact ) return -1; return iFirst; } /* ** Generate an error for a percentile function. ** ** The error format string must have exactly one occurrance of "%%s()" ** (with two '%' characters). That substring will be replaced by the name ** of the function. */ static void percentError(sqlite3_context *pCtx, const char *zFormat, ...){ PercentileFunc *pFunc = (PercentileFunc*)sqlite3_user_data(pCtx); char *zMsg1; char *zMsg2; va_list ap; va_start(ap, zFormat); zMsg1 = sqlite3_vmprintf(zFormat, ap); va_end(ap); zMsg2 = zMsg1 ? sqlite3_mprintf(zMsg1, pFunc->zName) : 0; sqlite3_result_error(pCtx, zMsg2, -1); sqlite3_free(zMsg1); sqlite3_free(zMsg2); } /* ** The "step" function for percentile(Y,P) is called once for each ** input row. */ static void percentStep(sqlite3_context *pCtx, int argc, sqlite3_value **argv){ Percentile *p; double rPct; int eType; double y; assert( argc==2 || argc==1 ); if( argc==1 ){ /* Requirement 13: median(Y) is the same as percentile(Y,50). */ rPct = 0.5; }else{ /* Requirement 3: P must be a number between 0 and 100 */ PercentileFunc *pFunc = (PercentileFunc*)sqlite3_user_data(pCtx); eType = sqlite3_value_numeric_type(argv[1]); rPct = sqlite3_value_double(argv[1])/(double)pFunc->mxFrac; if( (eType!=SQLITE_INTEGER && eType!=SQLITE_FLOAT) || rPct<0.0 || rPct>1.0 ){ percentError(pCtx, "the fraction argument to %%s()" " is not between 0.0 and %.1f", (double)pFunc->mxFrac); return; } } /* Allocate the session context. */ p = (Percentile*)sqlite3_aggregate_context(pCtx, sizeof(*p)); if( p==0 ) return; /* Remember the P value. Throw an error if the P value is different ** from any prior row, per Requirement (2). */ if( !p->bPctValid ){ p->rPct = rPct; p->bPctValid = 1; }else if( !percentSameValue(p->rPct,rPct) ){ percentError(pCtx, "the fraction argument to %%s()" " is not the same for all input rows"); return; } /* Ignore rows for which Y is NULL */ eType = sqlite3_value_type(argv[0]); if( eType==SQLITE_NULL ) return; /* If not NULL, then Y must be numeric. Otherwise throw an error. ** Requirement 4 */ if( eType!=SQLITE_INTEGER && eType!=SQLITE_FLOAT ){ percentError(pCtx, "input to %%s() is not numeric"); return; } /* Throw an error if the Y value is infinity or NaN */ y = sqlite3_value_double(argv[0]); if( percentIsInfinity(y) ){ percentError(pCtx, "Inf input to %%s()"); return; } /* Allocate and store the Y */ if( p->nUsed>=p->nAlloc ){ unsigned n = p->nAlloc*2 + 250; double *a = sqlite3_realloc64(p->a, sizeof(double)*n); if( a==0 ){ sqlite3_free(p->a); memset(p, 0, sizeof(*p)); sqlite3_result_error_nomem(pCtx); return; } p->nAlloc = n; p->a = a; } if( p->nUsed==0 ){ p->a[p->nUsed++] = y; p->bSorted = 1; }else if( !p->bSorted || y>=p->a[p->nUsed-1] ){ p->a[p->nUsed++] = y; }else if( p->bKeepSorted ){ int i; i = percentBinarySearch(p, y, 0); if( i<(int)p->nUsed ){ memmove(&p->a[i+1], &p->a[i], (p->nUsed-i)*sizeof(p->a[0])); } p->a[i] = y; p->nUsed++; }else{ p->a[p->nUsed++] = y; p->bSorted = 0; } } /* ** Interchange two doubles. */ #define SWAP_DOUBLE(X,Y) {double ttt=(X);(X)=(Y);(Y)=ttt;} /* ** Sort an array of doubles. ** ** Algorithm: quicksort ** ** This is implemented separately rather than using the qsort() routine ** from the standard library because: ** ** (1) To avoid a dependency on qsort() ** (2) To avoid the function call to the comparison routine for each ** comparison. */ static void percentSort(double *a, unsigned int n){ int iLt; /* Entries before a[iLt] are less than rPivot */ int iGt; /* Entries at or after a[iGt] are greater than rPivot */ int i; /* Loop counter */ double rPivot; /* The pivot value */ assert( n>=2 ); if( a[0]>a[n-1] ){ SWAP_DOUBLE(a[0],a[n-1]) } if( n==2 ) return; iGt = n-1; i = n/2; if( a[0]>a[i] ){ SWAP_DOUBLE(a[0],a[i]) }else if( a[i]>a[iGt] ){ SWAP_DOUBLE(a[i],a[iGt]) } if( n==3 ) return; rPivot = a[i]; iLt = i = 1; do{ if( a[i]iLt ) SWAP_DOUBLE(a[i],a[iLt]) iLt++; i++; }else if( a[i]>rPivot ){ do{ iGt--; }while( iGt>i && a[iGt]>rPivot ); SWAP_DOUBLE(a[i],a[iGt]) }else{ i++; } }while( i=2 ) percentSort(a, iLt); if( n-iGt>=2 ) percentSort(a+iGt, n-iGt); /* Uncomment for testing */ #if 0 for(i=0; ibSorted==0 ){ assert( p->nUsed>1 ); percentSort(p->a, p->nUsed); p->bSorted = 1; } p->bKeepSorted = 1; /* Find and remove the row */ i = percentBinarySearch(p, y, 1); if( i>=0 ){ p->nUsed--; if( i<(int)p->nUsed ){ memmove(&p->a[i], &p->a[i+1], (p->nUsed - i)*sizeof(p->a[0])); } } } /* ** Compute the final output of percentile(). Clean up all allocated ** memory if and only if bIsFinal is true. */ static void percentCompute(sqlite3_context *pCtx, int bIsFinal){ Percentile *p; PercentileFunc *pFunc = (PercentileFunc*)sqlite3_user_data(pCtx); unsigned i1, i2; double v1, v2; double ix, vx; p = (Percentile*)sqlite3_aggregate_context(pCtx, 0); if( p==0 ) return; if( p->a==0 ) return; if( p->nUsed ){ if( p->bSorted==0 ){ assert( p->nUsed>1 ); percentSort(p->a, p->nUsed); p->bSorted = 1; } ix = p->rPct*(p->nUsed-1); i1 = (unsigned)ix; if( pFunc->bDiscrete ){ vx = p->a[i1]; }else{ i2 = ix==(double)i1 || i1==p->nUsed-1 ? i1 : i1+1; v1 = p->a[i1]; v2 = p->a[i2]; vx = v1 + (v2-v1)*(ix-i1); } sqlite3_result_double(pCtx, vx); } if( bIsFinal ){ sqlite3_free(p->a); memset(p, 0, sizeof(*p)); }else{ p->bKeepSorted = 1; } } static void percentFinal(sqlite3_context *pCtx){ percentCompute(pCtx, 1); } static void percentValue(sqlite3_context *pCtx){ percentCompute(pCtx, 0); } #if defined(_WIN32) && !defined(SQLITE3_H) && !defined(SQLITE_STATIC_PERCENTILE) #endif int sqlite3_percentile_init( sqlite3 *db, char **pzErrMsg, const sqlite3_api_routines *pApi ){ int rc = SQLITE_OK; unsigned int i; #if defined(SQLITE3_H) || defined(SQLITE_STATIC_PERCENTILE) (void)pApi; /* Unused parameter */ #else SQLITE_EXTENSION_INIT2(pApi); #endif (void)pzErrMsg; /* Unused parameter */ for(i=0; i ** *Nix: gcc -O2 -shared -I$SQDIR -fPIC -o base64.so base64.c ** OSX: gcc -O2 -dynamiclib -fPIC -I$SQDIR -o base64.dylib base64.c ** Win32: gcc -O2 -shared -I%SQDIR% -o base64.dll base64.c ** Win32: cl /Os -I%SQDIR% base64.c -link -dll -out:base64.dll */ #include /* #include "sqlite3ext.h" */ #ifndef deliberate_fall_through /* Quiet some compilers about some of our intentional code. */ # if GCC_VERSION>=7000000 # define deliberate_fall_through __attribute__((fallthrough)); # else # define deliberate_fall_through # endif #endif SQLITE_EXTENSION_INIT1; #define PC 0x80 /* pad character */ #define WS 0x81 /* whitespace */ #define ND 0x82 /* Not above or digit-value */ #define PAD_CHAR '=' #ifndef U8_TYPEDEF /* typedef unsigned char u8; */ #define U8_TYPEDEF #endif /* Decoding table, ASCII (7-bit) value to base 64 digit value or other */ static const u8 b64DigitValues[128] = { /* HT LF VT FF CR */ ND,ND,ND,ND, ND,ND,ND,ND, ND,WS,WS,WS, WS,WS,ND,ND, /* US */ ND,ND,ND,ND, ND,ND,ND,ND, ND,ND,ND,ND, ND,ND,ND,ND, /*sp + / */ WS,ND,ND,ND, ND,ND,ND,ND, ND,ND,ND,62, ND,ND,ND,63, /* 0 1 5 9 = */ 52,53,54,55, 56,57,58,59, 60,61,ND,ND, ND,PC,ND,ND, /* A O */ ND, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10, 11,12,13,14, /* P Z */ 15,16,17,18, 19,20,21,22, 23,24,25,ND, ND,ND,ND,ND, /* a o */ ND,26,27,28, 29,30,31,32, 33,34,35,36, 37,38,39,40, /* p z */ 41,42,43,44, 45,46,47,48, 49,50,51,ND, ND,ND,ND,ND }; static const char b64Numerals[64+1] = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"; #define BX_DV_PROTO(c) \ ((((u8)(c))<0x80)? (u8)(b64DigitValues[(u8)(c)]) : 0x80) #define IS_BX_DIGIT(bdp) (((u8)(bdp))<0x80) #define IS_BX_WS(bdp) ((bdp)==WS) #define IS_BX_PAD(bdp) ((bdp)==PC) #define BX_NUMERAL(dv) (b64Numerals[(u8)(dv)]) /* Width of base64 lines. Should be an integer multiple of 4. */ #define B64_DARK_MAX 72 /* Encode a byte buffer into base64 text with linefeeds appended to limit ** encoded group lengths to B64_DARK_MAX or to terminate the last group. */ static char* toBase64( u8 *pIn, int nbIn, char *pOut ){ int nCol = 0; while( nbIn >= 3 ){ /* Do the bit-shuffle, exploiting unsigned input to avoid masking. */ pOut[0] = BX_NUMERAL(pIn[0]>>2); pOut[1] = BX_NUMERAL(((pIn[0]<<4)|(pIn[1]>>4))&0x3f); pOut[2] = BX_NUMERAL(((pIn[1]&0xf)<<2)|(pIn[2]>>6)); pOut[3] = BX_NUMERAL(pIn[2]&0x3f); pOut += 4; nbIn -= 3; pIn += 3; if( (nCol += 4)>=B64_DARK_MAX || nbIn<=0 ){ *pOut++ = '\n'; nCol = 0; } } if( nbIn > 0 ){ signed char nco = nbIn+1; int nbe; unsigned long qv = *pIn++; for( nbe=1; nbe<3; ++nbe ){ qv <<= 8; if( nbe=0; --nbe ){ char ce = (nbe>= 6; pOut[nbe] = ce; } pOut += 4; *pOut++ = '\n'; } *pOut = 0; return pOut; } /* Skip over text which is not base64 numeral(s). */ static char * skipNonB64( char *s, int nc ){ char c; while( nc-- > 0 && (c = *s) && !IS_BX_DIGIT(BX_DV_PROTO(c)) ) ++s; return s; } /* Decode base64 text into a byte buffer. */ static u8* fromBase64( char *pIn, int ncIn, u8 *pOut ){ if( ncIn>0 && pIn[ncIn-1]=='\n' ) --ncIn; while( ncIn>0 && *pIn!=PAD_CHAR ){ static signed char nboi[] = { 0, 0, 1, 2, 3 }; char *pUse = skipNonB64(pIn, ncIn); unsigned long qv = 0L; int nti, nbo, nac; ncIn -= (pUse - pIn); pIn = pUse; nti = (ncIn>4)? 4 : ncIn; ncIn -= nti; nbo = nboi[nti]; if( nbo==0 ) break; for( nac=0; nac<4; ++nac ){ char c = (nac>8) & 0xff; case 1: pOut[0] = (qv>>16) & 0xff; } pOut += nbo; } return pOut; } /* This function does the work for the SQLite base64(x) UDF. */ static void base64(sqlite3_context *context, int na, sqlite3_value *av[]){ int nb, nc, nv = sqlite3_value_bytes(av[0]); int nvMax = sqlite3_limit(sqlite3_context_db_handle(context), SQLITE_LIMIT_LENGTH, -1); char *cBuf; u8 *bBuf; assert(na==1); switch( sqlite3_value_type(av[0]) ){ case SQLITE_BLOB: nb = nv; nc = 4*(nv+2/3); /* quads needed */ nc += (nc+(B64_DARK_MAX-1))/B64_DARK_MAX + 1; /* LFs and a 0-terminator */ if( nvMax < nc ){ sqlite3_result_error(context, "blob expanded to base64 too big", -1); return; } bBuf = (u8*)sqlite3_value_blob(av[0]); if( !bBuf ){ if( SQLITE_NOMEM==sqlite3_errcode(sqlite3_context_db_handle(context)) ){ goto memFail; } sqlite3_result_text(context,"",-1,SQLITE_STATIC); break; } cBuf = sqlite3_malloc(nc); if( !cBuf ) goto memFail; nc = (int)(toBase64(bBuf, nb, cBuf) - cBuf); sqlite3_result_text(context, cBuf, nc, sqlite3_free); break; case SQLITE_TEXT: nc = nv; nb = 3*((nv+3)/4); /* may overestimate due to LF and padding */ if( nvMax < nb ){ sqlite3_result_error(context, "blob from base64 may be too big", -1); return; }else if( nb<1 ){ nb = 1; } cBuf = (char *)sqlite3_value_text(av[0]); if( !cBuf ){ if( SQLITE_NOMEM==sqlite3_errcode(sqlite3_context_db_handle(context)) ){ goto memFail; } sqlite3_result_zeroblob(context, 0); break; } bBuf = sqlite3_malloc(nb); if( !bBuf ) goto memFail; nb = (int)(fromBase64(cBuf, nc, bBuf) - bBuf); sqlite3_result_blob(context, bBuf, nb, sqlite3_free); break; default: sqlite3_result_error(context, "base64 accepts only blob or text", -1); return; } return; memFail: sqlite3_result_error(context, "base64 OOM", -1); } /* ** Establish linkage to running SQLite library. */ #ifndef SQLITE_SHELL_EXTFUNCS #ifdef _WIN32 #endif int sqlite3_base_init #else static int sqlite3_base64_init #endif (sqlite3 *db, char **pzErr, const sqlite3_api_routines *pApi){ SQLITE_EXTENSION_INIT2(pApi); (void)pzErr; return sqlite3_create_function (db, "base64", 1, SQLITE_DETERMINISTIC|SQLITE_INNOCUOUS|SQLITE_DIRECTONLY|SQLITE_UTF8, 0, base64, 0, 0); } /* ** Define some macros to allow this extension to be built into the shell ** conveniently, in conjunction with use of SQLITE_SHELL_EXTFUNCS. This ** allows shell.c, as distributed, to have this extension built in. */ #define BASE64_INIT(db) sqlite3_base64_init(db, 0, 0) #define BASE64_EXPOSE(db, pzErr) /* Not needed, ..._init() does this. */ /************************* End ../ext/misc/base64.c ********************/ #undef sqlite3_base_init #define sqlite3_base_init sqlite3_base85_init #define OMIT_BASE85_CHECKER /************************* Begin ../ext/misc/base85.c ******************/ /* ** 2022-11-16 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** ** This is a utility for converting binary to base85 or vice-versa. ** It can be built as a standalone program or an SQLite3 extension. ** ** Much like base64 representations, base85 can be sent through a ** sane USASCII channel unmolested. It also plays nicely in CSV or ** written as TCL brace-enclosed literals or SQL string literals. ** It is not suited for unmodified use in XML-like documents. ** ** The encoding used resembles Ascii85, but was devised by the author ** (Larry Brasfield) before Mozilla, Adobe, ZMODEM or other Ascii85 ** variant sources existed, in the 1984 timeframe on a VAX mainframe. ** Further, this is an independent implementation of a base85 system. ** Hence, the author has rightfully put this into the public domain. ** ** Base85 numerals are taken from the set of 7-bit USASCII codes, ** excluding control characters and Space ! " ' ( ) { | } ~ Del ** in code order representing digit values 0 to 84 (base 10.) ** ** Groups of 4 bytes, interpreted as big-endian 32-bit values, ** are represented as 5-digit base85 numbers with MS to LS digit ** order. Groups of 1-3 bytes are represented with 2-4 digits, ** still big-endian but 8-24 bit values. (Using big-endian yields ** the simplest transition to byte groups smaller than 4 bytes. ** These byte groups can also be considered base-256 numbers.) ** Groups of 0 bytes are represented with 0 digits and vice-versa. ** No pad characters are used; Encoded base85 numeral sequence ** (aka "group") length maps 1-to-1 to the decoded binary length. ** ** Any character not in the base85 numeral set delimits groups. ** When base85 is streamed or stored in containers of indefinite ** size, newline is used to separate it into sub-sequences of no ** more than 80 digits so that fgets() can be used to read it. ** ** Length limitations are not imposed except that the runtime ** SQLite string or blob length limits are respected. Otherwise, ** any length binary sequence can be represented and recovered. ** Base85 sequences can be concatenated by separating them with ** a non-base85 character; the conversion to binary will then ** be the concatenation of the represented binary sequences. ** The standalone program either converts base85 on stdin to create ** a binary file or converts a binary file to base85 on stdout. ** Read or make it blurt its help for invocation details. ** ** The SQLite3 extension creates a function, base85(x), which will ** either convert text base85 to a blob or a blob to text base85 ** and return the result (or throw an error for other types.) ** Unless built with OMIT_BASE85_CHECKER defined, it also creates a ** function, is_base85(t), which returns 1 iff the text t contains ** nothing other than base85 numerals and whitespace, or 0 otherwise. ** ** To build the extension: ** Set shell variable SQDIR= ** and variable OPTS to -DOMIT_BASE85_CHECKER if is_base85() unwanted. ** *Nix: gcc -O2 -shared -I$SQDIR $OPTS -fPIC -o base85.so base85.c ** OSX: gcc -O2 -dynamiclib -fPIC -I$SQDIR $OPTS -o base85.dylib base85.c ** Win32: gcc -O2 -shared -I%SQDIR% %OPTS% -o base85.dll base85.c ** Win32: cl /Os -I%SQDIR% %OPTS% base85.c -link -dll -out:base85.dll ** ** To build the standalone program, define PP symbol BASE85_STANDALONE. Eg. ** *Nix or OSX: gcc -O2 -DBASE85_STANDALONE base85.c -o base85 ** Win32: gcc -O2 -DBASE85_STANDALONE -o base85.exe base85.c ** Win32: cl /Os /MD -DBASE85_STANDALONE base85.c */ #include #include #include #include #ifndef OMIT_BASE85_CHECKER # include #endif #ifndef BASE85_STANDALONE /* # include "sqlite3ext.h" */ SQLITE_EXTENSION_INIT1; #else # ifdef _WIN32 # include # include # else # define setmode(fd,m) # endif static char *zHelp = "Usage: base85 \n" " is either -r to read or -w to write ,\n" " content to be converted to/from base85 on stdout/stdin.\n" " names a binary file to be rendered or created.\n" " Or, the name '-' refers to the stdin or stdout stream.\n" ; static void sayHelp(){ printf("%s", zHelp); } #endif #ifndef U8_TYPEDEF /* typedef unsigned char u8; */ #define U8_TYPEDEF #endif /* Classify c according to interval within USASCII set w.r.t. base85 * Values of 1 and 3 are base85 numerals. Values of 0, 2, or 4 are not. */ #define B85_CLASS( c ) (((c)>='#')+((c)>'&')+((c)>='*')+((c)>'z')) /* Provide digitValue to b85Numeral offset as a function of above class. */ static u8 b85_cOffset[] = { 0, '#', 0, '*'-4, 0 }; #define B85_DNOS( c ) b85_cOffset[B85_CLASS(c)] /* Say whether c is a base85 numeral. */ #define IS_B85( c ) (B85_CLASS(c) & 1) #if 0 /* Not used, */ static u8 base85DigitValue( char c ){ u8 dv = (u8)(c - '#'); if( dv>87 ) return 0xff; return (dv > 3)? dv-3 : dv; } #endif /* Width of base64 lines. Should be an integer multiple of 5. */ #define B85_DARK_MAX 80 static char * skipNonB85( char *s, int nc ){ char c; while( nc-- > 0 && (c = *s) && !IS_B85(c) ) ++s; return s; } /* Convert small integer, known to be in 0..84 inclusive, to base85 numeral. * Do not use the macro form with argument expression having a side-effect.*/ #if 0 static char base85Numeral( u8 b ){ return (b < 4)? (char)(b + '#') : (char)(b - 4 + '*'); } #else # define base85Numeral( dn )\ ((char)(((dn) < 4)? (char)((dn) + '#') : (char)((dn) - 4 + '*'))) #endif static char *putcs(char *pc, char *s){ char c; while( (c = *s++)!=0 ) *pc++ = c; return pc; } /* Encode a byte buffer into base85 text. If pSep!=0, it's a C string ** to be appended to encoded groups to limit their length to B85_DARK_MAX ** or to terminate the last group (to aid concatenation.) */ static char* toBase85( u8 *pIn, int nbIn, char *pOut, char *pSep ){ int nCol = 0; while( nbIn >= 4 ){ int nco = 5; unsigned long qbv = (((unsigned long)pIn[0])<<24) | (pIn[1]<<16) | (pIn[2]<<8) | pIn[3]; while( nco > 0 ){ unsigned nqv = (unsigned)(qbv/85UL); unsigned char dv = qbv - 85UL*nqv; qbv = nqv; pOut[--nco] = base85Numeral(dv); } nbIn -= 4; pIn += 4; pOut += 5; if( pSep && (nCol += 5)>=B85_DARK_MAX ){ pOut = putcs(pOut, pSep); nCol = 0; } } if( nbIn > 0 ){ int nco = nbIn + 1; unsigned long qv = *pIn++; int nbe = 1; while( nbe++ < nbIn ){ qv = (qv<<8) | *pIn++; } nCol += nco; while( nco > 0 ){ u8 dv = (u8)(qv % 85); qv /= 85; pOut[--nco] = base85Numeral(dv); } pOut += (nbIn+1); } if( pSep && nCol>0 ) pOut = putcs(pOut, pSep); *pOut = 0; return pOut; } /* Decode base85 text into a byte buffer. */ static u8* fromBase85( char *pIn, int ncIn, u8 *pOut ){ if( ncIn>0 && pIn[ncIn-1]=='\n' ) --ncIn; while( ncIn>0 ){ static signed char nboi[] = { 0, 0, 1, 2, 3, 4 }; char *pUse = skipNonB85(pIn, ncIn); unsigned long qv = 0L; int nti, nbo; ncIn -= (pUse - pIn); pIn = pUse; nti = (ncIn>5)? 5 : ncIn; nbo = nboi[nti]; if( nbo==0 ) break; while( nti>0 ){ char c = *pIn++; u8 cdo = B85_DNOS(c); --ncIn; if( cdo==0 ) break; qv = 85 * qv + (c - cdo); --nti; } nbo -= nti; /* Adjust for early (non-digit) end of group. */ switch( nbo ){ case 4: *pOut++ = (qv >> 24)&0xff; case 3: *pOut++ = (qv >> 16)&0xff; case 2: *pOut++ = (qv >> 8)&0xff; case 1: *pOut++ = qv&0xff; case 0: break; } } return pOut; } #ifndef OMIT_BASE85_CHECKER /* Say whether input char sequence is all (base85 and/or whitespace).*/ static int allBase85( char *p, int len ){ char c; while( len-- > 0 && (c = *p++) != 0 ){ if( !IS_B85(c) && !isspace(c) ) return 0; } return 1; } #endif #ifndef BASE85_STANDALONE # ifndef OMIT_BASE85_CHECKER /* This function does the work for the SQLite is_base85(t) UDF. */ static void is_base85(sqlite3_context *context, int na, sqlite3_value *av[]){ assert(na==1); switch( sqlite3_value_type(av[0]) ){ case SQLITE_TEXT: { int rv = allBase85( (char *)sqlite3_value_text(av[0]), sqlite3_value_bytes(av[0]) ); sqlite3_result_int(context, rv); } break; case SQLITE_NULL: sqlite3_result_null(context); break; default: sqlite3_result_error(context, "is_base85 accepts only text or NULL", -1); return; } } # endif /* This function does the work for the SQLite base85(x) UDF. */ static void base85(sqlite3_context *context, int na, sqlite3_value *av[]){ int nb, nc, nv = sqlite3_value_bytes(av[0]); int nvMax = sqlite3_limit(sqlite3_context_db_handle(context), SQLITE_LIMIT_LENGTH, -1); char *cBuf; u8 *bBuf; assert(na==1); switch( sqlite3_value_type(av[0]) ){ case SQLITE_BLOB: nb = nv; /* ulongs tail newlines tailenc+nul*/ nc = 5*(nv/4) + nv%4 + nv/64+1 + 2; if( nvMax < nc ){ sqlite3_result_error(context, "blob expanded to base85 too big", -1); return; } bBuf = (u8*)sqlite3_value_blob(av[0]); if( !bBuf ){ if( SQLITE_NOMEM==sqlite3_errcode(sqlite3_context_db_handle(context)) ){ goto memFail; } sqlite3_result_text(context,"",-1,SQLITE_STATIC); break; } cBuf = sqlite3_malloc(nc); if( !cBuf ) goto memFail; nc = (int)(toBase85(bBuf, nb, cBuf, "\n") - cBuf); sqlite3_result_text(context, cBuf, nc, sqlite3_free); break; case SQLITE_TEXT: nc = nv; nb = 4*(nv/5) + nv%5; /* may overestimate */ if( nvMax < nb ){ sqlite3_result_error(context, "blob from base85 may be too big", -1); return; }else if( nb<1 ){ nb = 1; } cBuf = (char *)sqlite3_value_text(av[0]); if( !cBuf ){ if( SQLITE_NOMEM==sqlite3_errcode(sqlite3_context_db_handle(context)) ){ goto memFail; } sqlite3_result_zeroblob(context, 0); break; } bBuf = sqlite3_malloc(nb); if( !bBuf ) goto memFail; nb = (int)(fromBase85(cBuf, nc, bBuf) - bBuf); sqlite3_result_blob(context, bBuf, nb, sqlite3_free); break; default: sqlite3_result_error(context, "base85 accepts only blob or text.", -1); return; } return; memFail: sqlite3_result_error(context, "base85 OOM", -1); } /* ** Establish linkage to running SQLite library. */ #ifndef SQLITE_SHELL_EXTFUNCS #ifdef _WIN32 #endif int sqlite3_base_init #else static int sqlite3_base85_init #endif (sqlite3 *db, char **pzErr, const sqlite3_api_routines *pApi){ SQLITE_EXTENSION_INIT2(pApi); (void)pzErr; # ifndef OMIT_BASE85_CHECKER { int rc = sqlite3_create_function (db, "is_base85", 1, SQLITE_DETERMINISTIC|SQLITE_INNOCUOUS|SQLITE_UTF8, 0, is_base85, 0, 0); if( rc!=SQLITE_OK ) return rc; } # endif return sqlite3_create_function (db, "base85", 1, SQLITE_DETERMINISTIC|SQLITE_INNOCUOUS|SQLITE_DIRECTONLY|SQLITE_UTF8, 0, base85, 0, 0); } /* ** Define some macros to allow this extension to be built into the shell ** conveniently, in conjunction with use of SQLITE_SHELL_EXTFUNCS. This ** allows shell.c, as distributed, to have this extension built in. */ # define BASE85_INIT(db) sqlite3_base85_init(db, 0, 0) # define BASE85_EXPOSE(db, pzErr) /* Not needed, ..._init() does this. */ #else /* standalone program */ int main(int na, char *av[]){ int cin; int rc = 0; u8 bBuf[4*(B85_DARK_MAX/5)]; char cBuf[5*(sizeof(bBuf)/4)+2]; size_t nio; # ifndef OMIT_BASE85_CHECKER int b85Clean = 1; # endif char rw; FILE *fb = 0, *foc = 0; char fmode[3] = "xb"; if( na < 3 || av[1][0]!='-' || (rw = av[1][1])==0 || (rw!='r' && rw!='w') ){ sayHelp(); return 0; } fmode[0] = rw; if( av[2][0]=='-' && av[2][1]==0 ){ switch( rw ){ case 'r': fb = stdin; setmode(fileno(stdin), O_BINARY); break; case 'w': fb = stdout; setmode(fileno(stdout), O_BINARY); break; } }else{ fb = fopen(av[2], fmode); foc = fb; } if( !fb ){ fprintf(stderr, "Cannot open %s for %c\n", av[2], rw); rc = 1; }else{ switch( rw ){ case 'r': while( (nio = fread( bBuf, 1, sizeof(bBuf), fb))>0 ){ toBase85( bBuf, (int)nio, cBuf, 0 ); fprintf(stdout, "%s\n", cBuf); } break; case 'w': while( 0 != fgets(cBuf, sizeof(cBuf), stdin) ){ int nc = strlen(cBuf); size_t nbo = fromBase85( cBuf, nc, bBuf ) - bBuf; if( 1 != fwrite(bBuf, nbo, 1, fb) ) rc = 1; # ifndef OMIT_BASE85_CHECKER b85Clean &= allBase85( cBuf, nc ); # endif } break; default: sayHelp(); rc = 1; } if( foc ) fclose(foc); } # ifndef OMIT_BASE85_CHECKER if( !b85Clean ){ fprintf(stderr, "Base85 input had non-base85 dark or control content.\n"); } # endif return rc; } #endif /************************* End ../ext/misc/base85.c ********************/ /************************* Begin ../ext/misc/ieee754.c ******************/ /* ** 2013-04-17 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ****************************************************************************** ** ** This SQLite extension implements functions for the exact display ** and input of IEEE754 Binary64 floating-point numbers. ** ** ieee754(X) ** ieee754(Y,Z) ** ** In the first form, the value X should be a floating-point number. ** The function will return a string of the form 'ieee754(Y,Z)' where ** Y and Z are integers such that X==Y*pow(2,Z). ** ** In the second form, Y and Z are integers which are the mantissa and ** base-2 exponent of a new floating point number. The function returns ** a floating-point value equal to Y*pow(2,Z). ** ** Examples: ** ** ieee754(2.0) -> 'ieee754(2,0)' ** ieee754(45.25) -> 'ieee754(181,-2)' ** ieee754(2, 0) -> 2.0 ** ieee754(181, -2) -> 45.25 ** ** Two additional functions break apart the one-argument ieee754() ** result into separate integer values: ** ** ieee754_mantissa(45.25) -> 181 ** ieee754_exponent(45.25) -> -2 ** ** These functions convert binary64 numbers into blobs and back again. ** ** ieee754_from_blob(x'3ff0000000000000') -> 1.0 ** ieee754_to_blob(1.0) -> x'3ff0000000000000' ** ** In all single-argument functions, if the argument is an 8-byte blob ** then that blob is interpreted as a big-endian binary64 value. ** ** ** EXACT DECIMAL REPRESENTATION OF BINARY64 VALUES ** ----------------------------------------------- ** ** This extension in combination with the separate 'decimal' extension ** can be used to compute the exact decimal representation of binary64 ** values. To begin, first compute a table of exponent values: ** ** CREATE TABLE pow2(x INTEGER PRIMARY KEY, v TEXT); ** WITH RECURSIVE c(x,v) AS ( ** VALUES(0,'1') ** UNION ALL ** SELECT x+1, decimal_mul(v,'2') FROM c WHERE x+1<=971 ** ) INSERT INTO pow2(x,v) SELECT x, v FROM c; ** WITH RECURSIVE c(x,v) AS ( ** VALUES(-1,'0.5') ** UNION ALL ** SELECT x-1, decimal_mul(v,'0.5') FROM c WHERE x-1>=-1075 ** ) INSERT INTO pow2(x,v) SELECT x, v FROM c; ** ** Then, to compute the exact decimal representation of a floating ** point value (the value 47.49 is used in the example) do: ** ** WITH c(n) AS (VALUES(47.49)) ** ---------------^^^^^---- Replace with whatever you want ** SELECT decimal_mul(ieee754_mantissa(c.n),pow2.v) ** FROM pow2, c WHERE pow2.x=ieee754_exponent(c.n); ** ** Here is a query to show various boundry values for the binary64 ** number format: ** ** WITH c(name,bin) AS (VALUES ** ('minimum positive value', x'0000000000000001'), ** ('maximum subnormal value', x'000fffffffffffff'), ** ('mininum positive nornal value', x'0010000000000000'), ** ('maximum value', x'7fefffffffffffff')) ** SELECT c.name, decimal_mul(ieee754_mantissa(c.bin),pow2.v) ** FROM pow2, c WHERE pow2.x=ieee754_exponent(c.bin); ** */ /* #include "sqlite3ext.h" */ SQLITE_EXTENSION_INIT1 #include #include /* Mark a function parameter as unused, to suppress nuisance compiler ** warnings. */ #ifndef UNUSED_PARAMETER # define UNUSED_PARAMETER(X) (void)(X) #endif /* ** Implementation of the ieee754() function */ static void ieee754func( sqlite3_context *context, int argc, sqlite3_value **argv ){ if( argc==1 ){ sqlite3_int64 m, a; double r; int e; int isNeg; char zResult[100]; assert( sizeof(m)==sizeof(r) ); if( sqlite3_value_type(argv[0])==SQLITE_BLOB && sqlite3_value_bytes(argv[0])==sizeof(r) ){ const unsigned char *x = sqlite3_value_blob(argv[0]); unsigned int i; sqlite3_uint64 v = 0; for(i=0; i>52; m = a & ((((sqlite3_int64)1)<<52)-1); if( e==0 ){ m <<= 1; }else{ m |= ((sqlite3_int64)1)<<52; } while( e<1075 && m>0 && (m&1)==0 ){ m >>= 1; e++; } if( isNeg ) m = -m; } switch( *(int*)sqlite3_user_data(context) ){ case 0: sqlite3_snprintf(sizeof(zResult), zResult, "ieee754(%lld,%d)", m, e-1075); sqlite3_result_text(context, zResult, -1, SQLITE_TRANSIENT); break; case 1: sqlite3_result_int64(context, m); break; case 2: sqlite3_result_int(context, e-1075); break; } }else{ sqlite3_int64 m, e, a; double r; int isNeg = 0; m = sqlite3_value_int64(argv[0]); e = sqlite3_value_int64(argv[1]); /* Limit the range of e. Ticket 22dea1cfdb9151e4 2021-03-02 */ if( e>10000 ){ e = 10000; }else if( e<-10000 ){ e = -10000; } if( m<0 ){ isNeg = 1; m = -m; if( m<0 ) return; }else if( m==0 && e>-1000 && e<1000 ){ sqlite3_result_double(context, 0.0); return; } while( (m>>32)&0xffe00000 ){ m >>= 1; e++; } while( m!=0 && ((m>>32)&0xfff00000)==0 ){ m <<= 1; e--; } e += 1075; if( e<=0 ){ /* Subnormal */ if( 1-e >= 64 ){ m = 0; }else{ m >>= 1-e; } e = 0; }else if( e>0x7ff ){ e = 0x7ff; } a = m & ((((sqlite3_int64)1)<<52)-1); a |= e<<52; if( isNeg ) a |= ((sqlite3_uint64)1)<<63; memcpy(&r, &a, sizeof(r)); sqlite3_result_double(context, r); } } /* ** Functions to convert between blobs and floats. */ static void ieee754func_from_blob( sqlite3_context *context, int argc, sqlite3_value **argv ){ UNUSED_PARAMETER(argc); if( sqlite3_value_type(argv[0])==SQLITE_BLOB && sqlite3_value_bytes(argv[0])==sizeof(double) ){ double r; const unsigned char *x = sqlite3_value_blob(argv[0]); unsigned int i; sqlite3_uint64 v = 0; for(i=0; i>= 8; } sqlite3_result_blob(context, a, sizeof(r), SQLITE_TRANSIENT); } } /* ** SQL Function: ieee754_inc(r,N) ** ** Move the floating point value r by N quantums and return the new ** values. ** ** Behind the scenes: this routine merely casts r into a 64-bit unsigned ** integer, adds N, then casts the value back into float. ** ** Example: To find the smallest positive number: ** ** SELECT ieee754_inc(0.0,+1); */ static void ieee754inc( sqlite3_context *context, int argc, sqlite3_value **argv ){ double r; sqlite3_int64 N; sqlite3_uint64 m1, m2; double r2; UNUSED_PARAMETER(argc); r = sqlite3_value_double(argv[0]); N = sqlite3_value_int64(argv[1]); memcpy(&m1, &r, 8); m2 = m1 + N; memcpy(&r2, &m2, 8); sqlite3_result_double(context, r2); } #ifdef _WIN32 #endif int sqlite3_ieee_init( sqlite3 *db, char **pzErrMsg, const sqlite3_api_routines *pApi ){ static const struct { char *zFName; int nArg; int iAux; void (*xFunc)(sqlite3_context*,int,sqlite3_value**); } aFunc[] = { { "ieee754", 1, 0, ieee754func }, { "ieee754", 2, 0, ieee754func }, { "ieee754_mantissa", 1, 1, ieee754func }, { "ieee754_exponent", 1, 2, ieee754func }, { "ieee754_to_blob", 1, 0, ieee754func_to_blob }, { "ieee754_from_blob", 1, 0, ieee754func_from_blob }, { "ieee754_inc", 2, 0, ieee754inc }, }; unsigned int i; int rc = SQLITE_OK; SQLITE_EXTENSION_INIT2(pApi); (void)pzErrMsg; /* Unused parameter */ for(i=0; i= 0 ) ** for each produced value (independent of production time ordering.) ** ** All parameters must be either integer or convertable to integer. ** The start parameter is required. ** The stop parameter defaults to (1<<32)-1 (aka 4294967295 or 0xffffffff) ** The step parameter defaults to 1 and 0 is treated as 1. ** ** Examples: ** ** SELECT * FROM generate_series(0,100,5); ** ** The query above returns integers from 0 through 100 counting by steps ** of 5. ** ** SELECT * FROM generate_series(0,100); ** ** Integers from 0 through 100 with a step size of 1. ** ** SELECT * FROM generate_series(20) LIMIT 10; ** ** Integers 20 through 29. ** ** SELECT * FROM generate_series(0,-100,-5); ** ** Integers 0 -5 -10 ... -100. ** ** SELECT * FROM generate_series(0,-1); ** ** Empty sequence. ** ** HOW IT WORKS ** ** The generate_series "function" is really a virtual table with the ** following schema: ** ** CREATE TABLE generate_series( ** value, ** start HIDDEN, ** stop HIDDEN, ** step HIDDEN ** ); ** ** The virtual table also has a rowid, logically equivalent to n+1 where ** "n" is the ascending integer in the aforesaid production definition. ** ** Function arguments in queries against this virtual table are translated ** into equality constraints against successive hidden columns. In other ** words, the following pairs of queries are equivalent to each other: ** ** SELECT * FROM generate_series(0,100,5); ** SELECT * FROM generate_series WHERE start=0 AND stop=100 AND step=5; ** ** SELECT * FROM generate_series(0,100); ** SELECT * FROM generate_series WHERE start=0 AND stop=100; ** ** SELECT * FROM generate_series(20) LIMIT 10; ** SELECT * FROM generate_series WHERE start=20 LIMIT 10; ** ** The generate_series virtual table implementation leaves the xCreate method ** set to NULL. This means that it is not possible to do a CREATE VIRTUAL ** TABLE command with "generate_series" as the USING argument. Instead, there ** is a single generate_series virtual table that is always available without ** having to be created first. ** ** The xBestIndex method looks for equality constraints against the hidden ** start, stop, and step columns, and if present, it uses those constraints ** to bound the sequence of generated values. If the equality constraints ** are missing, it uses 0 for start, 4294967295 for stop, and 1 for step. ** xBestIndex returns a small cost when both start and stop are available, ** and a very large cost if either start or stop are unavailable. This ** encourages the query planner to order joins such that the bounds of the ** series are well-defined. ** ** Update on 2024-08-22: ** xBestIndex now also looks for equality and inequality constraints against ** the value column and uses those constraints as additional bounds against ** the sequence range. Thus, a query like this: ** ** SELECT value FROM generate_series($SA,$EA) ** WHERE value BETWEEN $SB AND $EB; ** ** Is logically the same as: ** ** SELECT value FROM generate_series(max($SA,$SB),min($EA,$EB)); ** ** Constraints on the value column can server as substitutes for constraints ** on the hidden start and stop columns. So, the following two queries ** are equivalent: ** ** SELECT value FROM generate_series($S,$E); ** SELECT value FROM generate_series WHERE value BETWEEN $S and $E; ** */ /* #include "sqlite3ext.h" */ SQLITE_EXTENSION_INIT1 #include #include #include #ifndef SQLITE_OMIT_VIRTUALTABLE /* ** Return that member of a generate_series(...) sequence whose 0-based ** index is ix. The 0th member is given by smBase. The sequence members ** progress per ix increment by smStep. */ static sqlite3_int64 genSeqMember( sqlite3_int64 smBase, sqlite3_int64 smStep, sqlite3_uint64 ix ){ static const sqlite3_uint64 mxI64 = ((sqlite3_uint64)0x7fffffff)<<32 | 0xffffffff; if( ix>=mxI64 ){ /* Get ix into signed i64 range. */ ix -= mxI64; /* With 2's complement ALU, this next can be 1 step, but is split into * 2 for UBSAN's satisfaction (and hypothetical 1's complement ALUs.) */ smBase += (mxI64/2) * smStep; smBase += (mxI64 - mxI64/2) * smStep; } /* Under UBSAN (or on 1's complement machines), must do this last term * in steps to avoid the dreaded (and harmless) signed multiply overlow. */ if( ix>=2 ){ sqlite3_int64 ix2 = (sqlite3_int64)ix/2; smBase += ix2*smStep; ix -= ix2; } return smBase + ((sqlite3_int64)ix)*smStep; } /* typedef unsigned char u8; */ typedef struct SequenceSpec { sqlite3_int64 iOBase; /* Original starting value ("start") */ sqlite3_int64 iOTerm; /* Original terminal value ("stop") */ sqlite3_int64 iBase; /* Starting value to actually use */ sqlite3_int64 iTerm; /* Terminal value to actually use */ sqlite3_int64 iStep; /* Increment ("step") */ sqlite3_uint64 uSeqIndexMax; /* maximum sequence index (aka "n") */ sqlite3_uint64 uSeqIndexNow; /* Current index during generation */ sqlite3_int64 iValueNow; /* Current value during generation */ u8 isNotEOF; /* Sequence generation not exhausted */ u8 isReversing; /* Sequence is being reverse generated */ } SequenceSpec; /* ** Prepare a SequenceSpec for use in generating an integer series ** given initialized iBase, iTerm and iStep values. Sequence is ** initialized per given isReversing. Other members are computed. */ static void setupSequence( SequenceSpec *pss ){ int bSameSigns; pss->uSeqIndexMax = 0; pss->isNotEOF = 0; bSameSigns = (pss->iBase < 0)==(pss->iTerm < 0); if( pss->iTerm < pss->iBase ){ sqlite3_uint64 nuspan = 0; if( bSameSigns ){ nuspan = (sqlite3_uint64)(pss->iBase - pss->iTerm); }else{ /* Under UBSAN (or on 1's complement machines), must do this in steps. * In this clause, iBase>=0 and iTerm<0 . */ nuspan = 1; nuspan += pss->iBase; nuspan += -(pss->iTerm+1); } if( pss->iStep<0 ){ pss->isNotEOF = 1; if( nuspan==ULONG_MAX ){ pss->uSeqIndexMax = ( pss->iStep>LLONG_MIN )? nuspan/-pss->iStep : 1; }else if( pss->iStep>LLONG_MIN ){ pss->uSeqIndexMax = nuspan/-pss->iStep; } } }else if( pss->iTerm > pss->iBase ){ sqlite3_uint64 puspan = 0; if( bSameSigns ){ puspan = (sqlite3_uint64)(pss->iTerm - pss->iBase); }else{ /* Under UBSAN (or on 1's complement machines), must do this in steps. * In this clause, iTerm>=0 and iBase<0 . */ puspan = 1; puspan += pss->iTerm; puspan += -(pss->iBase+1); } if( pss->iStep>0 ){ pss->isNotEOF = 1; pss->uSeqIndexMax = puspan/pss->iStep; } }else if( pss->iTerm == pss->iBase ){ pss->isNotEOF = 1; pss->uSeqIndexMax = 0; } pss->uSeqIndexNow = (pss->isReversing)? pss->uSeqIndexMax : 0; pss->iValueNow = (pss->isReversing) ? genSeqMember(pss->iBase, pss->iStep, pss->uSeqIndexMax) : pss->iBase; } /* ** Progress sequence generator to yield next value, if any. ** Leave its state to either yield next value or be at EOF. ** Return whether there is a next value, or 0 at EOF. */ static int progressSequence( SequenceSpec *pss ){ if( !pss->isNotEOF ) return 0; if( pss->isReversing ){ if( pss->uSeqIndexNow > 0 ){ pss->uSeqIndexNow--; pss->iValueNow -= pss->iStep; }else{ pss->isNotEOF = 0; } }else{ if( pss->uSeqIndexNow < pss->uSeqIndexMax ){ pss->uSeqIndexNow++; pss->iValueNow += pss->iStep; }else{ pss->isNotEOF = 0; } } return pss->isNotEOF; } /* series_cursor is a subclass of sqlite3_vtab_cursor which will ** serve as the underlying representation of a cursor that scans ** over rows of the result */ typedef struct series_cursor series_cursor; struct series_cursor { sqlite3_vtab_cursor base; /* Base class - must be first */ SequenceSpec ss; /* (this) Derived class data */ }; /* ** The seriesConnect() method is invoked to create a new ** series_vtab that describes the generate_series virtual table. ** ** Think of this routine as the constructor for series_vtab objects. ** ** All this routine needs to do is: ** ** (1) Allocate the series_vtab object and initialize all fields. ** ** (2) Tell SQLite (via the sqlite3_declare_vtab() interface) what the ** result set of queries against generate_series will look like. */ static int seriesConnect( sqlite3 *db, void *pUnused, int argcUnused, const char *const*argvUnused, sqlite3_vtab **ppVtab, char **pzErrUnused ){ sqlite3_vtab *pNew; int rc; /* Column numbers */ #define SERIES_COLUMN_VALUE 0 #define SERIES_COLUMN_START 1 #define SERIES_COLUMN_STOP 2 #define SERIES_COLUMN_STEP 3 (void)pUnused; (void)argcUnused; (void)argvUnused; (void)pzErrUnused; rc = sqlite3_declare_vtab(db, "CREATE TABLE x(value,start hidden,stop hidden,step hidden)"); if( rc==SQLITE_OK ){ pNew = *ppVtab = sqlite3_malloc( sizeof(*pNew) ); if( pNew==0 ) return SQLITE_NOMEM; memset(pNew, 0, sizeof(*pNew)); sqlite3_vtab_config(db, SQLITE_VTAB_INNOCUOUS); } return rc; } /* ** This method is the destructor for series_cursor objects. */ static int seriesDisconnect(sqlite3_vtab *pVtab){ sqlite3_free(pVtab); return SQLITE_OK; } /* ** Constructor for a new series_cursor object. */ static int seriesOpen(sqlite3_vtab *pUnused, sqlite3_vtab_cursor **ppCursor){ series_cursor *pCur; (void)pUnused; pCur = sqlite3_malloc( sizeof(*pCur) ); if( pCur==0 ) return SQLITE_NOMEM; memset(pCur, 0, sizeof(*pCur)); *ppCursor = &pCur->base; return SQLITE_OK; } /* ** Destructor for a series_cursor. */ static int seriesClose(sqlite3_vtab_cursor *cur){ sqlite3_free(cur); return SQLITE_OK; } /* ** Advance a series_cursor to its next row of output. */ static int seriesNext(sqlite3_vtab_cursor *cur){ series_cursor *pCur = (series_cursor*)cur; progressSequence( & pCur->ss ); return SQLITE_OK; } /* ** Return values of columns for the row at which the series_cursor ** is currently pointing. */ static int seriesColumn( sqlite3_vtab_cursor *cur, /* The cursor */ sqlite3_context *ctx, /* First argument to sqlite3_result_...() */ int i /* Which column to return */ ){ series_cursor *pCur = (series_cursor*)cur; sqlite3_int64 x = 0; switch( i ){ case SERIES_COLUMN_START: x = pCur->ss.iOBase; break; case SERIES_COLUMN_STOP: x = pCur->ss.iOTerm; break; case SERIES_COLUMN_STEP: x = pCur->ss.iStep; break; default: x = pCur->ss.iValueNow; break; } sqlite3_result_int64(ctx, x); return SQLITE_OK; } #ifndef LARGEST_UINT64 #define LARGEST_INT64 (0xffffffff|(((sqlite3_int64)0x7fffffff)<<32)) #define LARGEST_UINT64 (0xffffffff|(((sqlite3_uint64)0xffffffff)<<32)) #define SMALLEST_INT64 (((sqlite3_int64)-1) - LARGEST_INT64) #endif /* ** Return the rowid for the current row, logically equivalent to n+1 where ** "n" is the ascending integer in the aforesaid production definition. */ static int seriesRowid(sqlite3_vtab_cursor *cur, sqlite_int64 *pRowid){ series_cursor *pCur = (series_cursor*)cur; sqlite3_uint64 n = pCur->ss.uSeqIndexNow; *pRowid = (sqlite3_int64)((nss.isNotEOF; } /* True to cause run-time checking of the start=, stop=, and/or step= ** parameters. The only reason to do this is for testing the ** constraint checking logic for virtual tables in the SQLite core. */ #ifndef SQLITE_SERIES_CONSTRAINT_VERIFY # define SQLITE_SERIES_CONSTRAINT_VERIFY 0 #endif /* ** This method is called to "rewind" the series_cursor object back ** to the first row of output. This method is always called at least ** once prior to any call to seriesColumn() or seriesRowid() or ** seriesEof(). ** ** The query plan selected by seriesBestIndex is passed in the idxNum ** parameter. (idxStr is not used in this implementation.) idxNum ** is a bitmask showing which constraints are available: ** ** 0x0001: start=VALUE ** 0x0002: stop=VALUE ** 0x0004: step=VALUE ** 0x0008: descending order ** 0x0010: ascending order ** 0x0020: LIMIT VALUE ** 0x0040: OFFSET VALUE ** 0x0080: value=VALUE ** 0x0100: value>=VALUE ** 0x0200: value>VALUE ** 0x1000: value<=VALUE ** 0x2000: valuess.iBase = sqlite3_value_int64(argv[i++]); }else{ pCur->ss.iBase = 0; } if( idxNum & 0x02 ){ pCur->ss.iTerm = sqlite3_value_int64(argv[i++]); }else{ pCur->ss.iTerm = 0xffffffff; } if( idxNum & 0x04 ){ pCur->ss.iStep = sqlite3_value_int64(argv[i++]); if( pCur->ss.iStep==0 ){ pCur->ss.iStep = 1; }else if( pCur->ss.iStep<0 ){ if( (idxNum & 0x10)==0 ) idxNum |= 0x08; } }else{ pCur->ss.iStep = 1; } /* If there are constraints on the value column but there are ** no constraints on the start, stop, and step columns, then ** initialize the default range to be the entire range of 64-bit signed ** integers. This range will contracted by the value column constraints ** further below. */ if( (idxNum & 0x05)==0 && (idxNum & 0x0380)!=0 ){ pCur->ss.iBase = SMALLEST_INT64; } if( (idxNum & 0x06)==0 && (idxNum & 0x3080)!=0 ){ pCur->ss.iTerm = LARGEST_INT64; } pCur->ss.iOBase = pCur->ss.iBase; pCur->ss.iOTerm = pCur->ss.iTerm; /* Extract the LIMIT and OFFSET values, but do not apply them yet. ** The range must first be constrained by the limits on value. */ if( idxNum & 0x20 ){ iLimit = sqlite3_value_int64(argv[i++]); if( idxNum & 0x40 ){ iOffset = sqlite3_value_int64(argv[i++]); } } if( idxNum & 0x3380 ){ /* Extract the maximum range of output values determined by ** constraints on the "value" column. */ if( idxNum & 0x0080 ){ iMin = iMax = sqlite3_value_int64(argv[i++]); }else{ if( idxNum & 0x0300 ){ iMin = sqlite3_value_int64(argv[i++]); if( idxNum & 0x0200 ){ if( iMin==LARGEST_INT64 ){ returnNoRows = 1; }else{ iMin++; } } } if( idxNum & 0x3000 ){ iMax = sqlite3_value_int64(argv[i++]); if( idxNum & 0x2000 ){ if( iMax==SMALLEST_INT64 ){ returnNoRows = 1; }else{ iMax--; } } } if( iMin>iMax ){ returnNoRows = 1; } } /* Try to reduce the range of values to be generated based on ** constraints on the "value" column. */ if( pCur->ss.iStep>0 ){ sqlite3_int64 szStep = pCur->ss.iStep; if( pCur->ss.iBasess.iBase; pCur->ss.iBase += ((d+szStep-1)/szStep)*szStep; } if( pCur->ss.iTerm>iMax ){ sqlite3_uint64 d = pCur->ss.iTerm - iMax; pCur->ss.iTerm -= ((d+szStep-1)/szStep)*szStep; } }else{ sqlite3_int64 szStep = -pCur->ss.iStep; assert( szStep>0 ); if( pCur->ss.iBase>iMax ){ sqlite3_uint64 d = pCur->ss.iBase - iMax; pCur->ss.iBase -= ((d+szStep-1)/szStep)*szStep; } if( pCur->ss.iTermss.iTerm; pCur->ss.iTerm += ((d+szStep-1)/szStep)*szStep; } } } /* Apply LIMIT and OFFSET constraints, if any */ if( idxNum & 0x20 ){ if( iOffset>0 ){ pCur->ss.iBase += pCur->ss.iStep*iOffset; } if( iLimit>=0 ){ sqlite3_int64 iTerm; iTerm = pCur->ss.iBase + (iLimit - 1)*pCur->ss.iStep; if( pCur->ss.iStep<0 ){ if( iTerm>pCur->ss.iTerm ) pCur->ss.iTerm = iTerm; }else{ if( iTermss.iTerm ) pCur->ss.iTerm = iTerm; } } } for(i=0; iss.iBase = 1; pCur->ss.iTerm = 0; pCur->ss.iStep = 1; } if( idxNum & 0x08 ){ pCur->ss.isReversing = pCur->ss.iStep > 0; }else{ pCur->ss.isReversing = pCur->ss.iStep < 0; } setupSequence( &pCur->ss ); return SQLITE_OK; } /* ** SQLite will invoke this method one or more times while planning a query ** that uses the generate_series virtual table. This routine needs to create ** a query plan for each invocation and compute an estimated cost for that ** plan. ** ** In this implementation idxNum is used to represent the ** query plan. idxStr is unused. ** ** The query plan is represented by bits in idxNum: ** ** 0x0001 start = $num ** 0x0002 stop = $num ** 0x0004 step = $num ** 0x0008 output is in descending order ** 0x0010 output is in ascending order ** 0x0020 LIMIT $num ** 0x0040 OFFSET $num ** 0x0080 value = $num ** 0x0100 value >= $num ** 0x0200 value > $num ** 0x1000 value <= $num ** 0x2000 value < $num ** ** Only one of 0x0100 or 0x0200 will be returned. Similarly, only ** one of 0x1000 or 0x2000 will be returned. If the 0x0080 is set, then ** none of the 0xff00 bits will be set. ** ** The order of parameters passed to xFilter is as follows: ** ** * The argument to start= if bit 0x0001 is in the idxNum mask ** * The argument to stop= if bit 0x0002 is in the idxNum mask ** * The argument to step= if bit 0x0004 is in the idxNum mask ** * The argument to LIMIT if bit 0x0020 is in the idxNum mask ** * The argument to OFFSET if bit 0x0040 is in the idxNum mask ** * The argument to value=, or value>= or value> if any of ** bits 0x0380 are in the idxNum mask ** * The argument to value<= or value< if either of bits 0x3000 ** are in the mask ** */ static int seriesBestIndex( sqlite3_vtab *pVTab, sqlite3_index_info *pIdxInfo ){ int i, j; /* Loop over constraints */ int idxNum = 0; /* The query plan bitmask */ #ifndef ZERO_ARGUMENT_GENERATE_SERIES int bStartSeen = 0; /* EQ constraint seen on the START column */ #endif int unusableMask = 0; /* Mask of unusable constraints */ int nArg = 0; /* Number of arguments that seriesFilter() expects */ int aIdx[7]; /* Constraints on start, stop, step, LIMIT, OFFSET, ** and value. aIdx[5] covers value=, value>=, and ** value>, aIdx[6] covers value<= and value< */ const struct sqlite3_index_constraint *pConstraint; /* This implementation assumes that the start, stop, and step columns ** are the last three columns in the virtual table. */ assert( SERIES_COLUMN_STOP == SERIES_COLUMN_START+1 ); assert( SERIES_COLUMN_STEP == SERIES_COLUMN_START+2 ); aIdx[0] = aIdx[1] = aIdx[2] = aIdx[3] = aIdx[4] = aIdx[5] = aIdx[6] = -1; pConstraint = pIdxInfo->aConstraint; for(i=0; inConstraint; i++, pConstraint++){ int iCol; /* 0 for start, 1 for stop, 2 for step */ int iMask; /* bitmask for those column */ int op = pConstraint->op; if( op>=SQLITE_INDEX_CONSTRAINT_LIMIT && op<=SQLITE_INDEX_CONSTRAINT_OFFSET ){ if( pConstraint->usable==0 ){ /* do nothing */ }else if( op==SQLITE_INDEX_CONSTRAINT_LIMIT ){ aIdx[3] = i; idxNum |= 0x20; }else{ assert( op==SQLITE_INDEX_CONSTRAINT_OFFSET ); aIdx[4] = i; idxNum |= 0x40; } continue; } if( pConstraint->iColumniColumn==SERIES_COLUMN_VALUE && pConstraint->usable ){ switch( op ){ case SQLITE_INDEX_CONSTRAINT_EQ: case SQLITE_INDEX_CONSTRAINT_IS: { idxNum |= 0x0080; idxNum &= ~0x3300; aIdx[5] = i; aIdx[6] = -1; #ifndef ZERO_ARGUMENT_GENERATE_SERIES bStartSeen = 1; #endif break; } case SQLITE_INDEX_CONSTRAINT_GE: { if( idxNum & 0x0080 ) break; idxNum |= 0x0100; idxNum &= ~0x0200; aIdx[5] = i; #ifndef ZERO_ARGUMENT_GENERATE_SERIES bStartSeen = 1; #endif break; } case SQLITE_INDEX_CONSTRAINT_GT: { if( idxNum & 0x0080 ) break; idxNum |= 0x0200; idxNum &= ~0x0100; aIdx[5] = i; #ifndef ZERO_ARGUMENT_GENERATE_SERIES bStartSeen = 1; #endif break; } case SQLITE_INDEX_CONSTRAINT_LE: { if( idxNum & 0x0080 ) break; idxNum |= 0x1000; idxNum &= ~0x2000; aIdx[6] = i; break; } case SQLITE_INDEX_CONSTRAINT_LT: { if( idxNum & 0x0080 ) break; idxNum |= 0x2000; idxNum &= ~0x1000; aIdx[6] = i; break; } } } continue; } iCol = pConstraint->iColumn - SERIES_COLUMN_START; assert( iCol>=0 && iCol<=2 ); iMask = 1 << iCol; #ifndef ZERO_ARGUMENT_GENERATE_SERIES if( iCol==0 && op==SQLITE_INDEX_CONSTRAINT_EQ ){ bStartSeen = 1; } #endif if( pConstraint->usable==0 ){ unusableMask |= iMask; continue; }else if( op==SQLITE_INDEX_CONSTRAINT_EQ ){ idxNum |= iMask; aIdx[iCol] = i; } } if( aIdx[3]==0 ){ /* Ignore OFFSET if LIMIT is omitted */ idxNum &= ~0x60; aIdx[4] = 0; } for(i=0; i<7; i++){ if( (j = aIdx[i])>=0 ){ pIdxInfo->aConstraintUsage[j].argvIndex = ++nArg; pIdxInfo->aConstraintUsage[j].omit = !SQLITE_SERIES_CONSTRAINT_VERIFY || i>=3; } } /* The current generate_column() implementation requires at least one ** argument (the START value). Legacy versions assumed START=0 if the ** first argument was omitted. Compile with -DZERO_ARGUMENT_GENERATE_SERIES ** to obtain the legacy behavior */ #ifndef ZERO_ARGUMENT_GENERATE_SERIES if( !bStartSeen ){ sqlite3_free(pVTab->zErrMsg); pVTab->zErrMsg = sqlite3_mprintf( "first argument to \"generate_series()\" missing or unusable"); return SQLITE_ERROR; } #endif if( (unusableMask & ~idxNum)!=0 ){ /* The start, stop, and step columns are inputs. Therefore if there ** are unusable constraints on any of start, stop, or step then ** this plan is unusable */ return SQLITE_CONSTRAINT; } if( (idxNum & 0x03)==0x03 ){ /* Both start= and stop= boundaries are available. This is the ** the preferred case */ pIdxInfo->estimatedCost = (double)(2 - ((idxNum&4)!=0)); pIdxInfo->estimatedRows = 1000; if( pIdxInfo->nOrderBy>=1 && pIdxInfo->aOrderBy[0].iColumn==0 ){ if( pIdxInfo->aOrderBy[0].desc ){ idxNum |= 0x08; }else{ idxNum |= 0x10; } pIdxInfo->orderByConsumed = 1; } }else if( (idxNum & 0x21)==0x21 ){ /* We have start= and LIMIT */ pIdxInfo->estimatedRows = 2500; }else{ /* If either boundary is missing, we have to generate a huge span ** of numbers. Make this case very expensive so that the query ** planner will work hard to avoid it. */ pIdxInfo->estimatedRows = 2147483647; } pIdxInfo->idxNum = idxNum; #ifdef SQLITE_INDEX_SCAN_HEX pIdxInfo->idxFlags = SQLITE_INDEX_SCAN_HEX; #endif return SQLITE_OK; } /* ** This following structure defines all the methods for the ** generate_series virtual table. */ static sqlite3_module seriesModule = { 0, /* iVersion */ 0, /* xCreate */ seriesConnect, /* xConnect */ seriesBestIndex, /* xBestIndex */ seriesDisconnect, /* xDisconnect */ 0, /* xDestroy */ seriesOpen, /* xOpen - open a cursor */ seriesClose, /* xClose - close a cursor */ seriesFilter, /* xFilter - configure scan constraints */ seriesNext, /* xNext - advance a cursor */ seriesEof, /* xEof - check for end of scan */ seriesColumn, /* xColumn - read data */ seriesRowid, /* xRowid - read data */ 0, /* xUpdate */ 0, /* xBegin */ 0, /* xSync */ 0, /* xCommit */ 0, /* xRollback */ 0, /* xFindMethod */ 0, /* xRename */ 0, /* xSavepoint */ 0, /* xRelease */ 0, /* xRollbackTo */ 0, /* xShadowName */ 0 /* xIntegrity */ }; #endif /* SQLITE_OMIT_VIRTUALTABLE */ #ifdef _WIN32 #endif int sqlite3_series_init( sqlite3 *db, char **pzErrMsg, const sqlite3_api_routines *pApi ){ int rc = SQLITE_OK; SQLITE_EXTENSION_INIT2(pApi); #ifndef SQLITE_OMIT_VIRTUALTABLE if( sqlite3_libversion_number()<3008012 && pzErrMsg!=0 ){ *pzErrMsg = sqlite3_mprintf( "generate_series() requires SQLite 3.8.12 or later"); return SQLITE_ERROR; } rc = sqlite3_create_module(db, "generate_series", &seriesModule, 0); #endif return rc; } /************************* End ../ext/misc/series.c ********************/ /************************* Begin ../ext/misc/regexp.c ******************/ /* ** 2012-11-13 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ****************************************************************************** ** ** The code in this file implements a compact but reasonably ** efficient regular-expression matcher for posix extended regular ** expressions against UTF8 text. ** ** This file is an SQLite extension. It registers a single function ** named "regexp(A,B)" where A is the regular expression and B is the ** string to be matched. By registering this function, SQLite will also ** then implement the "B regexp A" operator. Note that with the function ** the regular expression comes first, but with the operator it comes ** second. ** ** The following regular expression syntax is supported: ** ** X* zero or more occurrences of X ** X+ one or more occurrences of X ** X? zero or one occurrences of X ** X{p,q} between p and q occurrences of X ** (X) match X ** X|Y X or Y ** ^X X occurring at the beginning of the string ** X$ X occurring at the end of the string ** . Match any single character ** \c Character c where c is one of \{}()[]|*+?. ** \c C-language escapes for c in afnrtv. ex: \t or \n ** \uXXXX Where XXXX is exactly 4 hex digits, unicode value XXXX ** \xXX Where XX is exactly 2 hex digits, unicode value XX ** [abc] Any single character from the set abc ** [^abc] Any single character not in the set abc ** [a-z] Any single character in the range a-z ** [^a-z] Any single character not in the range a-z ** \b Word boundary ** \w Word character. [A-Za-z0-9_] ** \W Non-word character ** \d Digit ** \D Non-digit ** \s Whitespace character ** \S Non-whitespace character ** ** A nondeterministic finite automaton (NFA) is used for matching, so the ** performance is bounded by O(N*M) where N is the size of the regular ** expression and M is the size of the input string. The matcher never ** exhibits exponential behavior. Note that the X{p,q} operator expands ** to p copies of X following by q-p copies of X? and that the size of the ** regular expression in the O(N*M) performance bound is computed after ** this expansion. */ #include #include /* #include "sqlite3ext.h" */ SQLITE_EXTENSION_INIT1 /* ** The following #defines change the names of some functions implemented in ** this file to prevent name collisions with C-library functions of the ** same name. */ #define re_match sqlite3re_match #define re_compile sqlite3re_compile #define re_free sqlite3re_free /* The end-of-input character */ #define RE_EOF 0 /* End of input */ #define RE_START 0xfffffff /* Start of input - larger than an UTF-8 */ /* The NFA is implemented as sequence of opcodes taken from the following ** set. Each opcode has a single integer argument. */ #define RE_OP_MATCH 1 /* Match the one character in the argument */ #define RE_OP_ANY 2 /* Match any one character. (Implements ".") */ #define RE_OP_ANYSTAR 3 /* Special optimized version of .* */ #define RE_OP_FORK 4 /* Continue to both next and opcode at iArg */ #define RE_OP_GOTO 5 /* Jump to opcode at iArg */ #define RE_OP_ACCEPT 6 /* Halt and indicate a successful match */ #define RE_OP_CC_INC 7 /* Beginning of a [...] character class */ #define RE_OP_CC_EXC 8 /* Beginning of a [^...] character class */ #define RE_OP_CC_VALUE 9 /* Single value in a character class */ #define RE_OP_CC_RANGE 10 /* Range of values in a character class */ #define RE_OP_WORD 11 /* Perl word character [A-Za-z0-9_] */ #define RE_OP_NOTWORD 12 /* Not a perl word character */ #define RE_OP_DIGIT 13 /* digit: [0-9] */ #define RE_OP_NOTDIGIT 14 /* Not a digit */ #define RE_OP_SPACE 15 /* space: [ \t\n\r\v\f] */ #define RE_OP_NOTSPACE 16 /* Not a digit */ #define RE_OP_BOUNDARY 17 /* Boundary between word and non-word */ #define RE_OP_ATSTART 18 /* Currently at the start of the string */ #if defined(SQLITE_DEBUG) /* Opcode names used for symbolic debugging */ static const char *ReOpName[] = { "EOF", "MATCH", "ANY", "ANYSTAR", "FORK", "GOTO", "ACCEPT", "CC_INC", "CC_EXC", "CC_VALUE", "CC_RANGE", "WORD", "NOTWORD", "DIGIT", "NOTDIGIT", "SPACE", "NOTSPACE", "BOUNDARY", "ATSTART", }; #endif /* SQLITE_DEBUG */ /* Each opcode is a "state" in the NFA */ typedef unsigned short ReStateNumber; /* Because this is an NFA and not a DFA, multiple states can be active at ** once. An instance of the following object records all active states in ** the NFA. The implementation is optimized for the common case where the ** number of actives states is small. */ typedef struct ReStateSet { unsigned nState; /* Number of current states */ ReStateNumber *aState; /* Current states */ } ReStateSet; /* An input string read one character at a time. */ typedef struct ReInput ReInput; struct ReInput { const unsigned char *z; /* All text */ int i; /* Next byte to read */ int mx; /* EOF when i>=mx */ }; /* A compiled NFA (or an NFA that is in the process of being compiled) is ** an instance of the following object. */ typedef struct ReCompiled ReCompiled; struct ReCompiled { ReInput sIn; /* Regular expression text */ const char *zErr; /* Error message to return */ char *aOp; /* Operators for the virtual machine */ int *aArg; /* Arguments to each operator */ unsigned (*xNextChar)(ReInput*); /* Next character function */ unsigned char zInit[12]; /* Initial text to match */ int nInit; /* Number of bytes in zInit */ unsigned nState; /* Number of entries in aOp[] and aArg[] */ unsigned nAlloc; /* Slots allocated for aOp[] and aArg[] */ }; /* Add a state to the given state set if it is not already there */ static void re_add_state(ReStateSet *pSet, int newState){ unsigned i; for(i=0; inState; i++) if( pSet->aState[i]==newState ) return; pSet->aState[pSet->nState++] = (ReStateNumber)newState; } /* Extract the next unicode character from *pzIn and return it. Advance ** *pzIn to the first byte past the end of the character returned. To ** be clear: this routine converts utf8 to unicode. This routine is ** optimized for the common case where the next character is a single byte. */ static unsigned re_next_char(ReInput *p){ unsigned c; if( p->i>=p->mx ) return 0; c = p->z[p->i++]; if( c>=0x80 ){ if( (c&0xe0)==0xc0 && p->imx && (p->z[p->i]&0xc0)==0x80 ){ c = (c&0x1f)<<6 | (p->z[p->i++]&0x3f); if( c<0x80 ) c = 0xfffd; }else if( (c&0xf0)==0xe0 && p->i+1mx && (p->z[p->i]&0xc0)==0x80 && (p->z[p->i+1]&0xc0)==0x80 ){ c = (c&0x0f)<<12 | ((p->z[p->i]&0x3f)<<6) | (p->z[p->i+1]&0x3f); p->i += 2; if( c<=0x7ff || (c>=0xd800 && c<=0xdfff) ) c = 0xfffd; }else if( (c&0xf8)==0xf0 && p->i+2mx && (p->z[p->i]&0xc0)==0x80 && (p->z[p->i+1]&0xc0)==0x80 && (p->z[p->i+2]&0xc0)==0x80 ){ c = (c&0x07)<<18 | ((p->z[p->i]&0x3f)<<12) | ((p->z[p->i+1]&0x3f)<<6) | (p->z[p->i+2]&0x3f); p->i += 3; if( c<=0xffff || c>0x10ffff ) c = 0xfffd; }else{ c = 0xfffd; } } return c; } static unsigned re_next_char_nocase(ReInput *p){ unsigned c = re_next_char(p); if( c>='A' && c<='Z' ) c += 'a' - 'A'; return c; } /* Return true if c is a perl "word" character: [A-Za-z0-9_] */ static int re_word_char(int c){ return (c>='0' && c<='9') || (c>='a' && c<='z') || (c>='A' && c<='Z') || c=='_'; } /* Return true if c is a "digit" character: [0-9] */ static int re_digit_char(int c){ return (c>='0' && c<='9'); } /* Return true if c is a perl "space" character: [ \t\r\n\v\f] */ static int re_space_char(int c){ return c==' ' || c=='\t' || c=='\n' || c=='\r' || c=='\v' || c=='\f'; } /* Run a compiled regular expression on the zero-terminated input ** string zIn[]. Return true on a match and false if there is no match. */ static int re_match(ReCompiled *pRe, const unsigned char *zIn, int nIn){ ReStateSet aStateSet[2], *pThis, *pNext; ReStateNumber aSpace[100]; ReStateNumber *pToFree; unsigned int i = 0; unsigned int iSwap = 0; int c = RE_START; int cPrev = 0; int rc = 0; ReInput in; in.z = zIn; in.i = 0; in.mx = nIn>=0 ? nIn : (int)strlen((char const*)zIn); /* Look for the initial prefix match, if there is one. */ if( pRe->nInit ){ unsigned char x = pRe->zInit[0]; while( in.i+pRe->nInit<=in.mx && (zIn[in.i]!=x || strncmp((const char*)zIn+in.i, (const char*)pRe->zInit, pRe->nInit)!=0) ){ in.i++; } if( in.i+pRe->nInit>in.mx ) return 0; c = RE_START-1; } if( pRe->nState<=(sizeof(aSpace)/(sizeof(aSpace[0])*2)) ){ pToFree = 0; aStateSet[0].aState = aSpace; }else{ pToFree = sqlite3_malloc64( sizeof(ReStateNumber)*2*pRe->nState ); if( pToFree==0 ) return -1; aStateSet[0].aState = pToFree; } aStateSet[1].aState = &aStateSet[0].aState[pRe->nState]; pNext = &aStateSet[1]; pNext->nState = 0; re_add_state(pNext, 0); while( c!=RE_EOF && pNext->nState>0 ){ cPrev = c; c = pRe->xNextChar(&in); pThis = pNext; pNext = &aStateSet[iSwap]; iSwap = 1 - iSwap; pNext->nState = 0; for(i=0; inState; i++){ int x = pThis->aState[i]; switch( pRe->aOp[x] ){ case RE_OP_MATCH: { if( pRe->aArg[x]==c ) re_add_state(pNext, x+1); break; } case RE_OP_ATSTART: { if( cPrev==RE_START ) re_add_state(pThis, x+1); break; } case RE_OP_ANY: { if( c!=0 ) re_add_state(pNext, x+1); break; } case RE_OP_WORD: { if( re_word_char(c) ) re_add_state(pNext, x+1); break; } case RE_OP_NOTWORD: { if( !re_word_char(c) && c!=0 ) re_add_state(pNext, x+1); break; } case RE_OP_DIGIT: { if( re_digit_char(c) ) re_add_state(pNext, x+1); break; } case RE_OP_NOTDIGIT: { if( !re_digit_char(c) && c!=0 ) re_add_state(pNext, x+1); break; } case RE_OP_SPACE: { if( re_space_char(c) ) re_add_state(pNext, x+1); break; } case RE_OP_NOTSPACE: { if( !re_space_char(c) && c!=0 ) re_add_state(pNext, x+1); break; } case RE_OP_BOUNDARY: { if( re_word_char(c)!=re_word_char(cPrev) ) re_add_state(pThis, x+1); break; } case RE_OP_ANYSTAR: { re_add_state(pNext, x); re_add_state(pThis, x+1); break; } case RE_OP_FORK: { re_add_state(pThis, x+pRe->aArg[x]); re_add_state(pThis, x+1); break; } case RE_OP_GOTO: { re_add_state(pThis, x+pRe->aArg[x]); break; } case RE_OP_ACCEPT: { rc = 1; goto re_match_end; } case RE_OP_CC_EXC: { if( c==0 ) break; /* fall-through */ goto re_op_cc_inc; } case RE_OP_CC_INC: re_op_cc_inc: { int j = 1; int n = pRe->aArg[x]; int hit = 0; for(j=1; j>0 && jaOp[x+j]==RE_OP_CC_VALUE ){ if( pRe->aArg[x+j]==c ){ hit = 1; j = -1; } }else{ if( pRe->aArg[x+j]<=c && pRe->aArg[x+j+1]>=c ){ hit = 1; j = -1; }else{ j++; } } } if( pRe->aOp[x]==RE_OP_CC_EXC ) hit = !hit; if( hit ) re_add_state(pNext, x+n); break; } } } } for(i=0; inState; i++){ int x = pNext->aState[i]; while( pRe->aOp[x]==RE_OP_GOTO ) x += pRe->aArg[x]; if( pRe->aOp[x]==RE_OP_ACCEPT ){ rc = 1; break; } } re_match_end: sqlite3_free(pToFree); return rc; } /* Resize the opcode and argument arrays for an RE under construction. */ static int re_resize(ReCompiled *p, int N){ char *aOp; int *aArg; aOp = sqlite3_realloc64(p->aOp, N*sizeof(p->aOp[0])); if( aOp==0 ) return 1; p->aOp = aOp; aArg = sqlite3_realloc64(p->aArg, N*sizeof(p->aArg[0])); if( aArg==0 ) return 1; p->aArg = aArg; p->nAlloc = N; return 0; } /* Insert a new opcode and argument into an RE under construction. The ** insertion point is just prior to existing opcode iBefore. */ static int re_insert(ReCompiled *p, int iBefore, int op, int arg){ int i; if( p->nAlloc<=p->nState && re_resize(p, p->nAlloc*2) ) return 0; for(i=p->nState; i>iBefore; i--){ p->aOp[i] = p->aOp[i-1]; p->aArg[i] = p->aArg[i-1]; } p->nState++; p->aOp[iBefore] = (char)op; p->aArg[iBefore] = arg; return iBefore; } /* Append a new opcode and argument to the end of the RE under construction. */ static int re_append(ReCompiled *p, int op, int arg){ return re_insert(p, p->nState, op, arg); } /* Make a copy of N opcodes starting at iStart onto the end of the RE ** under construction. */ static void re_copy(ReCompiled *p, int iStart, int N){ if( p->nState+N>=p->nAlloc && re_resize(p, p->nAlloc*2+N) ) return; memcpy(&p->aOp[p->nState], &p->aOp[iStart], N*sizeof(p->aOp[0])); memcpy(&p->aArg[p->nState], &p->aArg[iStart], N*sizeof(p->aArg[0])); p->nState += N; } /* Return true if c is a hexadecimal digit character: [0-9a-fA-F] ** If c is a hex digit, also set *pV = (*pV)*16 + valueof(c). If ** c is not a hex digit *pV is unchanged. */ static int re_hex(int c, int *pV){ if( c>='0' && c<='9' ){ c -= '0'; }else if( c>='a' && c<='f' ){ c -= 'a' - 10; }else if( c>='A' && c<='F' ){ c -= 'A' - 10; }else{ return 0; } *pV = (*pV)*16 + (c & 0xff); return 1; } /* A backslash character has been seen, read the next character and ** return its interpretation. */ static unsigned re_esc_char(ReCompiled *p){ static const char zEsc[] = "afnrtv\\()*.+?[$^{|}]"; static const char zTrans[] = "\a\f\n\r\t\v"; int i, v = 0; char c; if( p->sIn.i>=p->sIn.mx ) return 0; c = p->sIn.z[p->sIn.i]; if( c=='u' && p->sIn.i+4sIn.mx ){ const unsigned char *zIn = p->sIn.z + p->sIn.i; if( re_hex(zIn[1],&v) && re_hex(zIn[2],&v) && re_hex(zIn[3],&v) && re_hex(zIn[4],&v) ){ p->sIn.i += 5; return v; } } if( c=='x' && p->sIn.i+2sIn.mx ){ const unsigned char *zIn = p->sIn.z + p->sIn.i; if( re_hex(zIn[1],&v) && re_hex(zIn[2],&v) ){ p->sIn.i += 3; return v; } } for(i=0; zEsc[i] && zEsc[i]!=c; i++){} if( zEsc[i] ){ if( i<6 ) c = zTrans[i]; p->sIn.i++; }else{ p->zErr = "unknown \\ escape"; } return c; } /* Forward declaration */ static const char *re_subcompile_string(ReCompiled*); /* Peek at the next byte of input */ static unsigned char rePeek(ReCompiled *p){ return p->sIn.isIn.mx ? p->sIn.z[p->sIn.i] : 0; } /* Compile RE text into a sequence of opcodes. Continue up to the ** first unmatched ")" character, then return. If an error is found, ** return a pointer to the error message string. */ static const char *re_subcompile_re(ReCompiled *p){ const char *zErr; int iStart, iEnd, iGoto; iStart = p->nState; zErr = re_subcompile_string(p); if( zErr ) return zErr; while( rePeek(p)=='|' ){ iEnd = p->nState; re_insert(p, iStart, RE_OP_FORK, iEnd + 2 - iStart); iGoto = re_append(p, RE_OP_GOTO, 0); p->sIn.i++; zErr = re_subcompile_string(p); if( zErr ) return zErr; p->aArg[iGoto] = p->nState - iGoto; } return 0; } /* Compile an element of regular expression text (anything that can be ** an operand to the "|" operator). Return NULL on success or a pointer ** to the error message if there is a problem. */ static const char *re_subcompile_string(ReCompiled *p){ int iPrev = -1; int iStart; unsigned c; const char *zErr; while( (c = p->xNextChar(&p->sIn))!=0 ){ iStart = p->nState; switch( c ){ case '|': case ')': { p->sIn.i--; return 0; } case '(': { zErr = re_subcompile_re(p); if( zErr ) return zErr; if( rePeek(p)!=')' ) return "unmatched '('"; p->sIn.i++; break; } case '.': { if( rePeek(p)=='*' ){ re_append(p, RE_OP_ANYSTAR, 0); p->sIn.i++; }else{ re_append(p, RE_OP_ANY, 0); } break; } case '*': { if( iPrev<0 ) return "'*' without operand"; re_insert(p, iPrev, RE_OP_GOTO, p->nState - iPrev + 1); re_append(p, RE_OP_FORK, iPrev - p->nState + 1); break; } case '+': { if( iPrev<0 ) return "'+' without operand"; re_append(p, RE_OP_FORK, iPrev - p->nState); break; } case '?': { if( iPrev<0 ) return "'?' without operand"; re_insert(p, iPrev, RE_OP_FORK, p->nState - iPrev+1); break; } case '$': { re_append(p, RE_OP_MATCH, RE_EOF); break; } case '^': { re_append(p, RE_OP_ATSTART, 0); break; } case '{': { int m = 0, n = 0; int sz, j; if( iPrev<0 ) return "'{m,n}' without operand"; while( (c=rePeek(p))>='0' && c<='9' ){ m = m*10 + c - '0'; p->sIn.i++; } n = m; if( c==',' ){ p->sIn.i++; n = 0; while( (c=rePeek(p))>='0' && c<='9' ){ n = n*10 + c-'0'; p->sIn.i++; } } if( c!='}' ) return "unmatched '{'"; if( n>0 && nsIn.i++; sz = p->nState - iPrev; if( m==0 ){ if( n==0 ) return "both m and n are zero in '{m,n}'"; re_insert(p, iPrev, RE_OP_FORK, sz+1); iPrev++; n--; }else{ for(j=1; j0 ){ re_append(p, RE_OP_FORK, -sz); } break; } case '[': { unsigned int iFirst = p->nState; if( rePeek(p)=='^' ){ re_append(p, RE_OP_CC_EXC, 0); p->sIn.i++; }else{ re_append(p, RE_OP_CC_INC, 0); } while( (c = p->xNextChar(&p->sIn))!=0 ){ if( c=='[' && rePeek(p)==':' ){ return "POSIX character classes not supported"; } if( c=='\\' ) c = re_esc_char(p); if( rePeek(p)=='-' ){ re_append(p, RE_OP_CC_RANGE, c); p->sIn.i++; c = p->xNextChar(&p->sIn); if( c=='\\' ) c = re_esc_char(p); re_append(p, RE_OP_CC_RANGE, c); }else{ re_append(p, RE_OP_CC_VALUE, c); } if( rePeek(p)==']' ){ p->sIn.i++; break; } } if( c==0 ) return "unclosed '['"; if( p->nState>iFirst ) p->aArg[iFirst] = p->nState - iFirst; break; } case '\\': { int specialOp = 0; switch( rePeek(p) ){ case 'b': specialOp = RE_OP_BOUNDARY; break; case 'd': specialOp = RE_OP_DIGIT; break; case 'D': specialOp = RE_OP_NOTDIGIT; break; case 's': specialOp = RE_OP_SPACE; break; case 'S': specialOp = RE_OP_NOTSPACE; break; case 'w': specialOp = RE_OP_WORD; break; case 'W': specialOp = RE_OP_NOTWORD; break; } if( specialOp ){ p->sIn.i++; re_append(p, specialOp, 0); }else{ c = re_esc_char(p); re_append(p, RE_OP_MATCH, c); } break; } default: { re_append(p, RE_OP_MATCH, c); break; } } iPrev = iStart; } return 0; } /* Free and reclaim all the memory used by a previously compiled ** regular expression. Applications should invoke this routine once ** for every call to re_compile() to avoid memory leaks. */ static void re_free(ReCompiled *pRe){ if( pRe ){ sqlite3_free(pRe->aOp); sqlite3_free(pRe->aArg); sqlite3_free(pRe); } } /* ** Compile a textual regular expression in zIn[] into a compiled regular ** expression suitable for us by re_match() and return a pointer to the ** compiled regular expression in *ppRe. Return NULL on success or an ** error message if something goes wrong. */ static const char *re_compile(ReCompiled **ppRe, const char *zIn, int noCase){ ReCompiled *pRe; const char *zErr; int i, j; *ppRe = 0; pRe = sqlite3_malloc( sizeof(*pRe) ); if( pRe==0 ){ return "out of memory"; } memset(pRe, 0, sizeof(*pRe)); pRe->xNextChar = noCase ? re_next_char_nocase : re_next_char; if( re_resize(pRe, 30) ){ re_free(pRe); return "out of memory"; } if( zIn[0]=='^' ){ zIn++; }else{ re_append(pRe, RE_OP_ANYSTAR, 0); } pRe->sIn.z = (unsigned char*)zIn; pRe->sIn.i = 0; pRe->sIn.mx = (int)strlen(zIn); zErr = re_subcompile_re(pRe); if( zErr ){ re_free(pRe); return zErr; } if( pRe->sIn.i>=pRe->sIn.mx ){ re_append(pRe, RE_OP_ACCEPT, 0); *ppRe = pRe; }else{ re_free(pRe); return "unrecognized character"; } /* The following is a performance optimization. If the regex begins with ** ".*" (if the input regex lacks an initial "^") and afterwards there are ** one or more matching characters, enter those matching characters into ** zInit[]. The re_match() routine can then search ahead in the input ** string looking for the initial match without having to run the whole ** regex engine over the string. Do not worry about trying to match ** unicode characters beyond plane 0 - those are very rare and this is ** just an optimization. */ if( pRe->aOp[0]==RE_OP_ANYSTAR && !noCase ){ for(j=0, i=1; j<(int)sizeof(pRe->zInit)-2 && pRe->aOp[i]==RE_OP_MATCH; i++){ unsigned x = pRe->aArg[i]; if( x<=0x7f ){ pRe->zInit[j++] = (unsigned char)x; }else if( x<=0x7ff ){ pRe->zInit[j++] = (unsigned char)(0xc0 | (x>>6)); pRe->zInit[j++] = 0x80 | (x&0x3f); }else if( x<=0xffff ){ pRe->zInit[j++] = (unsigned char)(0xe0 | (x>>12)); pRe->zInit[j++] = 0x80 | ((x>>6)&0x3f); pRe->zInit[j++] = 0x80 | (x&0x3f); }else{ break; } } if( j>0 && pRe->zInit[j-1]==0 ) j--; pRe->nInit = j; } return pRe->zErr; } /* ** Implementation of the regexp() SQL function. This function implements ** the build-in REGEXP operator. The first argument to the function is the ** pattern and the second argument is the string. So, the SQL statements: ** ** A REGEXP B ** ** is implemented as regexp(B,A). */ static void re_sql_func( sqlite3_context *context, int argc, sqlite3_value **argv ){ ReCompiled *pRe; /* Compiled regular expression */ const char *zPattern; /* The regular expression */ const unsigned char *zStr;/* String being searched */ const char *zErr; /* Compile error message */ int setAux = 0; /* True to invoke sqlite3_set_auxdata() */ (void)argc; /* Unused */ pRe = sqlite3_get_auxdata(context, 0); if( pRe==0 ){ zPattern = (const char*)sqlite3_value_text(argv[0]); if( zPattern==0 ) return; zErr = re_compile(&pRe, zPattern, sqlite3_user_data(context)!=0); if( zErr ){ re_free(pRe); sqlite3_result_error(context, zErr, -1); return; } if( pRe==0 ){ sqlite3_result_error_nomem(context); return; } setAux = 1; } zStr = (const unsigned char*)sqlite3_value_text(argv[1]); if( zStr!=0 ){ sqlite3_result_int(context, re_match(pRe, zStr, -1)); } if( setAux ){ sqlite3_set_auxdata(context, 0, pRe, (void(*)(void*))re_free); } } #if defined(SQLITE_DEBUG) /* ** This function is used for testing and debugging only. It is only available ** if the SQLITE_DEBUG compile-time option is used. ** ** Compile a regular expression and then convert the compiled expression into ** text and return that text. */ static void re_bytecode_func( sqlite3_context *context, int argc, sqlite3_value **argv ){ const char *zPattern; const char *zErr; ReCompiled *pRe; sqlite3_str *pStr; int i; int n; char *z; (void)argc; zPattern = (const char*)sqlite3_value_text(argv[0]); if( zPattern==0 ) return; zErr = re_compile(&pRe, zPattern, sqlite3_user_data(context)!=0); if( zErr ){ re_free(pRe); sqlite3_result_error(context, zErr, -1); return; } if( pRe==0 ){ sqlite3_result_error_nomem(context); return; } pStr = sqlite3_str_new(0); if( pStr==0 ) goto re_bytecode_func_err; if( pRe->nInit>0 ){ sqlite3_str_appendf(pStr, "INIT "); for(i=0; inInit; i++){ sqlite3_str_appendf(pStr, "%02x", pRe->zInit[i]); } sqlite3_str_appendf(pStr, "\n"); } for(i=0; (unsigned)inState; i++){ sqlite3_str_appendf(pStr, "%-8s %4d\n", ReOpName[(unsigned char)pRe->aOp[i]], pRe->aArg[i]); } n = sqlite3_str_length(pStr); z = sqlite3_str_finish(pStr); if( n==0 ){ sqlite3_free(z); }else{ sqlite3_result_text(context, z, n-1, sqlite3_free); } re_bytecode_func_err: re_free(pRe); } #endif /* SQLITE_DEBUG */ /* ** Invoke this routine to register the regexp() function with the ** SQLite database connection. */ #ifdef _WIN32 #endif int sqlite3_regexp_init( sqlite3 *db, char **pzErrMsg, const sqlite3_api_routines *pApi ){ int rc = SQLITE_OK; SQLITE_EXTENSION_INIT2(pApi); (void)pzErrMsg; /* Unused */ rc = sqlite3_create_function(db, "regexp", 2, SQLITE_UTF8|SQLITE_INNOCUOUS|SQLITE_DETERMINISTIC, 0, re_sql_func, 0, 0); if( rc==SQLITE_OK ){ /* The regexpi(PATTERN,STRING) function is a case-insensitive version ** of regexp(PATTERN,STRING). */ rc = sqlite3_create_function(db, "regexpi", 2, SQLITE_UTF8|SQLITE_INNOCUOUS|SQLITE_DETERMINISTIC, (void*)db, re_sql_func, 0, 0); #if defined(SQLITE_DEBUG) if( rc==SQLITE_OK ){ rc = sqlite3_create_function(db, "regexp_bytecode", 1, SQLITE_UTF8|SQLITE_INNOCUOUS|SQLITE_DETERMINISTIC, 0, re_bytecode_func, 0, 0); } #endif /* SQLITE_DEBUG */ } return rc; } /************************* End ../ext/misc/regexp.c ********************/ #ifndef SQLITE_SHELL_FIDDLE /************************* Begin ../ext/misc/fileio.c ******************/ /* ** 2014-06-13 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ****************************************************************************** ** ** This SQLite extension implements SQL functions readfile() and ** writefile(), and eponymous virtual type "fsdir". ** ** WRITEFILE(FILE, DATA [, MODE [, MTIME]]): ** ** If neither of the optional arguments is present, then this UDF ** function writes blob DATA to file FILE. If successful, the number ** of bytes written is returned. If an error occurs, NULL is returned. ** ** If the first option argument - MODE - is present, then it must ** be passed an integer value that corresponds to a POSIX mode ** value (file type + permissions, as returned in the stat.st_mode ** field by the stat() system call). Three types of files may ** be written/created: ** ** regular files: (mode & 0170000)==0100000 ** symbolic links: (mode & 0170000)==0120000 ** directories: (mode & 0170000)==0040000 ** ** For a directory, the DATA is ignored. For a symbolic link, it is ** interpreted as text and used as the target of the link. For a ** regular file, it is interpreted as a blob and written into the ** named file. Regardless of the type of file, its permissions are ** set to (mode & 0777) before returning. ** ** If the optional MTIME argument is present, then it is interpreted ** as an integer - the number of seconds since the unix epoch. The ** modification-time of the target file is set to this value before ** returning. ** ** If five or more arguments are passed to this function and an ** error is encountered, an exception is raised. ** ** READFILE(FILE): ** ** Read and return the contents of file FILE (type blob) from disk. ** ** FSDIR: ** ** Used as follows: ** ** SELECT * FROM fsdir($path [, $dir]); ** ** Parameter $path is an absolute or relative pathname. If the file that it ** refers to does not exist, it is an error. If the path refers to a regular ** file or symbolic link, it returns a single row. Or, if the path refers ** to a directory, it returns one row for the directory, and one row for each ** file within the hierarchy rooted at $path. ** ** Each row has the following columns: ** ** name: Path to file or directory (text value). ** mode: Value of stat.st_mode for directory entry (an integer). ** mtime: Value of stat.st_mtime for directory entry (an integer). ** data: For a regular file, a blob containing the file data. For a ** symlink, a text value containing the text of the link. For a ** directory, NULL. ** ** If a non-NULL value is specified for the optional $dir parameter and ** $path is a relative path, then $path is interpreted relative to $dir. ** And the paths returned in the "name" column of the table are also ** relative to directory $dir. ** ** Notes on building this extension for Windows: ** Unless linked statically with the SQLite library, a preprocessor ** symbol, FILEIO_WIN32_DLL, must be #define'd to create a stand-alone ** DLL form of this extension for WIN32. See its use below for details. */ /* #include "sqlite3ext.h" */ SQLITE_EXTENSION_INIT1 #include #include #include #include #include #include #if !defined(_WIN32) && !defined(WIN32) # include # include # include # include #else # include "windows.h" # include # include /* # include "test_windirent.h" */ # define dirent DIRENT # ifndef chmod # define chmod _chmod # endif # ifndef stat # define stat _stat # endif # define mkdir(path,mode) _mkdir(path) # define lstat(path,buf) stat(path,buf) #endif #include #include /* When used as part of the CLI, the sqlite3_stdio.h module will have ** been included before this one. In that case use the sqlite3_stdio.h ** #defines. If not, create our own for fopen(). */ #ifndef _SQLITE3_STDIO_H_ # define sqlite3_fopen fopen #endif /* ** Structure of the fsdir() table-valued function */ /* 0 1 2 3 4 5 */ #define FSDIR_SCHEMA "(name,mode,mtime,data,path HIDDEN,dir HIDDEN)" #define FSDIR_COLUMN_NAME 0 /* Name of the file */ #define FSDIR_COLUMN_MODE 1 /* Access mode */ #define FSDIR_COLUMN_MTIME 2 /* Last modification time */ #define FSDIR_COLUMN_DATA 3 /* File content */ #define FSDIR_COLUMN_PATH 4 /* Path to top of search */ #define FSDIR_COLUMN_DIR 5 /* Path is relative to this directory */ /* ** Set the result stored by context ctx to a blob containing the ** contents of file zName. Or, leave the result unchanged (NULL) ** if the file does not exist or is unreadable. ** ** If the file exceeds the SQLite blob size limit, through an ** SQLITE_TOOBIG error. ** ** Throw an SQLITE_IOERR if there are difficulties pulling the file ** off of disk. */ static void readFileContents(sqlite3_context *ctx, const char *zName){ FILE *in; sqlite3_int64 nIn; void *pBuf; sqlite3 *db; int mxBlob; in = sqlite3_fopen(zName, "rb"); if( in==0 ){ /* File does not exist or is unreadable. Leave the result set to NULL. */ return; } fseek(in, 0, SEEK_END); nIn = ftell(in); rewind(in); db = sqlite3_context_db_handle(ctx); mxBlob = sqlite3_limit(db, SQLITE_LIMIT_LENGTH, -1); if( nIn>mxBlob ){ sqlite3_result_error_code(ctx, SQLITE_TOOBIG); fclose(in); return; } pBuf = sqlite3_malloc64( nIn ? nIn : 1 ); if( pBuf==0 ){ sqlite3_result_error_nomem(ctx); fclose(in); return; } if( nIn==(sqlite3_int64)fread(pBuf, 1, (size_t)nIn, in) ){ sqlite3_result_blob64(ctx, pBuf, nIn, sqlite3_free); }else{ sqlite3_result_error_code(ctx, SQLITE_IOERR); sqlite3_free(pBuf); } fclose(in); } /* ** Implementation of the "readfile(X)" SQL function. The entire content ** of the file named X is read and returned as a BLOB. NULL is returned ** if the file does not exist or is unreadable. */ static void readfileFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ const char *zName; (void)(argc); /* Unused parameter */ zName = (const char*)sqlite3_value_text(argv[0]); if( zName==0 ) return; readFileContents(context, zName); } /* ** Set the error message contained in context ctx to the results of ** vprintf(zFmt, ...). */ static void ctxErrorMsg(sqlite3_context *ctx, const char *zFmt, ...){ char *zMsg = 0; va_list ap; va_start(ap, zFmt); zMsg = sqlite3_vmprintf(zFmt, ap); sqlite3_result_error(ctx, zMsg, -1); sqlite3_free(zMsg); va_end(ap); } #if defined(_WIN32) /* ** This function is designed to convert a Win32 FILETIME structure into the ** number of seconds since the Unix Epoch (1970-01-01 00:00:00 UTC). */ static sqlite3_uint64 fileTimeToUnixTime( LPFILETIME pFileTime ){ SYSTEMTIME epochSystemTime; ULARGE_INTEGER epochIntervals; FILETIME epochFileTime; ULARGE_INTEGER fileIntervals; memset(&epochSystemTime, 0, sizeof(SYSTEMTIME)); epochSystemTime.wYear = 1970; epochSystemTime.wMonth = 1; epochSystemTime.wDay = 1; SystemTimeToFileTime(&epochSystemTime, &epochFileTime); epochIntervals.LowPart = epochFileTime.dwLowDateTime; epochIntervals.HighPart = epochFileTime.dwHighDateTime; fileIntervals.LowPart = pFileTime->dwLowDateTime; fileIntervals.HighPart = pFileTime->dwHighDateTime; return (fileIntervals.QuadPart - epochIntervals.QuadPart) / 10000000; } #if defined(FILEIO_WIN32_DLL) && (defined(_WIN32) || defined(WIN32)) # /* To allow a standalone DLL, use this next replacement function: */ # undef sqlite3_win32_utf8_to_unicode # define sqlite3_win32_utf8_to_unicode utf8_to_utf16 # LPWSTR utf8_to_utf16(const char *z){ int nAllot = MultiByteToWideChar(CP_UTF8, 0, z, -1, NULL, 0); LPWSTR rv = sqlite3_malloc(nAllot * sizeof(WCHAR)); if( rv!=0 && 0 < MultiByteToWideChar(CP_UTF8, 0, z, -1, rv, nAllot) ) return rv; sqlite3_free(rv); return 0; } #endif /* ** This function attempts to normalize the time values found in the stat() ** buffer to UTC. This is necessary on Win32, where the runtime library ** appears to return these values as local times. */ static void statTimesToUtc( const char *zPath, struct stat *pStatBuf ){ HANDLE hFindFile; WIN32_FIND_DATAW fd; LPWSTR zUnicodeName; extern LPWSTR sqlite3_win32_utf8_to_unicode(const char*); zUnicodeName = sqlite3_win32_utf8_to_unicode(zPath); if( zUnicodeName ){ memset(&fd, 0, sizeof(WIN32_FIND_DATAW)); hFindFile = FindFirstFileW(zUnicodeName, &fd); if( hFindFile!=NULL ){ pStatBuf->st_ctime = (time_t)fileTimeToUnixTime(&fd.ftCreationTime); pStatBuf->st_atime = (time_t)fileTimeToUnixTime(&fd.ftLastAccessTime); pStatBuf->st_mtime = (time_t)fileTimeToUnixTime(&fd.ftLastWriteTime); FindClose(hFindFile); } sqlite3_free(zUnicodeName); } } #endif /* ** This function is used in place of stat(). On Windows, special handling ** is required in order for the included time to be returned as UTC. On all ** other systems, this function simply calls stat(). */ static int fileStat( const char *zPath, struct stat *pStatBuf ){ #if defined(_WIN32) int rc = stat(zPath, pStatBuf); if( rc==0 ) statTimesToUtc(zPath, pStatBuf); return rc; #else return stat(zPath, pStatBuf); #endif } /* ** This function is used in place of lstat(). On Windows, special handling ** is required in order for the included time to be returned as UTC. On all ** other systems, this function simply calls lstat(). */ static int fileLinkStat( const char *zPath, struct stat *pStatBuf ){ #if defined(_WIN32) int rc = lstat(zPath, pStatBuf); if( rc==0 ) statTimesToUtc(zPath, pStatBuf); return rc; #else return lstat(zPath, pStatBuf); #endif } /* ** Argument zFile is the name of a file that will be created and/or written ** by SQL function writefile(). This function ensures that the directory ** zFile will be written to exists, creating it if required. The permissions ** for any path components created by this function are set in accordance ** with the current umask. ** ** If an OOM condition is encountered, SQLITE_NOMEM is returned. Otherwise, ** SQLITE_OK is returned if the directory is successfully created, or ** SQLITE_ERROR otherwise. */ static int makeDirectory( const char *zFile ){ char *zCopy = sqlite3_mprintf("%s", zFile); int rc = SQLITE_OK; if( zCopy==0 ){ rc = SQLITE_NOMEM; }else{ int nCopy = (int)strlen(zCopy); int i = 1; while( rc==SQLITE_OK ){ struct stat sStat; int rc2; for(; zCopy[i]!='/' && i=0 ){ #if defined(_WIN32) #if !SQLITE_OS_WINRT /* Windows */ FILETIME lastAccess; FILETIME lastWrite; SYSTEMTIME currentTime; LONGLONG intervals; HANDLE hFile; LPWSTR zUnicodeName; extern LPWSTR sqlite3_win32_utf8_to_unicode(const char*); GetSystemTime(¤tTime); SystemTimeToFileTime(¤tTime, &lastAccess); intervals = Int32x32To64(mtime, 10000000) + 116444736000000000; lastWrite.dwLowDateTime = (DWORD)intervals; lastWrite.dwHighDateTime = intervals >> 32; zUnicodeName = sqlite3_win32_utf8_to_unicode(zFile); if( zUnicodeName==0 ){ return 1; } hFile = CreateFileW( zUnicodeName, FILE_WRITE_ATTRIBUTES, 0, NULL, OPEN_EXISTING, FILE_FLAG_BACKUP_SEMANTICS, NULL ); sqlite3_free(zUnicodeName); if( hFile!=INVALID_HANDLE_VALUE ){ BOOL bResult = SetFileTime(hFile, NULL, &lastAccess, &lastWrite); CloseHandle(hFile); return !bResult; }else{ return 1; } #endif #elif defined(AT_FDCWD) && 0 /* utimensat() is not universally available */ /* Recent unix */ struct timespec times[2]; times[0].tv_nsec = times[1].tv_nsec = 0; times[0].tv_sec = time(0); times[1].tv_sec = mtime; if( utimensat(AT_FDCWD, zFile, times, AT_SYMLINK_NOFOLLOW) ){ return 1; } #else /* Legacy unix. ** ** Do not use utimes() on a symbolic link - it sees through the link and ** modifies the timestamps on the target. Or fails if the target does ** not exist. */ if( 0==S_ISLNK(mode) ){ struct timeval times[2]; times[0].tv_usec = times[1].tv_usec = 0; times[0].tv_sec = time(0); times[1].tv_sec = mtime; if( utimes(zFile, times) ){ return 1; } } #endif } return 0; } /* ** Implementation of the "writefile(W,X[,Y[,Z]]])" SQL function. ** Refer to header comments at the top of this file for details. */ static void writefileFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ const char *zFile; mode_t mode = 0; int res; sqlite3_int64 mtime = -1; if( argc<2 || argc>4 ){ sqlite3_result_error(context, "wrong number of arguments to function writefile()", -1 ); return; } zFile = (const char*)sqlite3_value_text(argv[0]); if( zFile==0 ) return; if( argc>=3 ){ mode = (mode_t)sqlite3_value_int(argv[2]); } if( argc==4 ){ mtime = sqlite3_value_int64(argv[3]); } res = writeFile(context, zFile, argv[1], mode, mtime); if( res==1 && errno==ENOENT ){ if( makeDirectory(zFile)==SQLITE_OK ){ res = writeFile(context, zFile, argv[1], mode, mtime); } } if( argc>2 && res!=0 ){ if( S_ISLNK(mode) ){ ctxErrorMsg(context, "failed to create symlink: %s", zFile); }else if( S_ISDIR(mode) ){ ctxErrorMsg(context, "failed to create directory: %s", zFile); }else{ ctxErrorMsg(context, "failed to write file: %s", zFile); } } } /* ** SQL function: lsmode(MODE) ** ** Given a numberic st_mode from stat(), convert it into a human-readable ** text string in the style of "ls -l". */ static void lsModeFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ int i; int iMode = sqlite3_value_int(argv[0]); char z[16]; (void)argc; if( S_ISLNK(iMode) ){ z[0] = 'l'; }else if( S_ISREG(iMode) ){ z[0] = '-'; }else if( S_ISDIR(iMode) ){ z[0] = 'd'; }else{ z[0] = '?'; } for(i=0; i<3; i++){ int m = (iMode >> ((2-i)*3)); char *a = &z[1 + i*3]; a[0] = (m & 0x4) ? 'r' : '-'; a[1] = (m & 0x2) ? 'w' : '-'; a[2] = (m & 0x1) ? 'x' : '-'; } z[10] = '\0'; sqlite3_result_text(context, z, -1, SQLITE_TRANSIENT); } #ifndef SQLITE_OMIT_VIRTUALTABLE /* ** Cursor type for recursively iterating through a directory structure. */ typedef struct fsdir_cursor fsdir_cursor; typedef struct FsdirLevel FsdirLevel; struct FsdirLevel { DIR *pDir; /* From opendir() */ char *zDir; /* Name of directory (nul-terminated) */ }; struct fsdir_cursor { sqlite3_vtab_cursor base; /* Base class - must be first */ int nLvl; /* Number of entries in aLvl[] array */ int iLvl; /* Index of current entry */ FsdirLevel *aLvl; /* Hierarchy of directories being traversed */ const char *zBase; int nBase; struct stat sStat; /* Current lstat() results */ char *zPath; /* Path to current entry */ sqlite3_int64 iRowid; /* Current rowid */ }; typedef struct fsdir_tab fsdir_tab; struct fsdir_tab { sqlite3_vtab base; /* Base class - must be first */ }; /* ** Construct a new fsdir virtual table object. */ static int fsdirConnect( sqlite3 *db, void *pAux, int argc, const char *const*argv, sqlite3_vtab **ppVtab, char **pzErr ){ fsdir_tab *pNew = 0; int rc; (void)pAux; (void)argc; (void)argv; (void)pzErr; rc = sqlite3_declare_vtab(db, "CREATE TABLE x" FSDIR_SCHEMA); if( rc==SQLITE_OK ){ pNew = (fsdir_tab*)sqlite3_malloc( sizeof(*pNew) ); if( pNew==0 ) return SQLITE_NOMEM; memset(pNew, 0, sizeof(*pNew)); sqlite3_vtab_config(db, SQLITE_VTAB_DIRECTONLY); } *ppVtab = (sqlite3_vtab*)pNew; return rc; } /* ** This method is the destructor for fsdir vtab objects. */ static int fsdirDisconnect(sqlite3_vtab *pVtab){ sqlite3_free(pVtab); return SQLITE_OK; } /* ** Constructor for a new fsdir_cursor object. */ static int fsdirOpen(sqlite3_vtab *p, sqlite3_vtab_cursor **ppCursor){ fsdir_cursor *pCur; (void)p; pCur = sqlite3_malloc( sizeof(*pCur) ); if( pCur==0 ) return SQLITE_NOMEM; memset(pCur, 0, sizeof(*pCur)); pCur->iLvl = -1; *ppCursor = &pCur->base; return SQLITE_OK; } /* ** Reset a cursor back to the state it was in when first returned ** by fsdirOpen(). */ static void fsdirResetCursor(fsdir_cursor *pCur){ int i; for(i=0; i<=pCur->iLvl; i++){ FsdirLevel *pLvl = &pCur->aLvl[i]; if( pLvl->pDir ) closedir(pLvl->pDir); sqlite3_free(pLvl->zDir); } sqlite3_free(pCur->zPath); sqlite3_free(pCur->aLvl); pCur->aLvl = 0; pCur->zPath = 0; pCur->zBase = 0; pCur->nBase = 0; pCur->nLvl = 0; pCur->iLvl = -1; pCur->iRowid = 1; } /* ** Destructor for an fsdir_cursor. */ static int fsdirClose(sqlite3_vtab_cursor *cur){ fsdir_cursor *pCur = (fsdir_cursor*)cur; fsdirResetCursor(pCur); sqlite3_free(pCur); return SQLITE_OK; } /* ** Set the error message for the virtual table associated with cursor ** pCur to the results of vprintf(zFmt, ...). */ static void fsdirSetErrmsg(fsdir_cursor *pCur, const char *zFmt, ...){ va_list ap; va_start(ap, zFmt); pCur->base.pVtab->zErrMsg = sqlite3_vmprintf(zFmt, ap); va_end(ap); } /* ** Advance an fsdir_cursor to its next row of output. */ static int fsdirNext(sqlite3_vtab_cursor *cur){ fsdir_cursor *pCur = (fsdir_cursor*)cur; mode_t m = pCur->sStat.st_mode; pCur->iRowid++; if( S_ISDIR(m) ){ /* Descend into this directory */ int iNew = pCur->iLvl + 1; FsdirLevel *pLvl; if( iNew>=pCur->nLvl ){ int nNew = iNew+1; sqlite3_int64 nByte = nNew*sizeof(FsdirLevel); FsdirLevel *aNew = (FsdirLevel*)sqlite3_realloc64(pCur->aLvl, nByte); if( aNew==0 ) return SQLITE_NOMEM; memset(&aNew[pCur->nLvl], 0, sizeof(FsdirLevel)*(nNew-pCur->nLvl)); pCur->aLvl = aNew; pCur->nLvl = nNew; } pCur->iLvl = iNew; pLvl = &pCur->aLvl[iNew]; pLvl->zDir = pCur->zPath; pCur->zPath = 0; pLvl->pDir = opendir(pLvl->zDir); if( pLvl->pDir==0 ){ fsdirSetErrmsg(pCur, "cannot read directory: %s", pCur->zPath); return SQLITE_ERROR; } } while( pCur->iLvl>=0 ){ FsdirLevel *pLvl = &pCur->aLvl[pCur->iLvl]; struct dirent *pEntry = readdir(pLvl->pDir); if( pEntry ){ if( pEntry->d_name[0]=='.' ){ if( pEntry->d_name[1]=='.' && pEntry->d_name[2]=='\0' ) continue; if( pEntry->d_name[1]=='\0' ) continue; } sqlite3_free(pCur->zPath); pCur->zPath = sqlite3_mprintf("%s/%s", pLvl->zDir, pEntry->d_name); if( pCur->zPath==0 ) return SQLITE_NOMEM; if( fileLinkStat(pCur->zPath, &pCur->sStat) ){ fsdirSetErrmsg(pCur, "cannot stat file: %s", pCur->zPath); return SQLITE_ERROR; } return SQLITE_OK; } closedir(pLvl->pDir); sqlite3_free(pLvl->zDir); pLvl->pDir = 0; pLvl->zDir = 0; pCur->iLvl--; } /* EOF */ sqlite3_free(pCur->zPath); pCur->zPath = 0; return SQLITE_OK; } /* ** Return values of columns for the row at which the series_cursor ** is currently pointing. */ static int fsdirColumn( sqlite3_vtab_cursor *cur, /* The cursor */ sqlite3_context *ctx, /* First argument to sqlite3_result_...() */ int i /* Which column to return */ ){ fsdir_cursor *pCur = (fsdir_cursor*)cur; switch( i ){ case FSDIR_COLUMN_NAME: { sqlite3_result_text(ctx, &pCur->zPath[pCur->nBase], -1, SQLITE_TRANSIENT); break; } case FSDIR_COLUMN_MODE: sqlite3_result_int64(ctx, pCur->sStat.st_mode); break; case FSDIR_COLUMN_MTIME: sqlite3_result_int64(ctx, pCur->sStat.st_mtime); break; case FSDIR_COLUMN_DATA: { mode_t m = pCur->sStat.st_mode; if( S_ISDIR(m) ){ sqlite3_result_null(ctx); #if !defined(_WIN32) && !defined(WIN32) }else if( S_ISLNK(m) ){ char aStatic[64]; char *aBuf = aStatic; sqlite3_int64 nBuf = 64; int n; while( 1 ){ n = readlink(pCur->zPath, aBuf, nBuf); if( nzPath); } } case FSDIR_COLUMN_PATH: default: { /* The FSDIR_COLUMN_PATH and FSDIR_COLUMN_DIR are input parameters. ** always return their values as NULL */ break; } } return SQLITE_OK; } /* ** Return the rowid for the current row. In this implementation, the ** first row returned is assigned rowid value 1, and each subsequent ** row a value 1 more than that of the previous. */ static int fsdirRowid(sqlite3_vtab_cursor *cur, sqlite_int64 *pRowid){ fsdir_cursor *pCur = (fsdir_cursor*)cur; *pRowid = pCur->iRowid; return SQLITE_OK; } /* ** Return TRUE if the cursor has been moved off of the last ** row of output. */ static int fsdirEof(sqlite3_vtab_cursor *cur){ fsdir_cursor *pCur = (fsdir_cursor*)cur; return (pCur->zPath==0); } /* ** xFilter callback. ** ** idxNum==1 PATH parameter only ** idxNum==2 Both PATH and DIR supplied */ static int fsdirFilter( sqlite3_vtab_cursor *cur, int idxNum, const char *idxStr, int argc, sqlite3_value **argv ){ const char *zDir = 0; fsdir_cursor *pCur = (fsdir_cursor*)cur; (void)idxStr; fsdirResetCursor(pCur); if( idxNum==0 ){ fsdirSetErrmsg(pCur, "table function fsdir requires an argument"); return SQLITE_ERROR; } assert( argc==idxNum && (argc==1 || argc==2) ); zDir = (const char*)sqlite3_value_text(argv[0]); if( zDir==0 ){ fsdirSetErrmsg(pCur, "table function fsdir requires a non-NULL argument"); return SQLITE_ERROR; } if( argc==2 ){ pCur->zBase = (const char*)sqlite3_value_text(argv[1]); } if( pCur->zBase ){ pCur->nBase = (int)strlen(pCur->zBase)+1; pCur->zPath = sqlite3_mprintf("%s/%s", pCur->zBase, zDir); }else{ pCur->zPath = sqlite3_mprintf("%s", zDir); } if( pCur->zPath==0 ){ return SQLITE_NOMEM; } if( fileLinkStat(pCur->zPath, &pCur->sStat) ){ fsdirSetErrmsg(pCur, "cannot stat file: %s", pCur->zPath); return SQLITE_ERROR; } return SQLITE_OK; } /* ** SQLite will invoke this method one or more times while planning a query ** that uses the generate_series virtual table. This routine needs to create ** a query plan for each invocation and compute an estimated cost for that ** plan. ** ** In this implementation idxNum is used to represent the ** query plan. idxStr is unused. ** ** The query plan is represented by values of idxNum: ** ** (1) The path value is supplied by argv[0] ** (2) Path is in argv[0] and dir is in argv[1] */ static int fsdirBestIndex( sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo ){ int i; /* Loop over constraints */ int idxPath = -1; /* Index in pIdxInfo->aConstraint of PATH= */ int idxDir = -1; /* Index in pIdxInfo->aConstraint of DIR= */ int seenPath = 0; /* True if an unusable PATH= constraint is seen */ int seenDir = 0; /* True if an unusable DIR= constraint is seen */ const struct sqlite3_index_constraint *pConstraint; (void)tab; pConstraint = pIdxInfo->aConstraint; for(i=0; inConstraint; i++, pConstraint++){ if( pConstraint->op!=SQLITE_INDEX_CONSTRAINT_EQ ) continue; switch( pConstraint->iColumn ){ case FSDIR_COLUMN_PATH: { if( pConstraint->usable ){ idxPath = i; seenPath = 0; }else if( idxPath<0 ){ seenPath = 1; } break; } case FSDIR_COLUMN_DIR: { if( pConstraint->usable ){ idxDir = i; seenDir = 0; }else if( idxDir<0 ){ seenDir = 1; } break; } } } if( seenPath || seenDir ){ /* If input parameters are unusable, disallow this plan */ return SQLITE_CONSTRAINT; } if( idxPath<0 ){ pIdxInfo->idxNum = 0; /* The pIdxInfo->estimatedCost should have been initialized to a huge ** number. Leave it unchanged. */ pIdxInfo->estimatedRows = 0x7fffffff; }else{ pIdxInfo->aConstraintUsage[idxPath].omit = 1; pIdxInfo->aConstraintUsage[idxPath].argvIndex = 1; if( idxDir>=0 ){ pIdxInfo->aConstraintUsage[idxDir].omit = 1; pIdxInfo->aConstraintUsage[idxDir].argvIndex = 2; pIdxInfo->idxNum = 2; pIdxInfo->estimatedCost = 10.0; }else{ pIdxInfo->idxNum = 1; pIdxInfo->estimatedCost = 100.0; } } return SQLITE_OK; } /* ** Register the "fsdir" virtual table. */ static int fsdirRegister(sqlite3 *db){ static sqlite3_module fsdirModule = { 0, /* iVersion */ 0, /* xCreate */ fsdirConnect, /* xConnect */ fsdirBestIndex, /* xBestIndex */ fsdirDisconnect, /* xDisconnect */ 0, /* xDestroy */ fsdirOpen, /* xOpen - open a cursor */ fsdirClose, /* xClose - close a cursor */ fsdirFilter, /* xFilter - configure scan constraints */ fsdirNext, /* xNext - advance a cursor */ fsdirEof, /* xEof - check for end of scan */ fsdirColumn, /* xColumn - read data */ fsdirRowid, /* xRowid - read data */ 0, /* xUpdate */ 0, /* xBegin */ 0, /* xSync */ 0, /* xCommit */ 0, /* xRollback */ 0, /* xFindMethod */ 0, /* xRename */ 0, /* xSavepoint */ 0, /* xRelease */ 0, /* xRollbackTo */ 0, /* xShadowName */ 0 /* xIntegrity */ }; int rc = sqlite3_create_module(db, "fsdir", &fsdirModule, 0); return rc; } #else /* SQLITE_OMIT_VIRTUALTABLE */ # define fsdirRegister(x) SQLITE_OK #endif #ifdef _WIN32 #endif int sqlite3_fileio_init( sqlite3 *db, char **pzErrMsg, const sqlite3_api_routines *pApi ){ int rc = SQLITE_OK; SQLITE_EXTENSION_INIT2(pApi); (void)pzErrMsg; /* Unused parameter */ rc = sqlite3_create_function(db, "readfile", 1, SQLITE_UTF8|SQLITE_DIRECTONLY, 0, readfileFunc, 0, 0); if( rc==SQLITE_OK ){ rc = sqlite3_create_function(db, "writefile", -1, SQLITE_UTF8|SQLITE_DIRECTONLY, 0, writefileFunc, 0, 0); } if( rc==SQLITE_OK ){ rc = sqlite3_create_function(db, "lsmode", 1, SQLITE_UTF8, 0, lsModeFunc, 0, 0); } if( rc==SQLITE_OK ){ rc = fsdirRegister(db); } return rc; } #if defined(FILEIO_WIN32_DLL) && (defined(_WIN32) || defined(WIN32)) /* To allow a standalone DLL, make test_windirent.c use the same * redefined SQLite API calls as the above extension code does. * Just pull in this .c to accomplish this. As a beneficial side * effect, this extension becomes a single translation unit. */ # include "test_windirent.c" #endif /************************* End ../ext/misc/fileio.c ********************/ /************************* Begin ../ext/misc/completion.c ******************/ /* ** 2017-07-10 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** ** This file implements an eponymous virtual table that returns suggested ** completions for a partial SQL input. ** ** Suggested usage: ** ** SELECT DISTINCT candidate COLLATE nocase ** FROM completion($prefix,$wholeline) ** ORDER BY 1; ** ** The two query parameters are optional. $prefix is the text of the ** current word being typed and that is to be completed. $wholeline is ** the complete input line, used for context. ** ** The raw completion() table might return the same candidate multiple ** times, for example if the same column name is used to two or more ** tables. And the candidates are returned in an arbitrary order. Hence, ** the DISTINCT and ORDER BY are recommended. ** ** This virtual table operates at the speed of human typing, and so there ** is no attempt to make it fast. Even a slow implementation will be much ** faster than any human can type. ** */ /* #include "sqlite3ext.h" */ SQLITE_EXTENSION_INIT1 #include #include #include #ifndef SQLITE_OMIT_VIRTUALTABLE /* completion_vtab is a subclass of sqlite3_vtab which will ** serve as the underlying representation of a completion virtual table */ typedef struct completion_vtab completion_vtab; struct completion_vtab { sqlite3_vtab base; /* Base class - must be first */ sqlite3 *db; /* Database connection for this completion vtab */ }; /* completion_cursor is a subclass of sqlite3_vtab_cursor which will ** serve as the underlying representation of a cursor that scans ** over rows of the result */ typedef struct completion_cursor completion_cursor; struct completion_cursor { sqlite3_vtab_cursor base; /* Base class - must be first */ sqlite3 *db; /* Database connection for this cursor */ int nPrefix, nLine; /* Number of bytes in zPrefix and zLine */ char *zPrefix; /* The prefix for the word we want to complete */ char *zLine; /* The whole that we want to complete */ const char *zCurrentRow; /* Current output row */ int szRow; /* Length of the zCurrentRow string */ sqlite3_stmt *pStmt; /* Current statement */ sqlite3_int64 iRowid; /* The rowid */ int ePhase; /* Current phase */ int j; /* inter-phase counter */ }; /* Values for ePhase: */ #define COMPLETION_FIRST_PHASE 1 #define COMPLETION_KEYWORDS 1 #define COMPLETION_PRAGMAS 2 #define COMPLETION_FUNCTIONS 3 #define COMPLETION_COLLATIONS 4 #define COMPLETION_INDEXES 5 #define COMPLETION_TRIGGERS 6 #define COMPLETION_DATABASES 7 #define COMPLETION_TABLES 8 /* Also VIEWs and TRIGGERs */ #define COMPLETION_COLUMNS 9 #define COMPLETION_MODULES 10 #define COMPLETION_EOF 11 /* ** The completionConnect() method is invoked to create a new ** completion_vtab that describes the completion virtual table. ** ** Think of this routine as the constructor for completion_vtab objects. ** ** All this routine needs to do is: ** ** (1) Allocate the completion_vtab object and initialize all fields. ** ** (2) Tell SQLite (via the sqlite3_declare_vtab() interface) what the ** result set of queries against completion will look like. */ static int completionConnect( sqlite3 *db, void *pAux, int argc, const char *const*argv, sqlite3_vtab **ppVtab, char **pzErr ){ completion_vtab *pNew; int rc; (void)(pAux); /* Unused parameter */ (void)(argc); /* Unused parameter */ (void)(argv); /* Unused parameter */ (void)(pzErr); /* Unused parameter */ /* Column numbers */ #define COMPLETION_COLUMN_CANDIDATE 0 /* Suggested completion of the input */ #define COMPLETION_COLUMN_PREFIX 1 /* Prefix of the word to be completed */ #define COMPLETION_COLUMN_WHOLELINE 2 /* Entire line seen so far */ #define COMPLETION_COLUMN_PHASE 3 /* ePhase - used for debugging only */ sqlite3_vtab_config(db, SQLITE_VTAB_INNOCUOUS); rc = sqlite3_declare_vtab(db, "CREATE TABLE x(" " candidate TEXT," " prefix TEXT HIDDEN," " wholeline TEXT HIDDEN," " phase INT HIDDEN" /* Used for debugging only */ ")"); if( rc==SQLITE_OK ){ pNew = sqlite3_malloc( sizeof(*pNew) ); *ppVtab = (sqlite3_vtab*)pNew; if( pNew==0 ) return SQLITE_NOMEM; memset(pNew, 0, sizeof(*pNew)); pNew->db = db; } return rc; } /* ** This method is the destructor for completion_cursor objects. */ static int completionDisconnect(sqlite3_vtab *pVtab){ sqlite3_free(pVtab); return SQLITE_OK; } /* ** Constructor for a new completion_cursor object. */ static int completionOpen(sqlite3_vtab *p, sqlite3_vtab_cursor **ppCursor){ completion_cursor *pCur; pCur = sqlite3_malloc( sizeof(*pCur) ); if( pCur==0 ) return SQLITE_NOMEM; memset(pCur, 0, sizeof(*pCur)); pCur->db = ((completion_vtab*)p)->db; *ppCursor = &pCur->base; return SQLITE_OK; } /* ** Reset the completion_cursor. */ static void completionCursorReset(completion_cursor *pCur){ sqlite3_free(pCur->zPrefix); pCur->zPrefix = 0; pCur->nPrefix = 0; sqlite3_free(pCur->zLine); pCur->zLine = 0; pCur->nLine = 0; sqlite3_finalize(pCur->pStmt); pCur->pStmt = 0; pCur->j = 0; } /* ** Destructor for a completion_cursor. */ static int completionClose(sqlite3_vtab_cursor *cur){ completionCursorReset((completion_cursor*)cur); sqlite3_free(cur); return SQLITE_OK; } /* ** Advance a completion_cursor to its next row of output. ** ** The ->ePhase, ->j, and ->pStmt fields of the completion_cursor object ** record the current state of the scan. This routine sets ->zCurrentRow ** to the current row of output and then returns. If no more rows remain, ** then ->ePhase is set to COMPLETION_EOF which will signal the virtual ** table that has reached the end of its scan. ** ** The current implementation just lists potential identifiers and ** keywords and filters them by zPrefix. Future enhancements should ** take zLine into account to try to restrict the set of identifiers and ** keywords based on what would be legal at the current point of input. */ static int completionNext(sqlite3_vtab_cursor *cur){ completion_cursor *pCur = (completion_cursor*)cur; int eNextPhase = 0; /* Next phase to try if current phase reaches end */ int iCol = -1; /* If >=0, step pCur->pStmt and use the i-th column */ pCur->iRowid++; while( pCur->ePhase!=COMPLETION_EOF ){ switch( pCur->ePhase ){ case COMPLETION_KEYWORDS: { if( pCur->j >= sqlite3_keyword_count() ){ pCur->zCurrentRow = 0; pCur->ePhase = COMPLETION_DATABASES; }else{ sqlite3_keyword_name(pCur->j++, &pCur->zCurrentRow, &pCur->szRow); } iCol = -1; break; } case COMPLETION_DATABASES: { if( pCur->pStmt==0 ){ sqlite3_prepare_v2(pCur->db, "PRAGMA database_list", -1, &pCur->pStmt, 0); } iCol = 1; eNextPhase = COMPLETION_TABLES; break; } case COMPLETION_TABLES: { if( pCur->pStmt==0 ){ sqlite3_stmt *pS2; char *zSql = 0; const char *zSep = ""; sqlite3_prepare_v2(pCur->db, "PRAGMA database_list", -1, &pS2, 0); while( sqlite3_step(pS2)==SQLITE_ROW ){ const char *zDb = (const char*)sqlite3_column_text(pS2, 1); zSql = sqlite3_mprintf( "%z%s" "SELECT name FROM \"%w\".sqlite_schema", zSql, zSep, zDb ); if( zSql==0 ) return SQLITE_NOMEM; zSep = " UNION "; } sqlite3_finalize(pS2); sqlite3_prepare_v2(pCur->db, zSql, -1, &pCur->pStmt, 0); sqlite3_free(zSql); } iCol = 0; eNextPhase = COMPLETION_COLUMNS; break; } case COMPLETION_COLUMNS: { if( pCur->pStmt==0 ){ sqlite3_stmt *pS2; char *zSql = 0; const char *zSep = ""; sqlite3_prepare_v2(pCur->db, "PRAGMA database_list", -1, &pS2, 0); while( sqlite3_step(pS2)==SQLITE_ROW ){ const char *zDb = (const char*)sqlite3_column_text(pS2, 1); zSql = sqlite3_mprintf( "%z%s" "SELECT pti.name FROM \"%w\".sqlite_schema AS sm" " JOIN pragma_table_xinfo(sm.name,%Q) AS pti" " WHERE sm.type='table'", zSql, zSep, zDb, zDb ); if( zSql==0 ) return SQLITE_NOMEM; zSep = " UNION "; } sqlite3_finalize(pS2); sqlite3_prepare_v2(pCur->db, zSql, -1, &pCur->pStmt, 0); sqlite3_free(zSql); } iCol = 0; eNextPhase = COMPLETION_EOF; break; } } if( iCol<0 ){ /* This case is when the phase presets zCurrentRow */ if( pCur->zCurrentRow==0 ) continue; }else{ if( sqlite3_step(pCur->pStmt)==SQLITE_ROW ){ /* Extract the next row of content */ pCur->zCurrentRow = (const char*)sqlite3_column_text(pCur->pStmt, iCol); pCur->szRow = sqlite3_column_bytes(pCur->pStmt, iCol); }else{ /* When all rows are finished, advance to the next phase */ sqlite3_finalize(pCur->pStmt); pCur->pStmt = 0; pCur->ePhase = eNextPhase; continue; } } if( pCur->nPrefix==0 ) break; if( pCur->nPrefix<=pCur->szRow && sqlite3_strnicmp(pCur->zPrefix, pCur->zCurrentRow, pCur->nPrefix)==0 ){ break; } } return SQLITE_OK; } /* ** Return values of columns for the row at which the completion_cursor ** is currently pointing. */ static int completionColumn( sqlite3_vtab_cursor *cur, /* The cursor */ sqlite3_context *ctx, /* First argument to sqlite3_result_...() */ int i /* Which column to return */ ){ completion_cursor *pCur = (completion_cursor*)cur; switch( i ){ case COMPLETION_COLUMN_CANDIDATE: { sqlite3_result_text(ctx, pCur->zCurrentRow, pCur->szRow,SQLITE_TRANSIENT); break; } case COMPLETION_COLUMN_PREFIX: { sqlite3_result_text(ctx, pCur->zPrefix, -1, SQLITE_TRANSIENT); break; } case COMPLETION_COLUMN_WHOLELINE: { sqlite3_result_text(ctx, pCur->zLine, -1, SQLITE_TRANSIENT); break; } case COMPLETION_COLUMN_PHASE: { sqlite3_result_int(ctx, pCur->ePhase); break; } } return SQLITE_OK; } /* ** Return the rowid for the current row. In this implementation, the ** rowid is the same as the output value. */ static int completionRowid(sqlite3_vtab_cursor *cur, sqlite_int64 *pRowid){ completion_cursor *pCur = (completion_cursor*)cur; *pRowid = pCur->iRowid; return SQLITE_OK; } /* ** Return TRUE if the cursor has been moved off of the last ** row of output. */ static int completionEof(sqlite3_vtab_cursor *cur){ completion_cursor *pCur = (completion_cursor*)cur; return pCur->ePhase >= COMPLETION_EOF; } /* ** This method is called to "rewind" the completion_cursor object back ** to the first row of output. This method is always called at least ** once prior to any call to completionColumn() or completionRowid() or ** completionEof(). */ static int completionFilter( sqlite3_vtab_cursor *pVtabCursor, int idxNum, const char *idxStr, int argc, sqlite3_value **argv ){ completion_cursor *pCur = (completion_cursor *)pVtabCursor; int iArg = 0; (void)(idxStr); /* Unused parameter */ (void)(argc); /* Unused parameter */ completionCursorReset(pCur); if( idxNum & 1 ){ pCur->nPrefix = sqlite3_value_bytes(argv[iArg]); if( pCur->nPrefix>0 ){ pCur->zPrefix = sqlite3_mprintf("%s", sqlite3_value_text(argv[iArg])); if( pCur->zPrefix==0 ) return SQLITE_NOMEM; } iArg = 1; } if( idxNum & 2 ){ pCur->nLine = sqlite3_value_bytes(argv[iArg]); if( pCur->nLine>0 ){ pCur->zLine = sqlite3_mprintf("%s", sqlite3_value_text(argv[iArg])); if( pCur->zLine==0 ) return SQLITE_NOMEM; } } if( pCur->zLine!=0 && pCur->zPrefix==0 ){ int i = pCur->nLine; while( i>0 && (isalnum(pCur->zLine[i-1]) || pCur->zLine[i-1]=='_') ){ i--; } pCur->nPrefix = pCur->nLine - i; if( pCur->nPrefix>0 ){ pCur->zPrefix = sqlite3_mprintf("%.*s", pCur->nPrefix, pCur->zLine + i); if( pCur->zPrefix==0 ) return SQLITE_NOMEM; } } pCur->iRowid = 0; pCur->ePhase = COMPLETION_FIRST_PHASE; return completionNext(pVtabCursor); } /* ** SQLite will invoke this method one or more times while planning a query ** that uses the completion virtual table. This routine needs to create ** a query plan for each invocation and compute an estimated cost for that ** plan. ** ** There are two hidden parameters that act as arguments to the table-valued ** function: "prefix" and "wholeline". Bit 0 of idxNum is set if "prefix" ** is available and bit 1 is set if "wholeline" is available. */ static int completionBestIndex( sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo ){ int i; /* Loop over constraints */ int idxNum = 0; /* The query plan bitmask */ int prefixIdx = -1; /* Index of the start= constraint, or -1 if none */ int wholelineIdx = -1; /* Index of the stop= constraint, or -1 if none */ int nArg = 0; /* Number of arguments that completeFilter() expects */ const struct sqlite3_index_constraint *pConstraint; (void)(tab); /* Unused parameter */ pConstraint = pIdxInfo->aConstraint; for(i=0; inConstraint; i++, pConstraint++){ if( pConstraint->usable==0 ) continue; if( pConstraint->op!=SQLITE_INDEX_CONSTRAINT_EQ ) continue; switch( pConstraint->iColumn ){ case COMPLETION_COLUMN_PREFIX: prefixIdx = i; idxNum |= 1; break; case COMPLETION_COLUMN_WHOLELINE: wholelineIdx = i; idxNum |= 2; break; } } if( prefixIdx>=0 ){ pIdxInfo->aConstraintUsage[prefixIdx].argvIndex = ++nArg; pIdxInfo->aConstraintUsage[prefixIdx].omit = 1; } if( wholelineIdx>=0 ){ pIdxInfo->aConstraintUsage[wholelineIdx].argvIndex = ++nArg; pIdxInfo->aConstraintUsage[wholelineIdx].omit = 1; } pIdxInfo->idxNum = idxNum; pIdxInfo->estimatedCost = (double)5000 - 1000*nArg; pIdxInfo->estimatedRows = 500 - 100*nArg; return SQLITE_OK; } /* ** This following structure defines all the methods for the ** completion virtual table. */ static sqlite3_module completionModule = { 0, /* iVersion */ 0, /* xCreate */ completionConnect, /* xConnect */ completionBestIndex, /* xBestIndex */ completionDisconnect, /* xDisconnect */ 0, /* xDestroy */ completionOpen, /* xOpen - open a cursor */ completionClose, /* xClose - close a cursor */ completionFilter, /* xFilter - configure scan constraints */ completionNext, /* xNext - advance a cursor */ completionEof, /* xEof - check for end of scan */ completionColumn, /* xColumn - read data */ completionRowid, /* xRowid - read data */ 0, /* xUpdate */ 0, /* xBegin */ 0, /* xSync */ 0, /* xCommit */ 0, /* xRollback */ 0, /* xFindMethod */ 0, /* xRename */ 0, /* xSavepoint */ 0, /* xRelease */ 0, /* xRollbackTo */ 0, /* xShadowName */ 0 /* xIntegrity */ }; #endif /* SQLITE_OMIT_VIRTUALTABLE */ int sqlite3CompletionVtabInit(sqlite3 *db){ int rc = SQLITE_OK; #ifndef SQLITE_OMIT_VIRTUALTABLE rc = sqlite3_create_module(db, "completion", &completionModule, 0); #endif return rc; } #ifdef _WIN32 #endif int sqlite3_completion_init( sqlite3 *db, char **pzErrMsg, const sqlite3_api_routines *pApi ){ int rc = SQLITE_OK; SQLITE_EXTENSION_INIT2(pApi); (void)(pzErrMsg); /* Unused parameter */ #ifndef SQLITE_OMIT_VIRTUALTABLE rc = sqlite3CompletionVtabInit(db); #endif return rc; } /************************* End ../ext/misc/completion.c ********************/ /************************* Begin ../ext/misc/appendvfs.c ******************/ /* ** 2017-10-20 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ****************************************************************************** ** ** This file implements a VFS shim that allows an SQLite database to be ** appended onto the end of some other file, such as an executable. ** ** A special record must appear at the end of the file that identifies the ** file as an appended database and provides the offset to the first page ** of the exposed content. (Or, it is the length of the content prefix.) ** For best performance page 1 should be located at a disk page boundary, ** though that is not required. ** ** When opening a database using this VFS, the connection might treat ** the file as an ordinary SQLite database, or it might treat it as a ** database appended onto some other file. The decision is made by ** applying the following rules in order: ** ** (1) An empty file is an ordinary database. ** ** (2) If the file ends with the appendvfs trailer string ** "Start-Of-SQLite3-NNNNNNNN" that file is an appended database. ** ** (3) If the file begins with the standard SQLite prefix string ** "SQLite format 3", that file is an ordinary database. ** ** (4) If none of the above apply and the SQLITE_OPEN_CREATE flag is ** set, then a new database is appended to the already existing file. ** ** (5) Otherwise, SQLITE_CANTOPEN is returned. ** ** To avoid unnecessary complications with the PENDING_BYTE, the size of ** the file containing the database is limited to 1GiB. (1073741824 bytes) ** This VFS will not read or write past the 1GiB mark. This restriction ** might be lifted in future versions. For now, if you need a larger ** database, then keep it in a separate file. ** ** If the file being opened is a plain database (not an appended one), then ** this shim is a pass-through into the default underlying VFS. (rule 3) **/ /* #include "sqlite3ext.h" */ SQLITE_EXTENSION_INIT1 #include #include /* The append mark at the end of the database is: ** ** Start-Of-SQLite3-NNNNNNNN ** 123456789 123456789 12345 ** ** The NNNNNNNN represents a 64-bit big-endian unsigned integer which is ** the offset to page 1, and also the length of the prefix content. */ #define APND_MARK_PREFIX "Start-Of-SQLite3-" #define APND_MARK_PREFIX_SZ 17 #define APND_MARK_FOS_SZ 8 #define APND_MARK_SIZE (APND_MARK_PREFIX_SZ+APND_MARK_FOS_SZ) /* ** Maximum size of the combined prefix + database + append-mark. This ** must be less than 0x40000000 to avoid locking issues on Windows. */ #define APND_MAX_SIZE (0x40000000) /* ** Try to align the database to an even multiple of APND_ROUNDUP bytes. */ #ifndef APND_ROUNDUP #define APND_ROUNDUP 4096 #endif #define APND_ALIGN_MASK ((sqlite3_int64)(APND_ROUNDUP-1)) #define APND_START_ROUNDUP(fsz) (((fsz)+APND_ALIGN_MASK) & ~APND_ALIGN_MASK) /* ** Forward declaration of objects used by this utility */ typedef struct sqlite3_vfs ApndVfs; typedef struct ApndFile ApndFile; /* Access to a lower-level VFS that (might) implement dynamic loading, ** access to randomness, etc. */ #define ORIGVFS(p) ((sqlite3_vfs*)((p)->pAppData)) #define ORIGFILE(p) ((sqlite3_file*)(((ApndFile*)(p))+1)) /* An open appendvfs file ** ** An instance of this structure describes the appended database file. ** A separate sqlite3_file object is always appended. The appended ** sqlite3_file object (which can be accessed using ORIGFILE()) describes ** the entire file, including the prefix, the database, and the ** append-mark. ** ** The structure of an AppendVFS database is like this: ** ** +-------------+---------+----------+-------------+ ** | prefix-file | padding | database | append-mark | ** +-------------+---------+----------+-------------+ ** ^ ^ ** | | ** iPgOne iMark ** ** ** "prefix file" - file onto which the database has been appended. ** "padding" - zero or more bytes inserted so that "database" ** starts on an APND_ROUNDUP boundary ** "database" - The SQLite database file ** "append-mark" - The 25-byte "Start-Of-SQLite3-NNNNNNNN" that indicates ** the offset from the start of prefix-file to the start ** of "database". ** ** The size of the database is iMark - iPgOne. ** ** The NNNNNNNN in the "Start-Of-SQLite3-NNNNNNNN" suffix is the value ** of iPgOne stored as a big-ending 64-bit integer. ** ** iMark will be the size of the underlying file minus 25 (APND_MARKSIZE). ** Or, iMark is -1 to indicate that it has not yet been written. */ struct ApndFile { sqlite3_file base; /* Subclass. MUST BE FIRST! */ sqlite3_int64 iPgOne; /* Offset to the start of the database */ sqlite3_int64 iMark; /* Offset of the append mark. -1 if unwritten */ /* Always followed by another sqlite3_file that describes the whole file */ }; /* ** Methods for ApndFile */ static int apndClose(sqlite3_file*); static int apndRead(sqlite3_file*, void*, int iAmt, sqlite3_int64 iOfst); static int apndWrite(sqlite3_file*,const void*,int iAmt, sqlite3_int64 iOfst); static int apndTruncate(sqlite3_file*, sqlite3_int64 size); static int apndSync(sqlite3_file*, int flags); static int apndFileSize(sqlite3_file*, sqlite3_int64 *pSize); static int apndLock(sqlite3_file*, int); static int apndUnlock(sqlite3_file*, int); static int apndCheckReservedLock(sqlite3_file*, int *pResOut); static int apndFileControl(sqlite3_file*, int op, void *pArg); static int apndSectorSize(sqlite3_file*); static int apndDeviceCharacteristics(sqlite3_file*); static int apndShmMap(sqlite3_file*, int iPg, int pgsz, int, void volatile**); static int apndShmLock(sqlite3_file*, int offset, int n, int flags); static void apndShmBarrier(sqlite3_file*); static int apndShmUnmap(sqlite3_file*, int deleteFlag); static int apndFetch(sqlite3_file*, sqlite3_int64 iOfst, int iAmt, void **pp); static int apndUnfetch(sqlite3_file*, sqlite3_int64 iOfst, void *p); /* ** Methods for ApndVfs */ static int apndOpen(sqlite3_vfs*, const char *, sqlite3_file*, int , int *); static int apndDelete(sqlite3_vfs*, const char *zName, int syncDir); static int apndAccess(sqlite3_vfs*, const char *zName, int flags, int *); static int apndFullPathname(sqlite3_vfs*, const char *zName, int, char *zOut); static void *apndDlOpen(sqlite3_vfs*, const char *zFilename); static void apndDlError(sqlite3_vfs*, int nByte, char *zErrMsg); static void (*apndDlSym(sqlite3_vfs *pVfs, void *p, const char*zSym))(void); static void apndDlClose(sqlite3_vfs*, void*); static int apndRandomness(sqlite3_vfs*, int nByte, char *zOut); static int apndSleep(sqlite3_vfs*, int microseconds); static int apndCurrentTime(sqlite3_vfs*, double*); static int apndGetLastError(sqlite3_vfs*, int, char *); static int apndCurrentTimeInt64(sqlite3_vfs*, sqlite3_int64*); static int apndSetSystemCall(sqlite3_vfs*, const char*,sqlite3_syscall_ptr); static sqlite3_syscall_ptr apndGetSystemCall(sqlite3_vfs*, const char *z); static const char *apndNextSystemCall(sqlite3_vfs*, const char *zName); static sqlite3_vfs apnd_vfs = { 3, /* iVersion (set when registered) */ 0, /* szOsFile (set when registered) */ 1024, /* mxPathname */ 0, /* pNext */ "apndvfs", /* zName */ 0, /* pAppData (set when registered) */ apndOpen, /* xOpen */ apndDelete, /* xDelete */ apndAccess, /* xAccess */ apndFullPathname, /* xFullPathname */ apndDlOpen, /* xDlOpen */ apndDlError, /* xDlError */ apndDlSym, /* xDlSym */ apndDlClose, /* xDlClose */ apndRandomness, /* xRandomness */ apndSleep, /* xSleep */ apndCurrentTime, /* xCurrentTime */ apndGetLastError, /* xGetLastError */ apndCurrentTimeInt64, /* xCurrentTimeInt64 */ apndSetSystemCall, /* xSetSystemCall */ apndGetSystemCall, /* xGetSystemCall */ apndNextSystemCall /* xNextSystemCall */ }; static const sqlite3_io_methods apnd_io_methods = { 3, /* iVersion */ apndClose, /* xClose */ apndRead, /* xRead */ apndWrite, /* xWrite */ apndTruncate, /* xTruncate */ apndSync, /* xSync */ apndFileSize, /* xFileSize */ apndLock, /* xLock */ apndUnlock, /* xUnlock */ apndCheckReservedLock, /* xCheckReservedLock */ apndFileControl, /* xFileControl */ apndSectorSize, /* xSectorSize */ apndDeviceCharacteristics, /* xDeviceCharacteristics */ apndShmMap, /* xShmMap */ apndShmLock, /* xShmLock */ apndShmBarrier, /* xShmBarrier */ apndShmUnmap, /* xShmUnmap */ apndFetch, /* xFetch */ apndUnfetch /* xUnfetch */ }; /* ** Close an apnd-file. */ static int apndClose(sqlite3_file *pFile){ pFile = ORIGFILE(pFile); return pFile->pMethods->xClose(pFile); } /* ** Read data from an apnd-file. */ static int apndRead( sqlite3_file *pFile, void *zBuf, int iAmt, sqlite_int64 iOfst ){ ApndFile *paf = (ApndFile *)pFile; pFile = ORIGFILE(pFile); return pFile->pMethods->xRead(pFile, zBuf, iAmt, paf->iPgOne+iOfst); } /* ** Add the append-mark onto what should become the end of the file. * If and only if this succeeds, internal ApndFile.iMark is updated. * Parameter iWriteEnd is the appendvfs-relative offset of the new mark. */ static int apndWriteMark( ApndFile *paf, sqlite3_file *pFile, sqlite_int64 iWriteEnd ){ sqlite_int64 iPgOne = paf->iPgOne; unsigned char a[APND_MARK_SIZE]; int i = APND_MARK_FOS_SZ; int rc; assert(pFile == ORIGFILE(paf)); memcpy(a, APND_MARK_PREFIX, APND_MARK_PREFIX_SZ); while( --i >= 0 ){ a[APND_MARK_PREFIX_SZ+i] = (unsigned char)(iPgOne & 0xff); iPgOne >>= 8; } iWriteEnd += paf->iPgOne; if( SQLITE_OK==(rc = pFile->pMethods->xWrite (pFile, a, APND_MARK_SIZE, iWriteEnd)) ){ paf->iMark = iWriteEnd; } return rc; } /* ** Write data to an apnd-file. */ static int apndWrite( sqlite3_file *pFile, const void *zBuf, int iAmt, sqlite_int64 iOfst ){ ApndFile *paf = (ApndFile *)pFile; sqlite_int64 iWriteEnd = iOfst + iAmt; if( iWriteEnd>=APND_MAX_SIZE ) return SQLITE_FULL; pFile = ORIGFILE(pFile); /* If append-mark is absent or will be overwritten, write it. */ if( paf->iMark < 0 || paf->iPgOne + iWriteEnd > paf->iMark ){ int rc = apndWriteMark(paf, pFile, iWriteEnd); if( SQLITE_OK!=rc ) return rc; } return pFile->pMethods->xWrite(pFile, zBuf, iAmt, paf->iPgOne+iOfst); } /* ** Truncate an apnd-file. */ static int apndTruncate(sqlite3_file *pFile, sqlite_int64 size){ ApndFile *paf = (ApndFile *)pFile; pFile = ORIGFILE(pFile); /* The append mark goes out first so truncate failure does not lose it. */ if( SQLITE_OK!=apndWriteMark(paf, pFile, size) ) return SQLITE_IOERR; /* Truncate underlying file just past append mark */ return pFile->pMethods->xTruncate(pFile, paf->iMark+APND_MARK_SIZE); } /* ** Sync an apnd-file. */ static int apndSync(sqlite3_file *pFile, int flags){ pFile = ORIGFILE(pFile); return pFile->pMethods->xSync(pFile, flags); } /* ** Return the current file-size of an apnd-file. ** If the append mark is not yet there, the file-size is 0. */ static int apndFileSize(sqlite3_file *pFile, sqlite_int64 *pSize){ ApndFile *paf = (ApndFile *)pFile; *pSize = ( paf->iMark >= 0 )? (paf->iMark - paf->iPgOne) : 0; return SQLITE_OK; } /* ** Lock an apnd-file. */ static int apndLock(sqlite3_file *pFile, int eLock){ pFile = ORIGFILE(pFile); return pFile->pMethods->xLock(pFile, eLock); } /* ** Unlock an apnd-file. */ static int apndUnlock(sqlite3_file *pFile, int eLock){ pFile = ORIGFILE(pFile); return pFile->pMethods->xUnlock(pFile, eLock); } /* ** Check if another file-handle holds a RESERVED lock on an apnd-file. */ static int apndCheckReservedLock(sqlite3_file *pFile, int *pResOut){ pFile = ORIGFILE(pFile); return pFile->pMethods->xCheckReservedLock(pFile, pResOut); } /* ** File control method. For custom operations on an apnd-file. */ static int apndFileControl(sqlite3_file *pFile, int op, void *pArg){ ApndFile *paf = (ApndFile *)pFile; int rc; pFile = ORIGFILE(pFile); if( op==SQLITE_FCNTL_SIZE_HINT ) *(sqlite3_int64*)pArg += paf->iPgOne; rc = pFile->pMethods->xFileControl(pFile, op, pArg); if( rc==SQLITE_OK && op==SQLITE_FCNTL_VFSNAME ){ *(char**)pArg = sqlite3_mprintf("apnd(%lld)/%z", paf->iPgOne,*(char**)pArg); } return rc; } /* ** Return the sector-size in bytes for an apnd-file. */ static int apndSectorSize(sqlite3_file *pFile){ pFile = ORIGFILE(pFile); return pFile->pMethods->xSectorSize(pFile); } /* ** Return the device characteristic flags supported by an apnd-file. */ static int apndDeviceCharacteristics(sqlite3_file *pFile){ pFile = ORIGFILE(pFile); return pFile->pMethods->xDeviceCharacteristics(pFile); } /* Create a shared memory file mapping */ static int apndShmMap( sqlite3_file *pFile, int iPg, int pgsz, int bExtend, void volatile **pp ){ pFile = ORIGFILE(pFile); return pFile->pMethods->xShmMap(pFile,iPg,pgsz,bExtend,pp); } /* Perform locking on a shared-memory segment */ static int apndShmLock(sqlite3_file *pFile, int offset, int n, int flags){ pFile = ORIGFILE(pFile); return pFile->pMethods->xShmLock(pFile,offset,n,flags); } /* Memory barrier operation on shared memory */ static void apndShmBarrier(sqlite3_file *pFile){ pFile = ORIGFILE(pFile); pFile->pMethods->xShmBarrier(pFile); } /* Unmap a shared memory segment */ static int apndShmUnmap(sqlite3_file *pFile, int deleteFlag){ pFile = ORIGFILE(pFile); return pFile->pMethods->xShmUnmap(pFile,deleteFlag); } /* Fetch a page of a memory-mapped file */ static int apndFetch( sqlite3_file *pFile, sqlite3_int64 iOfst, int iAmt, void **pp ){ ApndFile *p = (ApndFile *)pFile; if( p->iMark < 0 || iOfst+iAmt > p->iMark ){ return SQLITE_IOERR; /* Cannot read what is not yet there. */ } pFile = ORIGFILE(pFile); return pFile->pMethods->xFetch(pFile, iOfst+p->iPgOne, iAmt, pp); } /* Release a memory-mapped page */ static int apndUnfetch(sqlite3_file *pFile, sqlite3_int64 iOfst, void *pPage){ ApndFile *p = (ApndFile *)pFile; pFile = ORIGFILE(pFile); return pFile->pMethods->xUnfetch(pFile, iOfst+p->iPgOne, pPage); } /* ** Try to read the append-mark off the end of a file. Return the ** start of the appended database if the append-mark is present. ** If there is no valid append-mark, return -1; ** ** An append-mark is only valid if the NNNNNNNN start-of-database offset ** indicates that the appended database contains at least one page. The ** start-of-database value must be a multiple of 512. */ static sqlite3_int64 apndReadMark(sqlite3_int64 sz, sqlite3_file *pFile){ int rc, i; sqlite3_int64 iMark; int msbs = 8 * (APND_MARK_FOS_SZ-1); unsigned char a[APND_MARK_SIZE]; if( APND_MARK_SIZE!=(sz & 0x1ff) ) return -1; rc = pFile->pMethods->xRead(pFile, a, APND_MARK_SIZE, sz-APND_MARK_SIZE); if( rc ) return -1; if( memcmp(a, APND_MARK_PREFIX, APND_MARK_PREFIX_SZ)!=0 ) return -1; iMark = ((sqlite3_int64)(a[APND_MARK_PREFIX_SZ] & 0x7f)) << msbs; for(i=1; i<8; i++){ msbs -= 8; iMark |= (sqlite3_int64)a[APND_MARK_PREFIX_SZ+i]< (sz - APND_MARK_SIZE - 512) ) return -1; if( iMark & 0x1ff ) return -1; return iMark; } static const char apvfsSqliteHdr[] = "SQLite format 3"; /* ** Check to see if the file is an appendvfs SQLite database file. ** Return true iff it is such. Parameter sz is the file's size. */ static int apndIsAppendvfsDatabase(sqlite3_int64 sz, sqlite3_file *pFile){ int rc; char zHdr[16]; sqlite3_int64 iMark = apndReadMark(sz, pFile); if( iMark>=0 ){ /* If file has the correct end-marker, the expected odd size, and the ** SQLite DB type marker where the end-marker puts it, then it ** is an appendvfs database. */ rc = pFile->pMethods->xRead(pFile, zHdr, sizeof(zHdr), iMark); if( SQLITE_OK==rc && memcmp(zHdr, apvfsSqliteHdr, sizeof(zHdr))==0 && (sz & 0x1ff) == APND_MARK_SIZE && sz>=512+APND_MARK_SIZE ){ return 1; /* It's an appendvfs database */ } } return 0; } /* ** Check to see if the file is an ordinary SQLite database file. ** Return true iff so. Parameter sz is the file's size. */ static int apndIsOrdinaryDatabaseFile(sqlite3_int64 sz, sqlite3_file *pFile){ char zHdr[16]; if( apndIsAppendvfsDatabase(sz, pFile) /* rule 2 */ || (sz & 0x1ff) != 0 || SQLITE_OK!=pFile->pMethods->xRead(pFile, zHdr, sizeof(zHdr), 0) || memcmp(zHdr, apvfsSqliteHdr, sizeof(zHdr))!=0 ){ return 0; }else{ return 1; } } /* ** Open an apnd file handle. */ static int apndOpen( sqlite3_vfs *pApndVfs, const char *zName, sqlite3_file *pFile, int flags, int *pOutFlags ){ ApndFile *pApndFile = (ApndFile*)pFile; sqlite3_file *pBaseFile = ORIGFILE(pFile); sqlite3_vfs *pBaseVfs = ORIGVFS(pApndVfs); int rc; sqlite3_int64 sz = 0; if( (flags & SQLITE_OPEN_MAIN_DB)==0 ){ /* The appendvfs is not to be used for transient or temporary databases. ** Just use the base VFS open to initialize the given file object and ** open the underlying file. (Appendvfs is then unused for this file.) */ return pBaseVfs->xOpen(pBaseVfs, zName, pFile, flags, pOutFlags); } memset(pApndFile, 0, sizeof(ApndFile)); pFile->pMethods = &apnd_io_methods; pApndFile->iMark = -1; /* Append mark not yet written */ rc = pBaseVfs->xOpen(pBaseVfs, zName, pBaseFile, flags, pOutFlags); if( rc==SQLITE_OK ){ rc = pBaseFile->pMethods->xFileSize(pBaseFile, &sz); if( rc ){ pBaseFile->pMethods->xClose(pBaseFile); } } if( rc ){ pFile->pMethods = 0; return rc; } if( apndIsOrdinaryDatabaseFile(sz, pBaseFile) ){ /* The file being opened appears to be just an ordinary DB. Copy ** the base dispatch-table so this instance mimics the base VFS. */ memmove(pApndFile, pBaseFile, pBaseVfs->szOsFile); return SQLITE_OK; } pApndFile->iPgOne = apndReadMark(sz, pFile); if( pApndFile->iPgOne>=0 ){ pApndFile->iMark = sz - APND_MARK_SIZE; /* Append mark found */ return SQLITE_OK; } if( (flags & SQLITE_OPEN_CREATE)==0 ){ pBaseFile->pMethods->xClose(pBaseFile); rc = SQLITE_CANTOPEN; pFile->pMethods = 0; }else{ /* Round newly added appendvfs location to #define'd page boundary. ** Note that nothing has yet been written to the underlying file. ** The append mark will be written along with first content write. ** Until then, paf->iMark value indicates it is not yet written. */ pApndFile->iPgOne = APND_START_ROUNDUP(sz); } return rc; } /* ** Delete an apnd file. ** For an appendvfs, this could mean delete the appendvfs portion, ** leaving the appendee as it was before it gained an appendvfs. ** For now, this code deletes the underlying file too. */ static int apndDelete(sqlite3_vfs *pVfs, const char *zPath, int dirSync){ return ORIGVFS(pVfs)->xDelete(ORIGVFS(pVfs), zPath, dirSync); } /* ** All other VFS methods are pass-thrus. */ static int apndAccess( sqlite3_vfs *pVfs, const char *zPath, int flags, int *pResOut ){ return ORIGVFS(pVfs)->xAccess(ORIGVFS(pVfs), zPath, flags, pResOut); } static int apndFullPathname( sqlite3_vfs *pVfs, const char *zPath, int nOut, char *zOut ){ return ORIGVFS(pVfs)->xFullPathname(ORIGVFS(pVfs),zPath,nOut,zOut); } static void *apndDlOpen(sqlite3_vfs *pVfs, const char *zPath){ return ORIGVFS(pVfs)->xDlOpen(ORIGVFS(pVfs), zPath); } static void apndDlError(sqlite3_vfs *pVfs, int nByte, char *zErrMsg){ ORIGVFS(pVfs)->xDlError(ORIGVFS(pVfs), nByte, zErrMsg); } static void (*apndDlSym(sqlite3_vfs *pVfs, void *p, const char *zSym))(void){ return ORIGVFS(pVfs)->xDlSym(ORIGVFS(pVfs), p, zSym); } static void apndDlClose(sqlite3_vfs *pVfs, void *pHandle){ ORIGVFS(pVfs)->xDlClose(ORIGVFS(pVfs), pHandle); } static int apndRandomness(sqlite3_vfs *pVfs, int nByte, char *zBufOut){ return ORIGVFS(pVfs)->xRandomness(ORIGVFS(pVfs), nByte, zBufOut); } static int apndSleep(sqlite3_vfs *pVfs, int nMicro){ return ORIGVFS(pVfs)->xSleep(ORIGVFS(pVfs), nMicro); } static int apndCurrentTime(sqlite3_vfs *pVfs, double *pTimeOut){ return ORIGVFS(pVfs)->xCurrentTime(ORIGVFS(pVfs), pTimeOut); } static int apndGetLastError(sqlite3_vfs *pVfs, int a, char *b){ return ORIGVFS(pVfs)->xGetLastError(ORIGVFS(pVfs), a, b); } static int apndCurrentTimeInt64(sqlite3_vfs *pVfs, sqlite3_int64 *p){ return ORIGVFS(pVfs)->xCurrentTimeInt64(ORIGVFS(pVfs), p); } static int apndSetSystemCall( sqlite3_vfs *pVfs, const char *zName, sqlite3_syscall_ptr pCall ){ return ORIGVFS(pVfs)->xSetSystemCall(ORIGVFS(pVfs),zName,pCall); } static sqlite3_syscall_ptr apndGetSystemCall( sqlite3_vfs *pVfs, const char *zName ){ return ORIGVFS(pVfs)->xGetSystemCall(ORIGVFS(pVfs),zName); } static const char *apndNextSystemCall(sqlite3_vfs *pVfs, const char *zName){ return ORIGVFS(pVfs)->xNextSystemCall(ORIGVFS(pVfs), zName); } #ifdef _WIN32 #endif /* ** This routine is called when the extension is loaded. ** Register the new VFS. */ int sqlite3_appendvfs_init( sqlite3 *db, char **pzErrMsg, const sqlite3_api_routines *pApi ){ int rc = SQLITE_OK; sqlite3_vfs *pOrig; SQLITE_EXTENSION_INIT2(pApi); (void)pzErrMsg; (void)db; pOrig = sqlite3_vfs_find(0); if( pOrig==0 ) return SQLITE_ERROR; apnd_vfs.iVersion = pOrig->iVersion; apnd_vfs.pAppData = pOrig; apnd_vfs.szOsFile = pOrig->szOsFile + sizeof(ApndFile); rc = sqlite3_vfs_register(&apnd_vfs, 0); #ifdef APPENDVFS_TEST if( rc==SQLITE_OK ){ rc = sqlite3_auto_extension((void(*)(void))apndvfsRegister); } #endif if( rc==SQLITE_OK ) rc = SQLITE_OK_LOAD_PERMANENTLY; return rc; } /************************* End ../ext/misc/appendvfs.c ********************/ #endif #ifdef SQLITE_HAVE_ZLIB /************************* Begin ../ext/misc/zipfile.c ******************/ /* ** 2017-12-26 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ****************************************************************************** ** ** This file implements a virtual table for reading and writing ZIP archive ** files. ** ** Usage example: ** ** SELECT name, sz, datetime(mtime,'unixepoch') FROM zipfile($filename); ** ** Current limitations: ** ** * No support for encryption ** * No support for ZIP archives spanning multiple files ** * No support for zip64 extensions ** * Only the "inflate/deflate" (zlib) compression method is supported */ /* #include "sqlite3ext.h" */ SQLITE_EXTENSION_INIT1 #include #include #include #ifndef SQLITE_NO_STDINT # include #endif #include /* When used as part of the CLI, the sqlite3_stdio.h module will have ** been included before this one. In that case use the sqlite3_stdio.h ** #defines. If not, create our own for fopen(). */ #ifndef _SQLITE3_STDIO_H_ # define sqlite3_fopen fopen #endif #ifndef SQLITE_OMIT_VIRTUALTABLE #ifndef SQLITE_AMALGAMATION #ifndef UINT32_TYPE # ifdef HAVE_UINT32_T # define UINT32_TYPE uint32_t # else # define UINT32_TYPE unsigned int # endif #endif #ifndef UINT16_TYPE # ifdef HAVE_UINT16_T # define UINT16_TYPE uint16_t # else # define UINT16_TYPE unsigned short int # endif #endif /* typedef sqlite3_int64 i64; */ /* typedef unsigned char u8; */ /* typedef UINT32_TYPE u32; // 4-byte unsigned integer // */ /* typedef UINT16_TYPE u16; // 2-byte unsigned integer // */ #define MIN(a,b) ((a)<(b) ? (a) : (b)) #if defined(SQLITE_COVERAGE_TEST) || defined(SQLITE_MUTATION_TEST) # define SQLITE_OMIT_AUXILIARY_SAFETY_CHECKS 1 #endif #if defined(SQLITE_OMIT_AUXILIARY_SAFETY_CHECKS) # define ALWAYS(X) (1) # define NEVER(X) (0) #elif !defined(NDEBUG) # define ALWAYS(X) ((X)?1:(assert(0),0)) # define NEVER(X) ((X)?(assert(0),1):0) #else # define ALWAYS(X) (X) # define NEVER(X) (X) #endif #endif /* SQLITE_AMALGAMATION */ /* ** Definitions for mode bitmasks S_IFDIR, S_IFREG and S_IFLNK. ** ** In some ways it would be better to obtain these values from system ** header files. But, the dependency is undesirable and (a) these ** have been stable for decades, (b) the values are part of POSIX and ** are also made explicit in [man stat], and (c) are part of the ** file format for zip archives. */ #ifndef S_IFDIR # define S_IFDIR 0040000 #endif #ifndef S_IFREG # define S_IFREG 0100000 #endif #ifndef S_IFLNK # define S_IFLNK 0120000 #endif static const char ZIPFILE_SCHEMA[] = "CREATE TABLE y(" "name PRIMARY KEY," /* 0: Name of file in zip archive */ "mode," /* 1: POSIX mode for file */ "mtime," /* 2: Last modification time (secs since 1970)*/ "sz," /* 3: Size of object */ "rawdata," /* 4: Raw data */ "data," /* 5: Uncompressed data */ "method," /* 6: Compression method (integer) */ "z HIDDEN" /* 7: Name of zip file */ ") WITHOUT ROWID;"; #define ZIPFILE_F_COLUMN_IDX 7 /* Index of column "file" in the above */ #define ZIPFILE_BUFFER_SIZE (64*1024) /* ** Magic numbers used to read and write zip files. ** ** ZIPFILE_NEWENTRY_MADEBY: ** Use this value for the "version-made-by" field in new zip file ** entries. The upper byte indicates "unix", and the lower byte ** indicates that the zip file matches pkzip specification 3.0. ** This is what info-zip seems to do. ** ** ZIPFILE_NEWENTRY_REQUIRED: ** Value for "version-required-to-extract" field of new entries. ** Version 2.0 is required to support folders and deflate compression. ** ** ZIPFILE_NEWENTRY_FLAGS: ** Value for "general-purpose-bit-flags" field of new entries. Bit ** 11 means "utf-8 filename and comment". ** ** ZIPFILE_SIGNATURE_CDS: ** First 4 bytes of a valid CDS record. ** ** ZIPFILE_SIGNATURE_LFH: ** First 4 bytes of a valid LFH record. ** ** ZIPFILE_SIGNATURE_EOCD ** First 4 bytes of a valid EOCD record. */ #define ZIPFILE_EXTRA_TIMESTAMP 0x5455 #define ZIPFILE_NEWENTRY_MADEBY ((3<<8) + 30) #define ZIPFILE_NEWENTRY_REQUIRED 20 #define ZIPFILE_NEWENTRY_FLAGS 0x800 #define ZIPFILE_SIGNATURE_CDS 0x02014b50 #define ZIPFILE_SIGNATURE_LFH 0x04034b50 #define ZIPFILE_SIGNATURE_EOCD 0x06054b50 /* ** The sizes of the fixed-size part of each of the three main data ** structures in a zip archive. */ #define ZIPFILE_LFH_FIXED_SZ 30 #define ZIPFILE_EOCD_FIXED_SZ 22 #define ZIPFILE_CDS_FIXED_SZ 46 /* *** 4.3.16 End of central directory record: *** *** end of central dir signature 4 bytes (0x06054b50) *** number of this disk 2 bytes *** number of the disk with the *** start of the central directory 2 bytes *** total number of entries in the *** central directory on this disk 2 bytes *** total number of entries in *** the central directory 2 bytes *** size of the central directory 4 bytes *** offset of start of central *** directory with respect to *** the starting disk number 4 bytes *** .ZIP file comment length 2 bytes *** .ZIP file comment (variable size) */ typedef struct ZipfileEOCD ZipfileEOCD; struct ZipfileEOCD { u16 iDisk; u16 iFirstDisk; u16 nEntry; u16 nEntryTotal; u32 nSize; u32 iOffset; }; /* *** 4.3.12 Central directory structure: *** *** ... *** *** central file header signature 4 bytes (0x02014b50) *** version made by 2 bytes *** version needed to extract 2 bytes *** general purpose bit flag 2 bytes *** compression method 2 bytes *** last mod file time 2 bytes *** last mod file date 2 bytes *** crc-32 4 bytes *** compressed size 4 bytes *** uncompressed size 4 bytes *** file name length 2 bytes *** extra field length 2 bytes *** file comment length 2 bytes *** disk number start 2 bytes *** internal file attributes 2 bytes *** external file attributes 4 bytes *** relative offset of local header 4 bytes */ typedef struct ZipfileCDS ZipfileCDS; struct ZipfileCDS { u16 iVersionMadeBy; u16 iVersionExtract; u16 flags; u16 iCompression; u16 mTime; u16 mDate; u32 crc32; u32 szCompressed; u32 szUncompressed; u16 nFile; u16 nExtra; u16 nComment; u16 iDiskStart; u16 iInternalAttr; u32 iExternalAttr; u32 iOffset; char *zFile; /* Filename (sqlite3_malloc()) */ }; /* *** 4.3.7 Local file header: *** *** local file header signature 4 bytes (0x04034b50) *** version needed to extract 2 bytes *** general purpose bit flag 2 bytes *** compression method 2 bytes *** last mod file time 2 bytes *** last mod file date 2 bytes *** crc-32 4 bytes *** compressed size 4 bytes *** uncompressed size 4 bytes *** file name length 2 bytes *** extra field length 2 bytes *** */ typedef struct ZipfileLFH ZipfileLFH; struct ZipfileLFH { u16 iVersionExtract; u16 flags; u16 iCompression; u16 mTime; u16 mDate; u32 crc32; u32 szCompressed; u32 szUncompressed; u16 nFile; u16 nExtra; }; typedef struct ZipfileEntry ZipfileEntry; struct ZipfileEntry { ZipfileCDS cds; /* Parsed CDS record */ u32 mUnixTime; /* Modification time, in UNIX format */ u8 *aExtra; /* cds.nExtra+cds.nComment bytes of extra data */ i64 iDataOff; /* Offset to data in file (if aData==0) */ u8 *aData; /* cds.szCompressed bytes of compressed data */ ZipfileEntry *pNext; /* Next element in in-memory CDS */ }; /* ** Cursor type for zipfile tables. */ typedef struct ZipfileCsr ZipfileCsr; struct ZipfileCsr { sqlite3_vtab_cursor base; /* Base class - must be first */ i64 iId; /* Cursor ID */ u8 bEof; /* True when at EOF */ u8 bNoop; /* If next xNext() call is no-op */ /* Used outside of write transactions */ FILE *pFile; /* Zip file */ i64 iNextOff; /* Offset of next record in central directory */ ZipfileEOCD eocd; /* Parse of central directory record */ ZipfileEntry *pFreeEntry; /* Free this list when cursor is closed or reset */ ZipfileEntry *pCurrent; /* Current entry */ ZipfileCsr *pCsrNext; /* Next cursor on same virtual table */ }; typedef struct ZipfileTab ZipfileTab; struct ZipfileTab { sqlite3_vtab base; /* Base class - must be first */ char *zFile; /* Zip file this table accesses (may be NULL) */ sqlite3 *db; /* Host database connection */ u8 *aBuffer; /* Temporary buffer used for various tasks */ ZipfileCsr *pCsrList; /* List of cursors */ i64 iNextCsrid; /* The following are used by write transactions only */ ZipfileEntry *pFirstEntry; /* Linked list of all files (if pWriteFd!=0) */ ZipfileEntry *pLastEntry; /* Last element in pFirstEntry list */ FILE *pWriteFd; /* File handle open on zip archive */ i64 szCurrent; /* Current size of zip archive */ i64 szOrig; /* Size of archive at start of transaction */ }; /* ** Set the error message contained in context ctx to the results of ** vprintf(zFmt, ...). */ static void zipfileCtxErrorMsg(sqlite3_context *ctx, const char *zFmt, ...){ char *zMsg = 0; va_list ap; va_start(ap, zFmt); zMsg = sqlite3_vmprintf(zFmt, ap); sqlite3_result_error(ctx, zMsg, -1); sqlite3_free(zMsg); va_end(ap); } /* ** If string zIn is quoted, dequote it in place. Otherwise, if the string ** is not quoted, do nothing. */ static void zipfileDequote(char *zIn){ char q = zIn[0]; if( q=='"' || q=='\'' || q=='`' || q=='[' ){ int iIn = 1; int iOut = 0; if( q=='[' ) q = ']'; while( ALWAYS(zIn[iIn]) ){ char c = zIn[iIn++]; if( c==q && zIn[iIn++]!=q ) break; zIn[iOut++] = c; } zIn[iOut] = '\0'; } } /* ** Construct a new ZipfileTab virtual table object. ** ** argv[0] -> module name ("zipfile") ** argv[1] -> database name ** argv[2] -> table name ** argv[...] -> "column name" and other module argument fields. */ static int zipfileConnect( sqlite3 *db, void *pAux, int argc, const char *const*argv, sqlite3_vtab **ppVtab, char **pzErr ){ int nByte = sizeof(ZipfileTab) + ZIPFILE_BUFFER_SIZE; int nFile = 0; const char *zFile = 0; ZipfileTab *pNew = 0; int rc; (void)pAux; /* If the table name is not "zipfile", require that the argument be ** specified. This stops zipfile tables from being created as: ** ** CREATE VIRTUAL TABLE zzz USING zipfile(); ** ** It does not prevent: ** ** CREATE VIRTUAL TABLE zipfile USING zipfile(); */ assert( 0==sqlite3_stricmp(argv[0], "zipfile") ); if( (0!=sqlite3_stricmp(argv[2], "zipfile") && argc<4) || argc>4 ){ *pzErr = sqlite3_mprintf("zipfile constructor requires one argument"); return SQLITE_ERROR; } if( argc>3 ){ zFile = argv[3]; nFile = (int)strlen(zFile)+1; } rc = sqlite3_declare_vtab(db, ZIPFILE_SCHEMA); if( rc==SQLITE_OK ){ pNew = (ZipfileTab*)sqlite3_malloc64((sqlite3_int64)nByte+nFile); if( pNew==0 ) return SQLITE_NOMEM; memset(pNew, 0, nByte+nFile); pNew->db = db; pNew->aBuffer = (u8*)&pNew[1]; if( zFile ){ pNew->zFile = (char*)&pNew->aBuffer[ZIPFILE_BUFFER_SIZE]; memcpy(pNew->zFile, zFile, nFile); zipfileDequote(pNew->zFile); } } sqlite3_vtab_config(db, SQLITE_VTAB_DIRECTONLY); *ppVtab = (sqlite3_vtab*)pNew; return rc; } /* ** Free the ZipfileEntry structure indicated by the only argument. */ static void zipfileEntryFree(ZipfileEntry *p){ if( p ){ sqlite3_free(p->cds.zFile); sqlite3_free(p); } } /* ** Release resources that should be freed at the end of a write ** transaction. */ static void zipfileCleanupTransaction(ZipfileTab *pTab){ ZipfileEntry *pEntry; ZipfileEntry *pNext; if( pTab->pWriteFd ){ fclose(pTab->pWriteFd); pTab->pWriteFd = 0; } for(pEntry=pTab->pFirstEntry; pEntry; pEntry=pNext){ pNext = pEntry->pNext; zipfileEntryFree(pEntry); } pTab->pFirstEntry = 0; pTab->pLastEntry = 0; pTab->szCurrent = 0; pTab->szOrig = 0; } /* ** This method is the destructor for zipfile vtab objects. */ static int zipfileDisconnect(sqlite3_vtab *pVtab){ zipfileCleanupTransaction((ZipfileTab*)pVtab); sqlite3_free(pVtab); return SQLITE_OK; } /* ** Constructor for a new ZipfileCsr object. */ static int zipfileOpen(sqlite3_vtab *p, sqlite3_vtab_cursor **ppCsr){ ZipfileTab *pTab = (ZipfileTab*)p; ZipfileCsr *pCsr; pCsr = sqlite3_malloc(sizeof(*pCsr)); *ppCsr = (sqlite3_vtab_cursor*)pCsr; if( pCsr==0 ){ return SQLITE_NOMEM; } memset(pCsr, 0, sizeof(*pCsr)); pCsr->iId = ++pTab->iNextCsrid; pCsr->pCsrNext = pTab->pCsrList; pTab->pCsrList = pCsr; return SQLITE_OK; } /* ** Reset a cursor back to the state it was in when first returned ** by zipfileOpen(). */ static void zipfileResetCursor(ZipfileCsr *pCsr){ ZipfileEntry *p; ZipfileEntry *pNext; pCsr->bEof = 0; if( pCsr->pFile ){ fclose(pCsr->pFile); pCsr->pFile = 0; zipfileEntryFree(pCsr->pCurrent); pCsr->pCurrent = 0; } for(p=pCsr->pFreeEntry; p; p=pNext){ pNext = p->pNext; zipfileEntryFree(p); } } /* ** Destructor for an ZipfileCsr. */ static int zipfileClose(sqlite3_vtab_cursor *cur){ ZipfileCsr *pCsr = (ZipfileCsr*)cur; ZipfileTab *pTab = (ZipfileTab*)(pCsr->base.pVtab); ZipfileCsr **pp; zipfileResetCursor(pCsr); /* Remove this cursor from the ZipfileTab.pCsrList list. */ for(pp=&pTab->pCsrList; *pp!=pCsr; pp=&((*pp)->pCsrNext)); *pp = pCsr->pCsrNext; sqlite3_free(pCsr); return SQLITE_OK; } /* ** Set the error message for the virtual table associated with cursor ** pCsr to the results of vprintf(zFmt, ...). */ static void zipfileTableErr(ZipfileTab *pTab, const char *zFmt, ...){ va_list ap; va_start(ap, zFmt); sqlite3_free(pTab->base.zErrMsg); pTab->base.zErrMsg = sqlite3_vmprintf(zFmt, ap); va_end(ap); } static void zipfileCursorErr(ZipfileCsr *pCsr, const char *zFmt, ...){ va_list ap; va_start(ap, zFmt); sqlite3_free(pCsr->base.pVtab->zErrMsg); pCsr->base.pVtab->zErrMsg = sqlite3_vmprintf(zFmt, ap); va_end(ap); } /* ** Read nRead bytes of data from offset iOff of file pFile into buffer ** aRead[]. Return SQLITE_OK if successful, or an SQLite error code ** otherwise. ** ** If an error does occur, output variable (*pzErrmsg) may be set to point ** to an English language error message. It is the responsibility of the ** caller to eventually free this buffer using ** sqlite3_free(). */ static int zipfileReadData( FILE *pFile, /* Read from this file */ u8 *aRead, /* Read into this buffer */ int nRead, /* Number of bytes to read */ i64 iOff, /* Offset to read from */ char **pzErrmsg /* OUT: Error message (from sqlite3_malloc) */ ){ size_t n; fseek(pFile, (long)iOff, SEEK_SET); n = fread(aRead, 1, nRead, pFile); if( (int)n!=nRead ){ *pzErrmsg = sqlite3_mprintf("error in fread()"); return SQLITE_ERROR; } return SQLITE_OK; } static int zipfileAppendData( ZipfileTab *pTab, const u8 *aWrite, int nWrite ){ if( nWrite>0 ){ size_t n = nWrite; fseek(pTab->pWriteFd, (long)pTab->szCurrent, SEEK_SET); n = fwrite(aWrite, 1, nWrite, pTab->pWriteFd); if( (int)n!=nWrite ){ pTab->base.zErrMsg = sqlite3_mprintf("error in fwrite()"); return SQLITE_ERROR; } pTab->szCurrent += nWrite; } return SQLITE_OK; } /* ** Read and return a 16-bit little-endian unsigned integer from buffer aBuf. */ static u16 zipfileGetU16(const u8 *aBuf){ return (aBuf[1] << 8) + aBuf[0]; } /* ** Read and return a 32-bit little-endian unsigned integer from buffer aBuf. */ static u32 zipfileGetU32(const u8 *aBuf){ if( aBuf==0 ) return 0; return ((u32)(aBuf[3]) << 24) + ((u32)(aBuf[2]) << 16) + ((u32)(aBuf[1]) << 8) + ((u32)(aBuf[0]) << 0); } /* ** Write a 16-bit little endiate integer into buffer aBuf. */ static void zipfilePutU16(u8 *aBuf, u16 val){ aBuf[0] = val & 0xFF; aBuf[1] = (val>>8) & 0xFF; } /* ** Write a 32-bit little endiate integer into buffer aBuf. */ static void zipfilePutU32(u8 *aBuf, u32 val){ aBuf[0] = val & 0xFF; aBuf[1] = (val>>8) & 0xFF; aBuf[2] = (val>>16) & 0xFF; aBuf[3] = (val>>24) & 0xFF; } #define zipfileRead32(aBuf) ( aBuf+=4, zipfileGetU32(aBuf-4) ) #define zipfileRead16(aBuf) ( aBuf+=2, zipfileGetU16(aBuf-2) ) #define zipfileWrite32(aBuf,val) { zipfilePutU32(aBuf,val); aBuf+=4; } #define zipfileWrite16(aBuf,val) { zipfilePutU16(aBuf,val); aBuf+=2; } /* ** Magic numbers used to read CDS records. */ #define ZIPFILE_CDS_NFILE_OFF 28 #define ZIPFILE_CDS_SZCOMPRESSED_OFF 20 /* ** Decode the CDS record in buffer aBuf into (*pCDS). Return SQLITE_ERROR ** if the record is not well-formed, or SQLITE_OK otherwise. */ static int zipfileReadCDS(u8 *aBuf, ZipfileCDS *pCDS){ u8 *aRead = aBuf; u32 sig = zipfileRead32(aRead); int rc = SQLITE_OK; if( sig!=ZIPFILE_SIGNATURE_CDS ){ rc = SQLITE_ERROR; }else{ pCDS->iVersionMadeBy = zipfileRead16(aRead); pCDS->iVersionExtract = zipfileRead16(aRead); pCDS->flags = zipfileRead16(aRead); pCDS->iCompression = zipfileRead16(aRead); pCDS->mTime = zipfileRead16(aRead); pCDS->mDate = zipfileRead16(aRead); pCDS->crc32 = zipfileRead32(aRead); pCDS->szCompressed = zipfileRead32(aRead); pCDS->szUncompressed = zipfileRead32(aRead); assert( aRead==&aBuf[ZIPFILE_CDS_NFILE_OFF] ); pCDS->nFile = zipfileRead16(aRead); pCDS->nExtra = zipfileRead16(aRead); pCDS->nComment = zipfileRead16(aRead); pCDS->iDiskStart = zipfileRead16(aRead); pCDS->iInternalAttr = zipfileRead16(aRead); pCDS->iExternalAttr = zipfileRead32(aRead); pCDS->iOffset = zipfileRead32(aRead); assert( aRead==&aBuf[ZIPFILE_CDS_FIXED_SZ] ); } return rc; } /* ** Decode the LFH record in buffer aBuf into (*pLFH). Return SQLITE_ERROR ** if the record is not well-formed, or SQLITE_OK otherwise. */ static int zipfileReadLFH( u8 *aBuffer, ZipfileLFH *pLFH ){ u8 *aRead = aBuffer; int rc = SQLITE_OK; u32 sig = zipfileRead32(aRead); if( sig!=ZIPFILE_SIGNATURE_LFH ){ rc = SQLITE_ERROR; }else{ pLFH->iVersionExtract = zipfileRead16(aRead); pLFH->flags = zipfileRead16(aRead); pLFH->iCompression = zipfileRead16(aRead); pLFH->mTime = zipfileRead16(aRead); pLFH->mDate = zipfileRead16(aRead); pLFH->crc32 = zipfileRead32(aRead); pLFH->szCompressed = zipfileRead32(aRead); pLFH->szUncompressed = zipfileRead32(aRead); pLFH->nFile = zipfileRead16(aRead); pLFH->nExtra = zipfileRead16(aRead); } return rc; } /* ** Buffer aExtra (size nExtra bytes) contains zip archive "extra" fields. ** Scan through this buffer to find an "extra-timestamp" field. If one ** exists, extract the 32-bit modification-timestamp from it and store ** the value in output parameter *pmTime. ** ** Zero is returned if no extra-timestamp record could be found (and so ** *pmTime is left unchanged), or non-zero otherwise. ** ** The general format of an extra field is: ** ** Header ID 2 bytes ** Data Size 2 bytes ** Data N bytes */ static int zipfileScanExtra(u8 *aExtra, int nExtra, u32 *pmTime){ int ret = 0; u8 *p = aExtra; u8 *pEnd = &aExtra[nExtra]; while( p modtime is present */ *pmTime = zipfileGetU32(&p[1]); ret = 1; } break; } } p += nByte; } return ret; } /* ** Convert the standard MS-DOS timestamp stored in the mTime and mDate ** fields of the CDS structure passed as the only argument to a 32-bit ** UNIX seconds-since-the-epoch timestamp. Return the result. ** ** "Standard" MS-DOS time format: ** ** File modification time: ** Bits 00-04: seconds divided by 2 ** Bits 05-10: minute ** Bits 11-15: hour ** File modification date: ** Bits 00-04: day ** Bits 05-08: month (1-12) ** Bits 09-15: years from 1980 ** ** https://msdn.microsoft.com/en-us/library/9kkf9tah.aspx */ static u32 zipfileMtime(ZipfileCDS *pCDS){ int Y,M,D,X1,X2,A,B,sec,min,hr; i64 JDsec; Y = (1980 + ((pCDS->mDate >> 9) & 0x7F)); M = ((pCDS->mDate >> 5) & 0x0F); D = (pCDS->mDate & 0x1F); sec = (pCDS->mTime & 0x1F)*2; min = (pCDS->mTime >> 5) & 0x3F; hr = (pCDS->mTime >> 11) & 0x1F; if( M<=2 ){ Y--; M += 12; } X1 = 36525*(Y+4716)/100; X2 = 306001*(M+1)/10000; A = Y/100; B = 2 - A + (A/4); JDsec = (i64)((X1 + X2 + D + B - 1524.5)*86400) + hr*3600 + min*60 + sec; return (u32)(JDsec - (i64)24405875*(i64)8640); } /* ** The opposite of zipfileMtime(). This function populates the mTime and ** mDate fields of the CDS structure passed as the first argument according ** to the UNIX timestamp value passed as the second. */ static void zipfileMtimeToDos(ZipfileCDS *pCds, u32 mUnixTime){ /* Convert unix timestamp to JD (2440588 is noon on 1/1/1970) */ i64 JD = (i64)2440588 + mUnixTime / (24*60*60); int A, B, C, D, E; int yr, mon, day; int hr, min, sec; A = (int)((JD - 1867216.25)/36524.25); A = (int)(JD + 1 + A - (A/4)); B = A + 1524; C = (int)((B - 122.1)/365.25); D = (36525*(C&32767))/100; E = (int)((B-D)/30.6001); day = B - D - (int)(30.6001*E); mon = (E<14 ? E-1 : E-13); yr = mon>2 ? C-4716 : C-4715; hr = (mUnixTime % (24*60*60)) / (60*60); min = (mUnixTime % (60*60)) / 60; sec = (mUnixTime % 60); if( yr>=1980 ){ pCds->mDate = (u16)(day + (mon << 5) + ((yr-1980) << 9)); pCds->mTime = (u16)(sec/2 + (min<<5) + (hr<<11)); }else{ pCds->mDate = pCds->mTime = 0; } assert( mUnixTime<315507600 || mUnixTime==zipfileMtime(pCds) || ((mUnixTime % 2) && mUnixTime-1==zipfileMtime(pCds)) /* || (mUnixTime % 2) */ ); } /* ** If aBlob is not NULL, then it is a pointer to a buffer (nBlob bytes in ** size) containing an entire zip archive image. Or, if aBlob is NULL, ** then pFile is a file-handle open on a zip file. In either case, this ** function creates a ZipfileEntry object based on the zip archive entry ** for which the CDS record is at offset iOff. ** ** If successful, SQLITE_OK is returned and (*ppEntry) set to point to ** the new object. Otherwise, an SQLite error code is returned and the ** final value of (*ppEntry) undefined. */ static int zipfileGetEntry( ZipfileTab *pTab, /* Store any error message here */ const u8 *aBlob, /* Pointer to in-memory file image */ int nBlob, /* Size of aBlob[] in bytes */ FILE *pFile, /* If aBlob==0, read from this file */ i64 iOff, /* Offset of CDS record */ ZipfileEntry **ppEntry /* OUT: Pointer to new object */ ){ u8 *aRead; char **pzErr = &pTab->base.zErrMsg; int rc = SQLITE_OK; (void)nBlob; if( aBlob==0 ){ aRead = pTab->aBuffer; rc = zipfileReadData(pFile, aRead, ZIPFILE_CDS_FIXED_SZ, iOff, pzErr); }else{ aRead = (u8*)&aBlob[iOff]; } if( rc==SQLITE_OK ){ sqlite3_int64 nAlloc; ZipfileEntry *pNew; int nFile = zipfileGetU16(&aRead[ZIPFILE_CDS_NFILE_OFF]); int nExtra = zipfileGetU16(&aRead[ZIPFILE_CDS_NFILE_OFF+2]); nExtra += zipfileGetU16(&aRead[ZIPFILE_CDS_NFILE_OFF+4]); nAlloc = sizeof(ZipfileEntry) + nExtra; if( aBlob ){ nAlloc += zipfileGetU32(&aRead[ZIPFILE_CDS_SZCOMPRESSED_OFF]); } pNew = (ZipfileEntry*)sqlite3_malloc64(nAlloc); if( pNew==0 ){ rc = SQLITE_NOMEM; }else{ memset(pNew, 0, sizeof(ZipfileEntry)); rc = zipfileReadCDS(aRead, &pNew->cds); if( rc!=SQLITE_OK ){ *pzErr = sqlite3_mprintf("failed to read CDS at offset %lld", iOff); }else if( aBlob==0 ){ rc = zipfileReadData( pFile, aRead, nExtra+nFile, iOff+ZIPFILE_CDS_FIXED_SZ, pzErr ); }else{ aRead = (u8*)&aBlob[iOff + ZIPFILE_CDS_FIXED_SZ]; } } if( rc==SQLITE_OK ){ u32 *pt = &pNew->mUnixTime; pNew->cds.zFile = sqlite3_mprintf("%.*s", nFile, aRead); pNew->aExtra = (u8*)&pNew[1]; memcpy(pNew->aExtra, &aRead[nFile], nExtra); if( pNew->cds.zFile==0 ){ rc = SQLITE_NOMEM; }else if( 0==zipfileScanExtra(&aRead[nFile], pNew->cds.nExtra, pt) ){ pNew->mUnixTime = zipfileMtime(&pNew->cds); } } if( rc==SQLITE_OK ){ static const int szFix = ZIPFILE_LFH_FIXED_SZ; ZipfileLFH lfh; if( pFile ){ rc = zipfileReadData(pFile, aRead, szFix, pNew->cds.iOffset, pzErr); }else{ aRead = (u8*)&aBlob[pNew->cds.iOffset]; } if( rc==SQLITE_OK ) rc = zipfileReadLFH(aRead, &lfh); if( rc==SQLITE_OK ){ pNew->iDataOff = pNew->cds.iOffset + ZIPFILE_LFH_FIXED_SZ; pNew->iDataOff += lfh.nFile + lfh.nExtra; if( aBlob && pNew->cds.szCompressed ){ pNew->aData = &pNew->aExtra[nExtra]; memcpy(pNew->aData, &aBlob[pNew->iDataOff], pNew->cds.szCompressed); } }else{ *pzErr = sqlite3_mprintf("failed to read LFH at offset %d", (int)pNew->cds.iOffset ); } } if( rc!=SQLITE_OK ){ zipfileEntryFree(pNew); }else{ *ppEntry = pNew; } } return rc; } /* ** Advance an ZipfileCsr to its next row of output. */ static int zipfileNext(sqlite3_vtab_cursor *cur){ ZipfileCsr *pCsr = (ZipfileCsr*)cur; int rc = SQLITE_OK; if( pCsr->pFile ){ i64 iEof = pCsr->eocd.iOffset + pCsr->eocd.nSize; zipfileEntryFree(pCsr->pCurrent); pCsr->pCurrent = 0; if( pCsr->iNextOff>=iEof ){ pCsr->bEof = 1; }else{ ZipfileEntry *p = 0; ZipfileTab *pTab = (ZipfileTab*)(cur->pVtab); rc = zipfileGetEntry(pTab, 0, 0, pCsr->pFile, pCsr->iNextOff, &p); if( rc==SQLITE_OK ){ pCsr->iNextOff += ZIPFILE_CDS_FIXED_SZ; pCsr->iNextOff += (int)p->cds.nExtra + p->cds.nFile + p->cds.nComment; } pCsr->pCurrent = p; } }else{ if( !pCsr->bNoop ){ pCsr->pCurrent = pCsr->pCurrent->pNext; } if( pCsr->pCurrent==0 ){ pCsr->bEof = 1; } } pCsr->bNoop = 0; return rc; } static void zipfileFree(void *p) { sqlite3_free(p); } /* ** Buffer aIn (size nIn bytes) contains compressed data. Uncompressed, the ** size is nOut bytes. This function uncompresses the data and sets the ** return value in context pCtx to the result (a blob). ** ** If an error occurs, an error code is left in pCtx instead. */ static void zipfileInflate( sqlite3_context *pCtx, /* Store result here */ const u8 *aIn, /* Compressed data */ int nIn, /* Size of buffer aIn[] in bytes */ int nOut /* Expected output size */ ){ u8 *aRes = sqlite3_malloc(nOut); if( aRes==0 ){ sqlite3_result_error_nomem(pCtx); }else{ int err; z_stream str; memset(&str, 0, sizeof(str)); str.next_in = (Byte*)aIn; str.avail_in = nIn; str.next_out = (Byte*)aRes; str.avail_out = nOut; err = inflateInit2(&str, -15); if( err!=Z_OK ){ zipfileCtxErrorMsg(pCtx, "inflateInit2() failed (%d)", err); }else{ err = inflate(&str, Z_NO_FLUSH); if( err!=Z_STREAM_END ){ zipfileCtxErrorMsg(pCtx, "inflate() failed (%d)", err); }else{ sqlite3_result_blob(pCtx, aRes, nOut, zipfileFree); aRes = 0; } } sqlite3_free(aRes); inflateEnd(&str); } } /* ** Buffer aIn (size nIn bytes) contains uncompressed data. This function ** compresses it and sets (*ppOut) to point to a buffer containing the ** compressed data. The caller is responsible for eventually calling ** sqlite3_free() to release buffer (*ppOut). Before returning, (*pnOut) ** is set to the size of buffer (*ppOut) in bytes. ** ** If no error occurs, SQLITE_OK is returned. Otherwise, an SQLite error ** code is returned and an error message left in virtual-table handle ** pTab. The values of (*ppOut) and (*pnOut) are left unchanged in this ** case. */ static int zipfileDeflate( const u8 *aIn, int nIn, /* Input */ u8 **ppOut, int *pnOut, /* Output */ char **pzErr /* OUT: Error message */ ){ int rc = SQLITE_OK; sqlite3_int64 nAlloc; z_stream str; u8 *aOut; memset(&str, 0, sizeof(str)); str.next_in = (Bytef*)aIn; str.avail_in = nIn; deflateInit2(&str, 9, Z_DEFLATED, -15, 8, Z_DEFAULT_STRATEGY); nAlloc = deflateBound(&str, nIn); aOut = (u8*)sqlite3_malloc64(nAlloc); if( aOut==0 ){ rc = SQLITE_NOMEM; }else{ int res; str.next_out = aOut; str.avail_out = nAlloc; res = deflate(&str, Z_FINISH); if( res==Z_STREAM_END ){ *ppOut = aOut; *pnOut = (int)str.total_out; }else{ sqlite3_free(aOut); *pzErr = sqlite3_mprintf("zipfile: deflate() error"); rc = SQLITE_ERROR; } deflateEnd(&str); } return rc; } /* ** Return values of columns for the row at which the series_cursor ** is currently pointing. */ static int zipfileColumn( sqlite3_vtab_cursor *cur, /* The cursor */ sqlite3_context *ctx, /* First argument to sqlite3_result_...() */ int i /* Which column to return */ ){ ZipfileCsr *pCsr = (ZipfileCsr*)cur; ZipfileCDS *pCDS = &pCsr->pCurrent->cds; int rc = SQLITE_OK; switch( i ){ case 0: /* name */ sqlite3_result_text(ctx, pCDS->zFile, -1, SQLITE_TRANSIENT); break; case 1: /* mode */ /* TODO: Whether or not the following is correct surely depends on ** the platform on which the archive was created. */ sqlite3_result_int(ctx, pCDS->iExternalAttr >> 16); break; case 2: { /* mtime */ sqlite3_result_int64(ctx, pCsr->pCurrent->mUnixTime); break; } case 3: { /* sz */ if( sqlite3_vtab_nochange(ctx)==0 ){ sqlite3_result_int64(ctx, pCDS->szUncompressed); } break; } case 4: /* rawdata */ if( sqlite3_vtab_nochange(ctx) ) break; case 5: { /* data */ if( i==4 || pCDS->iCompression==0 || pCDS->iCompression==8 ){ int sz = pCDS->szCompressed; int szFinal = pCDS->szUncompressed; if( szFinal>0 ){ u8 *aBuf; u8 *aFree = 0; if( pCsr->pCurrent->aData ){ aBuf = pCsr->pCurrent->aData; }else{ aBuf = aFree = sqlite3_malloc64(sz); if( aBuf==0 ){ rc = SQLITE_NOMEM; }else{ FILE *pFile = pCsr->pFile; if( pFile==0 ){ pFile = ((ZipfileTab*)(pCsr->base.pVtab))->pWriteFd; } rc = zipfileReadData(pFile, aBuf, sz, pCsr->pCurrent->iDataOff, &pCsr->base.pVtab->zErrMsg ); } } if( rc==SQLITE_OK ){ if( i==5 && pCDS->iCompression ){ zipfileInflate(ctx, aBuf, sz, szFinal); }else{ sqlite3_result_blob(ctx, aBuf, sz, SQLITE_TRANSIENT); } } sqlite3_free(aFree); }else{ /* Figure out if this is a directory or a zero-sized file. Consider ** it to be a directory either if the mode suggests so, or if ** the final character in the name is '/'. */ u32 mode = pCDS->iExternalAttr >> 16; if( !(mode & S_IFDIR) && pCDS->nFile>=1 && pCDS->zFile[pCDS->nFile-1]!='/' ){ sqlite3_result_blob(ctx, "", 0, SQLITE_STATIC); } } } break; } case 6: /* method */ sqlite3_result_int(ctx, pCDS->iCompression); break; default: /* z */ assert( i==7 ); sqlite3_result_int64(ctx, pCsr->iId); break; } return rc; } /* ** Return TRUE if the cursor is at EOF. */ static int zipfileEof(sqlite3_vtab_cursor *cur){ ZipfileCsr *pCsr = (ZipfileCsr*)cur; return pCsr->bEof; } /* ** If aBlob is not NULL, then it points to a buffer nBlob bytes in size ** containing an entire zip archive image. Or, if aBlob is NULL, then pFile ** is guaranteed to be a file-handle open on a zip file. ** ** This function attempts to locate the EOCD record within the zip archive ** and populate *pEOCD with the results of decoding it. SQLITE_OK is ** returned if successful. Otherwise, an SQLite error code is returned and ** an English language error message may be left in virtual-table pTab. */ static int zipfileReadEOCD( ZipfileTab *pTab, /* Return errors here */ const u8 *aBlob, /* Pointer to in-memory file image */ int nBlob, /* Size of aBlob[] in bytes */ FILE *pFile, /* Read from this file if aBlob==0 */ ZipfileEOCD *pEOCD /* Object to populate */ ){ u8 *aRead = pTab->aBuffer; /* Temporary buffer */ int nRead; /* Bytes to read from file */ int rc = SQLITE_OK; memset(pEOCD, 0, sizeof(ZipfileEOCD)); if( aBlob==0 ){ i64 iOff; /* Offset to read from */ i64 szFile; /* Total size of file in bytes */ fseek(pFile, 0, SEEK_END); szFile = (i64)ftell(pFile); if( szFile==0 ){ return SQLITE_OK; } nRead = (int)(MIN(szFile, ZIPFILE_BUFFER_SIZE)); iOff = szFile - nRead; rc = zipfileReadData(pFile, aRead, nRead, iOff, &pTab->base.zErrMsg); }else{ nRead = (int)(MIN(nBlob, ZIPFILE_BUFFER_SIZE)); aRead = (u8*)&aBlob[nBlob-nRead]; } if( rc==SQLITE_OK ){ int i; /* Scan backwards looking for the signature bytes */ for(i=nRead-20; i>=0; i--){ if( aRead[i]==0x50 && aRead[i+1]==0x4b && aRead[i+2]==0x05 && aRead[i+3]==0x06 ){ break; } } if( i<0 ){ pTab->base.zErrMsg = sqlite3_mprintf( "cannot find end of central directory record" ); return SQLITE_ERROR; } aRead += i+4; pEOCD->iDisk = zipfileRead16(aRead); pEOCD->iFirstDisk = zipfileRead16(aRead); pEOCD->nEntry = zipfileRead16(aRead); pEOCD->nEntryTotal = zipfileRead16(aRead); pEOCD->nSize = zipfileRead32(aRead); pEOCD->iOffset = zipfileRead32(aRead); } return rc; } /* ** Add object pNew to the linked list that begins at ZipfileTab.pFirstEntry ** and ends with pLastEntry. If argument pBefore is NULL, then pNew is added ** to the end of the list. Otherwise, it is added to the list immediately ** before pBefore (which is guaranteed to be a part of said list). */ static void zipfileAddEntry( ZipfileTab *pTab, ZipfileEntry *pBefore, ZipfileEntry *pNew ){ assert( (pTab->pFirstEntry==0)==(pTab->pLastEntry==0) ); assert( pNew->pNext==0 ); if( pBefore==0 ){ if( pTab->pFirstEntry==0 ){ pTab->pFirstEntry = pTab->pLastEntry = pNew; }else{ assert( pTab->pLastEntry->pNext==0 ); pTab->pLastEntry->pNext = pNew; pTab->pLastEntry = pNew; } }else{ ZipfileEntry **pp; for(pp=&pTab->pFirstEntry; *pp!=pBefore; pp=&((*pp)->pNext)); pNew->pNext = pBefore; *pp = pNew; } } static int zipfileLoadDirectory(ZipfileTab *pTab, const u8 *aBlob, int nBlob){ ZipfileEOCD eocd; int rc; int i; i64 iOff; rc = zipfileReadEOCD(pTab, aBlob, nBlob, pTab->pWriteFd, &eocd); iOff = eocd.iOffset; for(i=0; rc==SQLITE_OK && ipWriteFd, iOff, &pNew); if( rc==SQLITE_OK ){ zipfileAddEntry(pTab, 0, pNew); iOff += ZIPFILE_CDS_FIXED_SZ; iOff += (int)pNew->cds.nExtra + pNew->cds.nFile + pNew->cds.nComment; } } return rc; } /* ** xFilter callback. */ static int zipfileFilter( sqlite3_vtab_cursor *cur, int idxNum, const char *idxStr, int argc, sqlite3_value **argv ){ ZipfileTab *pTab = (ZipfileTab*)cur->pVtab; ZipfileCsr *pCsr = (ZipfileCsr*)cur; const char *zFile = 0; /* Zip file to scan */ int rc = SQLITE_OK; /* Return Code */ int bInMemory = 0; /* True for an in-memory zipfile */ (void)idxStr; (void)argc; zipfileResetCursor(pCsr); if( pTab->zFile ){ zFile = pTab->zFile; }else if( idxNum==0 ){ zipfileCursorErr(pCsr, "zipfile() function requires an argument"); return SQLITE_ERROR; }else if( sqlite3_value_type(argv[0])==SQLITE_BLOB ){ static const u8 aEmptyBlob = 0; const u8 *aBlob = (const u8*)sqlite3_value_blob(argv[0]); int nBlob = sqlite3_value_bytes(argv[0]); assert( pTab->pFirstEntry==0 ); if( aBlob==0 ){ aBlob = &aEmptyBlob; nBlob = 0; } rc = zipfileLoadDirectory(pTab, aBlob, nBlob); pCsr->pFreeEntry = pTab->pFirstEntry; pTab->pFirstEntry = pTab->pLastEntry = 0; if( rc!=SQLITE_OK ) return rc; bInMemory = 1; }else{ zFile = (const char*)sqlite3_value_text(argv[0]); } if( 0==pTab->pWriteFd && 0==bInMemory ){ pCsr->pFile = zFile ? sqlite3_fopen(zFile, "rb") : 0; if( pCsr->pFile==0 ){ zipfileCursorErr(pCsr, "cannot open file: %s", zFile); rc = SQLITE_ERROR; }else{ rc = zipfileReadEOCD(pTab, 0, 0, pCsr->pFile, &pCsr->eocd); if( rc==SQLITE_OK ){ if( pCsr->eocd.nEntry==0 ){ pCsr->bEof = 1; }else{ pCsr->iNextOff = pCsr->eocd.iOffset; rc = zipfileNext(cur); } } } }else{ pCsr->bNoop = 1; pCsr->pCurrent = pCsr->pFreeEntry ? pCsr->pFreeEntry : pTab->pFirstEntry; rc = zipfileNext(cur); } return rc; } /* ** xBestIndex callback. */ static int zipfileBestIndex( sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo ){ int i; int idx = -1; int unusable = 0; (void)tab; for(i=0; inConstraint; i++){ const struct sqlite3_index_constraint *pCons = &pIdxInfo->aConstraint[i]; if( pCons->iColumn!=ZIPFILE_F_COLUMN_IDX ) continue; if( pCons->usable==0 ){ unusable = 1; }else if( pCons->op==SQLITE_INDEX_CONSTRAINT_EQ ){ idx = i; } } pIdxInfo->estimatedCost = 1000.0; if( idx>=0 ){ pIdxInfo->aConstraintUsage[idx].argvIndex = 1; pIdxInfo->aConstraintUsage[idx].omit = 1; pIdxInfo->idxNum = 1; }else if( unusable ){ return SQLITE_CONSTRAINT; } return SQLITE_OK; } static ZipfileEntry *zipfileNewEntry(const char *zPath){ ZipfileEntry *pNew; pNew = sqlite3_malloc(sizeof(ZipfileEntry)); if( pNew ){ memset(pNew, 0, sizeof(ZipfileEntry)); pNew->cds.zFile = sqlite3_mprintf("%s", zPath); if( pNew->cds.zFile==0 ){ sqlite3_free(pNew); pNew = 0; } } return pNew; } static int zipfileSerializeLFH(ZipfileEntry *pEntry, u8 *aBuf){ ZipfileCDS *pCds = &pEntry->cds; u8 *a = aBuf; pCds->nExtra = 9; /* Write the LFH itself */ zipfileWrite32(a, ZIPFILE_SIGNATURE_LFH); zipfileWrite16(a, pCds->iVersionExtract); zipfileWrite16(a, pCds->flags); zipfileWrite16(a, pCds->iCompression); zipfileWrite16(a, pCds->mTime); zipfileWrite16(a, pCds->mDate); zipfileWrite32(a, pCds->crc32); zipfileWrite32(a, pCds->szCompressed); zipfileWrite32(a, pCds->szUncompressed); zipfileWrite16(a, (u16)pCds->nFile); zipfileWrite16(a, pCds->nExtra); assert( a==&aBuf[ZIPFILE_LFH_FIXED_SZ] ); /* Add the file name */ memcpy(a, pCds->zFile, (int)pCds->nFile); a += (int)pCds->nFile; /* The "extra" data */ zipfileWrite16(a, ZIPFILE_EXTRA_TIMESTAMP); zipfileWrite16(a, 5); *a++ = 0x01; zipfileWrite32(a, pEntry->mUnixTime); return a-aBuf; } static int zipfileAppendEntry( ZipfileTab *pTab, ZipfileEntry *pEntry, const u8 *pData, int nData ){ u8 *aBuf = pTab->aBuffer; int nBuf; int rc; nBuf = zipfileSerializeLFH(pEntry, aBuf); rc = zipfileAppendData(pTab, aBuf, nBuf); if( rc==SQLITE_OK ){ pEntry->iDataOff = pTab->szCurrent; rc = zipfileAppendData(pTab, pData, nData); } return rc; } static int zipfileGetMode( sqlite3_value *pVal, int bIsDir, /* If true, default to directory */ u32 *pMode, /* OUT: Mode value */ char **pzErr /* OUT: Error message */ ){ const char *z = (const char*)sqlite3_value_text(pVal); u32 mode = 0; if( z==0 ){ mode = (bIsDir ? (S_IFDIR + 0755) : (S_IFREG + 0644)); }else if( z[0]>='0' && z[0]<='9' ){ mode = (unsigned int)sqlite3_value_int(pVal); }else{ const char zTemplate[11] = "-rwxrwxrwx"; int i; if( strlen(z)!=10 ) goto parse_error; switch( z[0] ){ case '-': mode |= S_IFREG; break; case 'd': mode |= S_IFDIR; break; case 'l': mode |= S_IFLNK; break; default: goto parse_error; } for(i=1; i<10; i++){ if( z[i]==zTemplate[i] ) mode |= 1 << (9-i); else if( z[i]!='-' ) goto parse_error; } } if( ((mode & S_IFDIR)==0)==bIsDir ){ /* The "mode" attribute is a directory, but data has been specified. ** Or vice-versa - no data but "mode" is a file or symlink. */ *pzErr = sqlite3_mprintf("zipfile: mode does not match data"); return SQLITE_CONSTRAINT; } *pMode = mode; return SQLITE_OK; parse_error: *pzErr = sqlite3_mprintf("zipfile: parse error in mode: %s", z); return SQLITE_ERROR; } /* ** Both (const char*) arguments point to nul-terminated strings. Argument ** nB is the value of strlen(zB). This function returns 0 if the strings are ** identical, ignoring any trailing '/' character in either path. */ static int zipfileComparePath(const char *zA, const char *zB, int nB){ int nA = (int)strlen(zA); if( nA>0 && zA[nA-1]=='/' ) nA--; if( nB>0 && zB[nB-1]=='/' ) nB--; if( nA==nB && memcmp(zA, zB, nA)==0 ) return 0; return 1; } static int zipfileBegin(sqlite3_vtab *pVtab){ ZipfileTab *pTab = (ZipfileTab*)pVtab; int rc = SQLITE_OK; assert( pTab->pWriteFd==0 ); if( pTab->zFile==0 || pTab->zFile[0]==0 ){ pTab->base.zErrMsg = sqlite3_mprintf("zipfile: missing filename"); return SQLITE_ERROR; } /* Open a write fd on the file. Also load the entire central directory ** structure into memory. During the transaction any new file data is ** appended to the archive file, but the central directory is accumulated ** in main-memory until the transaction is committed. */ pTab->pWriteFd = sqlite3_fopen(pTab->zFile, "ab+"); if( pTab->pWriteFd==0 ){ pTab->base.zErrMsg = sqlite3_mprintf( "zipfile: failed to open file %s for writing", pTab->zFile ); rc = SQLITE_ERROR; }else{ fseek(pTab->pWriteFd, 0, SEEK_END); pTab->szCurrent = pTab->szOrig = (i64)ftell(pTab->pWriteFd); rc = zipfileLoadDirectory(pTab, 0, 0); } if( rc!=SQLITE_OK ){ zipfileCleanupTransaction(pTab); } return rc; } /* ** Return the current time as a 32-bit timestamp in UNIX epoch format (like ** time(2)). */ static u32 zipfileTime(void){ sqlite3_vfs *pVfs = sqlite3_vfs_find(0); u32 ret; if( pVfs==0 ) return 0; if( pVfs->iVersion>=2 && pVfs->xCurrentTimeInt64 ){ i64 ms; pVfs->xCurrentTimeInt64(pVfs, &ms); ret = (u32)((ms/1000) - ((i64)24405875 * 8640)); }else{ double day; pVfs->xCurrentTime(pVfs, &day); ret = (u32)((day - 2440587.5) * 86400); } return ret; } /* ** Return a 32-bit timestamp in UNIX epoch format. ** ** If the value passed as the only argument is either NULL or an SQL NULL, ** return the current time. Otherwise, return the value stored in (*pVal) ** cast to a 32-bit unsigned integer. */ static u32 zipfileGetTime(sqlite3_value *pVal){ if( pVal==0 || sqlite3_value_type(pVal)==SQLITE_NULL ){ return zipfileTime(); } return (u32)sqlite3_value_int64(pVal); } /* ** Unless it is NULL, entry pOld is currently part of the pTab->pFirstEntry ** linked list. Remove it from the list and free the object. */ static void zipfileRemoveEntryFromList(ZipfileTab *pTab, ZipfileEntry *pOld){ if( pOld ){ if( pTab->pFirstEntry==pOld ){ pTab->pFirstEntry = pOld->pNext; if( pTab->pLastEntry==pOld ) pTab->pLastEntry = 0; }else{ ZipfileEntry *p; for(p=pTab->pFirstEntry; p; p=p->pNext){ if( p->pNext==pOld ){ p->pNext = pOld->pNext; if( pTab->pLastEntry==pOld ) pTab->pLastEntry = p; break; } } } zipfileEntryFree(pOld); } } /* ** xUpdate method. */ static int zipfileUpdate( sqlite3_vtab *pVtab, int nVal, sqlite3_value **apVal, sqlite_int64 *pRowid ){ ZipfileTab *pTab = (ZipfileTab*)pVtab; int rc = SQLITE_OK; /* Return Code */ ZipfileEntry *pNew = 0; /* New in-memory CDS entry */ u32 mode = 0; /* Mode for new entry */ u32 mTime = 0; /* Modification time for new entry */ i64 sz = 0; /* Uncompressed size */ const char *zPath = 0; /* Path for new entry */ int nPath = 0; /* strlen(zPath) */ const u8 *pData = 0; /* Pointer to buffer containing content */ int nData = 0; /* Size of pData buffer in bytes */ int iMethod = 0; /* Compression method for new entry */ u8 *pFree = 0; /* Free this */ char *zFree = 0; /* Also free this */ ZipfileEntry *pOld = 0; ZipfileEntry *pOld2 = 0; int bUpdate = 0; /* True for an update that modifies "name" */ int bIsDir = 0; u32 iCrc32 = 0; (void)pRowid; if( pTab->pWriteFd==0 ){ rc = zipfileBegin(pVtab); if( rc!=SQLITE_OK ) return rc; } /* If this is a DELETE or UPDATE, find the archive entry to delete. */ if( sqlite3_value_type(apVal[0])!=SQLITE_NULL ){ const char *zDelete = (const char*)sqlite3_value_text(apVal[0]); int nDelete = (int)strlen(zDelete); if( nVal>1 ){ const char *zUpdate = (const char*)sqlite3_value_text(apVal[1]); if( zUpdate && zipfileComparePath(zUpdate, zDelete, nDelete)!=0 ){ bUpdate = 1; } } for(pOld=pTab->pFirstEntry; 1; pOld=pOld->pNext){ if( zipfileComparePath(pOld->cds.zFile, zDelete, nDelete)==0 ){ break; } assert( pOld->pNext ); } } if( nVal>1 ){ /* Check that "sz" and "rawdata" are both NULL: */ if( sqlite3_value_type(apVal[5])!=SQLITE_NULL ){ zipfileTableErr(pTab, "sz must be NULL"); rc = SQLITE_CONSTRAINT; } if( sqlite3_value_type(apVal[6])!=SQLITE_NULL ){ zipfileTableErr(pTab, "rawdata must be NULL"); rc = SQLITE_CONSTRAINT; } if( rc==SQLITE_OK ){ if( sqlite3_value_type(apVal[7])==SQLITE_NULL ){ /* data=NULL. A directory */ bIsDir = 1; }else{ /* Value specified for "data", and possibly "method". This must be ** a regular file or a symlink. */ const u8 *aIn = sqlite3_value_blob(apVal[7]); int nIn = sqlite3_value_bytes(apVal[7]); int bAuto = sqlite3_value_type(apVal[8])==SQLITE_NULL; iMethod = sqlite3_value_int(apVal[8]); sz = nIn; pData = aIn; nData = nIn; if( iMethod!=0 && iMethod!=8 ){ zipfileTableErr(pTab, "unknown compression method: %d", iMethod); rc = SQLITE_CONSTRAINT; }else{ if( bAuto || iMethod ){ int nCmp; rc = zipfileDeflate(aIn, nIn, &pFree, &nCmp, &pTab->base.zErrMsg); if( rc==SQLITE_OK ){ if( iMethod || nCmpbase.zErrMsg); } if( rc==SQLITE_OK ){ zPath = (const char*)sqlite3_value_text(apVal[2]); if( zPath==0 ) zPath = ""; nPath = (int)strlen(zPath); mTime = zipfileGetTime(apVal[4]); } if( rc==SQLITE_OK && bIsDir ){ /* For a directory, check that the last character in the path is a ** '/'. This appears to be required for compatibility with info-zip ** (the unzip command on unix). It does not create directories ** otherwise. */ if( nPath<=0 || zPath[nPath-1]!='/' ){ zFree = sqlite3_mprintf("%s/", zPath); zPath = (const char*)zFree; if( zFree==0 ){ rc = SQLITE_NOMEM; nPath = 0; }else{ nPath = (int)strlen(zPath); } } } /* Check that we're not inserting a duplicate entry -OR- updating an ** entry with a path, thereby making it into a duplicate. */ if( (pOld==0 || bUpdate) && rc==SQLITE_OK ){ ZipfileEntry *p; for(p=pTab->pFirstEntry; p; p=p->pNext){ if( zipfileComparePath(p->cds.zFile, zPath, nPath)==0 ){ switch( sqlite3_vtab_on_conflict(pTab->db) ){ case SQLITE_IGNORE: { goto zipfile_update_done; } case SQLITE_REPLACE: { pOld2 = p; break; } default: { zipfileTableErr(pTab, "duplicate name: \"%s\"", zPath); rc = SQLITE_CONSTRAINT; break; } } break; } } } if( rc==SQLITE_OK ){ /* Create the new CDS record. */ pNew = zipfileNewEntry(zPath); if( pNew==0 ){ rc = SQLITE_NOMEM; }else{ pNew->cds.iVersionMadeBy = ZIPFILE_NEWENTRY_MADEBY; pNew->cds.iVersionExtract = ZIPFILE_NEWENTRY_REQUIRED; pNew->cds.flags = ZIPFILE_NEWENTRY_FLAGS; pNew->cds.iCompression = (u16)iMethod; zipfileMtimeToDos(&pNew->cds, mTime); pNew->cds.crc32 = iCrc32; pNew->cds.szCompressed = nData; pNew->cds.szUncompressed = (u32)sz; pNew->cds.iExternalAttr = (mode<<16); pNew->cds.iOffset = (u32)pTab->szCurrent; pNew->cds.nFile = (u16)nPath; pNew->mUnixTime = (u32)mTime; rc = zipfileAppendEntry(pTab, pNew, pData, nData); zipfileAddEntry(pTab, pOld, pNew); } } } if( rc==SQLITE_OK && (pOld || pOld2) ){ ZipfileCsr *pCsr; for(pCsr=pTab->pCsrList; pCsr; pCsr=pCsr->pCsrNext){ if( pCsr->pCurrent && (pCsr->pCurrent==pOld || pCsr->pCurrent==pOld2) ){ pCsr->pCurrent = pCsr->pCurrent->pNext; pCsr->bNoop = 1; } } zipfileRemoveEntryFromList(pTab, pOld); zipfileRemoveEntryFromList(pTab, pOld2); } zipfile_update_done: sqlite3_free(pFree); sqlite3_free(zFree); return rc; } static int zipfileSerializeEOCD(ZipfileEOCD *p, u8 *aBuf){ u8 *a = aBuf; zipfileWrite32(a, ZIPFILE_SIGNATURE_EOCD); zipfileWrite16(a, p->iDisk); zipfileWrite16(a, p->iFirstDisk); zipfileWrite16(a, p->nEntry); zipfileWrite16(a, p->nEntryTotal); zipfileWrite32(a, p->nSize); zipfileWrite32(a, p->iOffset); zipfileWrite16(a, 0); /* Size of trailing comment in bytes*/ return a-aBuf; } static int zipfileAppendEOCD(ZipfileTab *pTab, ZipfileEOCD *p){ int nBuf = zipfileSerializeEOCD(p, pTab->aBuffer); assert( nBuf==ZIPFILE_EOCD_FIXED_SZ ); return zipfileAppendData(pTab, pTab->aBuffer, nBuf); } /* ** Serialize the CDS structure into buffer aBuf[]. Return the number ** of bytes written. */ static int zipfileSerializeCDS(ZipfileEntry *pEntry, u8 *aBuf){ u8 *a = aBuf; ZipfileCDS *pCDS = &pEntry->cds; if( pEntry->aExtra==0 ){ pCDS->nExtra = 9; } zipfileWrite32(a, ZIPFILE_SIGNATURE_CDS); zipfileWrite16(a, pCDS->iVersionMadeBy); zipfileWrite16(a, pCDS->iVersionExtract); zipfileWrite16(a, pCDS->flags); zipfileWrite16(a, pCDS->iCompression); zipfileWrite16(a, pCDS->mTime); zipfileWrite16(a, pCDS->mDate); zipfileWrite32(a, pCDS->crc32); zipfileWrite32(a, pCDS->szCompressed); zipfileWrite32(a, pCDS->szUncompressed); assert( a==&aBuf[ZIPFILE_CDS_NFILE_OFF] ); zipfileWrite16(a, pCDS->nFile); zipfileWrite16(a, pCDS->nExtra); zipfileWrite16(a, pCDS->nComment); zipfileWrite16(a, pCDS->iDiskStart); zipfileWrite16(a, pCDS->iInternalAttr); zipfileWrite32(a, pCDS->iExternalAttr); zipfileWrite32(a, pCDS->iOffset); memcpy(a, pCDS->zFile, pCDS->nFile); a += pCDS->nFile; if( pEntry->aExtra ){ int n = (int)pCDS->nExtra + (int)pCDS->nComment; memcpy(a, pEntry->aExtra, n); a += n; }else{ assert( pCDS->nExtra==9 ); zipfileWrite16(a, ZIPFILE_EXTRA_TIMESTAMP); zipfileWrite16(a, 5); *a++ = 0x01; zipfileWrite32(a, pEntry->mUnixTime); } return a-aBuf; } static int zipfileCommit(sqlite3_vtab *pVtab){ ZipfileTab *pTab = (ZipfileTab*)pVtab; int rc = SQLITE_OK; if( pTab->pWriteFd ){ i64 iOffset = pTab->szCurrent; ZipfileEntry *p; ZipfileEOCD eocd; int nEntry = 0; /* Write out all entries */ for(p=pTab->pFirstEntry; rc==SQLITE_OK && p; p=p->pNext){ int n = zipfileSerializeCDS(p, pTab->aBuffer); rc = zipfileAppendData(pTab, pTab->aBuffer, n); nEntry++; } /* Write out the EOCD record */ eocd.iDisk = 0; eocd.iFirstDisk = 0; eocd.nEntry = (u16)nEntry; eocd.nEntryTotal = (u16)nEntry; eocd.nSize = (u32)(pTab->szCurrent - iOffset); eocd.iOffset = (u32)iOffset; rc = zipfileAppendEOCD(pTab, &eocd); zipfileCleanupTransaction(pTab); } return rc; } static int zipfileRollback(sqlite3_vtab *pVtab){ return zipfileCommit(pVtab); } static ZipfileCsr *zipfileFindCursor(ZipfileTab *pTab, i64 iId){ ZipfileCsr *pCsr; for(pCsr=pTab->pCsrList; pCsr; pCsr=pCsr->pCsrNext){ if( iId==pCsr->iId ) break; } return pCsr; } static void zipfileFunctionCds( sqlite3_context *context, int argc, sqlite3_value **argv ){ ZipfileCsr *pCsr; ZipfileTab *pTab = (ZipfileTab*)sqlite3_user_data(context); assert( argc>0 ); pCsr = zipfileFindCursor(pTab, sqlite3_value_int64(argv[0])); if( pCsr ){ ZipfileCDS *p = &pCsr->pCurrent->cds; char *zRes = sqlite3_mprintf("{" "\"version-made-by\" : %u, " "\"version-to-extract\" : %u, " "\"flags\" : %u, " "\"compression\" : %u, " "\"time\" : %u, " "\"date\" : %u, " "\"crc32\" : %u, " "\"compressed-size\" : %u, " "\"uncompressed-size\" : %u, " "\"file-name-length\" : %u, " "\"extra-field-length\" : %u, " "\"file-comment-length\" : %u, " "\"disk-number-start\" : %u, " "\"internal-attr\" : %u, " "\"external-attr\" : %u, " "\"offset\" : %u }", (u32)p->iVersionMadeBy, (u32)p->iVersionExtract, (u32)p->flags, (u32)p->iCompression, (u32)p->mTime, (u32)p->mDate, (u32)p->crc32, (u32)p->szCompressed, (u32)p->szUncompressed, (u32)p->nFile, (u32)p->nExtra, (u32)p->nComment, (u32)p->iDiskStart, (u32)p->iInternalAttr, (u32)p->iExternalAttr, (u32)p->iOffset ); if( zRes==0 ){ sqlite3_result_error_nomem(context); }else{ sqlite3_result_text(context, zRes, -1, SQLITE_TRANSIENT); sqlite3_free(zRes); } } } /* ** xFindFunction method. */ static int zipfileFindFunction( sqlite3_vtab *pVtab, /* Virtual table handle */ int nArg, /* Number of SQL function arguments */ const char *zName, /* Name of SQL function */ void (**pxFunc)(sqlite3_context*,int,sqlite3_value**), /* OUT: Result */ void **ppArg /* OUT: User data for *pxFunc */ ){ (void)nArg; if( sqlite3_stricmp("zipfile_cds", zName)==0 ){ *pxFunc = zipfileFunctionCds; *ppArg = (void*)pVtab; return 1; } return 0; } typedef struct ZipfileBuffer ZipfileBuffer; struct ZipfileBuffer { u8 *a; /* Pointer to buffer */ int n; /* Size of buffer in bytes */ int nAlloc; /* Byte allocated at a[] */ }; typedef struct ZipfileCtx ZipfileCtx; struct ZipfileCtx { int nEntry; ZipfileBuffer body; ZipfileBuffer cds; }; static int zipfileBufferGrow(ZipfileBuffer *pBuf, int nByte){ if( pBuf->n+nByte>pBuf->nAlloc ){ u8 *aNew; sqlite3_int64 nNew = pBuf->n ? pBuf->n*2 : 512; int nReq = pBuf->n + nByte; while( nNewa, nNew); if( aNew==0 ) return SQLITE_NOMEM; pBuf->a = aNew; pBuf->nAlloc = (int)nNew; } return SQLITE_OK; } /* ** xStep() callback for the zipfile() aggregate. This can be called in ** any of the following ways: ** ** SELECT zipfile(name,data) ... ** SELECT zipfile(name,mode,mtime,data) ... ** SELECT zipfile(name,mode,mtime,data,method) ... */ static void zipfileStep(sqlite3_context *pCtx, int nVal, sqlite3_value **apVal){ ZipfileCtx *p; /* Aggregate function context */ ZipfileEntry e; /* New entry to add to zip archive */ sqlite3_value *pName = 0; sqlite3_value *pMode = 0; sqlite3_value *pMtime = 0; sqlite3_value *pData = 0; sqlite3_value *pMethod = 0; int bIsDir = 0; u32 mode; int rc = SQLITE_OK; char *zErr = 0; int iMethod = -1; /* Compression method to use (0 or 8) */ const u8 *aData = 0; /* Possibly compressed data for new entry */ int nData = 0; /* Size of aData[] in bytes */ int szUncompressed = 0; /* Size of data before compression */ u8 *aFree = 0; /* Free this before returning */ u32 iCrc32 = 0; /* crc32 of uncompressed data */ char *zName = 0; /* Path (name) of new entry */ int nName = 0; /* Size of zName in bytes */ char *zFree = 0; /* Free this before returning */ int nByte; memset(&e, 0, sizeof(e)); p = (ZipfileCtx*)sqlite3_aggregate_context(pCtx, sizeof(ZipfileCtx)); if( p==0 ) return; /* Martial the arguments into stack variables */ if( nVal!=2 && nVal!=4 && nVal!=5 ){ zErr = sqlite3_mprintf("wrong number of arguments to function zipfile()"); rc = SQLITE_ERROR; goto zipfile_step_out; } pName = apVal[0]; if( nVal==2 ){ pData = apVal[1]; }else{ pMode = apVal[1]; pMtime = apVal[2]; pData = apVal[3]; if( nVal==5 ){ pMethod = apVal[4]; } } /* Check that the 'name' parameter looks ok. */ zName = (char*)sqlite3_value_text(pName); nName = sqlite3_value_bytes(pName); if( zName==0 ){ zErr = sqlite3_mprintf("first argument to zipfile() must be non-NULL"); rc = SQLITE_ERROR; goto zipfile_step_out; } /* Inspect the 'method' parameter. This must be either 0 (store), 8 (use ** deflate compression) or NULL (choose automatically). */ if( pMethod && SQLITE_NULL!=sqlite3_value_type(pMethod) ){ iMethod = (int)sqlite3_value_int64(pMethod); if( iMethod!=0 && iMethod!=8 ){ zErr = sqlite3_mprintf("illegal method value: %d", iMethod); rc = SQLITE_ERROR; goto zipfile_step_out; } } /* Now inspect the data. If this is NULL, then the new entry must be a ** directory. Otherwise, figure out whether or not the data should ** be deflated or simply stored in the zip archive. */ if( sqlite3_value_type(pData)==SQLITE_NULL ){ bIsDir = 1; iMethod = 0; }else{ aData = sqlite3_value_blob(pData); szUncompressed = nData = sqlite3_value_bytes(pData); iCrc32 = crc32(0, aData, nData); if( iMethod<0 || iMethod==8 ){ int nOut = 0; rc = zipfileDeflate(aData, nData, &aFree, &nOut, &zErr); if( rc!=SQLITE_OK ){ goto zipfile_step_out; } if( iMethod==8 || nOut0 && zName[nName-1]=='/' ){ zErr = sqlite3_mprintf("non-directory name must not end with /"); rc = SQLITE_ERROR; goto zipfile_step_out; } }else{ if( nName==0 || zName[nName-1]!='/' ){ zName = zFree = sqlite3_mprintf("%s/", zName); if( zName==0 ){ rc = SQLITE_NOMEM; goto zipfile_step_out; } nName = (int)strlen(zName); }else{ while( nName>1 && zName[nName-2]=='/' ) nName--; } } /* Assemble the ZipfileEntry object for the new zip archive entry */ e.cds.iVersionMadeBy = ZIPFILE_NEWENTRY_MADEBY; e.cds.iVersionExtract = ZIPFILE_NEWENTRY_REQUIRED; e.cds.flags = ZIPFILE_NEWENTRY_FLAGS; e.cds.iCompression = (u16)iMethod; zipfileMtimeToDos(&e.cds, (u32)e.mUnixTime); e.cds.crc32 = iCrc32; e.cds.szCompressed = nData; e.cds.szUncompressed = szUncompressed; e.cds.iExternalAttr = (mode<<16); e.cds.iOffset = p->body.n; e.cds.nFile = (u16)nName; e.cds.zFile = zName; /* Append the LFH to the body of the new archive */ nByte = ZIPFILE_LFH_FIXED_SZ + e.cds.nFile + 9; if( (rc = zipfileBufferGrow(&p->body, nByte)) ) goto zipfile_step_out; p->body.n += zipfileSerializeLFH(&e, &p->body.a[p->body.n]); /* Append the data to the body of the new archive */ if( nData>0 ){ if( (rc = zipfileBufferGrow(&p->body, nData)) ) goto zipfile_step_out; memcpy(&p->body.a[p->body.n], aData, nData); p->body.n += nData; } /* Append the CDS record to the directory of the new archive */ nByte = ZIPFILE_CDS_FIXED_SZ + e.cds.nFile + 9; if( (rc = zipfileBufferGrow(&p->cds, nByte)) ) goto zipfile_step_out; p->cds.n += zipfileSerializeCDS(&e, &p->cds.a[p->cds.n]); /* Increment the count of entries in the archive */ p->nEntry++; zipfile_step_out: sqlite3_free(aFree); sqlite3_free(zFree); if( rc ){ if( zErr ){ sqlite3_result_error(pCtx, zErr, -1); }else{ sqlite3_result_error_code(pCtx, rc); } } sqlite3_free(zErr); } /* ** xFinalize() callback for zipfile aggregate function. */ static void zipfileFinal(sqlite3_context *pCtx){ ZipfileCtx *p; ZipfileEOCD eocd; sqlite3_int64 nZip; u8 *aZip; p = (ZipfileCtx*)sqlite3_aggregate_context(pCtx, sizeof(ZipfileCtx)); if( p==0 ) return; if( p->nEntry>0 ){ memset(&eocd, 0, sizeof(eocd)); eocd.nEntry = (u16)p->nEntry; eocd.nEntryTotal = (u16)p->nEntry; eocd.nSize = p->cds.n; eocd.iOffset = p->body.n; nZip = p->body.n + p->cds.n + ZIPFILE_EOCD_FIXED_SZ; aZip = (u8*)sqlite3_malloc64(nZip); if( aZip==0 ){ sqlite3_result_error_nomem(pCtx); }else{ memcpy(aZip, p->body.a, p->body.n); memcpy(&aZip[p->body.n], p->cds.a, p->cds.n); zipfileSerializeEOCD(&eocd, &aZip[p->body.n + p->cds.n]); sqlite3_result_blob(pCtx, aZip, (int)nZip, zipfileFree); } } sqlite3_free(p->body.a); sqlite3_free(p->cds.a); } /* ** Register the "zipfile" virtual table. */ static int zipfileRegister(sqlite3 *db){ static sqlite3_module zipfileModule = { 1, /* iVersion */ zipfileConnect, /* xCreate */ zipfileConnect, /* xConnect */ zipfileBestIndex, /* xBestIndex */ zipfileDisconnect, /* xDisconnect */ zipfileDisconnect, /* xDestroy */ zipfileOpen, /* xOpen - open a cursor */ zipfileClose, /* xClose - close a cursor */ zipfileFilter, /* xFilter - configure scan constraints */ zipfileNext, /* xNext - advance a cursor */ zipfileEof, /* xEof - check for end of scan */ zipfileColumn, /* xColumn - read data */ 0, /* xRowid - read data */ zipfileUpdate, /* xUpdate */ zipfileBegin, /* xBegin */ 0, /* xSync */ zipfileCommit, /* xCommit */ zipfileRollback, /* xRollback */ zipfileFindFunction, /* xFindMethod */ 0, /* xRename */ 0, /* xSavepoint */ 0, /* xRelease */ 0, /* xRollback */ 0, /* xShadowName */ 0 /* xIntegrity */ }; int rc = sqlite3_create_module(db, "zipfile" , &zipfileModule, 0); if( rc==SQLITE_OK ) rc = sqlite3_overload_function(db, "zipfile_cds", -1); if( rc==SQLITE_OK ){ rc = sqlite3_create_function(db, "zipfile", -1, SQLITE_UTF8, 0, 0, zipfileStep, zipfileFinal ); } assert( sizeof(i64)==8 ); assert( sizeof(u32)==4 ); assert( sizeof(u16)==2 ); assert( sizeof(u8)==1 ); return rc; } #else /* SQLITE_OMIT_VIRTUALTABLE */ # define zipfileRegister(x) SQLITE_OK #endif #ifdef _WIN32 #endif int sqlite3_zipfile_init( sqlite3 *db, char **pzErrMsg, const sqlite3_api_routines *pApi ){ SQLITE_EXTENSION_INIT2(pApi); (void)pzErrMsg; /* Unused parameter */ return zipfileRegister(db); } /************************* End ../ext/misc/zipfile.c ********************/ /************************* Begin ../ext/misc/sqlar.c ******************/ /* ** 2017-12-17 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ****************************************************************************** ** ** Utility functions sqlar_compress() and sqlar_uncompress(). Useful ** for working with sqlar archives and used by the shell tool's built-in ** sqlar support. */ /* #include "sqlite3ext.h" */ SQLITE_EXTENSION_INIT1 #include #include /* ** Implementation of the "sqlar_compress(X)" SQL function. ** ** If the type of X is SQLITE_BLOB, and compressing that blob using ** zlib utility function compress() yields a smaller blob, return the ** compressed blob. Otherwise, return a copy of X. ** ** SQLar uses the "zlib format" for compressed content. The zlib format ** contains a two-byte identification header and a four-byte checksum at ** the end. This is different from ZIP which uses the raw deflate format. ** ** Future enhancements to SQLar might add support for new compression formats. ** If so, those new formats will be identified by alternative headers in the ** compressed data. */ static void sqlarCompressFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ assert( argc==1 ); if( sqlite3_value_type(argv[0])==SQLITE_BLOB ){ const Bytef *pData = sqlite3_value_blob(argv[0]); uLong nData = sqlite3_value_bytes(argv[0]); uLongf nOut = compressBound(nData); Bytef *pOut; pOut = (Bytef*)sqlite3_malloc(nOut); if( pOut==0 ){ sqlite3_result_error_nomem(context); return; }else{ if( Z_OK!=compress(pOut, &nOut, pData, nData) ){ sqlite3_result_error(context, "error in compress()", -1); }else if( nOut #include #include #if !defined(SQLITE_AMALGAMATION) #if defined(SQLITE_COVERAGE_TEST) || defined(SQLITE_MUTATION_TEST) # define SQLITE_OMIT_AUXILIARY_SAFETY_CHECKS 1 #endif #if defined(SQLITE_OMIT_AUXILIARY_SAFETY_CHECKS) # define ALWAYS(X) (1) # define NEVER(X) (0) #elif !defined(NDEBUG) # define ALWAYS(X) ((X)?1:(assert(0),0)) # define NEVER(X) ((X)?(assert(0),1):0) #else # define ALWAYS(X) (X) # define NEVER(X) (X) #endif #endif /* !defined(SQLITE_AMALGAMATION) */ #ifndef SQLITE_OMIT_VIRTUALTABLE /* typedef sqlite3_int64 i64; */ /* typedef sqlite3_uint64 u64; */ typedef struct IdxColumn IdxColumn; typedef struct IdxConstraint IdxConstraint; typedef struct IdxScan IdxScan; typedef struct IdxStatement IdxStatement; typedef struct IdxTable IdxTable; typedef struct IdxWrite IdxWrite; #define STRLEN (int)strlen /* ** A temp table name that we assume no user database will actually use. ** If this assumption proves incorrect triggers on the table with the ** conflicting name will be ignored. */ #define UNIQUE_TABLE_NAME "t592690916721053953805701627921227776" /* ** A single constraint. Equivalent to either "col = ?" or "col < ?" (or ** any other type of single-ended range constraint on a column). ** ** pLink: ** Used to temporarily link IdxConstraint objects into lists while ** creating candidate indexes. */ struct IdxConstraint { char *zColl; /* Collation sequence */ int bRange; /* True for range, false for eq */ int iCol; /* Constrained table column */ int bFlag; /* Used by idxFindCompatible() */ int bDesc; /* True if ORDER BY DESC */ IdxConstraint *pNext; /* Next constraint in pEq or pRange list */ IdxConstraint *pLink; /* See above */ }; /* ** A single scan of a single table. */ struct IdxScan { IdxTable *pTab; /* Associated table object */ int iDb; /* Database containing table zTable */ i64 covering; /* Mask of columns required for cov. index */ IdxConstraint *pOrder; /* ORDER BY columns */ IdxConstraint *pEq; /* List of == constraints */ IdxConstraint *pRange; /* List of < constraints */ IdxScan *pNextScan; /* Next IdxScan object for same analysis */ }; /* ** Information regarding a single database table. Extracted from ** "PRAGMA table_info" by function idxGetTableInfo(). */ struct IdxColumn { char *zName; char *zColl; int iPk; }; struct IdxTable { int nCol; char *zName; /* Table name */ IdxColumn *aCol; IdxTable *pNext; /* Next table in linked list of all tables */ }; /* ** An object of the following type is created for each unique table/write-op ** seen. The objects are stored in a singly-linked list beginning at ** sqlite3expert.pWrite. */ struct IdxWrite { IdxTable *pTab; int eOp; /* SQLITE_UPDATE, DELETE or INSERT */ IdxWrite *pNext; }; /* ** Each statement being analyzed is represented by an instance of this ** structure. */ struct IdxStatement { int iId; /* Statement number */ char *zSql; /* SQL statement */ char *zIdx; /* Indexes */ char *zEQP; /* Plan */ IdxStatement *pNext; }; /* ** A hash table for storing strings. With space for a payload string ** with each entry. Methods are: ** ** idxHashInit() ** idxHashClear() ** idxHashAdd() ** idxHashSearch() */ #define IDX_HASH_SIZE 1023 typedef struct IdxHashEntry IdxHashEntry; typedef struct IdxHash IdxHash; struct IdxHashEntry { char *zKey; /* nul-terminated key */ char *zVal; /* nul-terminated value string */ char *zVal2; /* nul-terminated value string 2 */ IdxHashEntry *pHashNext; /* Next entry in same hash bucket */ IdxHashEntry *pNext; /* Next entry in hash */ }; struct IdxHash { IdxHashEntry *pFirst; IdxHashEntry *aHash[IDX_HASH_SIZE]; }; /* ** sqlite3expert object. */ struct sqlite3expert { int iSample; /* Percentage of tables to sample for stat1 */ sqlite3 *db; /* User database */ sqlite3 *dbm; /* In-memory db for this analysis */ sqlite3 *dbv; /* Vtab schema for this analysis */ IdxTable *pTable; /* List of all IdxTable objects */ IdxScan *pScan; /* List of scan objects */ IdxWrite *pWrite; /* List of write objects */ IdxStatement *pStatement; /* List of IdxStatement objects */ int bRun; /* True once analysis has run */ char **pzErrmsg; int rc; /* Error code from whereinfo hook */ IdxHash hIdx; /* Hash containing all candidate indexes */ char *zCandidates; /* For EXPERT_REPORT_CANDIDATES */ }; /* ** Allocate and return nByte bytes of zeroed memory using sqlite3_malloc(). ** If the allocation fails, set *pRc to SQLITE_NOMEM and return NULL. */ static void *idxMalloc(int *pRc, int nByte){ void *pRet; assert( *pRc==SQLITE_OK ); assert( nByte>0 ); pRet = sqlite3_malloc(nByte); if( pRet ){ memset(pRet, 0, nByte); }else{ *pRc = SQLITE_NOMEM; } return pRet; } /* ** Initialize an IdxHash hash table. */ static void idxHashInit(IdxHash *pHash){ memset(pHash, 0, sizeof(IdxHash)); } /* ** Reset an IdxHash hash table. */ static void idxHashClear(IdxHash *pHash){ int i; for(i=0; iaHash[i]; pEntry; pEntry=pNext){ pNext = pEntry->pHashNext; sqlite3_free(pEntry->zVal2); sqlite3_free(pEntry); } } memset(pHash, 0, sizeof(IdxHash)); } /* ** Return the index of the hash bucket that the string specified by the ** arguments to this function belongs. */ static int idxHashString(const char *z, int n){ unsigned int ret = 0; int i; for(i=0; i=0 ); for(pEntry=pHash->aHash[iHash]; pEntry; pEntry=pEntry->pHashNext){ if( STRLEN(pEntry->zKey)==nKey && 0==memcmp(pEntry->zKey, zKey, nKey) ){ return 1; } } pEntry = idxMalloc(pRc, sizeof(IdxHashEntry) + nKey+1 + nVal+1); if( pEntry ){ pEntry->zKey = (char*)&pEntry[1]; memcpy(pEntry->zKey, zKey, nKey); if( zVal ){ pEntry->zVal = &pEntry->zKey[nKey+1]; memcpy(pEntry->zVal, zVal, nVal); } pEntry->pHashNext = pHash->aHash[iHash]; pHash->aHash[iHash] = pEntry; pEntry->pNext = pHash->pFirst; pHash->pFirst = pEntry; } return 0; } /* ** If zKey/nKey is present in the hash table, return a pointer to the ** hash-entry object. */ static IdxHashEntry *idxHashFind(IdxHash *pHash, const char *zKey, int nKey){ int iHash; IdxHashEntry *pEntry; if( nKey<0 ) nKey = STRLEN(zKey); iHash = idxHashString(zKey, nKey); assert( iHash>=0 ); for(pEntry=pHash->aHash[iHash]; pEntry; pEntry=pEntry->pHashNext){ if( STRLEN(pEntry->zKey)==nKey && 0==memcmp(pEntry->zKey, zKey, nKey) ){ return pEntry; } } return 0; } /* ** If the hash table contains an entry with a key equal to the string ** passed as the final two arguments to this function, return a pointer ** to the payload string. Otherwise, if zKey/nKey is not present in the ** hash table, return NULL. */ static const char *idxHashSearch(IdxHash *pHash, const char *zKey, int nKey){ IdxHashEntry *pEntry = idxHashFind(pHash, zKey, nKey); if( pEntry ) return pEntry->zVal; return 0; } /* ** Allocate and return a new IdxConstraint object. Set the IdxConstraint.zColl ** variable to point to a copy of nul-terminated string zColl. */ static IdxConstraint *idxNewConstraint(int *pRc, const char *zColl){ IdxConstraint *pNew; int nColl = STRLEN(zColl); assert( *pRc==SQLITE_OK ); pNew = (IdxConstraint*)idxMalloc(pRc, sizeof(IdxConstraint) * nColl + 1); if( pNew ){ pNew->zColl = (char*)&pNew[1]; memcpy(pNew->zColl, zColl, nColl+1); } return pNew; } /* ** An error associated with database handle db has just occurred. Pass ** the error message to callback function xOut. */ static void idxDatabaseError( sqlite3 *db, /* Database handle */ char **pzErrmsg /* Write error here */ ){ *pzErrmsg = sqlite3_mprintf("%s", sqlite3_errmsg(db)); } /* ** Prepare an SQL statement. */ static int idxPrepareStmt( sqlite3 *db, /* Database handle to compile against */ sqlite3_stmt **ppStmt, /* OUT: Compiled SQL statement */ char **pzErrmsg, /* OUT: sqlite3_malloc()ed error message */ const char *zSql /* SQL statement to compile */ ){ int rc = sqlite3_prepare_v2(db, zSql, -1, ppStmt, 0); if( rc!=SQLITE_OK ){ *ppStmt = 0; idxDatabaseError(db, pzErrmsg); } return rc; } /* ** Prepare an SQL statement using the results of a printf() formatting. */ static int idxPrintfPrepareStmt( sqlite3 *db, /* Database handle to compile against */ sqlite3_stmt **ppStmt, /* OUT: Compiled SQL statement */ char **pzErrmsg, /* OUT: sqlite3_malloc()ed error message */ const char *zFmt, /* printf() format of SQL statement */ ... /* Trailing printf() arguments */ ){ va_list ap; int rc; char *zSql; va_start(ap, zFmt); zSql = sqlite3_vmprintf(zFmt, ap); if( zSql==0 ){ rc = SQLITE_NOMEM; }else{ rc = idxPrepareStmt(db, ppStmt, pzErrmsg, zSql); sqlite3_free(zSql); } va_end(ap); return rc; } /************************************************************************* ** Beginning of virtual table implementation. */ typedef struct ExpertVtab ExpertVtab; struct ExpertVtab { sqlite3_vtab base; IdxTable *pTab; sqlite3expert *pExpert; }; typedef struct ExpertCsr ExpertCsr; struct ExpertCsr { sqlite3_vtab_cursor base; sqlite3_stmt *pData; }; static char *expertDequote(const char *zIn){ int n = STRLEN(zIn); char *zRet = sqlite3_malloc(n); assert( zIn[0]=='\'' ); assert( zIn[n-1]=='\'' ); if( zRet ){ int iOut = 0; int iIn = 0; for(iIn=1; iIn<(n-1); iIn++){ if( zIn[iIn]=='\'' ){ assert( zIn[iIn+1]=='\'' ); iIn++; } zRet[iOut++] = zIn[iIn]; } zRet[iOut] = '\0'; } return zRet; } /* ** This function is the implementation of both the xConnect and xCreate ** methods of the r-tree virtual table. ** ** argv[0] -> module name ** argv[1] -> database name ** argv[2] -> table name ** argv[...] -> column names... */ static int expertConnect( sqlite3 *db, void *pAux, int argc, const char *const*argv, sqlite3_vtab **ppVtab, char **pzErr ){ sqlite3expert *pExpert = (sqlite3expert*)pAux; ExpertVtab *p = 0; int rc; if( argc!=4 ){ *pzErr = sqlite3_mprintf("internal error!"); rc = SQLITE_ERROR; }else{ char *zCreateTable = expertDequote(argv[3]); if( zCreateTable ){ rc = sqlite3_declare_vtab(db, zCreateTable); if( rc==SQLITE_OK ){ p = idxMalloc(&rc, sizeof(ExpertVtab)); } if( rc==SQLITE_OK ){ p->pExpert = pExpert; p->pTab = pExpert->pTable; assert( sqlite3_stricmp(p->pTab->zName, argv[2])==0 ); } sqlite3_free(zCreateTable); }else{ rc = SQLITE_NOMEM; } } *ppVtab = (sqlite3_vtab*)p; return rc; } static int expertDisconnect(sqlite3_vtab *pVtab){ ExpertVtab *p = (ExpertVtab*)pVtab; sqlite3_free(p); return SQLITE_OK; } static int expertBestIndex(sqlite3_vtab *pVtab, sqlite3_index_info *pIdxInfo){ ExpertVtab *p = (ExpertVtab*)pVtab; int rc = SQLITE_OK; int n = 0; IdxScan *pScan; const int opmask = SQLITE_INDEX_CONSTRAINT_EQ | SQLITE_INDEX_CONSTRAINT_GT | SQLITE_INDEX_CONSTRAINT_LT | SQLITE_INDEX_CONSTRAINT_GE | SQLITE_INDEX_CONSTRAINT_LE; pScan = idxMalloc(&rc, sizeof(IdxScan)); if( pScan ){ int i; /* Link the new scan object into the list */ pScan->pTab = p->pTab; pScan->pNextScan = p->pExpert->pScan; p->pExpert->pScan = pScan; /* Add the constraints to the IdxScan object */ for(i=0; inConstraint; i++){ struct sqlite3_index_constraint *pCons = &pIdxInfo->aConstraint[i]; if( pCons->usable && pCons->iColumn>=0 && p->pTab->aCol[pCons->iColumn].iPk==0 && (pCons->op & opmask) ){ IdxConstraint *pNew; const char *zColl = sqlite3_vtab_collation(pIdxInfo, i); pNew = idxNewConstraint(&rc, zColl); if( pNew ){ pNew->iCol = pCons->iColumn; if( pCons->op==SQLITE_INDEX_CONSTRAINT_EQ ){ pNew->pNext = pScan->pEq; pScan->pEq = pNew; }else{ pNew->bRange = 1; pNew->pNext = pScan->pRange; pScan->pRange = pNew; } } n++; pIdxInfo->aConstraintUsage[i].argvIndex = n; } } /* Add the ORDER BY to the IdxScan object */ for(i=pIdxInfo->nOrderBy-1; i>=0; i--){ int iCol = pIdxInfo->aOrderBy[i].iColumn; if( iCol>=0 ){ IdxConstraint *pNew = idxNewConstraint(&rc, p->pTab->aCol[iCol].zColl); if( pNew ){ pNew->iCol = iCol; pNew->bDesc = pIdxInfo->aOrderBy[i].desc; pNew->pNext = pScan->pOrder; pNew->pLink = pScan->pOrder; pScan->pOrder = pNew; n++; } } } } pIdxInfo->estimatedCost = 1000000.0 / (n+1); return rc; } static int expertUpdate( sqlite3_vtab *pVtab, int nData, sqlite3_value **azData, sqlite_int64 *pRowid ){ (void)pVtab; (void)nData; (void)azData; (void)pRowid; return SQLITE_OK; } /* ** Virtual table module xOpen method. */ static int expertOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){ int rc = SQLITE_OK; ExpertCsr *pCsr; (void)pVTab; pCsr = idxMalloc(&rc, sizeof(ExpertCsr)); *ppCursor = (sqlite3_vtab_cursor*)pCsr; return rc; } /* ** Virtual table module xClose method. */ static int expertClose(sqlite3_vtab_cursor *cur){ ExpertCsr *pCsr = (ExpertCsr*)cur; sqlite3_finalize(pCsr->pData); sqlite3_free(pCsr); return SQLITE_OK; } /* ** Virtual table module xEof method. ** ** Return non-zero if the cursor does not currently point to a valid ** record (i.e if the scan has finished), or zero otherwise. */ static int expertEof(sqlite3_vtab_cursor *cur){ ExpertCsr *pCsr = (ExpertCsr*)cur; return pCsr->pData==0; } /* ** Virtual table module xNext method. */ static int expertNext(sqlite3_vtab_cursor *cur){ ExpertCsr *pCsr = (ExpertCsr*)cur; int rc = SQLITE_OK; assert( pCsr->pData ); rc = sqlite3_step(pCsr->pData); if( rc!=SQLITE_ROW ){ rc = sqlite3_finalize(pCsr->pData); pCsr->pData = 0; }else{ rc = SQLITE_OK; } return rc; } /* ** Virtual table module xRowid method. */ static int expertRowid(sqlite3_vtab_cursor *cur, sqlite_int64 *pRowid){ (void)cur; *pRowid = 0; return SQLITE_OK; } /* ** Virtual table module xColumn method. */ static int expertColumn(sqlite3_vtab_cursor *cur, sqlite3_context *ctx, int i){ ExpertCsr *pCsr = (ExpertCsr*)cur; sqlite3_value *pVal; pVal = sqlite3_column_value(pCsr->pData, i); if( pVal ){ sqlite3_result_value(ctx, pVal); } return SQLITE_OK; } /* ** Virtual table module xFilter method. */ static int expertFilter( sqlite3_vtab_cursor *cur, int idxNum, const char *idxStr, int argc, sqlite3_value **argv ){ ExpertCsr *pCsr = (ExpertCsr*)cur; ExpertVtab *pVtab = (ExpertVtab*)(cur->pVtab); sqlite3expert *pExpert = pVtab->pExpert; int rc; (void)idxNum; (void)idxStr; (void)argc; (void)argv; rc = sqlite3_finalize(pCsr->pData); pCsr->pData = 0; if( rc==SQLITE_OK ){ rc = idxPrintfPrepareStmt(pExpert->db, &pCsr->pData, &pVtab->base.zErrMsg, "SELECT * FROM main.%Q WHERE sqlite_expert_sample()", pVtab->pTab->zName ); } if( rc==SQLITE_OK ){ rc = expertNext(cur); } return rc; } static int idxRegisterVtab(sqlite3expert *p){ static sqlite3_module expertModule = { 2, /* iVersion */ expertConnect, /* xCreate - create a table */ expertConnect, /* xConnect - connect to an existing table */ expertBestIndex, /* xBestIndex - Determine search strategy */ expertDisconnect, /* xDisconnect - Disconnect from a table */ expertDisconnect, /* xDestroy - Drop a table */ expertOpen, /* xOpen - open a cursor */ expertClose, /* xClose - close a cursor */ expertFilter, /* xFilter - configure scan constraints */ expertNext, /* xNext - advance a cursor */ expertEof, /* xEof */ expertColumn, /* xColumn - read data */ expertRowid, /* xRowid - read data */ expertUpdate, /* xUpdate - write data */ 0, /* xBegin - begin transaction */ 0, /* xSync - sync transaction */ 0, /* xCommit - commit transaction */ 0, /* xRollback - rollback transaction */ 0, /* xFindFunction - function overloading */ 0, /* xRename - rename the table */ 0, /* xSavepoint */ 0, /* xRelease */ 0, /* xRollbackTo */ 0, /* xShadowName */ 0, /* xIntegrity */ }; return sqlite3_create_module(p->dbv, "expert", &expertModule, (void*)p); } /* ** End of virtual table implementation. *************************************************************************/ /* ** Finalize SQL statement pStmt. If (*pRc) is SQLITE_OK when this function ** is called, set it to the return value of sqlite3_finalize() before ** returning. Otherwise, discard the sqlite3_finalize() return value. */ static void idxFinalize(int *pRc, sqlite3_stmt *pStmt){ int rc = sqlite3_finalize(pStmt); if( *pRc==SQLITE_OK ) *pRc = rc; } /* ** Attempt to allocate an IdxTable structure corresponding to table zTab ** in the main database of connection db. If successful, set (*ppOut) to ** point to the new object and return SQLITE_OK. Otherwise, return an ** SQLite error code and set (*ppOut) to NULL. In this case *pzErrmsg may be ** set to point to an error string. ** ** It is the responsibility of the caller to eventually free either the ** IdxTable object or error message using sqlite3_free(). */ static int idxGetTableInfo( sqlite3 *db, /* Database connection to read details from */ const char *zTab, /* Table name */ IdxTable **ppOut, /* OUT: New object (if successful) */ char **pzErrmsg /* OUT: Error message (if not) */ ){ sqlite3_stmt *p1 = 0; int nCol = 0; int nTab; int nByte; IdxTable *pNew = 0; int rc, rc2; char *pCsr = 0; int nPk = 0; *ppOut = 0; if( zTab==0 ) return SQLITE_ERROR; nTab = STRLEN(zTab); nByte = sizeof(IdxTable) + nTab + 1; rc = idxPrintfPrepareStmt(db, &p1, pzErrmsg, "PRAGMA table_xinfo=%Q", zTab); while( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(p1) ){ const char *zCol = (const char*)sqlite3_column_text(p1, 1); const char *zColSeq = 0; if( zCol==0 ){ rc = SQLITE_ERROR; break; } nByte += 1 + STRLEN(zCol); rc = sqlite3_table_column_metadata( db, "main", zTab, zCol, 0, &zColSeq, 0, 0, 0 ); if( zColSeq==0 ) zColSeq = "binary"; nByte += 1 + STRLEN(zColSeq); nCol++; nPk += (sqlite3_column_int(p1, 5)>0); } rc2 = sqlite3_reset(p1); if( rc==SQLITE_OK ) rc = rc2; nByte += sizeof(IdxColumn) * nCol; if( rc==SQLITE_OK ){ pNew = idxMalloc(&rc, nByte); } if( rc==SQLITE_OK ){ pNew->aCol = (IdxColumn*)&pNew[1]; pNew->nCol = nCol; pCsr = (char*)&pNew->aCol[nCol]; } nCol = 0; while( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(p1) ){ const char *zCol = (const char*)sqlite3_column_text(p1, 1); const char *zColSeq = 0; int nCopy; if( zCol==0 ) continue; nCopy = STRLEN(zCol) + 1; pNew->aCol[nCol].zName = pCsr; pNew->aCol[nCol].iPk = (sqlite3_column_int(p1, 5)==1 && nPk==1); memcpy(pCsr, zCol, nCopy); pCsr += nCopy; rc = sqlite3_table_column_metadata( db, "main", zTab, zCol, 0, &zColSeq, 0, 0, 0 ); if( rc==SQLITE_OK ){ if( zColSeq==0 ) zColSeq = "binary"; nCopy = STRLEN(zColSeq) + 1; pNew->aCol[nCol].zColl = pCsr; memcpy(pCsr, zColSeq, nCopy); pCsr += nCopy; } nCol++; } idxFinalize(&rc, p1); if( rc!=SQLITE_OK ){ sqlite3_free(pNew); pNew = 0; }else if( ALWAYS(pNew!=0) ){ pNew->zName = pCsr; if( ALWAYS(pNew->zName!=0) ) memcpy(pNew->zName, zTab, nTab+1); } *ppOut = pNew; return rc; } /* ** This function is a no-op if *pRc is set to anything other than ** SQLITE_OK when it is called. ** ** If *pRc is initially set to SQLITE_OK, then the text specified by ** the printf() style arguments is appended to zIn and the result returned ** in a buffer allocated by sqlite3_malloc(). sqlite3_free() is called on ** zIn before returning. */ static char *idxAppendText(int *pRc, char *zIn, const char *zFmt, ...){ va_list ap; char *zAppend = 0; char *zRet = 0; int nIn = zIn ? STRLEN(zIn) : 0; int nAppend = 0; va_start(ap, zFmt); if( *pRc==SQLITE_OK ){ zAppend = sqlite3_vmprintf(zFmt, ap); if( zAppend ){ nAppend = STRLEN(zAppend); zRet = (char*)sqlite3_malloc(nIn + nAppend + 1); } if( zAppend && zRet ){ if( nIn ) memcpy(zRet, zIn, nIn); memcpy(&zRet[nIn], zAppend, nAppend+1); }else{ sqlite3_free(zRet); zRet = 0; *pRc = SQLITE_NOMEM; } sqlite3_free(zAppend); sqlite3_free(zIn); } va_end(ap); return zRet; } /* ** Return true if zId must be quoted in order to use it as an SQL ** identifier, or false otherwise. */ static int idxIdentifierRequiresQuotes(const char *zId){ int i; int nId = STRLEN(zId); if( sqlite3_keyword_check(zId, nId) ) return 1; for(i=0; zId[i]; i++){ if( !(zId[i]=='_') && !(zId[i]>='0' && zId[i]<='9') && !(zId[i]>='a' && zId[i]<='z') && !(zId[i]>='A' && zId[i]<='Z') ){ return 1; } } return 0; } /* ** This function appends an index column definition suitable for constraint ** pCons to the string passed as zIn and returns the result. */ static char *idxAppendColDefn( int *pRc, /* IN/OUT: Error code */ char *zIn, /* Column defn accumulated so far */ IdxTable *pTab, /* Table index will be created on */ IdxConstraint *pCons ){ char *zRet = zIn; IdxColumn *p = &pTab->aCol[pCons->iCol]; if( zRet ) zRet = idxAppendText(pRc, zRet, ", "); if( idxIdentifierRequiresQuotes(p->zName) ){ zRet = idxAppendText(pRc, zRet, "%Q", p->zName); }else{ zRet = idxAppendText(pRc, zRet, "%s", p->zName); } if( sqlite3_stricmp(p->zColl, pCons->zColl) ){ if( idxIdentifierRequiresQuotes(pCons->zColl) ){ zRet = idxAppendText(pRc, zRet, " COLLATE %Q", pCons->zColl); }else{ zRet = idxAppendText(pRc, zRet, " COLLATE %s", pCons->zColl); } } if( pCons->bDesc ){ zRet = idxAppendText(pRc, zRet, " DESC"); } return zRet; } /* ** Search database dbm for an index compatible with the one idxCreateFromCons() ** would create from arguments pScan, pEq and pTail. If no error occurs and ** such an index is found, return non-zero. Or, if no such index is found, ** return zero. ** ** If an error occurs, set *pRc to an SQLite error code and return zero. */ static int idxFindCompatible( int *pRc, /* OUT: Error code */ sqlite3* dbm, /* Database to search */ IdxScan *pScan, /* Scan for table to search for index on */ IdxConstraint *pEq, /* List of == constraints */ IdxConstraint *pTail /* List of range constraints */ ){ const char *zTbl = pScan->pTab->zName; sqlite3_stmt *pIdxList = 0; IdxConstraint *pIter; int nEq = 0; /* Number of elements in pEq */ int rc; /* Count the elements in list pEq */ for(pIter=pEq; pIter; pIter=pIter->pLink) nEq++; rc = idxPrintfPrepareStmt(dbm, &pIdxList, 0, "PRAGMA index_list=%Q", zTbl); while( rc==SQLITE_OK && sqlite3_step(pIdxList)==SQLITE_ROW ){ int bMatch = 1; IdxConstraint *pT = pTail; sqlite3_stmt *pInfo = 0; const char *zIdx = (const char*)sqlite3_column_text(pIdxList, 1); if( zIdx==0 ) continue; /* Zero the IdxConstraint.bFlag values in the pEq list */ for(pIter=pEq; pIter; pIter=pIter->pLink) pIter->bFlag = 0; rc = idxPrintfPrepareStmt(dbm, &pInfo, 0, "PRAGMA index_xInfo=%Q", zIdx); while( rc==SQLITE_OK && sqlite3_step(pInfo)==SQLITE_ROW ){ int iIdx = sqlite3_column_int(pInfo, 0); int iCol = sqlite3_column_int(pInfo, 1); const char *zColl = (const char*)sqlite3_column_text(pInfo, 4); if( iIdxpLink){ if( pIter->bFlag ) continue; if( pIter->iCol!=iCol ) continue; if( sqlite3_stricmp(pIter->zColl, zColl) ) continue; pIter->bFlag = 1; break; } if( pIter==0 ){ bMatch = 0; break; } }else{ if( pT ){ if( pT->iCol!=iCol || sqlite3_stricmp(pT->zColl, zColl) ){ bMatch = 0; break; } pT = pT->pLink; } } } idxFinalize(&rc, pInfo); if( rc==SQLITE_OK && bMatch ){ sqlite3_finalize(pIdxList); return 1; } } idxFinalize(&rc, pIdxList); *pRc = rc; return 0; } /* Callback for sqlite3_exec() with query with leading count(*) column. * The first argument is expected to be an int*, referent to be incremented * if that leading column is not exactly '0'. */ static int countNonzeros(void* pCount, int nc, char* azResults[], char* azColumns[]){ (void)azColumns; /* Suppress unused parameter warning */ if( nc>0 && (azResults[0][0]!='0' || azResults[0][1]!=0) ){ *((int *)pCount) += 1; } return 0; } static int idxCreateFromCons( sqlite3expert *p, IdxScan *pScan, IdxConstraint *pEq, IdxConstraint *pTail ){ sqlite3 *dbm = p->dbm; int rc = SQLITE_OK; if( (pEq || pTail) && 0==idxFindCompatible(&rc, dbm, pScan, pEq, pTail) ){ IdxTable *pTab = pScan->pTab; char *zCols = 0; char *zIdx = 0; IdxConstraint *pCons; unsigned int h = 0; const char *zFmt; for(pCons=pEq; pCons; pCons=pCons->pLink){ zCols = idxAppendColDefn(&rc, zCols, pTab, pCons); } for(pCons=pTail; pCons; pCons=pCons->pLink){ zCols = idxAppendColDefn(&rc, zCols, pTab, pCons); } if( rc==SQLITE_OK ){ /* Hash the list of columns to come up with a name for the index */ const char *zTable = pScan->pTab->zName; int quoteTable = idxIdentifierRequiresQuotes(zTable); char *zName = 0; /* Index name */ int collisions = 0; do{ int i; char *zFind; for(i=0; zCols[i]; i++){ h += ((h<<3) + zCols[i]); } sqlite3_free(zName); zName = sqlite3_mprintf("%s_idx_%08x", zTable, h); if( zName==0 ) break; /* Is is unique among table, view and index names? */ zFmt = "SELECT count(*) FROM sqlite_schema WHERE name=%Q" " AND type in ('index','table','view')"; zFind = sqlite3_mprintf(zFmt, zName); i = 0; rc = sqlite3_exec(dbm, zFind, countNonzeros, &i, 0); assert(rc==SQLITE_OK); sqlite3_free(zFind); if( i==0 ){ collisions = 0; break; } ++collisions; }while( collisions<50 && zName!=0 ); if( collisions ){ /* This return means "Gave up trying to find a unique index name." */ rc = SQLITE_BUSY_TIMEOUT; }else if( zName==0 ){ rc = SQLITE_NOMEM; }else{ if( quoteTable ){ zFmt = "CREATE INDEX \"%w\" ON \"%w\"(%s)"; }else{ zFmt = "CREATE INDEX %s ON %s(%s)"; } zIdx = sqlite3_mprintf(zFmt, zName, zTable, zCols); if( !zIdx ){ rc = SQLITE_NOMEM; }else{ rc = sqlite3_exec(dbm, zIdx, 0, 0, p->pzErrmsg); if( rc!=SQLITE_OK ){ rc = SQLITE_BUSY_TIMEOUT; }else{ idxHashAdd(&rc, &p->hIdx, zName, zIdx); } } sqlite3_free(zName); sqlite3_free(zIdx); } } sqlite3_free(zCols); } return rc; } /* ** Return true if list pList (linked by IdxConstraint.pLink) contains ** a constraint compatible with *p. Otherwise return false. */ static int idxFindConstraint(IdxConstraint *pList, IdxConstraint *p){ IdxConstraint *pCmp; for(pCmp=pList; pCmp; pCmp=pCmp->pLink){ if( p->iCol==pCmp->iCol ) return 1; } return 0; } static int idxCreateFromWhere( sqlite3expert *p, IdxScan *pScan, /* Create indexes for this scan */ IdxConstraint *pTail /* range/ORDER BY constraints for inclusion */ ){ IdxConstraint *p1 = 0; IdxConstraint *pCon; int rc; /* Gather up all the == constraints. */ for(pCon=pScan->pEq; pCon; pCon=pCon->pNext){ if( !idxFindConstraint(p1, pCon) && !idxFindConstraint(pTail, pCon) ){ pCon->pLink = p1; p1 = pCon; } } /* Create an index using the == constraints collected above. And the ** range constraint/ORDER BY terms passed in by the caller, if any. */ rc = idxCreateFromCons(p, pScan, p1, pTail); /* If no range/ORDER BY passed by the caller, create a version of the ** index for each range constraint. */ if( pTail==0 ){ for(pCon=pScan->pRange; rc==SQLITE_OK && pCon; pCon=pCon->pNext){ assert( pCon->pLink==0 ); if( !idxFindConstraint(p1, pCon) && !idxFindConstraint(pTail, pCon) ){ rc = idxCreateFromCons(p, pScan, p1, pCon); } } } return rc; } /* ** Create candidate indexes in database [dbm] based on the data in ** linked-list pScan. */ static int idxCreateCandidates(sqlite3expert *p){ int rc = SQLITE_OK; IdxScan *pIter; for(pIter=p->pScan; pIter && rc==SQLITE_OK; pIter=pIter->pNextScan){ rc = idxCreateFromWhere(p, pIter, 0); if( rc==SQLITE_OK && pIter->pOrder ){ rc = idxCreateFromWhere(p, pIter, pIter->pOrder); } } return rc; } /* ** Free all elements of the linked list starting at pConstraint. */ static void idxConstraintFree(IdxConstraint *pConstraint){ IdxConstraint *pNext; IdxConstraint *p; for(p=pConstraint; p; p=pNext){ pNext = p->pNext; sqlite3_free(p); } } /* ** Free all elements of the linked list starting from pScan up until pLast ** (pLast is not freed). */ static void idxScanFree(IdxScan *pScan, IdxScan *pLast){ IdxScan *p; IdxScan *pNext; for(p=pScan; p!=pLast; p=pNext){ pNext = p->pNextScan; idxConstraintFree(p->pOrder); idxConstraintFree(p->pEq); idxConstraintFree(p->pRange); sqlite3_free(p); } } /* ** Free all elements of the linked list starting from pStatement up ** until pLast (pLast is not freed). */ static void idxStatementFree(IdxStatement *pStatement, IdxStatement *pLast){ IdxStatement *p; IdxStatement *pNext; for(p=pStatement; p!=pLast; p=pNext){ pNext = p->pNext; sqlite3_free(p->zEQP); sqlite3_free(p->zIdx); sqlite3_free(p); } } /* ** Free the linked list of IdxTable objects starting at pTab. */ static void idxTableFree(IdxTable *pTab){ IdxTable *pIter; IdxTable *pNext; for(pIter=pTab; pIter; pIter=pNext){ pNext = pIter->pNext; sqlite3_free(pIter); } } /* ** Free the linked list of IdxWrite objects starting at pTab. */ static void idxWriteFree(IdxWrite *pTab){ IdxWrite *pIter; IdxWrite *pNext; for(pIter=pTab; pIter; pIter=pNext){ pNext = pIter->pNext; sqlite3_free(pIter); } } /* ** This function is called after candidate indexes have been created. It ** runs all the queries to see which indexes they prefer, and populates ** IdxStatement.zIdx and IdxStatement.zEQP with the results. */ static int idxFindIndexes( sqlite3expert *p, char **pzErr /* OUT: Error message (sqlite3_malloc) */ ){ IdxStatement *pStmt; sqlite3 *dbm = p->dbm; int rc = SQLITE_OK; IdxHash hIdx; idxHashInit(&hIdx); for(pStmt=p->pStatement; rc==SQLITE_OK && pStmt; pStmt=pStmt->pNext){ IdxHashEntry *pEntry; sqlite3_stmt *pExplain = 0; idxHashClear(&hIdx); rc = idxPrintfPrepareStmt(dbm, &pExplain, pzErr, "EXPLAIN QUERY PLAN %s", pStmt->zSql ); while( rc==SQLITE_OK && sqlite3_step(pExplain)==SQLITE_ROW ){ /* int iId = sqlite3_column_int(pExplain, 0); */ /* int iParent = sqlite3_column_int(pExplain, 1); */ /* int iNotUsed = sqlite3_column_int(pExplain, 2); */ const char *zDetail = (const char*)sqlite3_column_text(pExplain, 3); int nDetail; int i; if( !zDetail ) continue; nDetail = STRLEN(zDetail); for(i=0; ihIdx, zIdx, nIdx); if( zSql ){ idxHashAdd(&rc, &hIdx, zSql, 0); if( rc ) goto find_indexes_out; } break; } } if( zDetail[0]!='-' ){ pStmt->zEQP = idxAppendText(&rc, pStmt->zEQP, "%s\n", zDetail); } } for(pEntry=hIdx.pFirst; pEntry; pEntry=pEntry->pNext){ pStmt->zIdx = idxAppendText(&rc, pStmt->zIdx, "%s;\n", pEntry->zKey); } idxFinalize(&rc, pExplain); } find_indexes_out: idxHashClear(&hIdx); return rc; } static int idxAuthCallback( void *pCtx, int eOp, const char *z3, const char *z4, const char *zDb, const char *zTrigger ){ int rc = SQLITE_OK; (void)z4; (void)zTrigger; if( eOp==SQLITE_INSERT || eOp==SQLITE_UPDATE || eOp==SQLITE_DELETE ){ if( sqlite3_stricmp(zDb, "main")==0 ){ sqlite3expert *p = (sqlite3expert*)pCtx; IdxTable *pTab; for(pTab=p->pTable; pTab; pTab=pTab->pNext){ if( 0==sqlite3_stricmp(z3, pTab->zName) ) break; } if( pTab ){ IdxWrite *pWrite; for(pWrite=p->pWrite; pWrite; pWrite=pWrite->pNext){ if( pWrite->pTab==pTab && pWrite->eOp==eOp ) break; } if( pWrite==0 ){ pWrite = idxMalloc(&rc, sizeof(IdxWrite)); if( rc==SQLITE_OK ){ pWrite->pTab = pTab; pWrite->eOp = eOp; pWrite->pNext = p->pWrite; p->pWrite = pWrite; } } } } } return rc; } static int idxProcessOneTrigger( sqlite3expert *p, IdxWrite *pWrite, char **pzErr ){ static const char *zInt = UNIQUE_TABLE_NAME; static const char *zDrop = "DROP TABLE " UNIQUE_TABLE_NAME; IdxTable *pTab = pWrite->pTab; const char *zTab = pTab->zName; const char *zSql = "SELECT 'CREATE TEMP' || substr(sql, 7) FROM sqlite_schema " "WHERE tbl_name = %Q AND type IN ('table', 'trigger') " "ORDER BY type;"; sqlite3_stmt *pSelect = 0; int rc = SQLITE_OK; char *zWrite = 0; /* Create the table and its triggers in the temp schema */ rc = idxPrintfPrepareStmt(p->db, &pSelect, pzErr, zSql, zTab, zTab); while( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pSelect) ){ const char *zCreate = (const char*)sqlite3_column_text(pSelect, 0); if( zCreate==0 ) continue; rc = sqlite3_exec(p->dbv, zCreate, 0, 0, pzErr); } idxFinalize(&rc, pSelect); /* Rename the table in the temp schema to zInt */ if( rc==SQLITE_OK ){ char *z = sqlite3_mprintf("ALTER TABLE temp.%Q RENAME TO %Q", zTab, zInt); if( z==0 ){ rc = SQLITE_NOMEM; }else{ rc = sqlite3_exec(p->dbv, z, 0, 0, pzErr); sqlite3_free(z); } } switch( pWrite->eOp ){ case SQLITE_INSERT: { int i; zWrite = idxAppendText(&rc, zWrite, "INSERT INTO %Q VALUES(", zInt); for(i=0; inCol; i++){ zWrite = idxAppendText(&rc, zWrite, "%s?", i==0 ? "" : ", "); } zWrite = idxAppendText(&rc, zWrite, ")"); break; } case SQLITE_UPDATE: { int i; zWrite = idxAppendText(&rc, zWrite, "UPDATE %Q SET ", zInt); for(i=0; inCol; i++){ zWrite = idxAppendText(&rc, zWrite, "%s%Q=?", i==0 ? "" : ", ", pTab->aCol[i].zName ); } break; } default: { assert( pWrite->eOp==SQLITE_DELETE ); if( rc==SQLITE_OK ){ zWrite = sqlite3_mprintf("DELETE FROM %Q", zInt); if( zWrite==0 ) rc = SQLITE_NOMEM; } } } if( rc==SQLITE_OK ){ sqlite3_stmt *pX = 0; rc = sqlite3_prepare_v2(p->dbv, zWrite, -1, &pX, 0); idxFinalize(&rc, pX); if( rc!=SQLITE_OK ){ idxDatabaseError(p->dbv, pzErr); } } sqlite3_free(zWrite); if( rc==SQLITE_OK ){ rc = sqlite3_exec(p->dbv, zDrop, 0, 0, pzErr); } return rc; } static int idxProcessTriggers(sqlite3expert *p, char **pzErr){ int rc = SQLITE_OK; IdxWrite *pEnd = 0; IdxWrite *pFirst = p->pWrite; while( rc==SQLITE_OK && pFirst!=pEnd ){ IdxWrite *pIter; for(pIter=pFirst; rc==SQLITE_OK && pIter!=pEnd; pIter=pIter->pNext){ rc = idxProcessOneTrigger(p, pIter, pzErr); } pEnd = pFirst; pFirst = p->pWrite; } return rc; } /* ** This function tests if the schema of the main database of database handle ** db contains an object named zTab. Assuming no error occurs, output parameter ** (*pbContains) is set to true if zTab exists, or false if it does not. ** ** Or, if an error occurs, an SQLite error code is returned. The final value ** of (*pbContains) is undefined in this case. */ static int expertDbContainsObject( sqlite3 *db, const char *zTab, int *pbContains /* OUT: True if object exists */ ){ const char *zSql = "SELECT 1 FROM sqlite_schema WHERE name = ?"; sqlite3_stmt *pSql = 0; int rc = SQLITE_OK; int ret = 0; rc = sqlite3_prepare_v2(db, zSql, -1, &pSql, 0); if( rc==SQLITE_OK ){ sqlite3_bind_text(pSql, 1, zTab, -1, SQLITE_STATIC); if( SQLITE_ROW==sqlite3_step(pSql) ){ ret = 1; } rc = sqlite3_finalize(pSql); } *pbContains = ret; return rc; } /* ** Execute SQL command zSql using database handle db. If no error occurs, ** set (*pzErr) to NULL and return SQLITE_OK. ** ** If an error does occur, return an SQLite error code and set (*pzErr) to ** point to a buffer containing an English language error message. Except, ** if the error message begins with "no such module:", then ignore the ** error and return as if the SQL statement had succeeded. ** ** This is used to copy as much of the database schema as possible while ** ignoring any errors related to missing virtual table modules. */ static int expertSchemaSql(sqlite3 *db, const char *zSql, char **pzErr){ int rc = SQLITE_OK; char *zErr = 0; rc = sqlite3_exec(db, zSql, 0, 0, &zErr); if( rc!=SQLITE_OK && zErr ){ int nErr = STRLEN(zErr); if( nErr>=15 && memcmp(zErr, "no such module:", 15)==0 ){ sqlite3_free(zErr); rc = SQLITE_OK; zErr = 0; } } *pzErr = zErr; return rc; } static int idxCreateVtabSchema(sqlite3expert *p, char **pzErrmsg){ int rc = idxRegisterVtab(p); sqlite3_stmt *pSchema = 0; /* For each table in the main db schema: ** ** 1) Add an entry to the p->pTable list, and ** 2) Create the equivalent virtual table in dbv. */ rc = idxPrepareStmt(p->db, &pSchema, pzErrmsg, "SELECT type, name, sql, 1, " " substr(sql,1,14)=='create virtual' COLLATE nocase " "FROM sqlite_schema " "WHERE type IN ('table','view') AND " " substr(name,1,7)!='sqlite_' COLLATE nocase " " UNION ALL " "SELECT type, name, sql, 2, 0 FROM sqlite_schema " "WHERE type = 'trigger'" " AND tbl_name IN(SELECT name FROM sqlite_schema WHERE type = 'view') " "ORDER BY 4, 5 DESC, 1" ); while( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pSchema) ){ const char *zType = (const char*)sqlite3_column_text(pSchema, 0); const char *zName = (const char*)sqlite3_column_text(pSchema, 1); const char *zSql = (const char*)sqlite3_column_text(pSchema, 2); int bVirtual = sqlite3_column_int(pSchema, 4); int bExists = 0; if( zType==0 || zName==0 ) continue; rc = expertDbContainsObject(p->dbv, zName, &bExists); if( rc || bExists ) continue; if( zType[0]=='v' || zType[1]=='r' || bVirtual ){ /* A view. Or a trigger on a view. */ if( zSql ) rc = expertSchemaSql(p->dbv, zSql, pzErrmsg); }else{ IdxTable *pTab; rc = idxGetTableInfo(p->db, zName, &pTab, pzErrmsg); if( rc==SQLITE_OK && ALWAYS(pTab!=0) ){ int i; char *zInner = 0; char *zOuter = 0; pTab->pNext = p->pTable; p->pTable = pTab; /* The statement the vtab will pass to sqlite3_declare_vtab() */ zInner = idxAppendText(&rc, 0, "CREATE TABLE x("); for(i=0; inCol; i++){ zInner = idxAppendText(&rc, zInner, "%s%Q COLLATE %s", (i==0 ? "" : ", "), pTab->aCol[i].zName, pTab->aCol[i].zColl ); } zInner = idxAppendText(&rc, zInner, ")"); /* The CVT statement to create the vtab */ zOuter = idxAppendText(&rc, 0, "CREATE VIRTUAL TABLE %Q USING expert(%Q)", zName, zInner ); if( rc==SQLITE_OK ){ rc = sqlite3_exec(p->dbv, zOuter, 0, 0, pzErrmsg); } sqlite3_free(zInner); sqlite3_free(zOuter); } } } idxFinalize(&rc, pSchema); return rc; } struct IdxSampleCtx { int iTarget; double target; /* Target nRet/nRow value */ double nRow; /* Number of rows seen */ double nRet; /* Number of rows returned */ }; static void idxSampleFunc( sqlite3_context *pCtx, int argc, sqlite3_value **argv ){ struct IdxSampleCtx *p = (struct IdxSampleCtx*)sqlite3_user_data(pCtx); int bRet; (void)argv; assert( argc==0 ); if( p->nRow==0.0 ){ bRet = 1; }else{ bRet = (p->nRet / p->nRow) <= p->target; if( bRet==0 ){ unsigned short rnd; sqlite3_randomness(2, (void*)&rnd); bRet = ((int)rnd % 100) <= p->iTarget; } } sqlite3_result_int(pCtx, bRet); p->nRow += 1.0; p->nRet += (double)bRet; } struct IdxRemCtx { int nSlot; struct IdxRemSlot { int eType; /* SQLITE_NULL, INTEGER, REAL, TEXT, BLOB */ i64 iVal; /* SQLITE_INTEGER value */ double rVal; /* SQLITE_FLOAT value */ int nByte; /* Bytes of space allocated at z */ int n; /* Size of buffer z */ char *z; /* SQLITE_TEXT/BLOB value */ } aSlot[1]; }; /* ** Implementation of scalar function sqlite_expert_rem(). */ static void idxRemFunc( sqlite3_context *pCtx, int argc, sqlite3_value **argv ){ struct IdxRemCtx *p = (struct IdxRemCtx*)sqlite3_user_data(pCtx); struct IdxRemSlot *pSlot; int iSlot; assert( argc==2 ); iSlot = sqlite3_value_int(argv[0]); assert( iSlotnSlot ); pSlot = &p->aSlot[iSlot]; switch( pSlot->eType ){ case SQLITE_NULL: /* no-op */ break; case SQLITE_INTEGER: sqlite3_result_int64(pCtx, pSlot->iVal); break; case SQLITE_FLOAT: sqlite3_result_double(pCtx, pSlot->rVal); break; case SQLITE_BLOB: sqlite3_result_blob(pCtx, pSlot->z, pSlot->n, SQLITE_TRANSIENT); break; case SQLITE_TEXT: sqlite3_result_text(pCtx, pSlot->z, pSlot->n, SQLITE_TRANSIENT); break; } pSlot->eType = sqlite3_value_type(argv[1]); switch( pSlot->eType ){ case SQLITE_NULL: /* no-op */ break; case SQLITE_INTEGER: pSlot->iVal = sqlite3_value_int64(argv[1]); break; case SQLITE_FLOAT: pSlot->rVal = sqlite3_value_double(argv[1]); break; case SQLITE_BLOB: case SQLITE_TEXT: { int nByte = sqlite3_value_bytes(argv[1]); const void *pData = 0; if( nByte>pSlot->nByte ){ char *zNew = (char*)sqlite3_realloc(pSlot->z, nByte*2); if( zNew==0 ){ sqlite3_result_error_nomem(pCtx); return; } pSlot->nByte = nByte*2; pSlot->z = zNew; } pSlot->n = nByte; if( pSlot->eType==SQLITE_BLOB ){ pData = sqlite3_value_blob(argv[1]); if( pData ) memcpy(pSlot->z, pData, nByte); }else{ pData = sqlite3_value_text(argv[1]); memcpy(pSlot->z, pData, nByte); } break; } } } static int idxLargestIndex(sqlite3 *db, int *pnMax, char **pzErr){ int rc = SQLITE_OK; const char *zMax = "SELECT max(i.seqno) FROM " " sqlite_schema AS s, " " pragma_index_list(s.name) AS l, " " pragma_index_info(l.name) AS i " "WHERE s.type = 'table'"; sqlite3_stmt *pMax = 0; *pnMax = 0; rc = idxPrepareStmt(db, &pMax, pzErr, zMax); if( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pMax) ){ *pnMax = sqlite3_column_int(pMax, 0) + 1; } idxFinalize(&rc, pMax); return rc; } static int idxPopulateOneStat1( sqlite3expert *p, sqlite3_stmt *pIndexXInfo, sqlite3_stmt *pWriteStat, const char *zTab, const char *zIdx, char **pzErr ){ char *zCols = 0; char *zOrder = 0; char *zQuery = 0; int nCol = 0; int i; sqlite3_stmt *pQuery = 0; int *aStat = 0; int rc = SQLITE_OK; assert( p->iSample>0 ); /* Formulate the query text */ sqlite3_bind_text(pIndexXInfo, 1, zIdx, -1, SQLITE_STATIC); while( SQLITE_OK==rc && SQLITE_ROW==sqlite3_step(pIndexXInfo) ){ const char *zComma = zCols==0 ? "" : ", "; const char *zName = (const char*)sqlite3_column_text(pIndexXInfo, 0); const char *zColl = (const char*)sqlite3_column_text(pIndexXInfo, 1); if( zName==0 ){ /* This index contains an expression. Ignore it. */ sqlite3_free(zCols); sqlite3_free(zOrder); return sqlite3_reset(pIndexXInfo); } zCols = idxAppendText(&rc, zCols, "%sx.%Q IS sqlite_expert_rem(%d, x.%Q) COLLATE %s", zComma, zName, nCol, zName, zColl ); zOrder = idxAppendText(&rc, zOrder, "%s%d", zComma, ++nCol); } sqlite3_reset(pIndexXInfo); if( rc==SQLITE_OK ){ if( p->iSample==100 ){ zQuery = sqlite3_mprintf( "SELECT %s FROM %Q x ORDER BY %s", zCols, zTab, zOrder ); }else{ zQuery = sqlite3_mprintf( "SELECT %s FROM temp."UNIQUE_TABLE_NAME" x ORDER BY %s", zCols, zOrder ); } } sqlite3_free(zCols); sqlite3_free(zOrder); /* Formulate the query text */ if( rc==SQLITE_OK ){ sqlite3 *dbrem = (p->iSample==100 ? p->db : p->dbv); rc = idxPrepareStmt(dbrem, &pQuery, pzErr, zQuery); } sqlite3_free(zQuery); if( rc==SQLITE_OK ){ aStat = (int*)idxMalloc(&rc, sizeof(int)*(nCol+1)); } if( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pQuery) ){ IdxHashEntry *pEntry; char *zStat = 0; for(i=0; i<=nCol; i++) aStat[i] = 1; while( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pQuery) ){ aStat[0]++; for(i=0; ihIdx, zIdx, STRLEN(zIdx)); if( pEntry ){ assert( pEntry->zVal2==0 ); pEntry->zVal2 = zStat; }else{ sqlite3_free(zStat); } } sqlite3_free(aStat); idxFinalize(&rc, pQuery); return rc; } static int idxBuildSampleTable(sqlite3expert *p, const char *zTab){ int rc; char *zSql; rc = sqlite3_exec(p->dbv,"DROP TABLE IF EXISTS temp."UNIQUE_TABLE_NAME,0,0,0); if( rc!=SQLITE_OK ) return rc; zSql = sqlite3_mprintf( "CREATE TABLE temp." UNIQUE_TABLE_NAME " AS SELECT * FROM %Q", zTab ); if( zSql==0 ) return SQLITE_NOMEM; rc = sqlite3_exec(p->dbv, zSql, 0, 0, 0); sqlite3_free(zSql); return rc; } /* ** This function is called as part of sqlite3_expert_analyze(). Candidate ** indexes have already been created in database sqlite3expert.dbm, this ** function populates sqlite_stat1 table in the same database. ** ** The stat1 data is generated by querying the */ static int idxPopulateStat1(sqlite3expert *p, char **pzErr){ int rc = SQLITE_OK; int nMax =0; struct IdxRemCtx *pCtx = 0; struct IdxSampleCtx samplectx; int i; i64 iPrev = -100000; sqlite3_stmt *pAllIndex = 0; sqlite3_stmt *pIndexXInfo = 0; sqlite3_stmt *pWrite = 0; const char *zAllIndex = "SELECT s.rowid, s.name, l.name FROM " " sqlite_schema AS s, " " pragma_index_list(s.name) AS l " "WHERE s.type = 'table'"; const char *zIndexXInfo = "SELECT name, coll FROM pragma_index_xinfo(?) WHERE key"; const char *zWrite = "INSERT INTO sqlite_stat1 VALUES(?, ?, ?)"; /* If iSample==0, no sqlite_stat1 data is required. */ if( p->iSample==0 ) return SQLITE_OK; rc = idxLargestIndex(p->dbm, &nMax, pzErr); if( nMax<=0 || rc!=SQLITE_OK ) return rc; rc = sqlite3_exec(p->dbm, "ANALYZE; PRAGMA writable_schema=1", 0, 0, 0); if( rc==SQLITE_OK ){ int nByte = sizeof(struct IdxRemCtx) + (sizeof(struct IdxRemSlot) * nMax); pCtx = (struct IdxRemCtx*)idxMalloc(&rc, nByte); } if( rc==SQLITE_OK ){ sqlite3 *dbrem = (p->iSample==100 ? p->db : p->dbv); rc = sqlite3_create_function(dbrem, "sqlite_expert_rem", 2, SQLITE_UTF8, (void*)pCtx, idxRemFunc, 0, 0 ); } if( rc==SQLITE_OK ){ rc = sqlite3_create_function(p->db, "sqlite_expert_sample", 0, SQLITE_UTF8, (void*)&samplectx, idxSampleFunc, 0, 0 ); } if( rc==SQLITE_OK ){ pCtx->nSlot = nMax+1; rc = idxPrepareStmt(p->dbm, &pAllIndex, pzErr, zAllIndex); } if( rc==SQLITE_OK ){ rc = idxPrepareStmt(p->dbm, &pIndexXInfo, pzErr, zIndexXInfo); } if( rc==SQLITE_OK ){ rc = idxPrepareStmt(p->dbm, &pWrite, pzErr, zWrite); } while( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pAllIndex) ){ i64 iRowid = sqlite3_column_int64(pAllIndex, 0); const char *zTab = (const char*)sqlite3_column_text(pAllIndex, 1); const char *zIdx = (const char*)sqlite3_column_text(pAllIndex, 2); if( zTab==0 || zIdx==0 ) continue; if( p->iSample<100 && iPrev!=iRowid ){ samplectx.target = (double)p->iSample / 100.0; samplectx.iTarget = p->iSample; samplectx.nRow = 0.0; samplectx.nRet = 0.0; rc = idxBuildSampleTable(p, zTab); if( rc!=SQLITE_OK ) break; } rc = idxPopulateOneStat1(p, pIndexXInfo, pWrite, zTab, zIdx, pzErr); iPrev = iRowid; } if( rc==SQLITE_OK && p->iSample<100 ){ rc = sqlite3_exec(p->dbv, "DROP TABLE IF EXISTS temp." UNIQUE_TABLE_NAME, 0,0,0 ); } idxFinalize(&rc, pAllIndex); idxFinalize(&rc, pIndexXInfo); idxFinalize(&rc, pWrite); if( pCtx ){ for(i=0; inSlot; i++){ sqlite3_free(pCtx->aSlot[i].z); } sqlite3_free(pCtx); } if( rc==SQLITE_OK ){ rc = sqlite3_exec(p->dbm, "ANALYZE sqlite_schema", 0, 0, 0); } sqlite3_create_function(p->db, "sqlite_expert_rem", 2, SQLITE_UTF8, 0,0,0,0); sqlite3_create_function(p->db, "sqlite_expert_sample", 0,SQLITE_UTF8,0,0,0,0); sqlite3_exec(p->db, "DROP TABLE IF EXISTS temp."UNIQUE_TABLE_NAME,0,0,0); return rc; } /* ** Define and possibly pretend to use a useless collation sequence. ** This pretense allows expert to accept SQL using custom collations. */ int dummyCompare(void *up1, int up2, const void *up3, int up4, const void *up5){ (void)up1; (void)up2; (void)up3; (void)up4; (void)up5; assert(0); /* VDBE should never be run. */ return 0; } /* And a callback to register above upon actual need */ void useDummyCS(void *up1, sqlite3 *db, int etr, const char *zName){ (void)up1; sqlite3_create_collation_v2(db, zName, etr, 0, dummyCompare, 0); } #if !defined(SQLITE_OMIT_SCHEMA_PRAGMAS) \ && !defined(SQLITE_OMIT_INTROSPECTION_PRAGMAS) /* ** dummy functions for no-op implementation of UDFs during expert's work */ void dummyUDF(sqlite3_context *up1, int up2, sqlite3_value **up3){ (void)up1; (void)up2; (void)up3; assert(0); /* VDBE should never be run. */ } void dummyUDFvalue(sqlite3_context *up1){ (void)up1; assert(0); /* VDBE should never be run. */ } /* ** Register UDFs from user database with another. */ int registerUDFs(sqlite3 *dbSrc, sqlite3 *dbDst){ sqlite3_stmt *pStmt; int rc = sqlite3_prepare_v2(dbSrc, "SELECT name,type,enc,narg,flags " "FROM pragma_function_list() " "WHERE builtin==0", -1, &pStmt, 0); if( rc==SQLITE_OK ){ while( SQLITE_ROW==(rc = sqlite3_step(pStmt)) ){ int nargs = sqlite3_column_int(pStmt,3); int flags = sqlite3_column_int(pStmt,4); const char *name = (char*)sqlite3_column_text(pStmt,0); const char *type = (char*)sqlite3_column_text(pStmt,1); const char *enc = (char*)sqlite3_column_text(pStmt,2); if( name==0 || type==0 || enc==0 ){ /* no-op. Only happens on OOM */ }else{ int ienc = SQLITE_UTF8; int rcf = SQLITE_ERROR; if( strcmp(enc,"utf16le")==0 ) ienc = SQLITE_UTF16LE; else if( strcmp(enc,"utf16be")==0 ) ienc = SQLITE_UTF16BE; ienc |= (flags & (SQLITE_DETERMINISTIC|SQLITE_DIRECTONLY)); if( strcmp(type,"w")==0 ){ rcf = sqlite3_create_window_function(dbDst,name,nargs,ienc,0, dummyUDF,dummyUDFvalue,0,0,0); }else if( strcmp(type,"a")==0 ){ rcf = sqlite3_create_function(dbDst,name,nargs,ienc,0, 0,dummyUDF,dummyUDFvalue); }else if( strcmp(type,"s")==0 ){ rcf = sqlite3_create_function(dbDst,name,nargs,ienc,0, dummyUDF,0,0); } if( rcf!=SQLITE_OK ){ rc = rcf; break; } } } sqlite3_finalize(pStmt); if( rc==SQLITE_DONE ) rc = SQLITE_OK; } return rc; } #endif /* ** Allocate a new sqlite3expert object. */ sqlite3expert *sqlite3_expert_new(sqlite3 *db, char **pzErrmsg){ int rc = SQLITE_OK; sqlite3expert *pNew; pNew = (sqlite3expert*)idxMalloc(&rc, sizeof(sqlite3expert)); /* Open two in-memory databases to work with. The "vtab database" (dbv) ** will contain a virtual table corresponding to each real table in ** the user database schema, and a copy of each view. It is used to ** collect information regarding the WHERE, ORDER BY and other clauses ** of the user's query. */ if( rc==SQLITE_OK ){ pNew->db = db; pNew->iSample = 100; rc = sqlite3_open(":memory:", &pNew->dbv); } if( rc==SQLITE_OK ){ rc = sqlite3_open(":memory:", &pNew->dbm); if( rc==SQLITE_OK ){ sqlite3_db_config(pNew->dbm, SQLITE_DBCONFIG_TRIGGER_EQP, 1, (int*)0); } } /* Allow custom collations to be dealt with through prepare. */ if( rc==SQLITE_OK ) rc = sqlite3_collation_needed(pNew->dbm,0,useDummyCS); if( rc==SQLITE_OK ) rc = sqlite3_collation_needed(pNew->dbv,0,useDummyCS); #if !defined(SQLITE_OMIT_SCHEMA_PRAGMAS) \ && !defined(SQLITE_OMIT_INTROSPECTION_PRAGMAS) /* Register UDFs from database [db] with [dbm] and [dbv]. */ if( rc==SQLITE_OK ){ rc = registerUDFs(pNew->db, pNew->dbm); } if( rc==SQLITE_OK ){ rc = registerUDFs(pNew->db, pNew->dbv); } #endif /* Copy the entire schema of database [db] into [dbm]. */ if( rc==SQLITE_OK ){ sqlite3_stmt *pSql = 0; rc = idxPrintfPrepareStmt(pNew->db, &pSql, pzErrmsg, "SELECT sql, name, substr(sql,1,14)=='create virtual' COLLATE nocase" " FROM sqlite_schema WHERE substr(name,1,7)!='sqlite_' COLLATE nocase" " ORDER BY 3 DESC, rowid" ); while( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pSql) ){ const char *zSql = (const char*)sqlite3_column_text(pSql, 0); const char *zName = (const char*)sqlite3_column_text(pSql, 1); int bExists = 0; rc = expertDbContainsObject(pNew->dbm, zName, &bExists); if( rc==SQLITE_OK && zSql && bExists==0 ){ rc = expertSchemaSql(pNew->dbm, zSql, pzErrmsg); } } idxFinalize(&rc, pSql); } /* Create the vtab schema */ if( rc==SQLITE_OK ){ rc = idxCreateVtabSchema(pNew, pzErrmsg); } /* Register the auth callback with dbv */ if( rc==SQLITE_OK ){ sqlite3_set_authorizer(pNew->dbv, idxAuthCallback, (void*)pNew); } /* If an error has occurred, free the new object and reutrn NULL. Otherwise, ** return the new sqlite3expert handle. */ if( rc!=SQLITE_OK ){ sqlite3_expert_destroy(pNew); pNew = 0; } return pNew; } /* ** Configure an sqlite3expert object. */ int sqlite3_expert_config(sqlite3expert *p, int op, ...){ int rc = SQLITE_OK; va_list ap; va_start(ap, op); switch( op ){ case EXPERT_CONFIG_SAMPLE: { int iVal = va_arg(ap, int); if( iVal<0 ) iVal = 0; if( iVal>100 ) iVal = 100; p->iSample = iVal; break; } default: rc = SQLITE_NOTFOUND; break; } va_end(ap); return rc; } /* ** Add an SQL statement to the analysis. */ int sqlite3_expert_sql( sqlite3expert *p, /* From sqlite3_expert_new() */ const char *zSql, /* SQL statement to add */ char **pzErr /* OUT: Error message (if any) */ ){ IdxScan *pScanOrig = p->pScan; IdxStatement *pStmtOrig = p->pStatement; int rc = SQLITE_OK; const char *zStmt = zSql; if( p->bRun ) return SQLITE_MISUSE; while( rc==SQLITE_OK && zStmt && zStmt[0] ){ sqlite3_stmt *pStmt = 0; /* Ensure that the provided statement compiles against user's DB. */ rc = idxPrepareStmt(p->db, &pStmt, pzErr, zStmt); if( rc!=SQLITE_OK ) break; sqlite3_finalize(pStmt); rc = sqlite3_prepare_v2(p->dbv, zStmt, -1, &pStmt, &zStmt); if( rc==SQLITE_OK ){ if( pStmt ){ IdxStatement *pNew; const char *z = sqlite3_sql(pStmt); int n = STRLEN(z); pNew = (IdxStatement*)idxMalloc(&rc, sizeof(IdxStatement) + n+1); if( rc==SQLITE_OK ){ pNew->zSql = (char*)&pNew[1]; memcpy(pNew->zSql, z, n+1); pNew->pNext = p->pStatement; if( p->pStatement ) pNew->iId = p->pStatement->iId+1; p->pStatement = pNew; } sqlite3_finalize(pStmt); } }else{ idxDatabaseError(p->dbv, pzErr); } } if( rc!=SQLITE_OK ){ idxScanFree(p->pScan, pScanOrig); idxStatementFree(p->pStatement, pStmtOrig); p->pScan = pScanOrig; p->pStatement = pStmtOrig; } return rc; } int sqlite3_expert_analyze(sqlite3expert *p, char **pzErr){ int rc; IdxHashEntry *pEntry; /* Do trigger processing to collect any extra IdxScan structures */ rc = idxProcessTriggers(p, pzErr); /* Create candidate indexes within the in-memory database file */ if( rc==SQLITE_OK ){ rc = idxCreateCandidates(p); }else if ( rc==SQLITE_BUSY_TIMEOUT ){ if( pzErr ) *pzErr = sqlite3_mprintf("Cannot find a unique index name to propose."); return rc; } /* Generate the stat1 data */ if( rc==SQLITE_OK ){ rc = idxPopulateStat1(p, pzErr); } /* Formulate the EXPERT_REPORT_CANDIDATES text */ for(pEntry=p->hIdx.pFirst; pEntry; pEntry=pEntry->pNext){ p->zCandidates = idxAppendText(&rc, p->zCandidates, "%s;%s%s\n", pEntry->zVal, pEntry->zVal2 ? " -- stat1: " : "", pEntry->zVal2 ); } /* Figure out which of the candidate indexes are preferred by the query ** planner and report the results to the user. */ if( rc==SQLITE_OK ){ rc = idxFindIndexes(p, pzErr); } if( rc==SQLITE_OK ){ p->bRun = 1; } return rc; } /* ** Return the total number of statements that have been added to this ** sqlite3expert using sqlite3_expert_sql(). */ int sqlite3_expert_count(sqlite3expert *p){ int nRet = 0; if( p->pStatement ) nRet = p->pStatement->iId+1; return nRet; } /* ** Return a component of the report. */ const char *sqlite3_expert_report(sqlite3expert *p, int iStmt, int eReport){ const char *zRet = 0; IdxStatement *pStmt; if( p->bRun==0 ) return 0; for(pStmt=p->pStatement; pStmt && pStmt->iId!=iStmt; pStmt=pStmt->pNext); switch( eReport ){ case EXPERT_REPORT_SQL: if( pStmt ) zRet = pStmt->zSql; break; case EXPERT_REPORT_INDEXES: if( pStmt ) zRet = pStmt->zIdx; break; case EXPERT_REPORT_PLAN: if( pStmt ) zRet = pStmt->zEQP; break; case EXPERT_REPORT_CANDIDATES: zRet = p->zCandidates; break; } return zRet; } /* ** Free an sqlite3expert object. */ void sqlite3_expert_destroy(sqlite3expert *p){ if( p ){ sqlite3_close(p->dbm); sqlite3_close(p->dbv); idxScanFree(p->pScan, 0); idxStatementFree(p->pStatement, 0); idxTableFree(p->pTable); idxWriteFree(p->pWrite); idxHashClear(&p->hIdx); sqlite3_free(p->zCandidates); sqlite3_free(p); } } #endif /* ifndef SQLITE_OMIT_VIRTUALTABLE */ /************************* End ../ext/expert/sqlite3expert.c ********************/ /************************* Begin ../ext/intck/sqlite3intck.h ******************/ /* ** 2024-02-08 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* */ /* ** Incremental Integrity-Check Extension ** ------------------------------------- ** ** This module contains code to check whether or not an SQLite database ** is well-formed or corrupt. This is the same task as performed by SQLite's ** built-in "PRAGMA integrity_check" command. This module differs from ** "PRAGMA integrity_check" in that: ** ** + It is less thorough - this module does not detect certain types ** of corruption that are detected by the PRAGMA command. However, ** it does detect all kinds of corruption that are likely to cause ** errors in SQLite applications. ** ** + It is slower. Sometimes up to three times slower. ** ** + It allows integrity-check operations to be split into multiple ** transactions, so that the database does not need to be read-locked ** for the duration of the integrity-check. ** ** One way to use the API to run integrity-check on the "main" database ** of handle db is: ** ** int rc = SQLITE_OK; ** sqlite3_intck *p = 0; ** ** sqlite3_intck_open(db, "main", &p); ** while( SQLITE_OK==sqlite3_intck_step(p) ){ ** const char *zMsg = sqlite3_intck_message(p); ** if( zMsg ) printf("corruption: %s\n", zMsg); ** } ** rc = sqlite3_intck_error(p, &zErr); ** if( rc!=SQLITE_OK ){ ** printf("error occured (rc=%d), (errmsg=%s)\n", rc, zErr); ** } ** sqlite3_intck_close(p); ** ** Usually, the sqlite3_intck object opens a read transaction within the ** first call to sqlite3_intck_step() and holds it open until the ** integrity-check is complete. However, if sqlite3_intck_unlock() is ** called, the read transaction is ended and a new read transaction opened ** by the subsequent call to sqlite3_intck_step(). */ #ifndef _SQLITE_INTCK_H #define _SQLITE_INTCK_H /* #include "sqlite3.h" */ #ifdef __cplusplus extern "C" { #endif /* ** An ongoing incremental integrity-check operation is represented by an ** opaque pointer of the following type. */ typedef struct sqlite3_intck sqlite3_intck; /* ** Open a new incremental integrity-check object. If successful, populate ** output variable (*ppOut) with the new object handle and return SQLITE_OK. ** Or, if an error occurs, set (*ppOut) to NULL and return an SQLite error ** code (e.g. SQLITE_NOMEM). ** ** The integrity-check will be conducted on database zDb (which must be "main", ** "temp", or the name of an attached database) of database handle db. Once ** this function has been called successfully, the caller should not use ** database handle db until the integrity-check object has been destroyed ** using sqlite3_intck_close(). */ int sqlite3_intck_open( sqlite3 *db, /* Database handle */ const char *zDb, /* Database name ("main", "temp" etc.) */ sqlite3_intck **ppOut /* OUT: New sqlite3_intck handle */ ); /* ** Close and release all resources associated with a handle opened by an ** earlier call to sqlite3_intck_open(). The results of using an ** integrity-check handle after it has been passed to this function are ** undefined. */ void sqlite3_intck_close(sqlite3_intck *pCk); /* ** Do the next step of the integrity-check operation specified by the handle ** passed as the only argument. This function returns SQLITE_DONE if the ** integrity-check operation is finished, or an SQLite error code if ** an error occurs, or SQLITE_OK if no error occurs but the integrity-check ** is not finished. It is not considered an error if database corruption ** is encountered. ** ** Following a successful call to sqlite3_intck_step() (one that returns ** SQLITE_OK), sqlite3_intck_message() returns a non-NULL value if ** corruption was detected in the db. ** ** If an error occurs and a value other than SQLITE_OK or SQLITE_DONE is ** returned, then the integrity-check handle is placed in an error state. ** In this state all subsequent calls to sqlite3_intck_step() or ** sqlite3_intck_unlock() will immediately return the same error. The ** sqlite3_intck_error() method may be used to obtain an English language ** error message in this case. */ int sqlite3_intck_step(sqlite3_intck *pCk); /* ** If the previous call to sqlite3_intck_step() encountered corruption ** within the database, then this function returns a pointer to a buffer ** containing a nul-terminated string describing the corruption in ** English. If the previous call to sqlite3_intck_step() did not encounter ** corruption, or if there was no previous call, this function returns ** NULL. */ const char *sqlite3_intck_message(sqlite3_intck *pCk); /* ** Close any read-transaction opened by an earlier call to ** sqlite3_intck_step(). Any subsequent call to sqlite3_intck_step() will ** open a new transaction. Return SQLITE_OK if successful, or an SQLite error ** code otherwise. ** ** If an error occurs, then the integrity-check handle is placed in an error ** state. In this state all subsequent calls to sqlite3_intck_step() or ** sqlite3_intck_unlock() will immediately return the same error. The ** sqlite3_intck_error() method may be used to obtain an English language ** error message in this case. */ int sqlite3_intck_unlock(sqlite3_intck *pCk); /* ** If an error has occurred in an earlier call to sqlite3_intck_step() ** or sqlite3_intck_unlock(), then this method returns the associated ** SQLite error code. Additionally, if pzErr is not NULL, then (*pzErr) ** may be set to point to a nul-terminated string containing an English ** language error message. Or, if no error message is available, to ** NULL. ** ** If no error has occurred within sqlite3_intck_step() or ** sqlite_intck_unlock() calls on the handle passed as the first argument, ** then SQLITE_OK is returned and (*pzErr) set to NULL. */ int sqlite3_intck_error(sqlite3_intck *pCk, const char **pzErr); /* ** This API is used for testing only. It returns the full-text of an SQL ** statement used to test object zObj, which may be a table or index. ** The returned buffer is valid until the next call to either this function ** or sqlite3_intck_close() on the same sqlite3_intck handle. */ const char *sqlite3_intck_test_sql(sqlite3_intck *pCk, const char *zObj); #ifdef __cplusplus } /* end of the 'extern "C"' block */ #endif #endif /* ifndef _SQLITE_INTCK_H */ /************************* End ../ext/intck/sqlite3intck.h ********************/ /************************* Begin ../ext/intck/sqlite3intck.c ******************/ /* ** 2024-02-08 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* */ /* #include "sqlite3intck.h" */ #include #include #include #include /* ** nKeyVal: ** The number of values that make up the 'key' for the current pCheck ** statement. ** ** rc: ** Error code returned by most recent sqlite3_intck_step() or ** sqlite3_intck_unlock() call. This is set to SQLITE_DONE when ** the integrity-check operation is finished. ** ** zErr: ** If the object has entered the error state, this is the error message. ** Is freed using sqlite3_free() when the object is deleted. ** ** zTestSql: ** The value returned by the most recent call to sqlite3_intck_testsql(). ** Each call to testsql() frees the previous zTestSql value (using ** sqlite3_free()) and replaces it with the new value it will return. */ struct sqlite3_intck { sqlite3 *db; const char *zDb; /* Copy of zDb parameter to _open() */ char *zObj; /* Current object. Or NULL. */ sqlite3_stmt *pCheck; /* Current check statement */ char *zKey; int nKeyVal; char *zMessage; int bCorruptSchema; int rc; /* Error code */ char *zErr; /* Error message */ char *zTestSql; /* Returned by sqlite3_intck_test_sql() */ }; /* ** Some error has occurred while using database p->db. Save the error message ** and error code currently held by the database handle in p->rc and p->zErr. */ static void intckSaveErrmsg(sqlite3_intck *p){ p->rc = sqlite3_errcode(p->db); sqlite3_free(p->zErr); p->zErr = sqlite3_mprintf("%s", sqlite3_errmsg(p->db)); } /* ** If the handle passed as the first argument is already in the error state, ** then this function is a no-op (returns NULL immediately). Otherwise, if an ** error occurs within this function, it leaves an error in said handle. ** ** Otherwise, this function attempts to prepare SQL statement zSql and ** return the resulting statement handle to the user. */ static sqlite3_stmt *intckPrepare(sqlite3_intck *p, const char *zSql){ sqlite3_stmt *pRet = 0; if( p->rc==SQLITE_OK ){ p->rc = sqlite3_prepare_v2(p->db, zSql, -1, &pRet, 0); if( p->rc!=SQLITE_OK ){ intckSaveErrmsg(p); assert( pRet==0 ); } } return pRet; } /* ** If the handle passed as the first argument is already in the error state, ** then this function is a no-op (returns NULL immediately). Otherwise, if an ** error occurs within this function, it leaves an error in said handle. ** ** Otherwise, this function treats argument zFmt as a printf() style format ** string. It formats it according to the trailing arguments and then ** attempts to prepare the results and return the resulting prepared ** statement. */ static sqlite3_stmt *intckPrepareFmt(sqlite3_intck *p, const char *zFmt, ...){ sqlite3_stmt *pRet = 0; va_list ap; char *zSql = 0; va_start(ap, zFmt); zSql = sqlite3_vmprintf(zFmt, ap); if( p->rc==SQLITE_OK && zSql==0 ){ p->rc = SQLITE_NOMEM; } pRet = intckPrepare(p, zSql); sqlite3_free(zSql); va_end(ap); return pRet; } /* ** Finalize SQL statement pStmt. If an error occurs and the handle passed ** as the first argument does not already contain an error, store the ** error in the handle. */ static void intckFinalize(sqlite3_intck *p, sqlite3_stmt *pStmt){ int rc = sqlite3_finalize(pStmt); if( p->rc==SQLITE_OK && rc!=SQLITE_OK ){ intckSaveErrmsg(p); } } /* ** If there is already an error in handle p, return it. Otherwise, call ** sqlite3_step() on the statement handle and return that value. */ static int intckStep(sqlite3_intck *p, sqlite3_stmt *pStmt){ if( p->rc ) return p->rc; return sqlite3_step(pStmt); } /* ** Execute SQL statement zSql. There is no way to obtain any results ** returned by the statement. This function uses the sqlite3_intck error ** code convention. */ static void intckExec(sqlite3_intck *p, const char *zSql){ sqlite3_stmt *pStmt = 0; pStmt = intckPrepare(p, zSql); intckStep(p, pStmt); intckFinalize(p, pStmt); } /* ** A wrapper around sqlite3_mprintf() that uses the sqlite3_intck error ** code convention. */ static char *intckMprintf(sqlite3_intck *p, const char *zFmt, ...){ va_list ap; char *zRet = 0; va_start(ap, zFmt); zRet = sqlite3_vmprintf(zFmt, ap); if( p->rc==SQLITE_OK ){ if( zRet==0 ){ p->rc = SQLITE_NOMEM; } }else{ sqlite3_free(zRet); zRet = 0; } return zRet; } /* ** This is used by sqlite3_intck_unlock() to save the vector key value ** required to restart the current pCheck query as a nul-terminated string ** in p->zKey. */ static void intckSaveKey(sqlite3_intck *p){ int ii; char *zSql = 0; sqlite3_stmt *pStmt = 0; sqlite3_stmt *pXinfo = 0; const char *zDir = 0; assert( p->pCheck ); assert( p->zKey==0 ); pXinfo = intckPrepareFmt(p, "SELECT group_concat(desc, '') FROM %Q.sqlite_schema s, " "pragma_index_xinfo(%Q, %Q) " "WHERE s.type='index' AND s.name=%Q", p->zDb, p->zObj, p->zDb, p->zObj ); if( p->rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pXinfo) ){ zDir = (const char*)sqlite3_column_text(pXinfo, 0); } if( zDir==0 ){ /* Object is a table, not an index. This is the easy case,as there are ** no DESC columns or NULL values in a primary key. */ const char *zSep = "SELECT '(' || "; for(ii=0; iinKeyVal; ii++){ zSql = intckMprintf(p, "%z%squote(?)", zSql, zSep); zSep = " || ', ' || "; } zSql = intckMprintf(p, "%z || ')'", zSql); }else{ /* Object is an index. */ assert( p->nKeyVal>1 ); for(ii=p->nKeyVal; ii>0; ii--){ int bLastIsDesc = zDir[ii-1]=='1'; int bLastIsNull = sqlite3_column_type(p->pCheck, ii)==SQLITE_NULL; const char *zLast = sqlite3_column_name(p->pCheck, ii); char *zLhs = 0; char *zRhs = 0; char *zWhere = 0; if( bLastIsNull ){ if( bLastIsDesc ) continue; zWhere = intckMprintf(p, "'%s IS NOT NULL'", zLast); }else{ const char *zOp = bLastIsDesc ? "<" : ">"; zWhere = intckMprintf(p, "'%s %s ' || quote(?%d)", zLast, zOp, ii); } if( ii>1 ){ const char *zLhsSep = ""; const char *zRhsSep = ""; int jj; for(jj=0; jjpCheck,jj+1); zLhs = intckMprintf(p, "%z%s%s", zLhs, zLhsSep, zAlias); zRhs = intckMprintf(p, "%z%squote(?%d)", zRhs, zRhsSep, jj+1); zLhsSep = ","; zRhsSep = " || ',' || "; } zWhere = intckMprintf(p, "'(%z) IS (' || %z || ') AND ' || %z", zLhs, zRhs, zWhere); } zWhere = intckMprintf(p, "'WHERE ' || %z", zWhere); zSql = intckMprintf(p, "%z%s(quote( %z ) )", zSql, (zSql==0 ? "VALUES" : ",\n "), zWhere ); } zSql = intckMprintf(p, "WITH wc(q) AS (\n%z\n)" "SELECT 'VALUES' || group_concat('(' || q || ')', ',\n ') FROM wc" , zSql ); } pStmt = intckPrepare(p, zSql); if( p->rc==SQLITE_OK ){ for(ii=0; iinKeyVal; ii++){ sqlite3_bind_value(pStmt, ii+1, sqlite3_column_value(p->pCheck, ii+1)); } if( SQLITE_ROW==sqlite3_step(pStmt) ){ p->zKey = intckMprintf(p,"%s",(const char*)sqlite3_column_text(pStmt, 0)); } intckFinalize(p, pStmt); } sqlite3_free(zSql); intckFinalize(p, pXinfo); } /* ** Find the next database object (table or index) to check. If successful, ** set sqlite3_intck.zObj to point to a nul-terminated buffer containing ** the object's name before returning. */ static void intckFindObject(sqlite3_intck *p){ sqlite3_stmt *pStmt = 0; char *zPrev = p->zObj; p->zObj = 0; assert( p->rc==SQLITE_OK ); assert( p->pCheck==0 ); pStmt = intckPrepareFmt(p, "WITH tables(table_name) AS (" " SELECT name" " FROM %Q.sqlite_schema WHERE (type='table' OR type='index') AND rootpage" " UNION ALL " " SELECT 'sqlite_schema'" ")" "SELECT table_name FROM tables " "WHERE ?1 IS NULL OR table_name%s?1 " "ORDER BY 1" , p->zDb, (p->zKey ? ">=" : ">") ); if( p->rc==SQLITE_OK ){ sqlite3_bind_text(pStmt, 1, zPrev, -1, SQLITE_TRANSIENT); if( sqlite3_step(pStmt)==SQLITE_ROW ){ p->zObj = intckMprintf(p,"%s",(const char*)sqlite3_column_text(pStmt, 0)); } } intckFinalize(p, pStmt); /* If this is a new object, ensure the previous key value is cleared. */ if( sqlite3_stricmp(p->zObj, zPrev) ){ sqlite3_free(p->zKey); p->zKey = 0; } sqlite3_free(zPrev); } /* ** Return the size in bytes of the first token in nul-terminated buffer z. ** For the purposes of this call, a token is either: ** ** * a quoted SQL string, * * a contiguous series of ascii alphabet characters, or * * any other single byte. */ static int intckGetToken(const char *z){ char c = z[0]; int iRet = 1; if( c=='\'' || c=='"' || c=='`' ){ while( 1 ){ if( z[iRet]==c ){ iRet++; if( z[iRet]!=c ) break; } iRet++; } } else if( c=='[' ){ while( z[iRet++]!=']' && z[iRet] ); } else if( (c>='A' && c<='Z') || (c>='a' && c<='z') ){ while( (z[iRet]>='A' && z[iRet]<='Z') || (z[iRet]>='a' && z[iRet]<='z') ){ iRet++; } } return iRet; } /* ** Return true if argument c is an ascii whitespace character. */ static int intckIsSpace(char c){ return (c==' ' || c=='\t' || c=='\n' || c=='\r'); } /* ** Argument z points to the text of a CREATE INDEX statement. This function ** identifies the part of the text that contains either the index WHERE ** clause (if iCol<0) or the iCol'th column of the index. ** ** If (iCol<0), the identified fragment does not include the "WHERE" keyword, ** only the expression that follows it. If (iCol>=0) then the identified ** fragment does not include any trailing sort-order keywords - "ASC" or ** "DESC". ** ** If the CREATE INDEX statement does not contain the requested field or ** clause, NULL is returned and (*pnByte) is set to 0. Otherwise, a pointer to ** the identified fragment is returned and output parameter (*pnByte) set ** to its size in bytes. */ static const char *intckParseCreateIndex(const char *z, int iCol, int *pnByte){ int iOff = 0; int iThisCol = 0; int iStart = 0; int nOpen = 0; const char *zRet = 0; int nRet = 0; int iEndOfCol = 0; /* Skip forward until the first "(" token */ while( z[iOff]!='(' ){ iOff += intckGetToken(&z[iOff]); if( z[iOff]=='\0' ) return 0; } assert( z[iOff]=='(' ); nOpen = 1; iOff++; iStart = iOff; while( z[iOff] ){ const char *zToken = &z[iOff]; int nToken = 0; /* Check if this is the end of the current column - either a "," or ")" ** when nOpen==1. */ if( nOpen==1 ){ if( z[iOff]==',' || z[iOff]==')' ){ if( iCol==iThisCol ){ int iEnd = iEndOfCol ? iEndOfCol : iOff; nRet = (iEnd - iStart); zRet = &z[iStart]; break; } iStart = iOff+1; while( intckIsSpace(z[iStart]) ) iStart++; iThisCol++; } if( z[iOff]==')' ) break; } if( z[iOff]=='(' ) nOpen++; if( z[iOff]==')' ) nOpen--; nToken = intckGetToken(zToken); if( (nToken==3 && 0==sqlite3_strnicmp(zToken, "ASC", nToken)) || (nToken==4 && 0==sqlite3_strnicmp(zToken, "DESC", nToken)) ){ iEndOfCol = iOff; }else if( 0==intckIsSpace(zToken[0]) ){ iEndOfCol = 0; } iOff += nToken; } /* iStart is now the byte offset of 1 byte passed the final ')' in the ** CREATE INDEX statement. Try to find a WHERE clause to return. */ while( zRet==0 && z[iOff] ){ int n = intckGetToken(&z[iOff]); if( n==5 && 0==sqlite3_strnicmp(&z[iOff], "where", 5) ){ zRet = &z[iOff+5]; nRet = (int)strlen(zRet); } iOff += n; } /* Trim any whitespace from the start and end of the returned string. */ if( zRet ){ while( intckIsSpace(zRet[0]) ){ nRet--; zRet++; } while( nRet>0 && intckIsSpace(zRet[nRet-1]) ) nRet--; } *pnByte = nRet; return zRet; } /* ** User-defined SQL function wrapper for intckParseCreateIndex(): ** ** SELECT parse_create_index(, ); */ static void intckParseCreateIndexFunc( sqlite3_context *pCtx, int nVal, sqlite3_value **apVal ){ const char *zSql = (const char*)sqlite3_value_text(apVal[0]); int idx = sqlite3_value_int(apVal[1]); const char *zRes = 0; int nRes = 0; assert( nVal==2 ); if( zSql ){ zRes = intckParseCreateIndex(zSql, idx, &nRes); } sqlite3_result_text(pCtx, zRes, nRes, SQLITE_TRANSIENT); } /* ** Return true if sqlite3_intck.db has automatic indexes enabled, false ** otherwise. */ static int intckGetAutoIndex(sqlite3_intck *p){ int bRet = 0; sqlite3_stmt *pStmt = 0; pStmt = intckPrepare(p, "PRAGMA automatic_index"); if( SQLITE_ROW==intckStep(p, pStmt) ){ bRet = sqlite3_column_int(pStmt, 0); } intckFinalize(p, pStmt); return bRet; } /* ** Return true if zObj is an index, or false otherwise. */ static int intckIsIndex(sqlite3_intck *p, const char *zObj){ int bRet = 0; sqlite3_stmt *pStmt = 0; pStmt = intckPrepareFmt(p, "SELECT 1 FROM %Q.sqlite_schema WHERE name=%Q AND type='index'", p->zDb, zObj ); if( p->rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pStmt) ){ bRet = 1; } intckFinalize(p, pStmt); return bRet; } /* ** Return a pointer to a nul-terminated buffer containing the SQL statement ** used to check database object zObj (a table or index) for corruption. ** If parameter zPrev is not NULL, then it must be a string containing the ** vector key required to restart the check where it left off last time. ** If pnKeyVal is not NULL, then (*pnKeyVal) is set to the number of ** columns in the vector key value for the specified object. ** ** This function uses the sqlite3_intck error code convention. */ static char *intckCheckObjectSql( sqlite3_intck *p, /* Integrity check object */ const char *zObj, /* Object (table or index) to scan */ const char *zPrev, /* Restart key vector, if any */ int *pnKeyVal /* OUT: Number of key-values for this scan */ ){ char *zRet = 0; sqlite3_stmt *pStmt = 0; int bAutoIndex = 0; int bIsIndex = 0; const char *zCommon = /* Relation without_rowid also contains just one row. Column "b" is ** set to true if the table being examined is a WITHOUT ROWID table, ** or false otherwise. */ ", without_rowid(b) AS (" " SELECT EXISTS (" " SELECT 1 FROM tabname, pragma_index_list(tab, db) AS l" " WHERE origin='pk' " " AND NOT EXISTS (SELECT 1 FROM sqlite_schema WHERE name=l.name)" " )" ")" "" /* Table idx_cols contains 1 row for each column in each index on the ** table being checked. Columns are: ** ** idx_name: Name of the index. ** idx_ispk: True if this index is the PK of a WITHOUT ROWID table. ** col_name: Name of indexed column, or NULL for index on expression. ** col_expr: Indexed expression, including COLLATE clause. ** col_alias: Alias used for column in 'intck_wrapper' table. */ ", idx_cols(idx_name, idx_ispk, col_name, col_expr, col_alias) AS (" " SELECT l.name, (l.origin=='pk' AND w.b), i.name, COALESCE((" " SELECT parse_create_index(sql, i.seqno) FROM " " sqlite_schema WHERE name = l.name" " ), format('\"%w\"', i.name) || ' COLLATE ' || quote(i.coll))," " 'c' || row_number() OVER ()" " FROM " " tabname t," " without_rowid w," " pragma_index_list(t.tab, t.db) l," " pragma_index_xinfo(l.name) i" " WHERE i.key" " UNION ALL" " SELECT '', 1, '_rowid_', '_rowid_', 'r1' FROM without_rowid WHERE b=0" ")" "" "" /* ** For a PK declared as "PRIMARY KEY(a, b) ... WITHOUT ROWID", where ** the intck_wrapper aliases of "a" and "b" are "c1" and "c2": ** ** o_pk: "o.c1, o.c2" ** i_pk: "i.'a', i.'b'" ** ... ** n_pk: 2 */ ", tabpk(db, tab, idx, o_pk, i_pk, q_pk, eq_pk, ps_pk, pk_pk, n_pk) AS (" " WITH pkfields(f, a) AS (" " SELECT i.col_name, i.col_alias FROM idx_cols i WHERE i.idx_ispk" " )" " SELECT t.db, t.tab, t.idx, " " group_concat(a, ', '), " " group_concat('i.'||quote(f), ', '), " " group_concat('quote(o.'||a||')', ' || '','' || '), " " format('(%s)==(%s)'," " group_concat('o.'||a, ', '), " " group_concat(format('\"%w\"', f), ', ')" " )," " group_concat('%s', ',')," " group_concat('quote('||a||')', ', '), " " count(*)" " FROM tabname t, pkfields" ")" "" ", idx(name, match_expr, partial, partial_alias, idx_ps, idx_idx) AS (" " SELECT idx_name," " format('(%s,%s) IS (%s,%s)', " " group_concat(i.col_expr, ', '), i_pk," " group_concat('o.'||i.col_alias, ', '), o_pk" " ), " " parse_create_index(" " (SELECT sql FROM sqlite_schema WHERE name=idx_name), -1" " )," " 'cond' || row_number() OVER ()" " , group_concat('%s', ',')" " , group_concat('quote('||i.col_alias||')', ', ')" " FROM tabpk t, " " without_rowid w," " idx_cols i" " WHERE i.idx_ispk==0 " " GROUP BY idx_name" ")" "" ", wrapper_with(s) AS (" " SELECT 'intck_wrapper AS (\n SELECT\n ' || (" " WITH f(a, b) AS (" " SELECT col_expr, col_alias FROM idx_cols" " UNION ALL " " SELECT partial, partial_alias FROM idx WHERE partial IS NOT NULL" " )" " SELECT group_concat(format('%s AS %s', a, b), ',\n ') FROM f" " )" " || format('\n FROM %Q.%Q ', t.db, t.tab)" /* If the object being checked is a table, append "NOT INDEXED". ** Otherwise, append "INDEXED BY ", and then, if the index ** is a partial index " WHERE ". */ " || CASE WHEN t.idx IS NULL THEN " " 'NOT INDEXED'" " ELSE" " format('INDEXED BY %Q%s', t.idx, ' WHERE '||i.partial)" " END" " || '\n)'" " FROM tabname t LEFT JOIN idx i ON (i.name=t.idx)" ")" "" ; bAutoIndex = intckGetAutoIndex(p); if( bAutoIndex ) intckExec(p, "PRAGMA automatic_index = 0"); bIsIndex = intckIsIndex(p, zObj); if( bIsIndex ){ pStmt = intckPrepareFmt(p, /* Table idxname contains a single row. The first column, "db", contains ** the name of the db containing the table (e.g. "main") and the second, ** "tab", the name of the table itself. */ "WITH tabname(db, tab, idx) AS (" " SELECT %Q, (SELECT tbl_name FROM %Q.sqlite_schema WHERE name=%Q), %Q " ")" "" ", whereclause(w_c) AS (%s)" "" "%s" /* zCommon */ "" ", case_statement(c) AS (" " SELECT " " 'CASE WHEN (' || group_concat(col_alias, ', ') || ', 1) IS (\n' " " || ' SELECT ' || group_concat(col_expr, ', ') || ', 1 FROM '" " || format('%%Q.%%Q NOT INDEXED WHERE %%s\n', t.db, t.tab, p.eq_pk)" " || ' )\n THEN NULL\n '" " || 'ELSE format(''surplus entry ('" " || group_concat('%%s', ',') || ',' || p.ps_pk" " || ') in index ' || t.idx || ''', ' " " || group_concat('quote('||i.col_alias||')', ', ') || ', ' || p.pk_pk" " || ')'" " || '\n END AS error_message'" " FROM tabname t, tabpk p, idx_cols i WHERE i.idx_name=t.idx" ")" "" ", thiskey(k, n) AS (" " SELECT group_concat(i.col_alias, ', ') || ', ' || p.o_pk, " " count(*) + p.n_pk " " FROM tabpk p, idx_cols i WHERE i.idx_name=p.idx" ")" "" ", main_select(m, n) AS (" " SELECT format(" " 'WITH %%s\n' ||" " ', idx_checker AS (\n' ||" " ' SELECT %%s,\n' ||" " ' %%s\n' || " " ' FROM intck_wrapper AS o\n' ||" " ')\n'," " ww.s, c, t.k" " ), t.n" " FROM case_statement, wrapper_with ww, thiskey t" ")" "SELECT m || " " group_concat('SELECT * FROM idx_checker ' || w_c, ' UNION ALL '), n" " FROM " "main_select, whereclause " , p->zDb, p->zDb, zObj, zObj , zPrev ? zPrev : "VALUES('')", zCommon ); }else{ pStmt = intckPrepareFmt(p, /* Table tabname contains a single row. The first column, "db", contains ** the name of the db containing the table (e.g. "main") and the second, ** "tab", the name of the table itself. */ "WITH tabname(db, tab, idx, prev) AS (SELECT %Q, %Q, NULL, %Q)" "" "%s" /* zCommon */ /* expr(e) contains one row for each index on table zObj. Value e ** is set to an expression that evaluates to NULL if the required ** entry is present in the index, or an error message otherwise. */ ", expr(e, p) AS (" " SELECT format('CASE WHEN EXISTS \n" " (SELECT 1 FROM %%Q.%%Q AS i INDEXED BY %%Q WHERE %%s%%s)\n" " THEN NULL\n" " ELSE format(''entry (%%s,%%s) missing from index %%s'', %%s, %%s)\n" " END\n'" " , t.db, t.tab, i.name, i.match_expr, ' AND (' || partial || ')'," " i.idx_ps, t.ps_pk, i.name, i.idx_idx, t.pk_pk)," " CASE WHEN partial IS NULL THEN NULL ELSE i.partial_alias END" " FROM tabpk t, idx i" ")" ", numbered(ii, cond, e) AS (" " SELECT 0, 'n.ii=0', 'NULL'" " UNION ALL " " SELECT row_number() OVER ()," " '(n.ii='||row_number() OVER ()||COALESCE(' AND '||p||')', ')'), e" " FROM expr" ")" ", counter_with(w) AS (" " SELECT 'WITH intck_counter(ii) AS (\n ' || " " group_concat('SELECT '||ii, ' UNION ALL\n ') " " || '\n)' FROM numbered" ")" "" ", case_statement(c) AS (" " SELECT 'CASE ' || " " group_concat(format('\n WHEN %%s THEN (%%s)', cond, e), '') ||" " '\nEND AS error_message'" " FROM numbered" ")" "" /* This table contains a single row consisting of a single value - ** the text of an SQL expression that may be used by the main SQL ** statement to output an SQL literal that can be used to resume ** the scan if it is suspended. e.g. for a rowid table, an expression ** like: ** ** format('(%d,%d)', _rowid_, n.ii) */ ", thiskey(k, n) AS (" " SELECT o_pk || ', ii', n_pk+1 FROM tabpk" ")" "" ", whereclause(w_c) AS (" " SELECT CASE WHEN prev!='' THEN " " '\nWHERE (' || o_pk ||', n.ii) > ' || prev" " ELSE ''" " END" " FROM tabpk, tabname" ")" "" ", main_select(m, n) AS (" " SELECT format(" " '%%s, %%s\nSELECT %%s,\n%%s\nFROM intck_wrapper AS o" ", intck_counter AS n%%s\nORDER BY %%s', " " w, ww.s, c, thiskey.k, whereclause.w_c, t.o_pk" " ), thiskey.n" " FROM case_statement, tabpk t, counter_with, " " wrapper_with ww, thiskey, whereclause" ")" "SELECT m, n FROM main_select", p->zDb, zObj, zPrev, zCommon ); } while( p->rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pStmt) ){ zRet = intckMprintf(p, "%s", (const char*)sqlite3_column_text(pStmt, 0)); if( pnKeyVal ){ *pnKeyVal = sqlite3_column_int(pStmt, 1); } } intckFinalize(p, pStmt); if( bAutoIndex ) intckExec(p, "PRAGMA automatic_index = 1"); return zRet; } /* ** Open a new integrity-check object. */ int sqlite3_intck_open( sqlite3 *db, /* Database handle to operate on */ const char *zDbArg, /* "main", "temp" etc. */ sqlite3_intck **ppOut /* OUT: New integrity-check handle */ ){ sqlite3_intck *pNew = 0; int rc = SQLITE_OK; const char *zDb = zDbArg ? zDbArg : "main"; int nDb = (int)strlen(zDb); pNew = (sqlite3_intck*)sqlite3_malloc(sizeof(*pNew) + nDb + 1); if( pNew==0 ){ rc = SQLITE_NOMEM; }else{ memset(pNew, 0, sizeof(*pNew)); pNew->db = db; pNew->zDb = (const char*)&pNew[1]; memcpy(&pNew[1], zDb, nDb+1); rc = sqlite3_create_function(db, "parse_create_index", 2, SQLITE_UTF8, 0, intckParseCreateIndexFunc, 0, 0 ); if( rc!=SQLITE_OK ){ sqlite3_intck_close(pNew); pNew = 0; } } *ppOut = pNew; return rc; } /* ** Free the integrity-check object. */ void sqlite3_intck_close(sqlite3_intck *p){ if( p ){ sqlite3_finalize(p->pCheck); sqlite3_create_function( p->db, "parse_create_index", 1, SQLITE_UTF8, 0, 0, 0, 0 ); sqlite3_free(p->zObj); sqlite3_free(p->zKey); sqlite3_free(p->zTestSql); sqlite3_free(p->zErr); sqlite3_free(p->zMessage); sqlite3_free(p); } } /* ** Step the integrity-check object. */ int sqlite3_intck_step(sqlite3_intck *p){ if( p->rc==SQLITE_OK ){ if( p->zMessage ){ sqlite3_free(p->zMessage); p->zMessage = 0; } if( p->bCorruptSchema ){ p->rc = SQLITE_DONE; }else if( p->pCheck==0 ){ intckFindObject(p); if( p->rc==SQLITE_OK ){ if( p->zObj ){ char *zSql = 0; zSql = intckCheckObjectSql(p, p->zObj, p->zKey, &p->nKeyVal); p->pCheck = intckPrepare(p, zSql); sqlite3_free(zSql); sqlite3_free(p->zKey); p->zKey = 0; }else{ p->rc = SQLITE_DONE; } }else if( p->rc==SQLITE_CORRUPT ){ p->rc = SQLITE_OK; p->zMessage = intckMprintf(p, "%s", "corruption found while reading database schema" ); p->bCorruptSchema = 1; } } if( p->pCheck ){ assert( p->rc==SQLITE_OK ); if( sqlite3_step(p->pCheck)==SQLITE_ROW ){ /* Normal case, do nothing. */ }else{ intckFinalize(p, p->pCheck); p->pCheck = 0; p->nKeyVal = 0; if( p->rc==SQLITE_CORRUPT ){ p->rc = SQLITE_OK; p->zMessage = intckMprintf(p, "corruption found while scanning database object %s", p->zObj ); } } } } return p->rc; } /* ** Return a message describing the corruption encountered by the most recent ** call to sqlite3_intck_step(), or NULL if no corruption was encountered. */ const char *sqlite3_intck_message(sqlite3_intck *p){ assert( p->pCheck==0 || p->zMessage==0 ); if( p->zMessage ){ return p->zMessage; } if( p->pCheck ){ return (const char*)sqlite3_column_text(p->pCheck, 0); } return 0; } /* ** Return the error code and message. */ int sqlite3_intck_error(sqlite3_intck *p, const char **pzErr){ if( pzErr ) *pzErr = p->zErr; return (p->rc==SQLITE_DONE ? SQLITE_OK : p->rc); } /* ** Close any read transaction the integrity-check object is holding open ** on the database. */ int sqlite3_intck_unlock(sqlite3_intck *p){ if( p->rc==SQLITE_OK && p->pCheck ){ assert( p->zKey==0 && p->nKeyVal>0 ); intckSaveKey(p); intckFinalize(p, p->pCheck); p->pCheck = 0; } return p->rc; } /* ** Return the SQL statement used to check object zObj. Or, if zObj is ** NULL, the current SQL statement. */ const char *sqlite3_intck_test_sql(sqlite3_intck *p, const char *zObj){ sqlite3_free(p->zTestSql); if( zObj ){ p->zTestSql = intckCheckObjectSql(p, zObj, 0, 0); }else{ if( p->zObj ){ p->zTestSql = intckCheckObjectSql(p, p->zObj, p->zKey, 0); }else{ sqlite3_free(p->zTestSql); p->zTestSql = 0; } } return p->zTestSql; } /************************* End ../ext/intck/sqlite3intck.c ********************/ /************************* Begin ../ext/misc/stmtrand.c ******************/ /* ** 2024-05-24 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ****************************************************************************** ** ** An SQL function that return pseudo-random non-negative integers. ** ** SELECT stmtrand(123); ** ** A special feature of this function is that the same sequence of random ** integers is returned for each invocation of the statement. This makes ** the results repeatable, and hence useful for testing. The argument is ** an integer which is the seed for the random number sequence. The seed ** is used by the first invocation of this function only and is ignored ** for all subsequent calls within the same statement. ** ** Resetting a statement (sqlite3_reset()) also resets the random number ** sequence. */ /* #include "sqlite3ext.h" */ SQLITE_EXTENSION_INIT1 #include #include /* State of the pseudo-random number generator */ typedef struct Stmtrand { unsigned int x, y; } Stmtrand; /* auxdata key */ #define STMTRAND_KEY (-4418371) /* ** Function: stmtrand(SEED) ** ** Return a pseudo-random number. */ static void stmtrandFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ Stmtrand *p; p = (Stmtrand*)sqlite3_get_auxdata(context, STMTRAND_KEY); if( p==0 ){ unsigned int seed; p = sqlite3_malloc( sizeof(*p) ); if( p==0 ){ sqlite3_result_error_nomem(context); return; } if( argc>=1 ){ seed = (unsigned int)sqlite3_value_int(argv[0]); }else{ seed = 0; } p->x = seed | 1; p->y = seed; sqlite3_set_auxdata(context, STMTRAND_KEY, p, sqlite3_free); p = (Stmtrand*)sqlite3_get_auxdata(context, STMTRAND_KEY); if( p==0 ){ sqlite3_result_error_nomem(context); return; } } p->x = (p->x>>1) ^ ((1+~(p->x&1)) & 0xd0000001); p->y = p->y*1103515245 + 12345; sqlite3_result_int(context, (int)((p->x ^ p->y)&0x7fffffff)); } #ifdef _WIN32 #endif int sqlite3_stmtrand_init( sqlite3 *db, char **pzErrMsg, const sqlite3_api_routines *pApi ){ int rc = SQLITE_OK; SQLITE_EXTENSION_INIT2(pApi); (void)pzErrMsg; /* Unused parameter */ rc = sqlite3_create_function(db, "stmtrand", 1, SQLITE_UTF8, 0, stmtrandFunc, 0, 0); if( rc==SQLITE_OK ){ rc = sqlite3_create_function(db, "stmtrand", 0, SQLITE_UTF8, 0, stmtrandFunc, 0, 0); } return rc; } /************************* End ../ext/misc/stmtrand.c ********************/ /************************* Begin ../ext/misc/vfstrace.c ******************/ /* ** 2011 March 16 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ****************************************************************************** ** ** This file contains code implements a VFS shim that writes diagnostic ** output for each VFS call, similar to "strace". ** ** USAGE: ** ** This source file exports a single symbol which is the name of a ** function: ** ** int vfstrace_register( ** const char *zTraceName, // Name of the newly constructed VFS ** const char *zOldVfsName, // Name of the underlying VFS ** int (*xOut)(const char*,void*), // Output routine. ex: fputs ** void *pOutArg, // 2nd argument to xOut. ex: stderr ** int makeDefault // Make the new VFS the default ** ); ** ** Applications that want to trace their VFS usage must provide a callback ** function with this prototype: ** ** int traceOutput(const char *zMessage, void *pAppData); ** ** This function will "output" the trace messages, where "output" can ** mean different things to different applications. The traceOutput function ** for the command-line shell (see shell.c) is "fputs" from the standard ** library, which means that all trace output is written on the stream ** specified by the second argument. In the case of the command-line shell ** the second argument is stderr. Other applications might choose to output ** trace information to a file, over a socket, or write it into a buffer. ** ** The vfstrace_register() function creates a new "shim" VFS named by ** the zTraceName parameter. A "shim" VFS is an SQLite backend that does ** not really perform the duties of a true backend, but simply filters or ** interprets VFS calls before passing them off to another VFS which does ** the actual work. In this case the other VFS - the one that does the ** real work - is identified by the second parameter, zOldVfsName. If ** the 2nd parameter is NULL then the default VFS is used. The common ** case is for the 2nd parameter to be NULL. ** ** The third and fourth parameters are the pointer to the output function ** and the second argument to the output function. For the SQLite ** command-line shell, when the -vfstrace option is used, these parameters ** are fputs and stderr, respectively. ** ** The fifth argument is true (non-zero) to cause the newly created VFS ** to become the default VFS. The common case is for the fifth parameter ** to be true. ** ** The call to vfstrace_register() simply creates the shim VFS that does ** tracing. The application must also arrange to use the new VFS for ** all database connections that are created and for which tracing is ** desired. This can be done by specifying the trace VFS using URI filename ** notation, or by specifying the trace VFS as the 4th parameter to ** sqlite3_open_v2() or by making the trace VFS be the default (by setting ** the 5th parameter of vfstrace_register() to 1). ** ** ** ENABLING VFSTRACE IN A COMMAND-LINE SHELL ** ** The SQLite command line shell implemented by the shell.c source file ** can be used with this module. To compile in -vfstrace support, first ** gather this file (test_vfstrace.c), the shell source file (shell.c), ** and the SQLite amalgamation source files (sqlite3.c, sqlite3.h) into ** the working directory. Then compile using a command like the following: ** ** gcc -o sqlite3 -Os -I. -DSQLITE_ENABLE_VFSTRACE \ ** -DSQLITE_THREADSAFE=0 -DSQLITE_ENABLE_FTS3 -DSQLITE_ENABLE_RTREE \ ** -DHAVE_READLINE -DHAVE_USLEEP=1 \ ** shell.c test_vfstrace.c sqlite3.c -ldl -lreadline -lncurses ** ** The gcc command above works on Linux and provides (in addition to the ** -vfstrace option) support for FTS3 and FTS4, RTREE, and command-line ** editing using the readline library. The command-line shell does not ** use threads so we added -DSQLITE_THREADSAFE=0 just to make the code ** run a little faster. For compiling on a Mac, you'll probably need ** to omit the -DHAVE_READLINE, the -lreadline, and the -lncurses options. ** The compilation could be simplified to just this: ** ** gcc -DSQLITE_ENABLE_VFSTRACE \ ** shell.c test_vfstrace.c sqlite3.c -ldl -lpthread ** ** In this second example, all unnecessary options have been removed ** Note that since the code is now threadsafe, we had to add the -lpthread ** option to pull in the pthreads library. ** ** To cross-compile for windows using MinGW, a command like this might ** work: ** ** /opt/mingw/bin/i386-mingw32msvc-gcc -o sqlite3.exe -Os -I \ ** -DSQLITE_THREADSAFE=0 -DSQLITE_ENABLE_VFSTRACE \ ** shell.c test_vfstrace.c sqlite3.c ** ** Similar compiler commands will work on different systems. The key ** invariants are (1) you must have -DSQLITE_ENABLE_VFSTRACE so that ** the shell.c source file will know to include the -vfstrace command-line ** option and (2) you must compile and link the three source files ** shell,c, test_vfstrace.c, and sqlite3.c. */ #include #include /* #include "sqlite3.h" */ /* ** An instance of this structure is attached to the each trace VFS to ** provide auxiliary information. */ typedef struct vfstrace_info vfstrace_info; struct vfstrace_info { sqlite3_vfs *pRootVfs; /* The underlying real VFS */ int (*xOut)(const char*, void*); /* Send output here */ void *pOutArg; /* First argument to xOut */ const char *zVfsName; /* Name of this trace-VFS */ sqlite3_vfs *pTraceVfs; /* Pointer back to the trace VFS */ }; /* ** The sqlite3_file object for the trace VFS */ typedef struct vfstrace_file vfstrace_file; struct vfstrace_file { sqlite3_file base; /* Base class. Must be first */ vfstrace_info *pInfo; /* The trace-VFS to which this file belongs */ const char *zFName; /* Base name of the file */ sqlite3_file *pReal; /* The real underlying file */ }; /* ** Method declarations for vfstrace_file. */ static int vfstraceClose(sqlite3_file*); static int vfstraceRead(sqlite3_file*, void*, int iAmt, sqlite3_int64 iOfst); static int vfstraceWrite(sqlite3_file*,const void*,int iAmt, sqlite3_int64); static int vfstraceTruncate(sqlite3_file*, sqlite3_int64 size); static int vfstraceSync(sqlite3_file*, int flags); static int vfstraceFileSize(sqlite3_file*, sqlite3_int64 *pSize); static int vfstraceLock(sqlite3_file*, int); static int vfstraceUnlock(sqlite3_file*, int); static int vfstraceCheckReservedLock(sqlite3_file*, int *); static int vfstraceFileControl(sqlite3_file*, int op, void *pArg); static int vfstraceSectorSize(sqlite3_file*); static int vfstraceDeviceCharacteristics(sqlite3_file*); static int vfstraceShmLock(sqlite3_file*,int,int,int); static int vfstraceShmMap(sqlite3_file*,int,int,int, void volatile **); static void vfstraceShmBarrier(sqlite3_file*); static int vfstraceShmUnmap(sqlite3_file*,int); /* ** Method declarations for vfstrace_vfs. */ static int vfstraceOpen(sqlite3_vfs*, const char *, sqlite3_file*, int , int *); static int vfstraceDelete(sqlite3_vfs*, const char *zName, int syncDir); static int vfstraceAccess(sqlite3_vfs*, const char *zName, int flags, int *); static int vfstraceFullPathname(sqlite3_vfs*, const char *zName, int, char *); static void *vfstraceDlOpen(sqlite3_vfs*, const char *zFilename); static void vfstraceDlError(sqlite3_vfs*, int nByte, char *zErrMsg); static void (*vfstraceDlSym(sqlite3_vfs*,void*, const char *zSymbol))(void); static void vfstraceDlClose(sqlite3_vfs*, void*); static int vfstraceRandomness(sqlite3_vfs*, int nByte, char *zOut); static int vfstraceSleep(sqlite3_vfs*, int microseconds); static int vfstraceCurrentTime(sqlite3_vfs*, double*); static int vfstraceGetLastError(sqlite3_vfs*, int, char*); static int vfstraceCurrentTimeInt64(sqlite3_vfs*, sqlite3_int64*); static int vfstraceSetSystemCall(sqlite3_vfs*,const char*, sqlite3_syscall_ptr); static sqlite3_syscall_ptr vfstraceGetSystemCall(sqlite3_vfs*, const char *); static const char *vfstraceNextSystemCall(sqlite3_vfs*, const char *zName); /* ** Return a pointer to the tail of the pathname. Examples: ** ** /home/drh/xyzzy.txt -> xyzzy.txt ** xyzzy.txt -> xyzzy.txt */ static const char *fileTail(const char *z){ size_t i; if( z==0 ) return 0; i = strlen(z)-1; while( i>0 && z[i-1]!='/' ){ i--; } return &z[i]; } /* ** Send trace output defined by zFormat and subsequent arguments. */ static void vfstrace_printf( vfstrace_info *pInfo, const char *zFormat, ... ){ va_list ap; char *zMsg; va_start(ap, zFormat); zMsg = sqlite3_vmprintf(zFormat, ap); va_end(ap); pInfo->xOut(zMsg, pInfo->pOutArg); sqlite3_free(zMsg); } /* ** Try to convert an error code into a symbolic name for that error code. */ static const char *vfstrace_errcode_name(int rc ){ const char *zVal = 0; switch( rc ){ case SQLITE_OK: zVal = "SQLITE_OK"; break; case SQLITE_INTERNAL: zVal = "SQLITE_INTERNAL"; break; case SQLITE_ERROR: zVal = "SQLITE_ERROR"; break; case SQLITE_PERM: zVal = "SQLITE_PERM"; break; case SQLITE_ABORT: zVal = "SQLITE_ABORT"; break; case SQLITE_BUSY: zVal = "SQLITE_BUSY"; break; case SQLITE_LOCKED: zVal = "SQLITE_LOCKED"; break; case SQLITE_NOMEM: zVal = "SQLITE_NOMEM"; break; case SQLITE_READONLY: zVal = "SQLITE_READONLY"; break; case SQLITE_INTERRUPT: zVal = "SQLITE_INTERRUPT"; break; case SQLITE_IOERR: zVal = "SQLITE_IOERR"; break; case SQLITE_CORRUPT: zVal = "SQLITE_CORRUPT"; break; case SQLITE_NOTFOUND: zVal = "SQLITE_NOTFOUND"; break; case SQLITE_FULL: zVal = "SQLITE_FULL"; break; case SQLITE_CANTOPEN: zVal = "SQLITE_CANTOPEN"; break; case SQLITE_PROTOCOL: zVal = "SQLITE_PROTOCOL"; break; case SQLITE_EMPTY: zVal = "SQLITE_EMPTY"; break; case SQLITE_SCHEMA: zVal = "SQLITE_SCHEMA"; break; case SQLITE_TOOBIG: zVal = "SQLITE_TOOBIG"; break; case SQLITE_CONSTRAINT: zVal = "SQLITE_CONSTRAINT"; break; case SQLITE_MISMATCH: zVal = "SQLITE_MISMATCH"; break; case SQLITE_MISUSE: zVal = "SQLITE_MISUSE"; break; case SQLITE_NOLFS: zVal = "SQLITE_NOLFS"; break; case SQLITE_IOERR_READ: zVal = "SQLITE_IOERR_READ"; break; case SQLITE_IOERR_SHORT_READ: zVal = "SQLITE_IOERR_SHORT_READ"; break; case SQLITE_IOERR_WRITE: zVal = "SQLITE_IOERR_WRITE"; break; case SQLITE_IOERR_FSYNC: zVal = "SQLITE_IOERR_FSYNC"; break; case SQLITE_IOERR_DIR_FSYNC: zVal = "SQLITE_IOERR_DIR_FSYNC"; break; case SQLITE_IOERR_TRUNCATE: zVal = "SQLITE_IOERR_TRUNCATE"; break; case SQLITE_IOERR_FSTAT: zVal = "SQLITE_IOERR_FSTAT"; break; case SQLITE_IOERR_UNLOCK: zVal = "SQLITE_IOERR_UNLOCK"; break; case SQLITE_IOERR_RDLOCK: zVal = "SQLITE_IOERR_RDLOCK"; break; case SQLITE_IOERR_DELETE: zVal = "SQLITE_IOERR_DELETE"; break; case SQLITE_IOERR_BLOCKED: zVal = "SQLITE_IOERR_BLOCKED"; break; case SQLITE_IOERR_NOMEM: zVal = "SQLITE_IOERR_NOMEM"; break; case SQLITE_IOERR_ACCESS: zVal = "SQLITE_IOERR_ACCESS"; break; case SQLITE_IOERR_CHECKRESERVEDLOCK: zVal = "SQLITE_IOERR_CHECKRESERVEDLOCK"; break; case SQLITE_IOERR_LOCK: zVal = "SQLITE_IOERR_LOCK"; break; case SQLITE_IOERR_CLOSE: zVal = "SQLITE_IOERR_CLOSE"; break; case SQLITE_IOERR_DIR_CLOSE: zVal = "SQLITE_IOERR_DIR_CLOSE"; break; case SQLITE_IOERR_SHMOPEN: zVal = "SQLITE_IOERR_SHMOPEN"; break; case SQLITE_IOERR_SHMSIZE: zVal = "SQLITE_IOERR_SHMSIZE"; break; case SQLITE_IOERR_SHMLOCK: zVal = "SQLITE_IOERR_SHMLOCK"; break; case SQLITE_IOERR_SHMMAP: zVal = "SQLITE_IOERR_SHMMAP"; break; case SQLITE_IOERR_SEEK: zVal = "SQLITE_IOERR_SEEK"; break; case SQLITE_IOERR_GETTEMPPATH: zVal = "SQLITE_IOERR_GETTEMPPATH"; break; case SQLITE_IOERR_CONVPATH: zVal = "SQLITE_IOERR_CONVPATH"; break; case SQLITE_READONLY_DBMOVED: zVal = "SQLITE_READONLY_DBMOVED"; break; case SQLITE_LOCKED_SHAREDCACHE: zVal = "SQLITE_LOCKED_SHAREDCACHE"; break; case SQLITE_BUSY_RECOVERY: zVal = "SQLITE_BUSY_RECOVERY"; break; case SQLITE_CANTOPEN_NOTEMPDIR: zVal = "SQLITE_CANTOPEN_NOTEMPDIR"; break; } return zVal; } /* ** Convert value rc into a string and print it using zFormat. zFormat ** should have exactly one %s */ static void vfstrace_print_errcode( vfstrace_info *pInfo, const char *zFormat, int rc ){ const char *zVal; char zBuf[50]; zVal = vfstrace_errcode_name(rc); if( zVal==0 ){ zVal = vfstrace_errcode_name(rc&0xff); if( zVal ){ sqlite3_snprintf(sizeof(zBuf), zBuf, "%s | 0x%x", zVal, rc&0xffff00); }else{ sqlite3_snprintf(sizeof(zBuf), zBuf, "%d (0x%x)", rc, rc); } zVal = zBuf; } vfstrace_printf(pInfo, zFormat, zVal); } /* ** Append to a buffer. */ static void strappend(char *z, int *pI, const char *zAppend){ int i = *pI; while( zAppend[0] ){ z[i++] = *(zAppend++); } z[i] = 0; *pI = i; } /* ** Close an vfstrace-file. */ static int vfstraceClose(sqlite3_file *pFile){ vfstrace_file *p = (vfstrace_file *)pFile; vfstrace_info *pInfo = p->pInfo; int rc; vfstrace_printf(pInfo, "%s.xClose(%s)", pInfo->zVfsName, p->zFName); rc = p->pReal->pMethods->xClose(p->pReal); vfstrace_print_errcode(pInfo, " -> %s\n", rc); if( rc==SQLITE_OK ){ sqlite3_free((void*)p->base.pMethods); p->base.pMethods = 0; } return rc; } /* ** Read data from an vfstrace-file. */ static int vfstraceRead( sqlite3_file *pFile, void *zBuf, int iAmt, sqlite_int64 iOfst ){ vfstrace_file *p = (vfstrace_file *)pFile; vfstrace_info *pInfo = p->pInfo; int rc; vfstrace_printf(pInfo, "%s.xRead(%s,n=%d,ofst=%lld)", pInfo->zVfsName, p->zFName, iAmt, iOfst); rc = p->pReal->pMethods->xRead(p->pReal, zBuf, iAmt, iOfst); vfstrace_print_errcode(pInfo, " -> %s\n", rc); return rc; } /* ** Write data to an vfstrace-file. */ static int vfstraceWrite( sqlite3_file *pFile, const void *zBuf, int iAmt, sqlite_int64 iOfst ){ vfstrace_file *p = (vfstrace_file *)pFile; vfstrace_info *pInfo = p->pInfo; int rc; vfstrace_printf(pInfo, "%s.xWrite(%s,n=%d,ofst=%lld)", pInfo->zVfsName, p->zFName, iAmt, iOfst); rc = p->pReal->pMethods->xWrite(p->pReal, zBuf, iAmt, iOfst); vfstrace_print_errcode(pInfo, " -> %s\n", rc); return rc; } /* ** Truncate an vfstrace-file. */ static int vfstraceTruncate(sqlite3_file *pFile, sqlite_int64 size){ vfstrace_file *p = (vfstrace_file *)pFile; vfstrace_info *pInfo = p->pInfo; int rc; vfstrace_printf(pInfo, "%s.xTruncate(%s,%lld)", pInfo->zVfsName, p->zFName, size); rc = p->pReal->pMethods->xTruncate(p->pReal, size); vfstrace_printf(pInfo, " -> %d\n", rc); return rc; } /* ** Sync an vfstrace-file. */ static int vfstraceSync(sqlite3_file *pFile, int flags){ vfstrace_file *p = (vfstrace_file *)pFile; vfstrace_info *pInfo = p->pInfo; int rc; int i; char zBuf[100]; memcpy(zBuf, "|0", 3); i = 0; if( flags & SQLITE_SYNC_FULL ) strappend(zBuf, &i, "|FULL"); else if( flags & SQLITE_SYNC_NORMAL ) strappend(zBuf, &i, "|NORMAL"); if( flags & SQLITE_SYNC_DATAONLY ) strappend(zBuf, &i, "|DATAONLY"); if( flags & ~(SQLITE_SYNC_FULL|SQLITE_SYNC_DATAONLY) ){ sqlite3_snprintf(sizeof(zBuf)-i, &zBuf[i], "|0x%x", flags); } vfstrace_printf(pInfo, "%s.xSync(%s,%s)", pInfo->zVfsName, p->zFName, &zBuf[1]); rc = p->pReal->pMethods->xSync(p->pReal, flags); vfstrace_printf(pInfo, " -> %d\n", rc); return rc; } /* ** Return the current file-size of an vfstrace-file. */ static int vfstraceFileSize(sqlite3_file *pFile, sqlite_int64 *pSize){ vfstrace_file *p = (vfstrace_file *)pFile; vfstrace_info *pInfo = p->pInfo; int rc; vfstrace_printf(pInfo, "%s.xFileSize(%s)", pInfo->zVfsName, p->zFName); rc = p->pReal->pMethods->xFileSize(p->pReal, pSize); vfstrace_print_errcode(pInfo, " -> %s,", rc); vfstrace_printf(pInfo, " size=%lld\n", *pSize); return rc; } /* ** Return the name of a lock. */ static const char *lockName(int eLock){ const char *azLockNames[] = { "NONE", "SHARED", "RESERVED", "PENDING", "EXCLUSIVE" }; if( eLock<0 || eLock>=(int)(sizeof(azLockNames)/sizeof(azLockNames[0])) ){ return "???"; }else{ return azLockNames[eLock]; } } /* ** Lock an vfstrace-file. */ static int vfstraceLock(sqlite3_file *pFile, int eLock){ vfstrace_file *p = (vfstrace_file *)pFile; vfstrace_info *pInfo = p->pInfo; int rc; vfstrace_printf(pInfo, "%s.xLock(%s,%s)", pInfo->zVfsName, p->zFName, lockName(eLock)); rc = p->pReal->pMethods->xLock(p->pReal, eLock); vfstrace_print_errcode(pInfo, " -> %s\n", rc); return rc; } /* ** Unlock an vfstrace-file. */ static int vfstraceUnlock(sqlite3_file *pFile, int eLock){ vfstrace_file *p = (vfstrace_file *)pFile; vfstrace_info *pInfo = p->pInfo; int rc; vfstrace_printf(pInfo, "%s.xUnlock(%s,%s)", pInfo->zVfsName, p->zFName, lockName(eLock)); rc = p->pReal->pMethods->xUnlock(p->pReal, eLock); vfstrace_print_errcode(pInfo, " -> %s\n", rc); return rc; } /* ** Check if another file-handle holds a RESERVED lock on an vfstrace-file. */ static int vfstraceCheckReservedLock(sqlite3_file *pFile, int *pResOut){ vfstrace_file *p = (vfstrace_file *)pFile; vfstrace_info *pInfo = p->pInfo; int rc; vfstrace_printf(pInfo, "%s.xCheckReservedLock(%s,%d)", pInfo->zVfsName, p->zFName); rc = p->pReal->pMethods->xCheckReservedLock(p->pReal, pResOut); vfstrace_print_errcode(pInfo, " -> %s", rc); vfstrace_printf(pInfo, ", out=%d\n", *pResOut); return rc; } /* ** File control method. For custom operations on an vfstrace-file. */ static int vfstraceFileControl(sqlite3_file *pFile, int op, void *pArg){ vfstrace_file *p = (vfstrace_file *)pFile; vfstrace_info *pInfo = p->pInfo; int rc; char zBuf[100]; char zBuf2[100]; char *zOp; char *zRVal = 0; switch( op ){ case SQLITE_FCNTL_LOCKSTATE: zOp = "LOCKSTATE"; break; case SQLITE_GET_LOCKPROXYFILE: zOp = "GET_LOCKPROXYFILE"; break; case SQLITE_SET_LOCKPROXYFILE: zOp = "SET_LOCKPROXYFILE"; break; case SQLITE_LAST_ERRNO: zOp = "LAST_ERRNO"; break; case SQLITE_FCNTL_SIZE_HINT: { sqlite3_snprintf(sizeof(zBuf), zBuf, "SIZE_HINT,%lld", *(sqlite3_int64*)pArg); zOp = zBuf; break; } case SQLITE_FCNTL_CHUNK_SIZE: { sqlite3_snprintf(sizeof(zBuf), zBuf, "CHUNK_SIZE,%d", *(int*)pArg); zOp = zBuf; break; } case SQLITE_FCNTL_FILE_POINTER: zOp = "FILE_POINTER"; break; case SQLITE_FCNTL_WIN32_AV_RETRY: zOp = "WIN32_AV_RETRY"; break; case SQLITE_FCNTL_PERSIST_WAL: { sqlite3_snprintf(sizeof(zBuf), zBuf, "PERSIST_WAL,%d", *(int*)pArg); zOp = zBuf; break; } case SQLITE_FCNTL_OVERWRITE: zOp = "OVERWRITE"; break; case SQLITE_FCNTL_VFSNAME: zOp = "VFSNAME"; break; case SQLITE_FCNTL_POWERSAFE_OVERWRITE: zOp = "POWERSAFE_OVERWRITE"; break; case SQLITE_FCNTL_PRAGMA: { const char *const* a = (const char*const*)pArg; sqlite3_snprintf(sizeof(zBuf), zBuf, "PRAGMA,[%s,%s]",a[1],a[2]); zOp = zBuf; break; } case SQLITE_FCNTL_BUSYHANDLER: zOp = "BUSYHANDLER"; break; case SQLITE_FCNTL_TEMPFILENAME: zOp = "TEMPFILENAME"; break; case SQLITE_FCNTL_MMAP_SIZE: { sqlite3_int64 iMMap = *(sqlite3_int64*)pArg; sqlite3_snprintf(sizeof(zBuf), zBuf, "MMAP_SIZE,%lld",iMMap); zOp = zBuf; break; } case SQLITE_FCNTL_TRACE: zOp = "TRACE"; break; case SQLITE_FCNTL_HAS_MOVED: zOp = "HAS_MOVED"; break; case SQLITE_FCNTL_SYNC: zOp = "SYNC"; break; case SQLITE_FCNTL_COMMIT_PHASETWO: zOp = "COMMIT_PHASETWO"; break; case SQLITE_FCNTL_WIN32_SET_HANDLE: zOp = "WIN32_SET_HANDLE"; break; case SQLITE_FCNTL_WAL_BLOCK: zOp = "WAL_BLOCK"; break; case SQLITE_FCNTL_ZIPVFS: zOp = "ZIPVFS"; break; case SQLITE_FCNTL_RBU: zOp = "RBU"; break; case SQLITE_FCNTL_VFS_POINTER: zOp = "VFS_POINTER"; break; case SQLITE_FCNTL_JOURNAL_POINTER: zOp = "JOURNAL_POINTER"; break; case SQLITE_FCNTL_WIN32_GET_HANDLE: zOp = "WIN32_GET_HANDLE"; break; case SQLITE_FCNTL_PDB: zOp = "PDB"; break; case SQLITE_FCNTL_BEGIN_ATOMIC_WRITE: zOp = "BEGIN_ATOMIC_WRITE"; break; case SQLITE_FCNTL_COMMIT_ATOMIC_WRITE: zOp = "COMMIT_ATOMIC_WRITE"; break; case SQLITE_FCNTL_ROLLBACK_ATOMIC_WRITE: { zOp = "ROLLBACK_ATOMIC_WRITE"; break; } case SQLITE_FCNTL_LOCK_TIMEOUT: { sqlite3_snprintf(sizeof(zBuf), zBuf, "LOCK_TIMEOUT,%d", *(int*)pArg); zOp = zBuf; break; } case SQLITE_FCNTL_DATA_VERSION: zOp = "DATA_VERSION"; break; case SQLITE_FCNTL_SIZE_LIMIT: zOp = "SIZE_LIMIT"; break; case SQLITE_FCNTL_CKPT_DONE: zOp = "CKPT_DONE"; break; case SQLITE_FCNTL_RESERVE_BYTES: zOp = "RESERVED_BYTES"; break; case SQLITE_FCNTL_CKPT_START: zOp = "CKPT_START"; break; case SQLITE_FCNTL_EXTERNAL_READER: zOp = "EXTERNAL_READER"; break; case SQLITE_FCNTL_CKSM_FILE: zOp = "CKSM_FILE"; break; case SQLITE_FCNTL_RESET_CACHE: zOp = "RESET_CACHE"; break; case 0xca093fa0: zOp = "DB_UNCHANGED"; break; default: { sqlite3_snprintf(sizeof zBuf, zBuf, "%d", op); zOp = zBuf; break; } } vfstrace_printf(pInfo, "%s.xFileControl(%s,%s)", pInfo->zVfsName, p->zFName, zOp); rc = p->pReal->pMethods->xFileControl(p->pReal, op, pArg); if( rc==SQLITE_OK ){ switch( op ){ case SQLITE_FCNTL_VFSNAME: { *(char**)pArg = sqlite3_mprintf("vfstrace.%s/%z", pInfo->zVfsName, *(char**)pArg); zRVal = *(char**)pArg; break; } case SQLITE_FCNTL_MMAP_SIZE: { sqlite3_snprintf(sizeof(zBuf2), zBuf2, "%lld", *(sqlite3_int64*)pArg); zRVal = zBuf2; break; } case SQLITE_FCNTL_HAS_MOVED: case SQLITE_FCNTL_PERSIST_WAL: { sqlite3_snprintf(sizeof(zBuf2), zBuf2, "%d", *(int*)pArg); zRVal = zBuf2; break; } case SQLITE_FCNTL_PRAGMA: case SQLITE_FCNTL_TEMPFILENAME: { zRVal = *(char**)pArg; break; } } } if( zRVal ){ vfstrace_print_errcode(pInfo, " -> %s", rc); vfstrace_printf(pInfo, ", %s\n", zRVal); }else{ vfstrace_print_errcode(pInfo, " -> %s\n", rc); } return rc; } /* ** Return the sector-size in bytes for an vfstrace-file. */ static int vfstraceSectorSize(sqlite3_file *pFile){ vfstrace_file *p = (vfstrace_file *)pFile; vfstrace_info *pInfo = p->pInfo; int rc; vfstrace_printf(pInfo, "%s.xSectorSize(%s)", pInfo->zVfsName, p->zFName); rc = p->pReal->pMethods->xSectorSize(p->pReal); vfstrace_printf(pInfo, " -> %d\n", rc); return rc; } /* ** Return the device characteristic flags supported by an vfstrace-file. */ static int vfstraceDeviceCharacteristics(sqlite3_file *pFile){ vfstrace_file *p = (vfstrace_file *)pFile; vfstrace_info *pInfo = p->pInfo; int rc; vfstrace_printf(pInfo, "%s.xDeviceCharacteristics(%s)", pInfo->zVfsName, p->zFName); rc = p->pReal->pMethods->xDeviceCharacteristics(p->pReal); vfstrace_printf(pInfo, " -> 0x%08x\n", rc); return rc; } /* ** Shared-memory operations. */ static int vfstraceShmLock(sqlite3_file *pFile, int ofst, int n, int flags){ vfstrace_file *p = (vfstrace_file *)pFile; vfstrace_info *pInfo = p->pInfo; int rc; char zLck[100]; int i = 0; memcpy(zLck, "|0", 3); if( flags & SQLITE_SHM_UNLOCK ) strappend(zLck, &i, "|UNLOCK"); if( flags & SQLITE_SHM_LOCK ) strappend(zLck, &i, "|LOCK"); if( flags & SQLITE_SHM_SHARED ) strappend(zLck, &i, "|SHARED"); if( flags & SQLITE_SHM_EXCLUSIVE ) strappend(zLck, &i, "|EXCLUSIVE"); if( flags & ~(0xf) ){ sqlite3_snprintf(sizeof(zLck)-i, &zLck[i], "|0x%x", flags); } vfstrace_printf(pInfo, "%s.xShmLock(%s,ofst=%d,n=%d,%s)", pInfo->zVfsName, p->zFName, ofst, n, &zLck[1]); rc = p->pReal->pMethods->xShmLock(p->pReal, ofst, n, flags); vfstrace_print_errcode(pInfo, " -> %s\n", rc); return rc; } static int vfstraceShmMap( sqlite3_file *pFile, int iRegion, int szRegion, int isWrite, void volatile **pp ){ vfstrace_file *p = (vfstrace_file *)pFile; vfstrace_info *pInfo = p->pInfo; int rc; vfstrace_printf(pInfo, "%s.xShmMap(%s,iRegion=%d,szRegion=%d,isWrite=%d,*)", pInfo->zVfsName, p->zFName, iRegion, szRegion, isWrite); rc = p->pReal->pMethods->xShmMap(p->pReal, iRegion, szRegion, isWrite, pp); vfstrace_print_errcode(pInfo, " -> %s\n", rc); return rc; } static void vfstraceShmBarrier(sqlite3_file *pFile){ vfstrace_file *p = (vfstrace_file *)pFile; vfstrace_info *pInfo = p->pInfo; vfstrace_printf(pInfo, "%s.xShmBarrier(%s)\n", pInfo->zVfsName, p->zFName); p->pReal->pMethods->xShmBarrier(p->pReal); } static int vfstraceShmUnmap(sqlite3_file *pFile, int delFlag){ vfstrace_file *p = (vfstrace_file *)pFile; vfstrace_info *pInfo = p->pInfo; int rc; vfstrace_printf(pInfo, "%s.xShmUnmap(%s,delFlag=%d)", pInfo->zVfsName, p->zFName, delFlag); rc = p->pReal->pMethods->xShmUnmap(p->pReal, delFlag); vfstrace_print_errcode(pInfo, " -> %s\n", rc); return rc; } /* ** Open an vfstrace file handle. */ static int vfstraceOpen( sqlite3_vfs *pVfs, const char *zName, sqlite3_file *pFile, int flags, int *pOutFlags ){ int rc; vfstrace_file *p = (vfstrace_file *)pFile; vfstrace_info *pInfo = (vfstrace_info*)pVfs->pAppData; sqlite3_vfs *pRoot = pInfo->pRootVfs; p->pInfo = pInfo; p->zFName = zName ? fileTail(zName) : ""; p->pReal = (sqlite3_file *)&p[1]; rc = pRoot->xOpen(pRoot, zName, p->pReal, flags, pOutFlags); vfstrace_printf(pInfo, "%s.xOpen(%s,flags=0x%x)", pInfo->zVfsName, p->zFName, flags); if( p->pReal->pMethods ){ sqlite3_io_methods *pNew = sqlite3_malloc( sizeof(*pNew) ); const sqlite3_io_methods *pSub = p->pReal->pMethods; memset(pNew, 0, sizeof(*pNew)); pNew->iVersion = pSub->iVersion; pNew->xClose = vfstraceClose; pNew->xRead = vfstraceRead; pNew->xWrite = vfstraceWrite; pNew->xTruncate = vfstraceTruncate; pNew->xSync = vfstraceSync; pNew->xFileSize = vfstraceFileSize; pNew->xLock = vfstraceLock; pNew->xUnlock = vfstraceUnlock; pNew->xCheckReservedLock = vfstraceCheckReservedLock; pNew->xFileControl = vfstraceFileControl; pNew->xSectorSize = vfstraceSectorSize; pNew->xDeviceCharacteristics = vfstraceDeviceCharacteristics; if( pNew->iVersion>=2 ){ pNew->xShmMap = pSub->xShmMap ? vfstraceShmMap : 0; pNew->xShmLock = pSub->xShmLock ? vfstraceShmLock : 0; pNew->xShmBarrier = pSub->xShmBarrier ? vfstraceShmBarrier : 0; pNew->xShmUnmap = pSub->xShmUnmap ? vfstraceShmUnmap : 0; } pFile->pMethods = pNew; } vfstrace_print_errcode(pInfo, " -> %s", rc); if( pOutFlags ){ vfstrace_printf(pInfo, ", outFlags=0x%x\n", *pOutFlags); }else{ vfstrace_printf(pInfo, "\n"); } return rc; } /* ** Delete the file located at zPath. If the dirSync argument is true, ** ensure the file-system modifications are synced to disk before ** returning. */ static int vfstraceDelete(sqlite3_vfs *pVfs, const char *zPath, int dirSync){ vfstrace_info *pInfo = (vfstrace_info*)pVfs->pAppData; sqlite3_vfs *pRoot = pInfo->pRootVfs; int rc; vfstrace_printf(pInfo, "%s.xDelete(\"%s\",%d)", pInfo->zVfsName, zPath, dirSync); rc = pRoot->xDelete(pRoot, zPath, dirSync); vfstrace_print_errcode(pInfo, " -> %s\n", rc); return rc; } /* ** Test for access permissions. Return true if the requested permission ** is available, or false otherwise. */ static int vfstraceAccess( sqlite3_vfs *pVfs, const char *zPath, int flags, int *pResOut ){ vfstrace_info *pInfo = (vfstrace_info*)pVfs->pAppData; sqlite3_vfs *pRoot = pInfo->pRootVfs; int rc; vfstrace_printf(pInfo, "%s.xAccess(\"%s\",%d)", pInfo->zVfsName, zPath, flags); rc = pRoot->xAccess(pRoot, zPath, flags, pResOut); vfstrace_print_errcode(pInfo, " -> %s", rc); vfstrace_printf(pInfo, ", out=%d\n", *pResOut); return rc; } /* ** Populate buffer zOut with the full canonical pathname corresponding ** to the pathname in zPath. zOut is guaranteed to point to a buffer ** of at least (DEVSYM_MAX_PATHNAME+1) bytes. */ static int vfstraceFullPathname( sqlite3_vfs *pVfs, const char *zPath, int nOut, char *zOut ){ vfstrace_info *pInfo = (vfstrace_info*)pVfs->pAppData; sqlite3_vfs *pRoot = pInfo->pRootVfs; int rc; vfstrace_printf(pInfo, "%s.xFullPathname(\"%s\")", pInfo->zVfsName, zPath); rc = pRoot->xFullPathname(pRoot, zPath, nOut, zOut); vfstrace_print_errcode(pInfo, " -> %s", rc); vfstrace_printf(pInfo, ", out=\"%.*s\"\n", nOut, zOut); return rc; } /* ** Open the dynamic library located at zPath and return a handle. */ static void *vfstraceDlOpen(sqlite3_vfs *pVfs, const char *zPath){ vfstrace_info *pInfo = (vfstrace_info*)pVfs->pAppData; sqlite3_vfs *pRoot = pInfo->pRootVfs; vfstrace_printf(pInfo, "%s.xDlOpen(\"%s\")\n", pInfo->zVfsName, zPath); return pRoot->xDlOpen(pRoot, zPath); } /* ** Populate the buffer zErrMsg (size nByte bytes) with a human readable ** utf-8 string describing the most recent error encountered associated ** with dynamic libraries. */ static void vfstraceDlError(sqlite3_vfs *pVfs, int nByte, char *zErrMsg){ vfstrace_info *pInfo = (vfstrace_info*)pVfs->pAppData; sqlite3_vfs *pRoot = pInfo->pRootVfs; vfstrace_printf(pInfo, "%s.xDlError(%d)", pInfo->zVfsName, nByte); pRoot->xDlError(pRoot, nByte, zErrMsg); vfstrace_printf(pInfo, " -> \"%s\"", zErrMsg); } /* ** Return a pointer to the symbol zSymbol in the dynamic library pHandle. */ static void (*vfstraceDlSym(sqlite3_vfs *pVfs,void *p,const char *zSym))(void){ vfstrace_info *pInfo = (vfstrace_info*)pVfs->pAppData; sqlite3_vfs *pRoot = pInfo->pRootVfs; vfstrace_printf(pInfo, "%s.xDlSym(\"%s\")\n", pInfo->zVfsName, zSym); return pRoot->xDlSym(pRoot, p, zSym); } /* ** Close the dynamic library handle pHandle. */ static void vfstraceDlClose(sqlite3_vfs *pVfs, void *pHandle){ vfstrace_info *pInfo = (vfstrace_info*)pVfs->pAppData; sqlite3_vfs *pRoot = pInfo->pRootVfs; vfstrace_printf(pInfo, "%s.xDlOpen()\n", pInfo->zVfsName); pRoot->xDlClose(pRoot, pHandle); } /* ** Populate the buffer pointed to by zBufOut with nByte bytes of ** random data. */ static int vfstraceRandomness(sqlite3_vfs *pVfs, int nByte, char *zBufOut){ vfstrace_info *pInfo = (vfstrace_info*)pVfs->pAppData; sqlite3_vfs *pRoot = pInfo->pRootVfs; vfstrace_printf(pInfo, "%s.xRandomness(%d)\n", pInfo->zVfsName, nByte); return pRoot->xRandomness(pRoot, nByte, zBufOut); } /* ** Sleep for nMicro microseconds. Return the number of microseconds ** actually slept. */ static int vfstraceSleep(sqlite3_vfs *pVfs, int nMicro){ vfstrace_info *pInfo = (vfstrace_info*)pVfs->pAppData; sqlite3_vfs *pRoot = pInfo->pRootVfs; return pRoot->xSleep(pRoot, nMicro); } /* ** Return the current time as a Julian Day number in *pTimeOut. */ static int vfstraceCurrentTime(sqlite3_vfs *pVfs, double *pTimeOut){ vfstrace_info *pInfo = (vfstrace_info*)pVfs->pAppData; sqlite3_vfs *pRoot = pInfo->pRootVfs; return pRoot->xCurrentTime(pRoot, pTimeOut); } static int vfstraceCurrentTimeInt64(sqlite3_vfs *pVfs, sqlite3_int64 *pTimeOut){ vfstrace_info *pInfo = (vfstrace_info*)pVfs->pAppData; sqlite3_vfs *pRoot = pInfo->pRootVfs; return pRoot->xCurrentTimeInt64(pRoot, pTimeOut); } /* ** Return th3 most recent error code and message */ static int vfstraceGetLastError(sqlite3_vfs *pVfs, int iErr, char *zErr){ vfstrace_info *pInfo = (vfstrace_info*)pVfs->pAppData; sqlite3_vfs *pRoot = pInfo->pRootVfs; return pRoot->xGetLastError(pRoot, iErr, zErr); } /* ** Override system calls. */ static int vfstraceSetSystemCall( sqlite3_vfs *pVfs, const char *zName, sqlite3_syscall_ptr pFunc ){ vfstrace_info *pInfo = (vfstrace_info*)pVfs->pAppData; sqlite3_vfs *pRoot = pInfo->pRootVfs; return pRoot->xSetSystemCall(pRoot, zName, pFunc); } static sqlite3_syscall_ptr vfstraceGetSystemCall( sqlite3_vfs *pVfs, const char *zName ){ vfstrace_info *pInfo = (vfstrace_info*)pVfs->pAppData; sqlite3_vfs *pRoot = pInfo->pRootVfs; return pRoot->xGetSystemCall(pRoot, zName); } static const char *vfstraceNextSystemCall(sqlite3_vfs *pVfs, const char *zName){ vfstrace_info *pInfo = (vfstrace_info*)pVfs->pAppData; sqlite3_vfs *pRoot = pInfo->pRootVfs; return pRoot->xNextSystemCall(pRoot, zName); } /* ** Clients invoke this routine to construct a new trace-vfs shim. ** ** Return SQLITE_OK on success. ** ** SQLITE_NOMEM is returned in the case of a memory allocation error. ** SQLITE_NOTFOUND is returned if zOldVfsName does not exist. */ int vfstrace_register( const char *zTraceName, /* Name of the newly constructed VFS */ const char *zOldVfsName, /* Name of the underlying VFS */ int (*xOut)(const char*,void*), /* Output routine. ex: fputs */ void *pOutArg, /* 2nd argument to xOut. ex: stderr */ int makeDefault /* True to make the new VFS the default */ ){ sqlite3_vfs *pNew; sqlite3_vfs *pRoot; vfstrace_info *pInfo; size_t nName; size_t nByte; pRoot = sqlite3_vfs_find(zOldVfsName); if( pRoot==0 ) return SQLITE_NOTFOUND; nName = strlen(zTraceName); nByte = sizeof(*pNew) + sizeof(*pInfo) + nName + 1; pNew = sqlite3_malloc64( nByte ); if( pNew==0 ) return SQLITE_NOMEM; memset(pNew, 0, nByte); pInfo = (vfstrace_info*)&pNew[1]; pNew->iVersion = pRoot->iVersion; pNew->szOsFile = pRoot->szOsFile + sizeof(vfstrace_file); pNew->mxPathname = pRoot->mxPathname; pNew->zName = (char*)&pInfo[1]; memcpy((char*)&pInfo[1], zTraceName, nName+1); pNew->pAppData = pInfo; pNew->xOpen = vfstraceOpen; pNew->xDelete = vfstraceDelete; pNew->xAccess = vfstraceAccess; pNew->xFullPathname = vfstraceFullPathname; pNew->xDlOpen = pRoot->xDlOpen==0 ? 0 : vfstraceDlOpen; pNew->xDlError = pRoot->xDlError==0 ? 0 : vfstraceDlError; pNew->xDlSym = pRoot->xDlSym==0 ? 0 : vfstraceDlSym; pNew->xDlClose = pRoot->xDlClose==0 ? 0 : vfstraceDlClose; pNew->xRandomness = vfstraceRandomness; pNew->xSleep = vfstraceSleep; pNew->xCurrentTime = vfstraceCurrentTime; pNew->xGetLastError = pRoot->xGetLastError==0 ? 0 : vfstraceGetLastError; if( pNew->iVersion>=2 ){ pNew->xCurrentTimeInt64 = pRoot->xCurrentTimeInt64==0 ? 0 : vfstraceCurrentTimeInt64; if( pNew->iVersion>=3 ){ pNew->xSetSystemCall = pRoot->xSetSystemCall==0 ? 0 : vfstraceSetSystemCall; pNew->xGetSystemCall = pRoot->xGetSystemCall==0 ? 0 : vfstraceGetSystemCall; pNew->xNextSystemCall = pRoot->xNextSystemCall==0 ? 0 : vfstraceNextSystemCall; } } pInfo->pRootVfs = pRoot; pInfo->xOut = xOut; pInfo->pOutArg = pOutArg; pInfo->zVfsName = pNew->zName; pInfo->pTraceVfs = pNew; vfstrace_printf(pInfo, "%s.enabled_for(\"%s\")\n", pInfo->zVfsName, pRoot->zName); return sqlite3_vfs_register(pNew, makeDefault); } /* ** Look for the named VFS. If it is a TRACEVFS, then unregister it ** and delete it. */ void vfstrace_unregister(const char *zTraceName){ sqlite3_vfs *pVfs = sqlite3_vfs_find(zTraceName); if( pVfs==0 ) return; if( pVfs->xOpen!=vfstraceOpen ) return; sqlite3_vfs_unregister(pVfs); sqlite3_free(pVfs); } /************************* End ../ext/misc/vfstrace.c ********************/ #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(SQLITE_ENABLE_DBPAGE_VTAB) #define SQLITE_SHELL_HAVE_RECOVER 1 #else #define SQLITE_SHELL_HAVE_RECOVER 0 #endif #if SQLITE_SHELL_HAVE_RECOVER /************************* Begin ../ext/recover/sqlite3recover.h ******************/ /* ** 2022-08-27 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** ** This file contains the public interface to the "recover" extension - ** an SQLite extension designed to recover data from corrupted database ** files. */ /* ** OVERVIEW: ** ** To use the API to recover data from a corrupted database, an ** application: ** ** 1) Creates an sqlite3_recover handle by calling either ** sqlite3_recover_init() or sqlite3_recover_init_sql(). ** ** 2) Configures the new handle using one or more calls to ** sqlite3_recover_config(). ** ** 3) Executes the recovery by repeatedly calling sqlite3_recover_step() on ** the handle until it returns something other than SQLITE_OK. If it ** returns SQLITE_DONE, then the recovery operation completed without ** error. If it returns some other non-SQLITE_OK value, then an error ** has occurred. ** ** 4) Retrieves any error code and English language error message using the ** sqlite3_recover_errcode() and sqlite3_recover_errmsg() APIs, ** respectively. ** ** 5) Destroys the sqlite3_recover handle and frees all resources ** using sqlite3_recover_finish(). ** ** The application may abandon the recovery operation at any point ** before it is finished by passing the sqlite3_recover handle to ** sqlite3_recover_finish(). This is not an error, but the final state ** of the output database, or the results of running the partial script ** delivered to the SQL callback, are undefined. */ #ifndef _SQLITE_RECOVER_H #define _SQLITE_RECOVER_H /* #include "sqlite3.h" */ #ifdef __cplusplus extern "C" { #endif /* ** An instance of the sqlite3_recover object represents a recovery ** operation in progress. ** ** Constructors: ** ** sqlite3_recover_init() ** sqlite3_recover_init_sql() ** ** Destructor: ** ** sqlite3_recover_finish() ** ** Methods: ** ** sqlite3_recover_config() ** sqlite3_recover_errcode() ** sqlite3_recover_errmsg() ** sqlite3_recover_run() ** sqlite3_recover_step() */ typedef struct sqlite3_recover sqlite3_recover; /* ** These two APIs attempt to create and return a new sqlite3_recover object. ** In both cases the first two arguments identify the (possibly ** corrupt) database to recover data from. The first argument is an open ** database handle and the second the name of a database attached to that ** handle (i.e. "main", "temp" or the name of an attached database). ** ** If sqlite3_recover_init() is used to create the new sqlite3_recover ** handle, then data is recovered into a new database, identified by ** string parameter zUri. zUri may be an absolute or relative file path, ** or may be an SQLite URI. If the identified database file already exists, ** it is overwritten. ** ** If sqlite3_recover_init_sql() is invoked, then any recovered data will ** be returned to the user as a series of SQL statements. Executing these ** SQL statements results in the same database as would have been created ** had sqlite3_recover_init() been used. For each SQL statement in the ** output, the callback function passed as the third argument (xSql) is ** invoked once. The first parameter is a passed a copy of the fourth argument ** to this function (pCtx) as its first parameter, and a pointer to a ** nul-terminated buffer containing the SQL statement formated as UTF-8 as ** the second. If the xSql callback returns any value other than SQLITE_OK, ** then processing is immediately abandoned and the value returned used as ** the recover handle error code (see below). ** ** If an out-of-memory error occurs, NULL may be returned instead of ** a valid handle. In all other cases, it is the responsibility of the ** application to avoid resource leaks by ensuring that ** sqlite3_recover_finish() is called on all allocated handles. */ sqlite3_recover *sqlite3_recover_init( sqlite3* db, const char *zDb, const char *zUri ); sqlite3_recover *sqlite3_recover_init_sql( sqlite3* db, const char *zDb, int (*xSql)(void*, const char*), void *pCtx ); /* ** Configure an sqlite3_recover object that has just been created using ** sqlite3_recover_init() or sqlite3_recover_init_sql(). This function ** may only be called before the first call to sqlite3_recover_step() ** or sqlite3_recover_run() on the object. ** ** The second argument passed to this function must be one of the ** SQLITE_RECOVER_* symbols defined below. Valid values for the third argument ** depend on the specific SQLITE_RECOVER_* symbol in use. ** ** SQLITE_OK is returned if the configuration operation was successful, ** or an SQLite error code otherwise. */ int sqlite3_recover_config(sqlite3_recover*, int op, void *pArg); /* ** SQLITE_RECOVER_LOST_AND_FOUND: ** The pArg argument points to a string buffer containing the name ** of a "lost-and-found" table in the output database, or NULL. If ** the argument is non-NULL and the database contains seemingly ** valid pages that cannot be associated with any table in the ** recovered part of the schema, data is extracted from these ** pages to add to the lost-and-found table. ** ** SQLITE_RECOVER_FREELIST_CORRUPT: ** The pArg value must actually be a pointer to a value of type ** int containing value 0 or 1 cast as a (void*). If this option is set ** (argument is 1) and a lost-and-found table has been configured using ** SQLITE_RECOVER_LOST_AND_FOUND, then is assumed that the freelist is ** corrupt and an attempt is made to recover records from pages that ** appear to be linked into the freelist. Otherwise, pages on the freelist ** are ignored. Setting this option can recover more data from the ** database, but often ends up "recovering" deleted records. The default ** value is 0 (clear). ** ** SQLITE_RECOVER_ROWIDS: ** The pArg value must actually be a pointer to a value of type ** int containing value 0 or 1 cast as a (void*). If this option is set ** (argument is 1), then an attempt is made to recover rowid values ** that are not also INTEGER PRIMARY KEY values. If this option is ** clear, then new rowids are assigned to all recovered rows. The ** default value is 1 (set). ** ** SQLITE_RECOVER_SLOWINDEXES: ** The pArg value must actually be a pointer to a value of type ** int containing value 0 or 1 cast as a (void*). If this option is clear ** (argument is 0), then when creating an output database, the recover ** module creates and populates non-UNIQUE indexes right at the end of the ** recovery operation - after all recoverable data has been inserted ** into the new database. This is faster overall, but means that the ** final call to sqlite3_recover_step() for a recovery operation may ** be need to create a large number of indexes, which may be very slow. ** ** Or, if this option is set (argument is 1), then non-UNIQUE indexes ** are created in the output database before it is populated with ** recovered data. This is slower overall, but avoids the slow call ** to sqlite3_recover_step() at the end of the recovery operation. ** ** The default option value is 0. */ #define SQLITE_RECOVER_LOST_AND_FOUND 1 #define SQLITE_RECOVER_FREELIST_CORRUPT 2 #define SQLITE_RECOVER_ROWIDS 3 #define SQLITE_RECOVER_SLOWINDEXES 4 /* ** Perform a unit of work towards the recovery operation. This function ** must normally be called multiple times to complete database recovery. ** ** If no error occurs but the recovery operation is not completed, this ** function returns SQLITE_OK. If recovery has been completed successfully ** then SQLITE_DONE is returned. If an error has occurred, then an SQLite ** error code (e.g. SQLITE_IOERR or SQLITE_NOMEM) is returned. It is not ** considered an error if some or all of the data cannot be recovered ** due to database corruption. ** ** Once sqlite3_recover_step() has returned a value other than SQLITE_OK, ** all further such calls on the same recover handle are no-ops that return ** the same non-SQLITE_OK value. */ int sqlite3_recover_step(sqlite3_recover*); /* ** Run the recovery operation to completion. Return SQLITE_OK if successful, ** or an SQLite error code otherwise. Calling this function is the same ** as executing: ** ** while( SQLITE_OK==sqlite3_recover_step(p) ); ** return sqlite3_recover_errcode(p); */ int sqlite3_recover_run(sqlite3_recover*); /* ** If an error has been encountered during a prior call to ** sqlite3_recover_step(), then this function attempts to return a ** pointer to a buffer containing an English language explanation of ** the error. If no error message is available, or if an out-of memory ** error occurs while attempting to allocate a buffer in which to format ** the error message, NULL is returned. ** ** The returned buffer remains valid until the sqlite3_recover handle is ** destroyed using sqlite3_recover_finish(). */ const char *sqlite3_recover_errmsg(sqlite3_recover*); /* ** If this function is called on an sqlite3_recover handle after ** an error occurs, an SQLite error code is returned. Otherwise, SQLITE_OK. */ int sqlite3_recover_errcode(sqlite3_recover*); /* ** Clean up a recovery object created by a call to sqlite3_recover_init(). ** The results of using a recovery object with any API after it has been ** passed to this function are undefined. ** ** This function returns the same value as sqlite3_recover_errcode(). */ int sqlite3_recover_finish(sqlite3_recover*); #ifdef __cplusplus } /* end of the 'extern "C"' block */ #endif #endif /* ifndef _SQLITE_RECOVER_H */ /************************* End ../ext/recover/sqlite3recover.h ********************/ # ifndef SQLITE_HAVE_SQLITE3R /************************* Begin ../ext/recover/dbdata.c ******************/ /* ** 2019-04-17 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ****************************************************************************** ** ** This file contains an implementation of two eponymous virtual tables, ** "sqlite_dbdata" and "sqlite_dbptr". Both modules require that the ** "sqlite_dbpage" eponymous virtual table be available. ** ** SQLITE_DBDATA: ** sqlite_dbdata is used to extract data directly from a database b-tree ** page and its associated overflow pages, bypassing the b-tree layer. ** The table schema is equivalent to: ** ** CREATE TABLE sqlite_dbdata( ** pgno INTEGER, ** cell INTEGER, ** field INTEGER, ** value ANY, ** schema TEXT HIDDEN ** ); ** ** IMPORTANT: THE VIRTUAL TABLE SCHEMA ABOVE IS SUBJECT TO CHANGE. IN THE ** FUTURE NEW NON-HIDDEN COLUMNS MAY BE ADDED BETWEEN "value" AND ** "schema". ** ** Each page of the database is inspected. If it cannot be interpreted as ** a b-tree page, or if it is a b-tree page containing 0 entries, the ** sqlite_dbdata table contains no rows for that page. Otherwise, the ** table contains one row for each field in the record associated with ** each cell on the page. For intkey b-trees, the key value is stored in ** field -1. ** ** For example, for the database: ** ** CREATE TABLE t1(a, b); -- root page is page 2 ** INSERT INTO t1(rowid, a, b) VALUES(5, 'v', 'five'); ** INSERT INTO t1(rowid, a, b) VALUES(10, 'x', 'ten'); ** ** the sqlite_dbdata table contains, as well as from entries related to ** page 1, content equivalent to: ** ** INSERT INTO sqlite_dbdata(pgno, cell, field, value) VALUES ** (2, 0, -1, 5 ), ** (2, 0, 0, 'v' ), ** (2, 0, 1, 'five'), ** (2, 1, -1, 10 ), ** (2, 1, 0, 'x' ), ** (2, 1, 1, 'ten' ); ** ** If database corruption is encountered, this module does not report an ** error. Instead, it attempts to extract as much data as possible and ** ignores the corruption. ** ** SQLITE_DBPTR: ** The sqlite_dbptr table has the following schema: ** ** CREATE TABLE sqlite_dbptr( ** pgno INTEGER, ** child INTEGER, ** schema TEXT HIDDEN ** ); ** ** It contains one entry for each b-tree pointer between a parent and ** child page in the database. */ #if !defined(SQLITEINT_H) /* #include "sqlite3.h" */ /* typedef unsigned char u8; */ /* typedef unsigned int u32; */ #endif #include #include #ifndef SQLITE_OMIT_VIRTUALTABLE #define DBDATA_PADDING_BYTES 100 typedef struct DbdataTable DbdataTable; typedef struct DbdataCursor DbdataCursor; typedef struct DbdataBuffer DbdataBuffer; /* ** Buffer type. */ struct DbdataBuffer { u8 *aBuf; sqlite3_int64 nBuf; }; /* Cursor object */ struct DbdataCursor { sqlite3_vtab_cursor base; /* Base class. Must be first */ sqlite3_stmt *pStmt; /* For fetching database pages */ int iPgno; /* Current page number */ u8 *aPage; /* Buffer containing page */ int nPage; /* Size of aPage[] in bytes */ int nCell; /* Number of cells on aPage[] */ int iCell; /* Current cell number */ int bOnePage; /* True to stop after one page */ int szDb; sqlite3_int64 iRowid; /* Only for the sqlite_dbdata table */ DbdataBuffer rec; sqlite3_int64 nRec; /* Size of pRec[] in bytes */ sqlite3_int64 nHdr; /* Size of header in bytes */ int iField; /* Current field number */ u8 *pHdrPtr; u8 *pPtr; u32 enc; /* Text encoding */ sqlite3_int64 iIntkey; /* Integer key value */ }; /* Table object */ struct DbdataTable { sqlite3_vtab base; /* Base class. Must be first */ sqlite3 *db; /* The database connection */ sqlite3_stmt *pStmt; /* For fetching database pages */ int bPtr; /* True for sqlite3_dbptr table */ }; /* Column and schema definitions for sqlite_dbdata */ #define DBDATA_COLUMN_PGNO 0 #define DBDATA_COLUMN_CELL 1 #define DBDATA_COLUMN_FIELD 2 #define DBDATA_COLUMN_VALUE 3 #define DBDATA_COLUMN_SCHEMA 4 #define DBDATA_SCHEMA \ "CREATE TABLE x(" \ " pgno INTEGER," \ " cell INTEGER," \ " field INTEGER," \ " value ANY," \ " schema TEXT HIDDEN" \ ")" /* Column and schema definitions for sqlite_dbptr */ #define DBPTR_COLUMN_PGNO 0 #define DBPTR_COLUMN_CHILD 1 #define DBPTR_COLUMN_SCHEMA 2 #define DBPTR_SCHEMA \ "CREATE TABLE x(" \ " pgno INTEGER," \ " child INTEGER," \ " schema TEXT HIDDEN" \ ")" /* ** Ensure the buffer passed as the first argument is at least nMin bytes ** in size. If an error occurs while attempting to resize the buffer, ** SQLITE_NOMEM is returned. Otherwise, SQLITE_OK. */ static int dbdataBufferSize(DbdataBuffer *pBuf, sqlite3_int64 nMin){ if( nMin>pBuf->nBuf ){ sqlite3_int64 nNew = nMin+16384; u8 *aNew = (u8*)sqlite3_realloc64(pBuf->aBuf, nNew); if( aNew==0 ) return SQLITE_NOMEM; pBuf->aBuf = aNew; pBuf->nBuf = nNew; } return SQLITE_OK; } /* ** Release the allocation managed by buffer pBuf. */ static void dbdataBufferFree(DbdataBuffer *pBuf){ sqlite3_free(pBuf->aBuf); memset(pBuf, 0, sizeof(*pBuf)); } /* ** Connect to an sqlite_dbdata (pAux==0) or sqlite_dbptr (pAux!=0) virtual ** table. */ static int dbdataConnect( sqlite3 *db, void *pAux, int argc, const char *const*argv, sqlite3_vtab **ppVtab, char **pzErr ){ DbdataTable *pTab = 0; int rc = sqlite3_declare_vtab(db, pAux ? DBPTR_SCHEMA : DBDATA_SCHEMA); (void)argc; (void)argv; (void)pzErr; sqlite3_vtab_config(db, SQLITE_VTAB_USES_ALL_SCHEMAS); if( rc==SQLITE_OK ){ pTab = (DbdataTable*)sqlite3_malloc64(sizeof(DbdataTable)); if( pTab==0 ){ rc = SQLITE_NOMEM; }else{ memset(pTab, 0, sizeof(DbdataTable)); pTab->db = db; pTab->bPtr = (pAux!=0); } } *ppVtab = (sqlite3_vtab*)pTab; return rc; } /* ** Disconnect from or destroy a sqlite_dbdata or sqlite_dbptr virtual table. */ static int dbdataDisconnect(sqlite3_vtab *pVtab){ DbdataTable *pTab = (DbdataTable*)pVtab; if( pTab ){ sqlite3_finalize(pTab->pStmt); sqlite3_free(pVtab); } return SQLITE_OK; } /* ** This function interprets two types of constraints: ** ** schema=? ** pgno=? ** ** If neither are present, idxNum is set to 0. If schema=? is present, ** the 0x01 bit in idxNum is set. If pgno=? is present, the 0x02 bit ** in idxNum is set. ** ** If both parameters are present, schema is in position 0 and pgno in ** position 1. */ static int dbdataBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdx){ DbdataTable *pTab = (DbdataTable*)tab; int i; int iSchema = -1; int iPgno = -1; int colSchema = (pTab->bPtr ? DBPTR_COLUMN_SCHEMA : DBDATA_COLUMN_SCHEMA); for(i=0; inConstraint; i++){ struct sqlite3_index_constraint *p = &pIdx->aConstraint[i]; if( p->op==SQLITE_INDEX_CONSTRAINT_EQ ){ if( p->iColumn==colSchema ){ if( p->usable==0 ) return SQLITE_CONSTRAINT; iSchema = i; } if( p->iColumn==DBDATA_COLUMN_PGNO && p->usable ){ iPgno = i; } } } if( iSchema>=0 ){ pIdx->aConstraintUsage[iSchema].argvIndex = 1; pIdx->aConstraintUsage[iSchema].omit = 1; } if( iPgno>=0 ){ pIdx->aConstraintUsage[iPgno].argvIndex = 1 + (iSchema>=0); pIdx->aConstraintUsage[iPgno].omit = 1; pIdx->estimatedCost = 100; pIdx->estimatedRows = 50; if( pTab->bPtr==0 && pIdx->nOrderBy && pIdx->aOrderBy[0].desc==0 ){ int iCol = pIdx->aOrderBy[0].iColumn; if( pIdx->nOrderBy==1 ){ pIdx->orderByConsumed = (iCol==0 || iCol==1); }else if( pIdx->nOrderBy==2 && pIdx->aOrderBy[1].desc==0 && iCol==0 ){ pIdx->orderByConsumed = (pIdx->aOrderBy[1].iColumn==1); } } }else{ pIdx->estimatedCost = 100000000; pIdx->estimatedRows = 1000000000; } pIdx->idxNum = (iSchema>=0 ? 0x01 : 0x00) | (iPgno>=0 ? 0x02 : 0x00); return SQLITE_OK; } /* ** Open a new sqlite_dbdata or sqlite_dbptr cursor. */ static int dbdataOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){ DbdataCursor *pCsr; pCsr = (DbdataCursor*)sqlite3_malloc64(sizeof(DbdataCursor)); if( pCsr==0 ){ return SQLITE_NOMEM; }else{ memset(pCsr, 0, sizeof(DbdataCursor)); pCsr->base.pVtab = pVTab; } *ppCursor = (sqlite3_vtab_cursor *)pCsr; return SQLITE_OK; } /* ** Restore a cursor object to the state it was in when first allocated ** by dbdataOpen(). */ static void dbdataResetCursor(DbdataCursor *pCsr){ DbdataTable *pTab = (DbdataTable*)(pCsr->base.pVtab); if( pTab->pStmt==0 ){ pTab->pStmt = pCsr->pStmt; }else{ sqlite3_finalize(pCsr->pStmt); } pCsr->pStmt = 0; pCsr->iPgno = 1; pCsr->iCell = 0; pCsr->iField = 0; pCsr->bOnePage = 0; sqlite3_free(pCsr->aPage); dbdataBufferFree(&pCsr->rec); pCsr->aPage = 0; pCsr->nRec = 0; } /* ** Close an sqlite_dbdata or sqlite_dbptr cursor. */ static int dbdataClose(sqlite3_vtab_cursor *pCursor){ DbdataCursor *pCsr = (DbdataCursor*)pCursor; dbdataResetCursor(pCsr); sqlite3_free(pCsr); return SQLITE_OK; } /* ** Utility methods to decode 16 and 32-bit big-endian unsigned integers. */ static u32 get_uint16(unsigned char *a){ return (a[0]<<8)|a[1]; } static u32 get_uint32(unsigned char *a){ return ((u32)a[0]<<24) | ((u32)a[1]<<16) | ((u32)a[2]<<8) | ((u32)a[3]); } /* ** Load page pgno from the database via the sqlite_dbpage virtual table. ** If successful, set (*ppPage) to point to a buffer containing the page ** data, (*pnPage) to the size of that buffer in bytes and return ** SQLITE_OK. In this case it is the responsibility of the caller to ** eventually free the buffer using sqlite3_free(). ** ** Or, if an error occurs, set both (*ppPage) and (*pnPage) to 0 and ** return an SQLite error code. */ static int dbdataLoadPage( DbdataCursor *pCsr, /* Cursor object */ u32 pgno, /* Page number of page to load */ u8 **ppPage, /* OUT: pointer to page buffer */ int *pnPage /* OUT: Size of (*ppPage) in bytes */ ){ int rc2; int rc = SQLITE_OK; sqlite3_stmt *pStmt = pCsr->pStmt; *ppPage = 0; *pnPage = 0; if( pgno>0 ){ sqlite3_bind_int64(pStmt, 2, pgno); if( SQLITE_ROW==sqlite3_step(pStmt) ){ int nCopy = sqlite3_column_bytes(pStmt, 0); if( nCopy>0 ){ u8 *pPage; pPage = (u8*)sqlite3_malloc64(nCopy + DBDATA_PADDING_BYTES); if( pPage==0 ){ rc = SQLITE_NOMEM; }else{ const u8 *pCopy = sqlite3_column_blob(pStmt, 0); memcpy(pPage, pCopy, nCopy); memset(&pPage[nCopy], 0, DBDATA_PADDING_BYTES); } *ppPage = pPage; *pnPage = nCopy; } } rc2 = sqlite3_reset(pStmt); if( rc==SQLITE_OK ) rc = rc2; } return rc; } /* ** Read a varint. Put the value in *pVal and return the number of bytes. */ static int dbdataGetVarint(const u8 *z, sqlite3_int64 *pVal){ sqlite3_uint64 u = 0; int i; for(i=0; i<8; i++){ u = (u<<7) + (z[i]&0x7f); if( (z[i]&0x80)==0 ){ *pVal = (sqlite3_int64)u; return i+1; } } u = (u<<8) + (z[i]&0xff); *pVal = (sqlite3_int64)u; return 9; } /* ** Like dbdataGetVarint(), but set the output to 0 if it is less than 0 ** or greater than 0xFFFFFFFF. This can be used for all varints in an ** SQLite database except for key values in intkey tables. */ static int dbdataGetVarintU32(const u8 *z, sqlite3_int64 *pVal){ sqlite3_int64 val; int nRet = dbdataGetVarint(z, &val); if( val<0 || val>0xFFFFFFFF ) val = 0; *pVal = val; return nRet; } /* ** Return the number of bytes of space used by an SQLite value of type ** eType. */ static int dbdataValueBytes(int eType){ switch( eType ){ case 0: case 8: case 9: case 10: case 11: return 0; case 1: return 1; case 2: return 2; case 3: return 3; case 4: return 4; case 5: return 6; case 6: case 7: return 8; default: if( eType>0 ){ return ((eType-12) / 2); } return 0; } } /* ** Load a value of type eType from buffer pData and use it to set the ** result of context object pCtx. */ static void dbdataValue( sqlite3_context *pCtx, u32 enc, int eType, u8 *pData, sqlite3_int64 nData ){ if( eType>=0 ){ if( dbdataValueBytes(eType)<=nData ){ switch( eType ){ case 0: case 10: case 11: sqlite3_result_null(pCtx); break; case 8: sqlite3_result_int(pCtx, 0); break; case 9: sqlite3_result_int(pCtx, 1); break; case 1: case 2: case 3: case 4: case 5: case 6: case 7: { sqlite3_uint64 v = (signed char)pData[0]; pData++; switch( eType ){ case 7: case 6: v = (v<<16) + (pData[0]<<8) + pData[1]; pData += 2; case 5: v = (v<<16) + (pData[0]<<8) + pData[1]; pData += 2; case 4: v = (v<<8) + pData[0]; pData++; case 3: v = (v<<8) + pData[0]; pData++; case 2: v = (v<<8) + pData[0]; pData++; } if( eType==7 ){ double r; memcpy(&r, &v, sizeof(r)); sqlite3_result_double(pCtx, r); }else{ sqlite3_result_int64(pCtx, (sqlite3_int64)v); } break; } default: { int n = ((eType-12) / 2); if( eType % 2 ){ switch( enc ){ #ifndef SQLITE_OMIT_UTF16 case SQLITE_UTF16BE: sqlite3_result_text16be(pCtx, (void*)pData, n, SQLITE_TRANSIENT); break; case SQLITE_UTF16LE: sqlite3_result_text16le(pCtx, (void*)pData, n, SQLITE_TRANSIENT); break; #endif default: sqlite3_result_text(pCtx, (char*)pData, n, SQLITE_TRANSIENT); break; } }else{ sqlite3_result_blob(pCtx, pData, n, SQLITE_TRANSIENT); } } } }else{ if( eType==7 ){ sqlite3_result_double(pCtx, 0.0); }else if( eType<7 ){ sqlite3_result_int(pCtx, 0); }else if( eType%2 ){ sqlite3_result_text(pCtx, "", 0, SQLITE_STATIC); }else{ sqlite3_result_blob(pCtx, "", 0, SQLITE_STATIC); } } } } /* This macro is a copy of the MX_CELL() macro in the SQLite core. Given ** a page-size, it returns the maximum number of cells that may be present ** on the page. */ #define DBDATA_MX_CELL(pgsz) ((pgsz-8)/6) /* Maximum number of fields that may appear in a single record. This is ** the "hard-limit", according to comments in sqliteLimit.h. */ #define DBDATA_MX_FIELD 32676 /* ** Move an sqlite_dbdata or sqlite_dbptr cursor to the next entry. */ static int dbdataNext(sqlite3_vtab_cursor *pCursor){ DbdataCursor *pCsr = (DbdataCursor*)pCursor; DbdataTable *pTab = (DbdataTable*)pCursor->pVtab; pCsr->iRowid++; while( 1 ){ int rc; int iOff = (pCsr->iPgno==1 ? 100 : 0); int bNextPage = 0; if( pCsr->aPage==0 ){ while( 1 ){ if( pCsr->bOnePage==0 && pCsr->iPgno>pCsr->szDb ) return SQLITE_OK; rc = dbdataLoadPage(pCsr, pCsr->iPgno, &pCsr->aPage, &pCsr->nPage); if( rc!=SQLITE_OK ) return rc; if( pCsr->aPage && pCsr->nPage>=256 ) break; sqlite3_free(pCsr->aPage); pCsr->aPage = 0; if( pCsr->bOnePage ) return SQLITE_OK; pCsr->iPgno++; } assert( iOff+3+2<=pCsr->nPage ); pCsr->iCell = pTab->bPtr ? -2 : 0; pCsr->nCell = get_uint16(&pCsr->aPage[iOff+3]); if( pCsr->nCell>DBDATA_MX_CELL(pCsr->nPage) ){ pCsr->nCell = DBDATA_MX_CELL(pCsr->nPage); } } if( pTab->bPtr ){ if( pCsr->aPage[iOff]!=0x02 && pCsr->aPage[iOff]!=0x05 ){ pCsr->iCell = pCsr->nCell; } pCsr->iCell++; if( pCsr->iCell>=pCsr->nCell ){ sqlite3_free(pCsr->aPage); pCsr->aPage = 0; if( pCsr->bOnePage ) return SQLITE_OK; pCsr->iPgno++; }else{ return SQLITE_OK; } }else{ /* If there is no record loaded, load it now. */ assert( pCsr->rec.aBuf!=0 || pCsr->nRec==0 ); if( pCsr->nRec==0 ){ int bHasRowid = 0; int nPointer = 0; sqlite3_int64 nPayload = 0; sqlite3_int64 nHdr = 0; int iHdr; int U, X; int nLocal; switch( pCsr->aPage[iOff] ){ case 0x02: nPointer = 4; break; case 0x0a: break; case 0x0d: bHasRowid = 1; break; default: /* This is not a b-tree page with records on it. Continue. */ pCsr->iCell = pCsr->nCell; break; } if( pCsr->iCell>=pCsr->nCell ){ bNextPage = 1; }else{ int iCellPtr = iOff + 8 + nPointer + pCsr->iCell*2; if( iCellPtr>pCsr->nPage ){ bNextPage = 1; }else{ iOff = get_uint16(&pCsr->aPage[iCellPtr]); } /* For an interior node cell, skip past the child-page number */ iOff += nPointer; /* Load the "byte of payload including overflow" field */ if( bNextPage || iOff>pCsr->nPage || iOff<=iCellPtr ){ bNextPage = 1; }else{ iOff += dbdataGetVarintU32(&pCsr->aPage[iOff], &nPayload); if( nPayload>0x7fffff00 ) nPayload &= 0x3fff; if( nPayload==0 ) nPayload = 1; } /* If this is a leaf intkey cell, load the rowid */ if( bHasRowid && !bNextPage && iOffnPage ){ iOff += dbdataGetVarint(&pCsr->aPage[iOff], &pCsr->iIntkey); } /* Figure out how much data to read from the local page */ U = pCsr->nPage; if( bHasRowid ){ X = U-35; }else{ X = ((U-12)*64/255)-23; } if( nPayload<=X ){ nLocal = nPayload; }else{ int M, K; M = ((U-12)*32/255)-23; K = M+((nPayload-M)%(U-4)); if( K<=X ){ nLocal = K; }else{ nLocal = M; } } if( bNextPage || nLocal+iOff>pCsr->nPage ){ bNextPage = 1; }else{ /* Allocate space for payload. And a bit more to catch small buffer ** overruns caused by attempting to read a varint or similar from ** near the end of a corrupt record. */ rc = dbdataBufferSize(&pCsr->rec, nPayload+DBDATA_PADDING_BYTES); if( rc!=SQLITE_OK ) return rc; assert( pCsr->rec.aBuf!=0 ); assert( nPayload!=0 ); /* Load the nLocal bytes of payload */ memcpy(pCsr->rec.aBuf, &pCsr->aPage[iOff], nLocal); iOff += nLocal; /* Load content from overflow pages */ if( nPayload>nLocal ){ sqlite3_int64 nRem = nPayload - nLocal; u32 pgnoOvfl = get_uint32(&pCsr->aPage[iOff]); while( nRem>0 ){ u8 *aOvfl = 0; int nOvfl = 0; int nCopy; rc = dbdataLoadPage(pCsr, pgnoOvfl, &aOvfl, &nOvfl); assert( rc!=SQLITE_OK || aOvfl==0 || nOvfl==pCsr->nPage ); if( rc!=SQLITE_OK ) return rc; if( aOvfl==0 ) break; nCopy = U-4; if( nCopy>nRem ) nCopy = nRem; memcpy(&pCsr->rec.aBuf[nPayload-nRem], &aOvfl[4], nCopy); nRem -= nCopy; pgnoOvfl = get_uint32(aOvfl); sqlite3_free(aOvfl); } nPayload -= nRem; } memset(&pCsr->rec.aBuf[nPayload], 0, DBDATA_PADDING_BYTES); pCsr->nRec = nPayload; iHdr = dbdataGetVarintU32(pCsr->rec.aBuf, &nHdr); if( nHdr>nPayload ) nHdr = 0; pCsr->nHdr = nHdr; pCsr->pHdrPtr = &pCsr->rec.aBuf[iHdr]; pCsr->pPtr = &pCsr->rec.aBuf[pCsr->nHdr]; pCsr->iField = (bHasRowid ? -1 : 0); } } }else{ pCsr->iField++; if( pCsr->iField>0 ){ sqlite3_int64 iType; if( pCsr->pHdrPtr>=&pCsr->rec.aBuf[pCsr->nRec] || pCsr->iField>=DBDATA_MX_FIELD ){ bNextPage = 1; }else{ int szField = 0; pCsr->pHdrPtr += dbdataGetVarintU32(pCsr->pHdrPtr, &iType); szField = dbdataValueBytes(iType); if( (pCsr->nRec - (pCsr->pPtr - pCsr->rec.aBuf))pPtr = &pCsr->rec.aBuf[pCsr->nRec]; }else{ pCsr->pPtr += szField; } } } } if( bNextPage ){ sqlite3_free(pCsr->aPage); pCsr->aPage = 0; pCsr->nRec = 0; if( pCsr->bOnePage ) return SQLITE_OK; pCsr->iPgno++; }else{ if( pCsr->iField<0 || pCsr->pHdrPtr<&pCsr->rec.aBuf[pCsr->nHdr] ){ return SQLITE_OK; } /* Advance to the next cell. The next iteration of the loop will load ** the record and so on. */ pCsr->nRec = 0; pCsr->iCell++; } } } assert( !"can't get here" ); return SQLITE_OK; } /* ** Return true if the cursor is at EOF. */ static int dbdataEof(sqlite3_vtab_cursor *pCursor){ DbdataCursor *pCsr = (DbdataCursor*)pCursor; return pCsr->aPage==0; } /* ** Return true if nul-terminated string zSchema ends in "()". Or false ** otherwise. */ static int dbdataIsFunction(const char *zSchema){ size_t n = strlen(zSchema); if( n>2 && zSchema[n-2]=='(' && zSchema[n-1]==')' ){ return (int)n-2; } return 0; } /* ** Determine the size in pages of database zSchema (where zSchema is ** "main", "temp" or the name of an attached database) and set ** pCsr->szDb accordingly. If successful, return SQLITE_OK. Otherwise, ** an SQLite error code. */ static int dbdataDbsize(DbdataCursor *pCsr, const char *zSchema){ DbdataTable *pTab = (DbdataTable*)pCsr->base.pVtab; char *zSql = 0; int rc, rc2; int nFunc = 0; sqlite3_stmt *pStmt = 0; if( (nFunc = dbdataIsFunction(zSchema))>0 ){ zSql = sqlite3_mprintf("SELECT %.*s(0)", nFunc, zSchema); }else{ zSql = sqlite3_mprintf("PRAGMA %Q.page_count", zSchema); } if( zSql==0 ) return SQLITE_NOMEM; rc = sqlite3_prepare_v2(pTab->db, zSql, -1, &pStmt, 0); sqlite3_free(zSql); if( rc==SQLITE_OK && sqlite3_step(pStmt)==SQLITE_ROW ){ pCsr->szDb = sqlite3_column_int(pStmt, 0); } rc2 = sqlite3_finalize(pStmt); if( rc==SQLITE_OK ) rc = rc2; return rc; } /* ** Attempt to figure out the encoding of the database by retrieving page 1 ** and inspecting the header field. If successful, set the pCsr->enc variable ** and return SQLITE_OK. Otherwise, return an SQLite error code. */ static int dbdataGetEncoding(DbdataCursor *pCsr){ int rc = SQLITE_OK; int nPg1 = 0; u8 *aPg1 = 0; rc = dbdataLoadPage(pCsr, 1, &aPg1, &nPg1); if( rc==SQLITE_OK && nPg1>=(56+4) ){ pCsr->enc = get_uint32(&aPg1[56]); } sqlite3_free(aPg1); return rc; } /* ** xFilter method for sqlite_dbdata and sqlite_dbptr. */ static int dbdataFilter( sqlite3_vtab_cursor *pCursor, int idxNum, const char *idxStr, int argc, sqlite3_value **argv ){ DbdataCursor *pCsr = (DbdataCursor*)pCursor; DbdataTable *pTab = (DbdataTable*)pCursor->pVtab; int rc = SQLITE_OK; const char *zSchema = "main"; (void)idxStr; (void)argc; dbdataResetCursor(pCsr); assert( pCsr->iPgno==1 ); if( idxNum & 0x01 ){ zSchema = (const char*)sqlite3_value_text(argv[0]); if( zSchema==0 ) zSchema = ""; } if( idxNum & 0x02 ){ pCsr->iPgno = sqlite3_value_int(argv[(idxNum & 0x01)]); pCsr->bOnePage = 1; }else{ rc = dbdataDbsize(pCsr, zSchema); } if( rc==SQLITE_OK ){ int nFunc = 0; if( pTab->pStmt ){ pCsr->pStmt = pTab->pStmt; pTab->pStmt = 0; }else if( (nFunc = dbdataIsFunction(zSchema))>0 ){ char *zSql = sqlite3_mprintf("SELECT %.*s(?2)", nFunc, zSchema); if( zSql==0 ){ rc = SQLITE_NOMEM; }else{ rc = sqlite3_prepare_v2(pTab->db, zSql, -1, &pCsr->pStmt, 0); sqlite3_free(zSql); } }else{ rc = sqlite3_prepare_v2(pTab->db, "SELECT data FROM sqlite_dbpage(?) WHERE pgno=?", -1, &pCsr->pStmt, 0 ); } } if( rc==SQLITE_OK ){ rc = sqlite3_bind_text(pCsr->pStmt, 1, zSchema, -1, SQLITE_TRANSIENT); } /* Try to determine the encoding of the db by inspecting the header ** field on page 1. */ if( rc==SQLITE_OK ){ rc = dbdataGetEncoding(pCsr); } if( rc!=SQLITE_OK ){ pTab->base.zErrMsg = sqlite3_mprintf("%s", sqlite3_errmsg(pTab->db)); } if( rc==SQLITE_OK ){ rc = dbdataNext(pCursor); } return rc; } /* ** Return a column for the sqlite_dbdata or sqlite_dbptr table. */ static int dbdataColumn( sqlite3_vtab_cursor *pCursor, sqlite3_context *ctx, int i ){ DbdataCursor *pCsr = (DbdataCursor*)pCursor; DbdataTable *pTab = (DbdataTable*)pCursor->pVtab; if( pTab->bPtr ){ switch( i ){ case DBPTR_COLUMN_PGNO: sqlite3_result_int64(ctx, pCsr->iPgno); break; case DBPTR_COLUMN_CHILD: { int iOff = pCsr->iPgno==1 ? 100 : 0; if( pCsr->iCell<0 ){ iOff += 8; }else{ iOff += 12 + pCsr->iCell*2; if( iOff>pCsr->nPage ) return SQLITE_OK; iOff = get_uint16(&pCsr->aPage[iOff]); } if( iOff<=pCsr->nPage ){ sqlite3_result_int64(ctx, get_uint32(&pCsr->aPage[iOff])); } break; } } }else{ switch( i ){ case DBDATA_COLUMN_PGNO: sqlite3_result_int64(ctx, pCsr->iPgno); break; case DBDATA_COLUMN_CELL: sqlite3_result_int(ctx, pCsr->iCell); break; case DBDATA_COLUMN_FIELD: sqlite3_result_int(ctx, pCsr->iField); break; case DBDATA_COLUMN_VALUE: { if( pCsr->iField<0 ){ sqlite3_result_int64(ctx, pCsr->iIntkey); }else if( &pCsr->rec.aBuf[pCsr->nRec] >= pCsr->pPtr ){ sqlite3_int64 iType; dbdataGetVarintU32(pCsr->pHdrPtr, &iType); dbdataValue( ctx, pCsr->enc, iType, pCsr->pPtr, &pCsr->rec.aBuf[pCsr->nRec] - pCsr->pPtr ); } break; } } } return SQLITE_OK; } /* ** Return the rowid for an sqlite_dbdata or sqlite_dptr table. */ static int dbdataRowid(sqlite3_vtab_cursor *pCursor, sqlite_int64 *pRowid){ DbdataCursor *pCsr = (DbdataCursor*)pCursor; *pRowid = pCsr->iRowid; return SQLITE_OK; } /* ** Invoke this routine to register the "sqlite_dbdata" virtual table module */ static int sqlite3DbdataRegister(sqlite3 *db){ static sqlite3_module dbdata_module = { 0, /* iVersion */ 0, /* xCreate */ dbdataConnect, /* xConnect */ dbdataBestIndex, /* xBestIndex */ dbdataDisconnect, /* xDisconnect */ 0, /* xDestroy */ dbdataOpen, /* xOpen - open a cursor */ dbdataClose, /* xClose - close a cursor */ dbdataFilter, /* xFilter - configure scan constraints */ dbdataNext, /* xNext - advance a cursor */ dbdataEof, /* xEof - check for end of scan */ dbdataColumn, /* xColumn - read data */ dbdataRowid, /* xRowid - read data */ 0, /* xUpdate */ 0, /* xBegin */ 0, /* xSync */ 0, /* xCommit */ 0, /* xRollback */ 0, /* xFindMethod */ 0, /* xRename */ 0, /* xSavepoint */ 0, /* xRelease */ 0, /* xRollbackTo */ 0, /* xShadowName */ 0 /* xIntegrity */ }; int rc = sqlite3_create_module(db, "sqlite_dbdata", &dbdata_module, 0); if( rc==SQLITE_OK ){ rc = sqlite3_create_module(db, "sqlite_dbptr", &dbdata_module, (void*)1); } return rc; } int sqlite3_dbdata_init( sqlite3 *db, char **pzErrMsg, const sqlite3_api_routines *pApi ){ (void)pzErrMsg; return sqlite3DbdataRegister(db); } #endif /* ifndef SQLITE_OMIT_VIRTUALTABLE */ /************************* End ../ext/recover/dbdata.c ********************/ /************************* Begin ../ext/recover/sqlite3recover.c ******************/ /* ** 2022-08-27 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** */ /* #include "sqlite3recover.h" */ #include #include #ifndef SQLITE_OMIT_VIRTUALTABLE /* ** Declaration for public API function in file dbdata.c. This may be called ** with NULL as the final two arguments to register the sqlite_dbptr and ** sqlite_dbdata virtual tables with a database handle. */ #ifdef _WIN32 #endif int sqlite3_dbdata_init(sqlite3*, char**, const sqlite3_api_routines*); /* typedef unsigned int u32; */ /* typedef unsigned char u8; */ /* typedef sqlite3_int64 i64; */ typedef struct RecoverTable RecoverTable; typedef struct RecoverColumn RecoverColumn; /* ** When recovering rows of data that can be associated with table ** definitions recovered from the sqlite_schema table, each table is ** represented by an instance of the following object. ** ** iRoot: ** The root page in the original database. Not necessarily (and usually ** not) the same in the recovered database. ** ** zTab: ** Name of the table. ** ** nCol/aCol[]: ** aCol[] is an array of nCol columns. In the order in which they appear ** in the table. ** ** bIntkey: ** Set to true for intkey tables, false for WITHOUT ROWID. ** ** iRowidBind: ** Each column in the aCol[] array has associated with it the index of ** the bind parameter its values will be bound to in the INSERT statement ** used to construct the output database. If the table does has a rowid ** but not an INTEGER PRIMARY KEY column, then iRowidBind contains the ** index of the bind paramater to which the rowid value should be bound. ** Otherwise, it contains -1. If the table does contain an INTEGER PRIMARY ** KEY column, then the rowid value should be bound to the index associated ** with the column. ** ** pNext: ** All RecoverTable objects used by the recovery operation are allocated ** and populated as part of creating the recovered database schema in ** the output database, before any non-schema data are recovered. They ** are then stored in a singly-linked list linked by this variable beginning ** at sqlite3_recover.pTblList. */ struct RecoverTable { u32 iRoot; /* Root page in original database */ char *zTab; /* Name of table */ int nCol; /* Number of columns in table */ RecoverColumn *aCol; /* Array of columns */ int bIntkey; /* True for intkey, false for without rowid */ int iRowidBind; /* If >0, bind rowid to INSERT here */ RecoverTable *pNext; }; /* ** Each database column is represented by an instance of the following object ** stored in the RecoverTable.aCol[] array of the associated table. ** ** iField: ** The index of the associated field within database records. Or -1 if ** there is no associated field (e.g. for virtual generated columns). ** ** iBind: ** The bind index of the INSERT statement to bind this columns values ** to. Or 0 if there is no such index (iff (iField<0)). ** ** bIPK: ** True if this is the INTEGER PRIMARY KEY column. ** ** zCol: ** Name of column. ** ** eHidden: ** A RECOVER_EHIDDEN_* constant value (see below for interpretation of each). */ struct RecoverColumn { int iField; /* Field in record on disk */ int iBind; /* Binding to use in INSERT */ int bIPK; /* True for IPK column */ char *zCol; int eHidden; }; #define RECOVER_EHIDDEN_NONE 0 /* Normal database column */ #define RECOVER_EHIDDEN_HIDDEN 1 /* Column is __HIDDEN__ */ #define RECOVER_EHIDDEN_VIRTUAL 2 /* Virtual generated column */ #define RECOVER_EHIDDEN_STORED 3 /* Stored generated column */ /* ** Bitmap object used to track pages in the input database. Allocated ** and manipulated only by the following functions: ** ** recoverBitmapAlloc() ** recoverBitmapFree() ** recoverBitmapSet() ** recoverBitmapQuery() ** ** nPg: ** Largest page number that may be stored in the bitmap. The range ** of valid keys is 1 to nPg, inclusive. ** ** aElem[]: ** Array large enough to contain a bit for each key. For key value ** iKey, the associated bit is the bit (iKey%32) of aElem[iKey/32]. ** In other words, the following is true if bit iKey is set, or ** false if it is clear: ** ** (aElem[iKey/32] & (1 << (iKey%32))) ? 1 : 0 */ typedef struct RecoverBitmap RecoverBitmap; struct RecoverBitmap { i64 nPg; /* Size of bitmap */ u32 aElem[1]; /* Array of 32-bit bitmasks */ }; /* ** State variables (part of the sqlite3_recover structure) used while ** recovering data for tables identified in the recovered schema (state ** RECOVER_STATE_WRITING). */ typedef struct RecoverStateW1 RecoverStateW1; struct RecoverStateW1 { sqlite3_stmt *pTbls; sqlite3_stmt *pSel; sqlite3_stmt *pInsert; int nInsert; RecoverTable *pTab; /* Table currently being written */ int nMax; /* Max column count in any schema table */ sqlite3_value **apVal; /* Array of nMax values */ int nVal; /* Number of valid entries in apVal[] */ int bHaveRowid; i64 iRowid; i64 iPrevPage; int iPrevCell; }; /* ** State variables (part of the sqlite3_recover structure) used while ** recovering data destined for the lost and found table (states ** RECOVER_STATE_LOSTANDFOUND[123]). */ typedef struct RecoverStateLAF RecoverStateLAF; struct RecoverStateLAF { RecoverBitmap *pUsed; i64 nPg; /* Size of db in pages */ sqlite3_stmt *pAllAndParent; sqlite3_stmt *pMapInsert; sqlite3_stmt *pMaxField; sqlite3_stmt *pUsedPages; sqlite3_stmt *pFindRoot; sqlite3_stmt *pInsert; /* INSERT INTO lost_and_found ... */ sqlite3_stmt *pAllPage; sqlite3_stmt *pPageData; sqlite3_value **apVal; int nMaxField; }; /* ** Main recover handle structure. */ struct sqlite3_recover { /* Copies of sqlite3_recover_init[_sql]() parameters */ sqlite3 *dbIn; /* Input database */ char *zDb; /* Name of input db ("main" etc.) */ char *zUri; /* URI for output database */ void *pSqlCtx; /* SQL callback context */ int (*xSql)(void*,const char*); /* Pointer to SQL callback function */ /* Values configured by sqlite3_recover_config() */ char *zStateDb; /* State database to use (or NULL) */ char *zLostAndFound; /* Name of lost-and-found table (or NULL) */ int bFreelistCorrupt; /* SQLITE_RECOVER_FREELIST_CORRUPT setting */ int bRecoverRowid; /* SQLITE_RECOVER_ROWIDS setting */ int bSlowIndexes; /* SQLITE_RECOVER_SLOWINDEXES setting */ int pgsz; int detected_pgsz; int nReserve; u8 *pPage1Disk; u8 *pPage1Cache; /* Error code and error message */ int errCode; /* For sqlite3_recover_errcode() */ char *zErrMsg; /* For sqlite3_recover_errmsg() */ int eState; int bCloseTransaction; /* Variables used with eState==RECOVER_STATE_WRITING */ RecoverStateW1 w1; /* Variables used with states RECOVER_STATE_LOSTANDFOUND[123] */ RecoverStateLAF laf; /* Fields used within sqlite3_recover_run() */ sqlite3 *dbOut; /* Output database */ sqlite3_stmt *pGetPage; /* SELECT against input db sqlite_dbdata */ RecoverTable *pTblList; /* List of tables recovered from schema */ }; /* ** The various states in which an sqlite3_recover object may exist: ** ** RECOVER_STATE_INIT: ** The object is initially created in this state. sqlite3_recover_step() ** has yet to be called. This is the only state in which it is permitted ** to call sqlite3_recover_config(). ** ** RECOVER_STATE_WRITING: ** ** RECOVER_STATE_LOSTANDFOUND1: ** State to populate the bitmap of pages used by other tables or the ** database freelist. ** ** RECOVER_STATE_LOSTANDFOUND2: ** Populate the recovery.map table - used to figure out a "root" page ** for each lost page from in the database from which records are ** extracted. ** ** RECOVER_STATE_LOSTANDFOUND3: ** Populate the lost-and-found table itself. */ #define RECOVER_STATE_INIT 0 #define RECOVER_STATE_WRITING 1 #define RECOVER_STATE_LOSTANDFOUND1 2 #define RECOVER_STATE_LOSTANDFOUND2 3 #define RECOVER_STATE_LOSTANDFOUND3 4 #define RECOVER_STATE_SCHEMA2 5 #define RECOVER_STATE_DONE 6 /* ** Global variables used by this extension. */ typedef struct RecoverGlobal RecoverGlobal; struct RecoverGlobal { const sqlite3_io_methods *pMethods; sqlite3_recover *p; }; static RecoverGlobal recover_g; /* ** Use this static SQLite mutex to protect the globals during the ** first call to sqlite3_recover_step(). */ #define RECOVER_MUTEX_ID SQLITE_MUTEX_STATIC_APP2 /* ** Default value for SQLITE_RECOVER_ROWIDS (sqlite3_recover.bRecoverRowid). */ #define RECOVER_ROWID_DEFAULT 1 /* ** Mutex handling: ** ** recoverEnterMutex() - Enter the recovery mutex ** recoverLeaveMutex() - Leave the recovery mutex ** recoverAssertMutexHeld() - Assert that the recovery mutex is held */ #if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE==0 # define recoverEnterMutex() # define recoverLeaveMutex() #else static void recoverEnterMutex(void){ sqlite3_mutex_enter(sqlite3_mutex_alloc(RECOVER_MUTEX_ID)); } static void recoverLeaveMutex(void){ sqlite3_mutex_leave(sqlite3_mutex_alloc(RECOVER_MUTEX_ID)); } #endif #if SQLITE_THREADSAFE+0>=1 && defined(SQLITE_DEBUG) static void recoverAssertMutexHeld(void){ assert( sqlite3_mutex_held(sqlite3_mutex_alloc(RECOVER_MUTEX_ID)) ); } #else # define recoverAssertMutexHeld() #endif /* ** Like strlen(). But handles NULL pointer arguments. */ static int recoverStrlen(const char *zStr){ if( zStr==0 ) return 0; return (int)(strlen(zStr)&0x7fffffff); } /* ** This function is a no-op if the recover handle passed as the first ** argument already contains an error (if p->errCode!=SQLITE_OK). ** ** Otherwise, an attempt is made to allocate, zero and return a buffer nByte ** bytes in size. If successful, a pointer to the new buffer is returned. Or, ** if an OOM error occurs, NULL is returned and the handle error code ** (p->errCode) set to SQLITE_NOMEM. */ static void *recoverMalloc(sqlite3_recover *p, i64 nByte){ void *pRet = 0; assert( nByte>0 ); if( p->errCode==SQLITE_OK ){ pRet = sqlite3_malloc64(nByte); if( pRet ){ memset(pRet, 0, nByte); }else{ p->errCode = SQLITE_NOMEM; } } return pRet; } /* ** Set the error code and error message for the recover handle passed as ** the first argument. The error code is set to the value of parameter ** errCode. ** ** Parameter zFmt must be a printf() style formatting string. The handle ** error message is set to the result of using any trailing arguments for ** parameter substitutions in the formatting string. ** ** For example: ** ** recoverError(p, SQLITE_ERROR, "no such table: %s", zTablename); */ static int recoverError( sqlite3_recover *p, int errCode, const char *zFmt, ... ){ char *z = 0; va_list ap; va_start(ap, zFmt); if( zFmt ){ z = sqlite3_vmprintf(zFmt, ap); } va_end(ap); sqlite3_free(p->zErrMsg); p->zErrMsg = z; p->errCode = errCode; return errCode; } /* ** This function is a no-op if p->errCode is initially other than SQLITE_OK. ** In this case it returns NULL. ** ** Otherwise, an attempt is made to allocate and return a bitmap object ** large enough to store a bit for all page numbers between 1 and nPg, ** inclusive. The bitmap is initially zeroed. */ static RecoverBitmap *recoverBitmapAlloc(sqlite3_recover *p, i64 nPg){ int nElem = (nPg+1+31) / 32; int nByte = sizeof(RecoverBitmap) + nElem*sizeof(u32); RecoverBitmap *pRet = (RecoverBitmap*)recoverMalloc(p, nByte); if( pRet ){ pRet->nPg = nPg; } return pRet; } /* ** Free a bitmap object allocated by recoverBitmapAlloc(). */ static void recoverBitmapFree(RecoverBitmap *pMap){ sqlite3_free(pMap); } /* ** Set the bit associated with page iPg in bitvec pMap. */ static void recoverBitmapSet(RecoverBitmap *pMap, i64 iPg){ if( iPg<=pMap->nPg ){ int iElem = (iPg / 32); int iBit = (iPg % 32); pMap->aElem[iElem] |= (((u32)1) << iBit); } } /* ** Query bitmap object pMap for the state of the bit associated with page ** iPg. Return 1 if it is set, or 0 otherwise. */ static int recoverBitmapQuery(RecoverBitmap *pMap, i64 iPg){ int ret = 1; if( iPg<=pMap->nPg && iPg>0 ){ int iElem = (iPg / 32); int iBit = (iPg % 32); ret = (pMap->aElem[iElem] & (((u32)1) << iBit)) ? 1 : 0; } return ret; } /* ** Set the recover handle error to the error code and message returned by ** calling sqlite3_errcode() and sqlite3_errmsg(), respectively, on database ** handle db. */ static int recoverDbError(sqlite3_recover *p, sqlite3 *db){ return recoverError(p, sqlite3_errcode(db), "%s", sqlite3_errmsg(db)); } /* ** This function is a no-op if recover handle p already contains an error ** (if p->errCode!=SQLITE_OK). ** ** Otherwise, it attempts to prepare the SQL statement in zSql against ** database handle db. If successful, the statement handle is returned. ** Or, if an error occurs, NULL is returned and an error left in the ** recover handle. */ static sqlite3_stmt *recoverPrepare( sqlite3_recover *p, sqlite3 *db, const char *zSql ){ sqlite3_stmt *pStmt = 0; if( p->errCode==SQLITE_OK ){ if( sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0) ){ recoverDbError(p, db); } } return pStmt; } /* ** This function is a no-op if recover handle p already contains an error ** (if p->errCode!=SQLITE_OK). ** ** Otherwise, argument zFmt is used as a printf() style format string, ** along with any trailing arguments, to create an SQL statement. This ** SQL statement is prepared against database handle db and, if successful, ** the statment handle returned. Or, if an error occurs - either during ** the printf() formatting or when preparing the resulting SQL - an ** error code and message are left in the recover handle. */ static sqlite3_stmt *recoverPreparePrintf( sqlite3_recover *p, sqlite3 *db, const char *zFmt, ... ){ sqlite3_stmt *pStmt = 0; if( p->errCode==SQLITE_OK ){ va_list ap; char *z; va_start(ap, zFmt); z = sqlite3_vmprintf(zFmt, ap); va_end(ap); if( z==0 ){ p->errCode = SQLITE_NOMEM; }else{ pStmt = recoverPrepare(p, db, z); sqlite3_free(z); } } return pStmt; } /* ** Reset SQLite statement handle pStmt. If the call to sqlite3_reset() ** indicates that an error occurred, and there is not already an error ** in the recover handle passed as the first argument, set the error ** code and error message appropriately. ** ** This function returns a copy of the statement handle pointer passed ** as the second argument. */ static sqlite3_stmt *recoverReset(sqlite3_recover *p, sqlite3_stmt *pStmt){ int rc = sqlite3_reset(pStmt); if( rc!=SQLITE_OK && rc!=SQLITE_CONSTRAINT && p->errCode==SQLITE_OK ){ recoverDbError(p, sqlite3_db_handle(pStmt)); } return pStmt; } /* ** Finalize SQLite statement handle pStmt. If the call to sqlite3_reset() ** indicates that an error occurred, and there is not already an error ** in the recover handle passed as the first argument, set the error ** code and error message appropriately. */ static void recoverFinalize(sqlite3_recover *p, sqlite3_stmt *pStmt){ sqlite3 *db = sqlite3_db_handle(pStmt); int rc = sqlite3_finalize(pStmt); if( rc!=SQLITE_OK && p->errCode==SQLITE_OK ){ recoverDbError(p, db); } } /* ** This function is a no-op if recover handle p already contains an error ** (if p->errCode!=SQLITE_OK). A copy of p->errCode is returned in this ** case. ** ** Otherwise, execute SQL script zSql. If successful, return SQLITE_OK. ** Or, if an error occurs, leave an error code and message in the recover ** handle and return a copy of the error code. */ static int recoverExec(sqlite3_recover *p, sqlite3 *db, const char *zSql){ if( p->errCode==SQLITE_OK ){ int rc = sqlite3_exec(db, zSql, 0, 0, 0); if( rc ){ recoverDbError(p, db); } } return p->errCode; } /* ** Bind the value pVal to parameter iBind of statement pStmt. Leave an ** error in the recover handle passed as the first argument if an error ** (e.g. an OOM) occurs. */ static void recoverBindValue( sqlite3_recover *p, sqlite3_stmt *pStmt, int iBind, sqlite3_value *pVal ){ if( p->errCode==SQLITE_OK ){ int rc = sqlite3_bind_value(pStmt, iBind, pVal); if( rc ) recoverError(p, rc, 0); } } /* ** This function is a no-op if recover handle p already contains an error ** (if p->errCode!=SQLITE_OK). NULL is returned in this case. ** ** Otherwise, an attempt is made to interpret zFmt as a printf() style ** formatting string and the result of using the trailing arguments for ** parameter substitution with it written into a buffer obtained from ** sqlite3_malloc(). If successful, a pointer to the buffer is returned. ** It is the responsibility of the caller to eventually free the buffer ** using sqlite3_free(). ** ** Or, if an error occurs, an error code and message is left in the recover ** handle and NULL returned. */ static char *recoverMPrintf(sqlite3_recover *p, const char *zFmt, ...){ va_list ap; char *z; va_start(ap, zFmt); z = sqlite3_vmprintf(zFmt, ap); va_end(ap); if( p->errCode==SQLITE_OK ){ if( z==0 ) p->errCode = SQLITE_NOMEM; }else{ sqlite3_free(z); z = 0; } return z; } /* ** This function is a no-op if recover handle p already contains an error ** (if p->errCode!=SQLITE_OK). Zero is returned in this case. ** ** Otherwise, execute "PRAGMA page_count" against the input database. If ** successful, return the integer result. Or, if an error occurs, leave an ** error code and error message in the sqlite3_recover handle and return ** zero. */ static i64 recoverPageCount(sqlite3_recover *p){ i64 nPg = 0; if( p->errCode==SQLITE_OK ){ sqlite3_stmt *pStmt = 0; pStmt = recoverPreparePrintf(p, p->dbIn, "PRAGMA %Q.page_count", p->zDb); if( pStmt ){ sqlite3_step(pStmt); nPg = sqlite3_column_int64(pStmt, 0); } recoverFinalize(p, pStmt); } return nPg; } /* ** Implementation of SQL scalar function "read_i32". The first argument to ** this function must be a blob. The second a non-negative integer. This ** function reads and returns a 32-bit big-endian integer from byte ** offset (4*) of the blob. ** ** SELECT read_i32(, ) */ static void recoverReadI32( sqlite3_context *context, int argc, sqlite3_value **argv ){ const unsigned char *pBlob; int nBlob; int iInt; assert( argc==2 ); nBlob = sqlite3_value_bytes(argv[0]); pBlob = (const unsigned char*)sqlite3_value_blob(argv[0]); iInt = sqlite3_value_int(argv[1]) & 0xFFFF; if( (iInt+1)*4<=nBlob ){ const unsigned char *a = &pBlob[iInt*4]; i64 iVal = ((i64)a[0]<<24) + ((i64)a[1]<<16) + ((i64)a[2]<< 8) + ((i64)a[3]<< 0); sqlite3_result_int64(context, iVal); } } /* ** Implementation of SQL scalar function "page_is_used". This function ** is used as part of the procedure for locating orphan rows for the ** lost-and-found table, and it depends on those routines having populated ** the sqlite3_recover.laf.pUsed variable. ** ** The only argument to this function is a page-number. It returns true ** if the page has already been used somehow during data recovery, or false ** otherwise. ** ** SELECT page_is_used(); */ static void recoverPageIsUsed( sqlite3_context *pCtx, int nArg, sqlite3_value **apArg ){ sqlite3_recover *p = (sqlite3_recover*)sqlite3_user_data(pCtx); i64 pgno = sqlite3_value_int64(apArg[0]); assert( nArg==1 ); sqlite3_result_int(pCtx, recoverBitmapQuery(p->laf.pUsed, pgno)); } /* ** The implementation of a user-defined SQL function invoked by the ** sqlite_dbdata and sqlite_dbptr virtual table modules to access pages ** of the database being recovered. ** ** This function always takes a single integer argument. If the argument ** is zero, then the value returned is the number of pages in the db being ** recovered. If the argument is greater than zero, it is a page number. ** The value returned in this case is an SQL blob containing the data for ** the identified page of the db being recovered. e.g. ** ** SELECT getpage(0); -- return number of pages in db ** SELECT getpage(4); -- return page 4 of db as a blob of data */ static void recoverGetPage( sqlite3_context *pCtx, int nArg, sqlite3_value **apArg ){ sqlite3_recover *p = (sqlite3_recover*)sqlite3_user_data(pCtx); i64 pgno = sqlite3_value_int64(apArg[0]); sqlite3_stmt *pStmt = 0; assert( nArg==1 ); if( pgno==0 ){ i64 nPg = recoverPageCount(p); sqlite3_result_int64(pCtx, nPg); return; }else{ if( p->pGetPage==0 ){ pStmt = p->pGetPage = recoverPreparePrintf( p, p->dbIn, "SELECT data FROM sqlite_dbpage(%Q) WHERE pgno=?", p->zDb ); }else if( p->errCode==SQLITE_OK ){ pStmt = p->pGetPage; } if( pStmt ){ sqlite3_bind_int64(pStmt, 1, pgno); if( SQLITE_ROW==sqlite3_step(pStmt) ){ const u8 *aPg; int nPg; assert( p->errCode==SQLITE_OK ); aPg = sqlite3_column_blob(pStmt, 0); nPg = sqlite3_column_bytes(pStmt, 0); if( pgno==1 && nPg==p->pgsz && 0==memcmp(p->pPage1Cache, aPg, nPg) ){ aPg = p->pPage1Disk; } sqlite3_result_blob(pCtx, aPg, nPg-p->nReserve, SQLITE_TRANSIENT); } recoverReset(p, pStmt); } } if( p->errCode ){ if( p->zErrMsg ) sqlite3_result_error(pCtx, p->zErrMsg, -1); sqlite3_result_error_code(pCtx, p->errCode); } } /* ** Find a string that is not found anywhere in z[]. Return a pointer ** to that string. ** ** Try to use zA and zB first. If both of those are already found in z[] ** then make up some string and store it in the buffer zBuf. */ static const char *recoverUnusedString( const char *z, /* Result must not appear anywhere in z */ const char *zA, const char *zB, /* Try these first */ char *zBuf /* Space to store a generated string */ ){ unsigned i = 0; if( strstr(z, zA)==0 ) return zA; if( strstr(z, zB)==0 ) return zB; do{ sqlite3_snprintf(20,zBuf,"(%s%u)", zA, i++); }while( strstr(z,zBuf)!=0 ); return zBuf; } /* ** Implementation of scalar SQL function "escape_crlf". The argument passed to ** this function is the output of built-in function quote(). If the first ** character of the input is "'", indicating that the value passed to quote() ** was a text value, then this function searches the input for "\n" and "\r" ** characters and adds a wrapper similar to the following: ** ** replace(replace(, '\n', char(10), '\r', char(13)); ** ** Or, if the first character of the input is not "'", then a copy of the input ** is returned. */ static void recoverEscapeCrlf( sqlite3_context *context, int argc, sqlite3_value **argv ){ const char *zText = (const char*)sqlite3_value_text(argv[0]); (void)argc; if( zText && zText[0]=='\'' ){ int nText = sqlite3_value_bytes(argv[0]); int i; char zBuf1[20]; char zBuf2[20]; const char *zNL = 0; const char *zCR = 0; int nCR = 0; int nNL = 0; for(i=0; zText[i]; i++){ if( zNL==0 && zText[i]=='\n' ){ zNL = recoverUnusedString(zText, "\\n", "\\012", zBuf1); nNL = (int)strlen(zNL); } if( zCR==0 && zText[i]=='\r' ){ zCR = recoverUnusedString(zText, "\\r", "\\015", zBuf2); nCR = (int)strlen(zCR); } } if( zNL || zCR ){ int iOut = 0; i64 nMax = (nNL > nCR) ? nNL : nCR; i64 nAlloc = nMax * nText + (nMax+64)*2; char *zOut = (char*)sqlite3_malloc64(nAlloc); if( zOut==0 ){ sqlite3_result_error_nomem(context); return; } if( zNL && zCR ){ memcpy(&zOut[iOut], "replace(replace(", 16); iOut += 16; }else{ memcpy(&zOut[iOut], "replace(", 8); iOut += 8; } for(i=0; zText[i]; i++){ if( zText[i]=='\n' ){ memcpy(&zOut[iOut], zNL, nNL); iOut += nNL; }else if( zText[i]=='\r' ){ memcpy(&zOut[iOut], zCR, nCR); iOut += nCR; }else{ zOut[iOut] = zText[i]; iOut++; } } if( zNL ){ memcpy(&zOut[iOut], ",'", 2); iOut += 2; memcpy(&zOut[iOut], zNL, nNL); iOut += nNL; memcpy(&zOut[iOut], "', char(10))", 12); iOut += 12; } if( zCR ){ memcpy(&zOut[iOut], ",'", 2); iOut += 2; memcpy(&zOut[iOut], zCR, nCR); iOut += nCR; memcpy(&zOut[iOut], "', char(13))", 12); iOut += 12; } sqlite3_result_text(context, zOut, iOut, SQLITE_TRANSIENT); sqlite3_free(zOut); return; } } sqlite3_result_value(context, argv[0]); } /* ** This function is a no-op if recover handle p already contains an error ** (if p->errCode!=SQLITE_OK). A copy of the error code is returned in ** this case. ** ** Otherwise, attempt to populate temporary table "recovery.schema" with the ** parts of the database schema that can be extracted from the input database. ** ** If no error occurs, SQLITE_OK is returned. Otherwise, an error code ** and error message are left in the recover handle and a copy of the ** error code returned. It is not considered an error if part of all of ** the database schema cannot be recovered due to corruption. */ static int recoverCacheSchema(sqlite3_recover *p){ return recoverExec(p, p->dbOut, "WITH RECURSIVE pages(p) AS (" " SELECT 1" " UNION" " SELECT child FROM sqlite_dbptr('getpage()'), pages WHERE pgno=p" ")" "INSERT INTO recovery.schema SELECT" " max(CASE WHEN field=0 THEN value ELSE NULL END)," " max(CASE WHEN field=1 THEN value ELSE NULL END)," " max(CASE WHEN field=2 THEN value ELSE NULL END)," " max(CASE WHEN field=3 THEN value ELSE NULL END)," " max(CASE WHEN field=4 THEN value ELSE NULL END)" "FROM sqlite_dbdata('getpage()') WHERE pgno IN (" " SELECT p FROM pages" ") GROUP BY pgno, cell" ); } /* ** If this recover handle is not in SQL callback mode (i.e. was not created ** using sqlite3_recover_init_sql()) of if an error has already occurred, ** this function is a no-op. Otherwise, issue a callback with SQL statement ** zSql as the parameter. ** ** If the callback returns non-zero, set the recover handle error code to ** the value returned (so that the caller will abandon processing). */ static void recoverSqlCallback(sqlite3_recover *p, const char *zSql){ if( p->errCode==SQLITE_OK && p->xSql ){ int res = p->xSql(p->pSqlCtx, zSql); if( res ){ recoverError(p, SQLITE_ERROR, "callback returned an error - %d", res); } } } /* ** Transfer the following settings from the input database to the output ** database: ** ** + page-size, ** + auto-vacuum settings, ** + database encoding, ** + user-version (PRAGMA user_version), and ** + application-id (PRAGMA application_id), and */ static void recoverTransferSettings(sqlite3_recover *p){ const char *aPragma[] = { "encoding", "page_size", "auto_vacuum", "user_version", "application_id" }; int ii; /* Truncate the output database to 0 pages in size. This is done by ** opening a new, empty, temp db, then using the backup API to clobber ** any existing output db with a copy of it. */ if( p->errCode==SQLITE_OK ){ sqlite3 *db2 = 0; int rc = sqlite3_open("", &db2); if( rc!=SQLITE_OK ){ recoverDbError(p, db2); return; } for(ii=0; ii<(int)(sizeof(aPragma)/sizeof(aPragma[0])); ii++){ const char *zPrag = aPragma[ii]; sqlite3_stmt *p1 = 0; p1 = recoverPreparePrintf(p, p->dbIn, "PRAGMA %Q.%s", p->zDb, zPrag); if( p->errCode==SQLITE_OK && sqlite3_step(p1)==SQLITE_ROW ){ const char *zArg = (const char*)sqlite3_column_text(p1, 0); char *z2 = recoverMPrintf(p, "PRAGMA %s = %Q", zPrag, zArg); recoverSqlCallback(p, z2); recoverExec(p, db2, z2); sqlite3_free(z2); if( zArg==0 ){ recoverError(p, SQLITE_NOMEM, 0); } } recoverFinalize(p, p1); } recoverExec(p, db2, "CREATE TABLE t1(a); DROP TABLE t1;"); if( p->errCode==SQLITE_OK ){ sqlite3 *db = p->dbOut; sqlite3_backup *pBackup = sqlite3_backup_init(db, "main", db2, "main"); if( pBackup ){ sqlite3_backup_step(pBackup, -1); p->errCode = sqlite3_backup_finish(pBackup); }else{ recoverDbError(p, db); } } sqlite3_close(db2); } } /* ** This function is a no-op if recover handle p already contains an error ** (if p->errCode!=SQLITE_OK). A copy of the error code is returned in ** this case. ** ** Otherwise, an attempt is made to open the output database, attach ** and create the schema of the temporary database used to store ** intermediate data, and to register all required user functions and ** virtual table modules with the output handle. ** ** If no error occurs, SQLITE_OK is returned. Otherwise, an error code ** and error message are left in the recover handle and a copy of the ** error code returned. */ static int recoverOpenOutput(sqlite3_recover *p){ struct Func { const char *zName; int nArg; void (*xFunc)(sqlite3_context*,int,sqlite3_value **); } aFunc[] = { { "getpage", 1, recoverGetPage }, { "page_is_used", 1, recoverPageIsUsed }, { "read_i32", 2, recoverReadI32 }, { "escape_crlf", 1, recoverEscapeCrlf }, }; const int flags = SQLITE_OPEN_URI|SQLITE_OPEN_CREATE|SQLITE_OPEN_READWRITE; sqlite3 *db = 0; /* New database handle */ int ii; /* For iterating through aFunc[] */ assert( p->dbOut==0 ); if( sqlite3_open_v2(p->zUri, &db, flags, 0) ){ recoverDbError(p, db); } /* Register the sqlite_dbdata and sqlite_dbptr virtual table modules. ** These two are registered with the output database handle - this ** module depends on the input handle supporting the sqlite_dbpage ** virtual table only. */ if( p->errCode==SQLITE_OK ){ p->errCode = sqlite3_dbdata_init(db, 0, 0); } /* Register the custom user-functions with the output handle. */ for(ii=0; p->errCode==SQLITE_OK && ii<(int)(sizeof(aFunc)/sizeof(aFunc[0])); ii++){ p->errCode = sqlite3_create_function(db, aFunc[ii].zName, aFunc[ii].nArg, SQLITE_UTF8, (void*)p, aFunc[ii].xFunc, 0, 0 ); } p->dbOut = db; return p->errCode; } /* ** Attach the auxiliary database 'recovery' to the output database handle. ** This temporary database is used during the recovery process and then ** discarded. */ static void recoverOpenRecovery(sqlite3_recover *p){ char *zSql = recoverMPrintf(p, "ATTACH %Q AS recovery;", p->zStateDb); recoverExec(p, p->dbOut, zSql); recoverExec(p, p->dbOut, "PRAGMA writable_schema = 1;" "CREATE TABLE recovery.map(pgno INTEGER PRIMARY KEY, parent INT);" "CREATE TABLE recovery.schema(type, name, tbl_name, rootpage, sql);" ); sqlite3_free(zSql); } /* ** This function is a no-op if recover handle p already contains an error ** (if p->errCode!=SQLITE_OK). ** ** Otherwise, argument zName must be the name of a table that has just been ** created in the output database. This function queries the output db ** for the schema of said table, and creates a RecoverTable object to ** store the schema in memory. The new RecoverTable object is linked into ** the list at sqlite3_recover.pTblList. ** ** Parameter iRoot must be the root page of table zName in the INPUT ** database. */ static void recoverAddTable( sqlite3_recover *p, const char *zName, /* Name of table created in output db */ i64 iRoot /* Root page of same table in INPUT db */ ){ sqlite3_stmt *pStmt = recoverPreparePrintf(p, p->dbOut, "PRAGMA table_xinfo(%Q)", zName ); if( pStmt ){ int iPk = -1; int iBind = 1; RecoverTable *pNew = 0; int nCol = 0; int nName = recoverStrlen(zName); int nByte = 0; while( sqlite3_step(pStmt)==SQLITE_ROW ){ nCol++; nByte += (sqlite3_column_bytes(pStmt, 1)+1); } nByte += sizeof(RecoverTable) + nCol*sizeof(RecoverColumn) + nName+1; recoverReset(p, pStmt); pNew = recoverMalloc(p, nByte); if( pNew ){ int i = 0; int iField = 0; char *csr = 0; pNew->aCol = (RecoverColumn*)&pNew[1]; pNew->zTab = csr = (char*)&pNew->aCol[nCol]; pNew->nCol = nCol; pNew->iRoot = iRoot; memcpy(csr, zName, nName); csr += nName+1; for(i=0; sqlite3_step(pStmt)==SQLITE_ROW; i++){ int iPKF = sqlite3_column_int(pStmt, 5); int n = sqlite3_column_bytes(pStmt, 1); const char *z = (const char*)sqlite3_column_text(pStmt, 1); const char *zType = (const char*)sqlite3_column_text(pStmt, 2); int eHidden = sqlite3_column_int(pStmt, 6); if( iPk==-1 && iPKF==1 && !sqlite3_stricmp("integer", zType) ) iPk = i; if( iPKF>1 ) iPk = -2; pNew->aCol[i].zCol = csr; pNew->aCol[i].eHidden = eHidden; if( eHidden==RECOVER_EHIDDEN_VIRTUAL ){ pNew->aCol[i].iField = -1; }else{ pNew->aCol[i].iField = iField++; } if( eHidden!=RECOVER_EHIDDEN_VIRTUAL && eHidden!=RECOVER_EHIDDEN_STORED ){ pNew->aCol[i].iBind = iBind++; } memcpy(csr, z, n); csr += (n+1); } pNew->pNext = p->pTblList; p->pTblList = pNew; pNew->bIntkey = 1; } recoverFinalize(p, pStmt); pStmt = recoverPreparePrintf(p, p->dbOut, "PRAGMA index_xinfo(%Q)", zName); while( pStmt && sqlite3_step(pStmt)==SQLITE_ROW ){ int iField = sqlite3_column_int(pStmt, 0); int iCol = sqlite3_column_int(pStmt, 1); assert( iColnCol ); pNew->aCol[iCol].iField = iField; pNew->bIntkey = 0; iPk = -2; } recoverFinalize(p, pStmt); if( p->errCode==SQLITE_OK ){ if( iPk>=0 ){ pNew->aCol[iPk].bIPK = 1; }else if( pNew->bIntkey ){ pNew->iRowidBind = iBind++; } } } } /* ** This function is called after recoverCacheSchema() has cached those parts ** of the input database schema that could be recovered in temporary table ** "recovery.schema". This function creates in the output database copies ** of all parts of that schema that must be created before the tables can ** be populated. Specifically, this means: ** ** * all tables that are not VIRTUAL, and ** * UNIQUE indexes. ** ** If the recovery handle uses SQL callbacks, then callbacks containing ** the associated "CREATE TABLE" and "CREATE INDEX" statements are made. ** ** Additionally, records are added to the sqlite_schema table of the ** output database for any VIRTUAL tables. The CREATE VIRTUAL TABLE ** records are written directly to sqlite_schema, not actually executed. ** If the handle is in SQL callback mode, then callbacks are invoked ** with equivalent SQL statements. */ static int recoverWriteSchema1(sqlite3_recover *p){ sqlite3_stmt *pSelect = 0; sqlite3_stmt *pTblname = 0; pSelect = recoverPrepare(p, p->dbOut, "WITH dbschema(rootpage, name, sql, tbl, isVirtual, isIndex) AS (" " SELECT rootpage, name, sql, " " type='table', " " sql LIKE 'create virtual%'," " (type='index' AND (sql LIKE '%unique%' OR ?1))" " FROM recovery.schema" ")" "SELECT rootpage, tbl, isVirtual, name, sql" " FROM dbschema " " WHERE tbl OR isIndex" " ORDER BY tbl DESC, name=='sqlite_sequence' DESC" ); pTblname = recoverPrepare(p, p->dbOut, "SELECT name FROM sqlite_schema " "WHERE type='table' ORDER BY rowid DESC LIMIT 1" ); if( pSelect ){ sqlite3_bind_int(pSelect, 1, p->bSlowIndexes); while( sqlite3_step(pSelect)==SQLITE_ROW ){ i64 iRoot = sqlite3_column_int64(pSelect, 0); int bTable = sqlite3_column_int(pSelect, 1); int bVirtual = sqlite3_column_int(pSelect, 2); const char *zName = (const char*)sqlite3_column_text(pSelect, 3); const char *zSql = (const char*)sqlite3_column_text(pSelect, 4); char *zFree = 0; int rc = SQLITE_OK; if( bVirtual ){ zSql = (const char*)(zFree = recoverMPrintf(p, "INSERT INTO sqlite_schema VALUES('table', %Q, %Q, 0, %Q)", zName, zName, zSql )); } rc = sqlite3_exec(p->dbOut, zSql, 0, 0, 0); if( rc==SQLITE_OK ){ recoverSqlCallback(p, zSql); if( bTable && !bVirtual ){ if( SQLITE_ROW==sqlite3_step(pTblname) ){ const char *zTbl = (const char*)sqlite3_column_text(pTblname, 0); if( zTbl ) recoverAddTable(p, zTbl, iRoot); } recoverReset(p, pTblname); } }else if( rc!=SQLITE_ERROR ){ recoverDbError(p, p->dbOut); } sqlite3_free(zFree); } } recoverFinalize(p, pSelect); recoverFinalize(p, pTblname); return p->errCode; } /* ** This function is called after the output database has been populated. It ** adds all recovered schema elements that were not created in the output ** database by recoverWriteSchema1() - everything except for tables and ** UNIQUE indexes. Specifically: ** ** * views, ** * triggers, ** * non-UNIQUE indexes. ** ** If the recover handle is in SQL callback mode, then equivalent callbacks ** are issued to create the schema elements. */ static int recoverWriteSchema2(sqlite3_recover *p){ sqlite3_stmt *pSelect = 0; pSelect = recoverPrepare(p, p->dbOut, p->bSlowIndexes ? "SELECT rootpage, sql FROM recovery.schema " " WHERE type!='table' AND type!='index'" : "SELECT rootpage, sql FROM recovery.schema " " WHERE type!='table' AND (type!='index' OR sql NOT LIKE '%unique%')" ); if( pSelect ){ while( sqlite3_step(pSelect)==SQLITE_ROW ){ const char *zSql = (const char*)sqlite3_column_text(pSelect, 1); int rc = sqlite3_exec(p->dbOut, zSql, 0, 0, 0); if( rc==SQLITE_OK ){ recoverSqlCallback(p, zSql); }else if( rc!=SQLITE_ERROR ){ recoverDbError(p, p->dbOut); } } } recoverFinalize(p, pSelect); return p->errCode; } /* ** This function is a no-op if recover handle p already contains an error ** (if p->errCode!=SQLITE_OK). In this case it returns NULL. ** ** Otherwise, if the recover handle is configured to create an output ** database (was created by sqlite3_recover_init()), then this function ** prepares and returns an SQL statement to INSERT a new record into table ** pTab, assuming the first nField fields of a record extracted from disk ** are valid. ** ** For example, if table pTab is: ** ** CREATE TABLE name(a, b GENERATED ALWAYS AS (a+1) STORED, c, d, e); ** ** And nField is 4, then the SQL statement prepared and returned is: ** ** INSERT INTO (a, c, d) VALUES (?1, ?2, ?3); ** ** In this case even though 4 values were extracted from the input db, ** only 3 are written to the output, as the generated STORED column ** cannot be written. ** ** If the recover handle is in SQL callback mode, then the SQL statement ** prepared is such that evaluating it returns a single row containing ** a single text value - itself an SQL statement similar to the above, ** except with SQL literals in place of the variables. For example: ** ** SELECT 'INSERT INTO (a, c, d) VALUES (' ** || quote(?1) || ', ' ** || quote(?2) || ', ' ** || quote(?3) || ')'; ** ** In either case, it is the responsibility of the caller to eventually ** free the statement handle using sqlite3_finalize(). */ static sqlite3_stmt *recoverInsertStmt( sqlite3_recover *p, RecoverTable *pTab, int nField ){ sqlite3_stmt *pRet = 0; const char *zSep = ""; const char *zSqlSep = ""; char *zSql = 0; char *zFinal = 0; char *zBind = 0; int ii; int bSql = p->xSql ? 1 : 0; if( nField<=0 ) return 0; assert( nField<=pTab->nCol ); zSql = recoverMPrintf(p, "INSERT OR IGNORE INTO %Q(", pTab->zTab); if( pTab->iRowidBind ){ assert( pTab->bIntkey ); zSql = recoverMPrintf(p, "%z_rowid_", zSql); if( bSql ){ zBind = recoverMPrintf(p, "%zquote(?%d)", zBind, pTab->iRowidBind); }else{ zBind = recoverMPrintf(p, "%z?%d", zBind, pTab->iRowidBind); } zSqlSep = "||', '||"; zSep = ", "; } for(ii=0; iiaCol[ii].eHidden; if( eHidden!=RECOVER_EHIDDEN_VIRTUAL && eHidden!=RECOVER_EHIDDEN_STORED ){ assert( pTab->aCol[ii].iField>=0 && pTab->aCol[ii].iBind>=1 ); zSql = recoverMPrintf(p, "%z%s%Q", zSql, zSep, pTab->aCol[ii].zCol); if( bSql ){ zBind = recoverMPrintf(p, "%z%sescape_crlf(quote(?%d))", zBind, zSqlSep, pTab->aCol[ii].iBind ); zSqlSep = "||', '||"; }else{ zBind = recoverMPrintf(p, "%z%s?%d", zBind, zSep, pTab->aCol[ii].iBind); } zSep = ", "; } } if( bSql ){ zFinal = recoverMPrintf(p, "SELECT %Q || ') VALUES (' || %s || ')'", zSql, zBind ); }else{ zFinal = recoverMPrintf(p, "%s) VALUES (%s)", zSql, zBind); } pRet = recoverPrepare(p, p->dbOut, zFinal); sqlite3_free(zSql); sqlite3_free(zBind); sqlite3_free(zFinal); return pRet; } /* ** Search the list of RecoverTable objects at p->pTblList for one that ** has root page iRoot in the input database. If such an object is found, ** return a pointer to it. Otherwise, return NULL. */ static RecoverTable *recoverFindTable(sqlite3_recover *p, u32 iRoot){ RecoverTable *pRet = 0; for(pRet=p->pTblList; pRet && pRet->iRoot!=iRoot; pRet=pRet->pNext); return pRet; } /* ** This function attempts to create a lost and found table within the ** output db. If successful, it returns a pointer to a buffer containing ** the name of the new table. It is the responsibility of the caller to ** eventually free this buffer using sqlite3_free(). ** ** If an error occurs, NULL is returned and an error code and error ** message left in the recover handle. */ static char *recoverLostAndFoundCreate( sqlite3_recover *p, /* Recover object */ int nField /* Number of column fields in new table */ ){ char *zTbl = 0; sqlite3_stmt *pProbe = 0; int ii = 0; pProbe = recoverPrepare(p, p->dbOut, "SELECT 1 FROM sqlite_schema WHERE name=?" ); for(ii=-1; zTbl==0 && p->errCode==SQLITE_OK && ii<1000; ii++){ int bFail = 0; if( ii<0 ){ zTbl = recoverMPrintf(p, "%s", p->zLostAndFound); }else{ zTbl = recoverMPrintf(p, "%s_%d", p->zLostAndFound, ii); } if( p->errCode==SQLITE_OK ){ sqlite3_bind_text(pProbe, 1, zTbl, -1, SQLITE_STATIC); if( SQLITE_ROW==sqlite3_step(pProbe) ){ bFail = 1; } recoverReset(p, pProbe); } if( bFail ){ sqlite3_clear_bindings(pProbe); sqlite3_free(zTbl); zTbl = 0; } } recoverFinalize(p, pProbe); if( zTbl ){ const char *zSep = 0; char *zField = 0; char *zSql = 0; zSep = "rootpgno INTEGER, pgno INTEGER, nfield INTEGER, id INTEGER, "; for(ii=0; p->errCode==SQLITE_OK && iidbOut, zSql); recoverSqlCallback(p, zSql); sqlite3_free(zSql); }else if( p->errCode==SQLITE_OK ){ recoverError( p, SQLITE_ERROR, "failed to create %s output table", p->zLostAndFound ); } return zTbl; } /* ** Synthesize and prepare an INSERT statement to write to the lost_and_found ** table in the output database. The name of the table is zTab, and it has ** nField c* fields. */ static sqlite3_stmt *recoverLostAndFoundInsert( sqlite3_recover *p, const char *zTab, int nField ){ int nTotal = nField + 4; int ii; char *zBind = 0; sqlite3_stmt *pRet = 0; if( p->xSql==0 ){ for(ii=0; iidbOut, "INSERT INTO %s VALUES(%s)", zTab, zBind ); }else{ const char *zSep = ""; for(ii=0; iidbOut, "SELECT 'INSERT INTO %s VALUES(' || %s || ')'", zTab, zBind ); } sqlite3_free(zBind); return pRet; } /* ** Input database page iPg contains data that will be written to the ** lost-and-found table of the output database. This function attempts ** to identify the root page of the tree that page iPg belonged to. ** If successful, it sets output variable (*piRoot) to the page number ** of the root page and returns SQLITE_OK. Otherwise, if an error occurs, ** an SQLite error code is returned and the final value of *piRoot ** undefined. */ static int recoverLostAndFoundFindRoot( sqlite3_recover *p, i64 iPg, i64 *piRoot ){ RecoverStateLAF *pLaf = &p->laf; if( pLaf->pFindRoot==0 ){ pLaf->pFindRoot = recoverPrepare(p, p->dbOut, "WITH RECURSIVE p(pgno) AS (" " SELECT ?" " UNION" " SELECT parent FROM recovery.map AS m, p WHERE m.pgno=p.pgno" ") " "SELECT p.pgno FROM p, recovery.map m WHERE m.pgno=p.pgno " " AND m.parent IS NULL" ); } if( p->errCode==SQLITE_OK ){ sqlite3_bind_int64(pLaf->pFindRoot, 1, iPg); if( sqlite3_step(pLaf->pFindRoot)==SQLITE_ROW ){ *piRoot = sqlite3_column_int64(pLaf->pFindRoot, 0); }else{ *piRoot = iPg; } recoverReset(p, pLaf->pFindRoot); } return p->errCode; } /* ** Recover data from page iPage of the input database and write it to ** the lost-and-found table in the output database. */ static void recoverLostAndFoundOnePage(sqlite3_recover *p, i64 iPage){ RecoverStateLAF *pLaf = &p->laf; sqlite3_value **apVal = pLaf->apVal; sqlite3_stmt *pPageData = pLaf->pPageData; sqlite3_stmt *pInsert = pLaf->pInsert; int nVal = -1; int iPrevCell = 0; i64 iRoot = 0; int bHaveRowid = 0; i64 iRowid = 0; int ii = 0; if( recoverLostAndFoundFindRoot(p, iPage, &iRoot) ) return; sqlite3_bind_int64(pPageData, 1, iPage); while( p->errCode==SQLITE_OK && SQLITE_ROW==sqlite3_step(pPageData) ){ int iCell = sqlite3_column_int64(pPageData, 0); int iField = sqlite3_column_int64(pPageData, 1); if( iPrevCell!=iCell && nVal>=0 ){ /* Insert the new row */ sqlite3_bind_int64(pInsert, 1, iRoot); /* rootpgno */ sqlite3_bind_int64(pInsert, 2, iPage); /* pgno */ sqlite3_bind_int(pInsert, 3, nVal); /* nfield */ if( bHaveRowid ){ sqlite3_bind_int64(pInsert, 4, iRowid); /* id */ } for(ii=0; iinMaxField ){ sqlite3_value *pVal = sqlite3_column_value(pPageData, 2); apVal[iField] = sqlite3_value_dup(pVal); assert( iField==nVal || (nVal==-1 && iField==0) ); nVal = iField+1; if( apVal[iField]==0 ){ recoverError(p, SQLITE_NOMEM, 0); } } iPrevCell = iCell; } recoverReset(p, pPageData); for(ii=0; iilaf; if( p->errCode==SQLITE_OK ){ if( pLaf->pInsert==0 ){ return SQLITE_DONE; }else{ if( p->errCode==SQLITE_OK ){ int res = sqlite3_step(pLaf->pAllPage); if( res==SQLITE_ROW ){ i64 iPage = sqlite3_column_int64(pLaf->pAllPage, 0); if( recoverBitmapQuery(pLaf->pUsed, iPage)==0 ){ recoverLostAndFoundOnePage(p, iPage); } }else{ recoverReset(p, pLaf->pAllPage); return SQLITE_DONE; } } } } return SQLITE_OK; } /* ** Initialize resources required in RECOVER_STATE_LOSTANDFOUND3 ** state - during which the lost-and-found table of the output database ** is populated with recovered data that can not be assigned to any ** recovered schema object. */ static void recoverLostAndFound3Init(sqlite3_recover *p){ RecoverStateLAF *pLaf = &p->laf; if( pLaf->nMaxField>0 ){ char *zTab = 0; /* Name of lost_and_found table */ zTab = recoverLostAndFoundCreate(p, pLaf->nMaxField); pLaf->pInsert = recoverLostAndFoundInsert(p, zTab, pLaf->nMaxField); sqlite3_free(zTab); pLaf->pAllPage = recoverPreparePrintf(p, p->dbOut, "WITH RECURSIVE seq(ii) AS (" " SELECT 1 UNION ALL SELECT ii+1 FROM seq WHERE ii<%lld" ")" "SELECT ii FROM seq" , p->laf.nPg ); pLaf->pPageData = recoverPrepare(p, p->dbOut, "SELECT cell, field, value " "FROM sqlite_dbdata('getpage()') d WHERE d.pgno=? " "UNION ALL " "SELECT -1, -1, -1" ); pLaf->apVal = (sqlite3_value**)recoverMalloc(p, pLaf->nMaxField*sizeof(sqlite3_value*) ); } } /* ** Initialize resources required in RECOVER_STATE_WRITING state - during which ** tables recovered from the schema of the input database are populated with ** recovered data. */ static int recoverWriteDataInit(sqlite3_recover *p){ RecoverStateW1 *p1 = &p->w1; RecoverTable *pTbl = 0; int nByte = 0; /* Figure out the maximum number of columns for any table in the schema */ assert( p1->nMax==0 ); for(pTbl=p->pTblList; pTbl; pTbl=pTbl->pNext){ if( pTbl->nCol>p1->nMax ) p1->nMax = pTbl->nCol; } /* Allocate an array of (sqlite3_value*) in which to accumulate the values ** that will be written to the output database in a single row. */ nByte = sizeof(sqlite3_value*) * (p1->nMax+1); p1->apVal = (sqlite3_value**)recoverMalloc(p, nByte); if( p1->apVal==0 ) return p->errCode; /* Prepare the SELECT to loop through schema tables (pTbls) and the SELECT ** to loop through cells that appear to belong to a single table (pSel). */ p1->pTbls = recoverPrepare(p, p->dbOut, "SELECT rootpage FROM recovery.schema " " WHERE type='table' AND (sql NOT LIKE 'create virtual%')" " ORDER BY (tbl_name='sqlite_sequence') ASC" ); p1->pSel = recoverPrepare(p, p->dbOut, "WITH RECURSIVE pages(page) AS (" " SELECT ?1" " UNION" " SELECT child FROM sqlite_dbptr('getpage()'), pages " " WHERE pgno=page" ") " "SELECT page, cell, field, value " "FROM sqlite_dbdata('getpage()') d, pages p WHERE p.page=d.pgno " "UNION ALL " "SELECT 0, 0, 0, 0" ); return p->errCode; } /* ** Clean up resources allocated by recoverWriteDataInit() (stuff in ** sqlite3_recover.w1). */ static void recoverWriteDataCleanup(sqlite3_recover *p){ RecoverStateW1 *p1 = &p->w1; int ii; for(ii=0; iinVal; ii++){ sqlite3_value_free(p1->apVal[ii]); } sqlite3_free(p1->apVal); recoverFinalize(p, p1->pInsert); recoverFinalize(p, p1->pTbls); recoverFinalize(p, p1->pSel); memset(p1, 0, sizeof(*p1)); } /* ** Perform one step (sqlite3_recover_step()) of work for the connection ** passed as the only argument, which is guaranteed to be in ** RECOVER_STATE_WRITING state - during which tables recovered from the ** schema of the input database are populated with recovered data. */ static int recoverWriteDataStep(sqlite3_recover *p){ RecoverStateW1 *p1 = &p->w1; sqlite3_stmt *pSel = p1->pSel; sqlite3_value **apVal = p1->apVal; if( p->errCode==SQLITE_OK && p1->pTab==0 ){ if( sqlite3_step(p1->pTbls)==SQLITE_ROW ){ i64 iRoot = sqlite3_column_int64(p1->pTbls, 0); p1->pTab = recoverFindTable(p, iRoot); recoverFinalize(p, p1->pInsert); p1->pInsert = 0; /* If this table is unknown, return early. The caller will invoke this ** function again and it will move on to the next table. */ if( p1->pTab==0 ) return p->errCode; /* If this is the sqlite_sequence table, delete any rows added by ** earlier INSERT statements on tables with AUTOINCREMENT primary ** keys before recovering its contents. The p1->pTbls SELECT statement ** is rigged to deliver "sqlite_sequence" last of all, so we don't ** worry about it being modified after it is recovered. */ if( sqlite3_stricmp("sqlite_sequence", p1->pTab->zTab)==0 ){ recoverExec(p, p->dbOut, "DELETE FROM sqlite_sequence"); recoverSqlCallback(p, "DELETE FROM sqlite_sequence"); } /* Bind the root page of this table within the original database to ** SELECT statement p1->pSel. The SELECT statement will then iterate ** through cells that look like they belong to table pTab. */ sqlite3_bind_int64(pSel, 1, iRoot); p1->nVal = 0; p1->bHaveRowid = 0; p1->iPrevPage = -1; p1->iPrevCell = -1; }else{ return SQLITE_DONE; } } assert( p->errCode!=SQLITE_OK || p1->pTab ); if( p->errCode==SQLITE_OK && sqlite3_step(pSel)==SQLITE_ROW ){ RecoverTable *pTab = p1->pTab; i64 iPage = sqlite3_column_int64(pSel, 0); int iCell = sqlite3_column_int(pSel, 1); int iField = sqlite3_column_int(pSel, 2); sqlite3_value *pVal = sqlite3_column_value(pSel, 3); int bNewCell = (p1->iPrevPage!=iPage || p1->iPrevCell!=iCell); assert( bNewCell==0 || (iField==-1 || iField==0) ); assert( bNewCell || iField==p1->nVal || p1->nVal==pTab->nCol ); if( bNewCell ){ int ii = 0; if( p1->nVal>=0 ){ if( p1->pInsert==0 || p1->nVal!=p1->nInsert ){ recoverFinalize(p, p1->pInsert); p1->pInsert = recoverInsertStmt(p, pTab, p1->nVal); p1->nInsert = p1->nVal; } if( p1->nVal>0 ){ sqlite3_stmt *pInsert = p1->pInsert; for(ii=0; iinCol; ii++){ RecoverColumn *pCol = &pTab->aCol[ii]; int iBind = pCol->iBind; if( iBind>0 ){ if( pCol->bIPK ){ sqlite3_bind_int64(pInsert, iBind, p1->iRowid); }else if( pCol->iFieldnVal ){ recoverBindValue(p, pInsert, iBind, apVal[pCol->iField]); } } } if( p->bRecoverRowid && pTab->iRowidBind>0 && p1->bHaveRowid ){ sqlite3_bind_int64(pInsert, pTab->iRowidBind, p1->iRowid); } if( SQLITE_ROW==sqlite3_step(pInsert) ){ const char *z = (const char*)sqlite3_column_text(pInsert, 0); recoverSqlCallback(p, z); } recoverReset(p, pInsert); assert( p->errCode || pInsert ); if( pInsert ) sqlite3_clear_bindings(pInsert); } } for(ii=0; iinVal; ii++){ sqlite3_value_free(apVal[ii]); apVal[ii] = 0; } p1->nVal = -1; p1->bHaveRowid = 0; } if( iPage!=0 ){ if( iField<0 ){ p1->iRowid = sqlite3_column_int64(pSel, 3); assert( p1->nVal==-1 ); p1->nVal = 0; p1->bHaveRowid = 1; }else if( iFieldnCol ){ assert( apVal[iField]==0 ); apVal[iField] = sqlite3_value_dup( pVal ); if( apVal[iField]==0 ){ recoverError(p, SQLITE_NOMEM, 0); } p1->nVal = iField+1; } p1->iPrevCell = iCell; p1->iPrevPage = iPage; } }else{ recoverReset(p, pSel); p1->pTab = 0; } return p->errCode; } /* ** Initialize resources required by sqlite3_recover_step() in ** RECOVER_STATE_LOSTANDFOUND1 state - during which the set of pages not ** already allocated to a recovered schema element is determined. */ static void recoverLostAndFound1Init(sqlite3_recover *p){ RecoverStateLAF *pLaf = &p->laf; sqlite3_stmt *pStmt = 0; assert( p->laf.pUsed==0 ); pLaf->nPg = recoverPageCount(p); pLaf->pUsed = recoverBitmapAlloc(p, pLaf->nPg); /* Prepare a statement to iterate through all pages that are part of any tree ** in the recoverable part of the input database schema to the bitmap. And, ** if !p->bFreelistCorrupt, add all pages that appear to be part of the ** freelist. */ pStmt = recoverPrepare( p, p->dbOut, "WITH trunk(pgno) AS (" " SELECT read_i32(getpage(1), 8) AS x WHERE x>0" " UNION" " SELECT read_i32(getpage(trunk.pgno), 0) AS x FROM trunk WHERE x>0" ")," "trunkdata(pgno, data) AS (" " SELECT pgno, getpage(pgno) FROM trunk" ")," "freelist(data, n, freepgno) AS (" " SELECT data, min(16384, read_i32(data, 1)-1), pgno FROM trunkdata" " UNION ALL" " SELECT data, n-1, read_i32(data, 2+n) FROM freelist WHERE n>=0" ")," "" "roots(r) AS (" " SELECT 1 UNION ALL" " SELECT rootpage FROM recovery.schema WHERE rootpage>0" ")," "used(page) AS (" " SELECT r FROM roots" " UNION" " SELECT child FROM sqlite_dbptr('getpage()'), used " " WHERE pgno=page" ") " "SELECT page FROM used" " UNION ALL " "SELECT freepgno FROM freelist WHERE NOT ?" ); if( pStmt ) sqlite3_bind_int(pStmt, 1, p->bFreelistCorrupt); pLaf->pUsedPages = pStmt; } /* ** Perform one step (sqlite3_recover_step()) of work for the connection ** passed as the only argument, which is guaranteed to be in ** RECOVER_STATE_LOSTANDFOUND1 state - during which the set of pages not ** already allocated to a recovered schema element is determined. */ static int recoverLostAndFound1Step(sqlite3_recover *p){ RecoverStateLAF *pLaf = &p->laf; int rc = p->errCode; if( rc==SQLITE_OK ){ rc = sqlite3_step(pLaf->pUsedPages); if( rc==SQLITE_ROW ){ i64 iPg = sqlite3_column_int64(pLaf->pUsedPages, 0); recoverBitmapSet(pLaf->pUsed, iPg); rc = SQLITE_OK; }else{ recoverFinalize(p, pLaf->pUsedPages); pLaf->pUsedPages = 0; } } return rc; } /* ** Initialize resources required by RECOVER_STATE_LOSTANDFOUND2 ** state - during which the pages identified in RECOVER_STATE_LOSTANDFOUND1 ** are sorted into sets that likely belonged to the same database tree. */ static void recoverLostAndFound2Init(sqlite3_recover *p){ RecoverStateLAF *pLaf = &p->laf; assert( p->laf.pAllAndParent==0 ); assert( p->laf.pMapInsert==0 ); assert( p->laf.pMaxField==0 ); assert( p->laf.nMaxField==0 ); pLaf->pMapInsert = recoverPrepare(p, p->dbOut, "INSERT OR IGNORE INTO recovery.map(pgno, parent) VALUES(?, ?)" ); pLaf->pAllAndParent = recoverPreparePrintf(p, p->dbOut, "WITH RECURSIVE seq(ii) AS (" " SELECT 1 UNION ALL SELECT ii+1 FROM seq WHERE ii<%lld" ")" "SELECT pgno, child FROM sqlite_dbptr('getpage()') " " UNION ALL " "SELECT NULL, ii FROM seq", p->laf.nPg ); pLaf->pMaxField = recoverPreparePrintf(p, p->dbOut, "SELECT max(field)+1 FROM sqlite_dbdata('getpage') WHERE pgno = ?" ); } /* ** Perform one step (sqlite3_recover_step()) of work for the connection ** passed as the only argument, which is guaranteed to be in ** RECOVER_STATE_LOSTANDFOUND2 state - during which the pages identified ** in RECOVER_STATE_LOSTANDFOUND1 are sorted into sets that likely belonged ** to the same database tree. */ static int recoverLostAndFound2Step(sqlite3_recover *p){ RecoverStateLAF *pLaf = &p->laf; if( p->errCode==SQLITE_OK ){ int res = sqlite3_step(pLaf->pAllAndParent); if( res==SQLITE_ROW ){ i64 iChild = sqlite3_column_int(pLaf->pAllAndParent, 1); if( recoverBitmapQuery(pLaf->pUsed, iChild)==0 ){ sqlite3_bind_int64(pLaf->pMapInsert, 1, iChild); sqlite3_bind_value(pLaf->pMapInsert, 2, sqlite3_column_value(pLaf->pAllAndParent, 0) ); sqlite3_step(pLaf->pMapInsert); recoverReset(p, pLaf->pMapInsert); sqlite3_bind_int64(pLaf->pMaxField, 1, iChild); if( SQLITE_ROW==sqlite3_step(pLaf->pMaxField) ){ int nMax = sqlite3_column_int(pLaf->pMaxField, 0); if( nMax>pLaf->nMaxField ) pLaf->nMaxField = nMax; } recoverReset(p, pLaf->pMaxField); } }else{ recoverFinalize(p, pLaf->pAllAndParent); pLaf->pAllAndParent =0; return SQLITE_DONE; } } return p->errCode; } /* ** Free all resources allocated as part of sqlite3_recover_step() calls ** in one of the RECOVER_STATE_LOSTANDFOUND[123] states. */ static void recoverLostAndFoundCleanup(sqlite3_recover *p){ recoverBitmapFree(p->laf.pUsed); p->laf.pUsed = 0; sqlite3_finalize(p->laf.pUsedPages); sqlite3_finalize(p->laf.pAllAndParent); sqlite3_finalize(p->laf.pMapInsert); sqlite3_finalize(p->laf.pMaxField); sqlite3_finalize(p->laf.pFindRoot); sqlite3_finalize(p->laf.pInsert); sqlite3_finalize(p->laf.pAllPage); sqlite3_finalize(p->laf.pPageData); p->laf.pUsedPages = 0; p->laf.pAllAndParent = 0; p->laf.pMapInsert = 0; p->laf.pMaxField = 0; p->laf.pFindRoot = 0; p->laf.pInsert = 0; p->laf.pAllPage = 0; p->laf.pPageData = 0; sqlite3_free(p->laf.apVal); p->laf.apVal = 0; } /* ** Free all resources allocated as part of sqlite3_recover_step() calls. */ static void recoverFinalCleanup(sqlite3_recover *p){ RecoverTable *pTab = 0; RecoverTable *pNext = 0; recoverWriteDataCleanup(p); recoverLostAndFoundCleanup(p); for(pTab=p->pTblList; pTab; pTab=pNext){ pNext = pTab->pNext; sqlite3_free(pTab); } p->pTblList = 0; sqlite3_finalize(p->pGetPage); p->pGetPage = 0; sqlite3_file_control(p->dbIn, p->zDb, SQLITE_FCNTL_RESET_CACHE, 0); { #ifndef NDEBUG int res = #endif sqlite3_close(p->dbOut); assert( res==SQLITE_OK ); } p->dbOut = 0; } /* ** Decode and return an unsigned 16-bit big-endian integer value from ** buffer a[]. */ static u32 recoverGetU16(const u8 *a){ return (((u32)a[0])<<8) + ((u32)a[1]); } /* ** Decode and return an unsigned 32-bit big-endian integer value from ** buffer a[]. */ static u32 recoverGetU32(const u8 *a){ return (((u32)a[0])<<24) + (((u32)a[1])<<16) + (((u32)a[2])<<8) + ((u32)a[3]); } /* ** Decode an SQLite varint from buffer a[]. Write the decoded value to (*pVal) ** and return the number of bytes consumed. */ static int recoverGetVarint(const u8 *a, i64 *pVal){ sqlite3_uint64 u = 0; int i; for(i=0; i<8; i++){ u = (u<<7) + (a[i]&0x7f); if( (a[i]&0x80)==0 ){ *pVal = (sqlite3_int64)u; return i+1; } } u = (u<<8) + (a[i]&0xff); *pVal = (sqlite3_int64)u; return 9; } /* ** The second argument points to a buffer n bytes in size. If this buffer ** or a prefix thereof appears to contain a well-formed SQLite b-tree page, ** return the page-size in bytes. Otherwise, if the buffer does not ** appear to contain a well-formed b-tree page, return 0. */ static int recoverIsValidPage(u8 *aTmp, const u8 *a, int n){ u8 *aUsed = aTmp; int nFrag = 0; int nActual = 0; int iFree = 0; int nCell = 0; /* Number of cells on page */ int iCellOff = 0; /* Offset of cell array in page */ int iContent = 0; int eType = 0; int ii = 0; eType = (int)a[0]; if( eType!=0x02 && eType!=0x05 && eType!=0x0A && eType!=0x0D ) return 0; iFree = (int)recoverGetU16(&a[1]); nCell = (int)recoverGetU16(&a[3]); iContent = (int)recoverGetU16(&a[5]); if( iContent==0 ) iContent = 65536; nFrag = (int)a[7]; if( iContent>n ) return 0; memset(aUsed, 0, n); memset(aUsed, 0xFF, iContent); /* Follow the free-list. This is the same format for all b-tree pages. */ if( iFree && iFree<=iContent ) return 0; while( iFree ){ int iNext = 0; int nByte = 0; if( iFree>(n-4) ) return 0; iNext = recoverGetU16(&a[iFree]); nByte = recoverGetU16(&a[iFree+2]); if( iFree+nByte>n || nByte<4 ) return 0; if( iNext && iNextiContent ) return 0; for(ii=0; iin ){ return 0; } if( eType==0x05 || eType==0x02 ) nByte += 4; nByte += recoverGetVarint(&a[iOff+nByte], &nPayload); if( eType==0x0D ){ i64 dummy = 0; nByte += recoverGetVarint(&a[iOff+nByte], &dummy); } if( eType!=0x05 ){ int X = (eType==0x0D) ? n-35 : (((n-12)*64/255)-23); int M = ((n-12)*32/255)-23; int K = M+((nPayload-M)%(n-4)); if( nPayloadn ){ return 0; } for(iByte=iOff; iByte<(iOff+nByte); iByte++){ if( aUsed[iByte]!=0 ){ return 0; } aUsed[iByte] = 0xFF; } } nActual = 0; for(ii=0; iipMethods!=&recover_methods ); return pFd->pMethods->xClose(pFd); } /* ** Write value v to buffer a[] as a 16-bit big-endian unsigned integer. */ static void recoverPutU16(u8 *a, u32 v){ a[0] = (v>>8) & 0x00FF; a[1] = (v>>0) & 0x00FF; } /* ** Write value v to buffer a[] as a 32-bit big-endian unsigned integer. */ static void recoverPutU32(u8 *a, u32 v){ a[0] = (v>>24) & 0x00FF; a[1] = (v>>16) & 0x00FF; a[2] = (v>>8) & 0x00FF; a[3] = (v>>0) & 0x00FF; } /* ** Detect the page-size of the database opened by file-handle pFd by ** searching the first part of the file for a well-formed SQLite b-tree ** page. If parameter nReserve is non-zero, then as well as searching for ** a b-tree page with zero reserved bytes, this function searches for one ** with nReserve reserved bytes at the end of it. ** ** If successful, set variable p->detected_pgsz to the detected page-size ** in bytes and return SQLITE_OK. Or, if no error occurs but no valid page ** can be found, return SQLITE_OK but leave p->detected_pgsz set to 0. Or, ** if an error occurs (e.g. an IO or OOM error), then an SQLite error code ** is returned. The final value of p->detected_pgsz is undefined in this ** case. */ static int recoverVfsDetectPagesize( sqlite3_recover *p, /* Recover handle */ sqlite3_file *pFd, /* File-handle open on input database */ u32 nReserve, /* Possible nReserve value */ i64 nSz /* Size of database file in bytes */ ){ int rc = SQLITE_OK; const int nMin = 512; const int nMax = 65536; const int nMaxBlk = 4; u32 pgsz = 0; int iBlk = 0; u8 *aPg = 0; u8 *aTmp = 0; int nBlk = 0; aPg = (u8*)sqlite3_malloc(2*nMax); if( aPg==0 ) return SQLITE_NOMEM; aTmp = &aPg[nMax]; nBlk = (nSz+nMax-1)/nMax; if( nBlk>nMaxBlk ) nBlk = nMaxBlk; do { for(iBlk=0; rc==SQLITE_OK && iBlk=((iBlk+1)*nMax)) ? nMax : (nSz % nMax); memset(aPg, 0, nMax); rc = pFd->pMethods->xRead(pFd, aPg, nByte, iBlk*nMax); if( rc==SQLITE_OK ){ int pgsz2; for(pgsz2=(pgsz ? pgsz*2 : nMin); pgsz2<=nMax; pgsz2=pgsz2*2){ int iOff; for(iOff=0; iOff(u32)p->detected_pgsz ){ p->detected_pgsz = pgsz; p->nReserve = nReserve; } if( nReserve==0 ) break; nReserve = 0; }while( 1 ); p->detected_pgsz = pgsz; sqlite3_free(aPg); return rc; } /* ** The xRead() method of the wrapper VFS. This is used to intercept calls ** to read page 1 of the input database. */ static int recoverVfsRead(sqlite3_file *pFd, void *aBuf, int nByte, i64 iOff){ int rc = SQLITE_OK; if( pFd->pMethods==&recover_methods ){ pFd->pMethods = recover_g.pMethods; rc = pFd->pMethods->xRead(pFd, aBuf, nByte, iOff); if( nByte==16 ){ sqlite3_randomness(16, aBuf); }else if( rc==SQLITE_OK && iOff==0 && nByte>=108 ){ /* Ensure that the database has a valid header file. The only fields ** that really matter to recovery are: ** ** + Database page size (16-bits at offset 16) ** + Size of db in pages (32-bits at offset 28) ** + Database encoding (32-bits at offset 56) ** ** Also preserved are: ** ** + first freelist page (32-bits at offset 32) ** + size of freelist (32-bits at offset 36) ** + the wal-mode flags (16-bits at offset 18) ** ** We also try to preserve the auto-vacuum, incr-value, user-version ** and application-id fields - all 32 bit quantities at offsets ** 52, 60, 64 and 68. All other fields are set to known good values. ** ** Byte offset 105 should also contain the page-size as a 16-bit ** integer. */ const int aPreserve[] = {32, 36, 52, 60, 64, 68}; u8 aHdr[108] = { 0x53, 0x51, 0x4c, 0x69, 0x74, 0x65, 0x20, 0x66, 0x6f, 0x72, 0x6d, 0x61, 0x74, 0x20, 0x33, 0x00, 0xFF, 0xFF, 0x01, 0x01, 0x00, 0x40, 0x20, 0x20, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x10, 0x00, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x2e, 0x5b, 0x30, 0x0D, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0x00 }; u8 *a = (u8*)aBuf; u32 pgsz = recoverGetU16(&a[16]); u32 nReserve = a[20]; u32 enc = recoverGetU32(&a[56]); u32 dbsz = 0; i64 dbFileSize = 0; int ii; sqlite3_recover *p = recover_g.p; if( pgsz==0x01 ) pgsz = 65536; rc = pFd->pMethods->xFileSize(pFd, &dbFileSize); if( rc==SQLITE_OK && p->detected_pgsz==0 ){ rc = recoverVfsDetectPagesize(p, pFd, nReserve, dbFileSize); } if( p->detected_pgsz ){ pgsz = p->detected_pgsz; nReserve = p->nReserve; } if( pgsz ){ dbsz = dbFileSize / pgsz; } if( enc!=SQLITE_UTF8 && enc!=SQLITE_UTF16BE && enc!=SQLITE_UTF16LE ){ enc = SQLITE_UTF8; } sqlite3_free(p->pPage1Cache); p->pPage1Cache = 0; p->pPage1Disk = 0; p->pgsz = nByte; p->pPage1Cache = (u8*)recoverMalloc(p, nByte*2); if( p->pPage1Cache ){ p->pPage1Disk = &p->pPage1Cache[nByte]; memcpy(p->pPage1Disk, aBuf, nByte); aHdr[18] = a[18]; aHdr[19] = a[19]; recoverPutU32(&aHdr[28], dbsz); recoverPutU32(&aHdr[56], enc); recoverPutU16(&aHdr[105], pgsz-nReserve); if( pgsz==65536 ) pgsz = 1; recoverPutU16(&aHdr[16], pgsz); aHdr[20] = nReserve; for(ii=0; ii<(int)(sizeof(aPreserve)/sizeof(aPreserve[0])); ii++){ memcpy(&aHdr[aPreserve[ii]], &a[aPreserve[ii]], 4); } memcpy(aBuf, aHdr, sizeof(aHdr)); memset(&((u8*)aBuf)[sizeof(aHdr)], 0, nByte-sizeof(aHdr)); memcpy(p->pPage1Cache, aBuf, nByte); }else{ rc = p->errCode; } } pFd->pMethods = &recover_methods; }else{ rc = pFd->pMethods->xRead(pFd, aBuf, nByte, iOff); } return rc; } /* ** Used to make sqlite3_io_methods wrapper methods less verbose. */ #define RECOVER_VFS_WRAPPER(code) \ int rc = SQLITE_OK; \ if( pFd->pMethods==&recover_methods ){ \ pFd->pMethods = recover_g.pMethods; \ rc = code; \ pFd->pMethods = &recover_methods; \ }else{ \ rc = code; \ } \ return rc; /* ** Methods of the wrapper VFS. All methods except for xRead() and xClose() ** simply uninstall the sqlite3_io_methods wrapper, invoke the equivalent ** method on the lower level VFS, then reinstall the wrapper before returning. ** Those that return an integer value use the RECOVER_VFS_WRAPPER macro. */ static int recoverVfsWrite( sqlite3_file *pFd, const void *aBuf, int nByte, i64 iOff ){ RECOVER_VFS_WRAPPER ( pFd->pMethods->xWrite(pFd, aBuf, nByte, iOff) ); } static int recoverVfsTruncate(sqlite3_file *pFd, sqlite3_int64 size){ RECOVER_VFS_WRAPPER ( pFd->pMethods->xTruncate(pFd, size) ); } static int recoverVfsSync(sqlite3_file *pFd, int flags){ RECOVER_VFS_WRAPPER ( pFd->pMethods->xSync(pFd, flags) ); } static int recoverVfsFileSize(sqlite3_file *pFd, sqlite3_int64 *pSize){ RECOVER_VFS_WRAPPER ( pFd->pMethods->xFileSize(pFd, pSize) ); } static int recoverVfsLock(sqlite3_file *pFd, int eLock){ RECOVER_VFS_WRAPPER ( pFd->pMethods->xLock(pFd, eLock) ); } static int recoverVfsUnlock(sqlite3_file *pFd, int eLock){ RECOVER_VFS_WRAPPER ( pFd->pMethods->xUnlock(pFd, eLock) ); } static int recoverVfsCheckReservedLock(sqlite3_file *pFd, int *pResOut){ RECOVER_VFS_WRAPPER ( pFd->pMethods->xCheckReservedLock(pFd, pResOut) ); } static int recoverVfsFileControl(sqlite3_file *pFd, int op, void *pArg){ RECOVER_VFS_WRAPPER ( (pFd->pMethods ? pFd->pMethods->xFileControl(pFd, op, pArg) : SQLITE_NOTFOUND) ); } static int recoverVfsSectorSize(sqlite3_file *pFd){ RECOVER_VFS_WRAPPER ( pFd->pMethods->xSectorSize(pFd) ); } static int recoverVfsDeviceCharacteristics(sqlite3_file *pFd){ RECOVER_VFS_WRAPPER ( pFd->pMethods->xDeviceCharacteristics(pFd) ); } static int recoverVfsShmMap( sqlite3_file *pFd, int iPg, int pgsz, int bExtend, void volatile **pp ){ RECOVER_VFS_WRAPPER ( pFd->pMethods->xShmMap(pFd, iPg, pgsz, bExtend, pp) ); } static int recoverVfsShmLock(sqlite3_file *pFd, int offset, int n, int flags){ RECOVER_VFS_WRAPPER ( pFd->pMethods->xShmLock(pFd, offset, n, flags) ); } static void recoverVfsShmBarrier(sqlite3_file *pFd){ if( pFd->pMethods==&recover_methods ){ pFd->pMethods = recover_g.pMethods; pFd->pMethods->xShmBarrier(pFd); pFd->pMethods = &recover_methods; }else{ pFd->pMethods->xShmBarrier(pFd); } } static int recoverVfsShmUnmap(sqlite3_file *pFd, int deleteFlag){ RECOVER_VFS_WRAPPER ( pFd->pMethods->xShmUnmap(pFd, deleteFlag) ); } static int recoverVfsFetch( sqlite3_file *pFd, sqlite3_int64 iOff, int iAmt, void **pp ){ (void)pFd; (void)iOff; (void)iAmt; *pp = 0; return SQLITE_OK; } static int recoverVfsUnfetch(sqlite3_file *pFd, sqlite3_int64 iOff, void *p){ (void)pFd; (void)iOff; (void)p; return SQLITE_OK; } /* ** Install the VFS wrapper around the file-descriptor open on the input ** database for recover handle p. Mutex RECOVER_MUTEX_ID must be held ** when this function is called. */ static void recoverInstallWrapper(sqlite3_recover *p){ sqlite3_file *pFd = 0; assert( recover_g.pMethods==0 ); recoverAssertMutexHeld(); sqlite3_file_control(p->dbIn, p->zDb, SQLITE_FCNTL_FILE_POINTER, (void*)&pFd); assert( pFd==0 || pFd->pMethods!=&recover_methods ); if( pFd && pFd->pMethods ){ int iVersion = 1 + (pFd->pMethods->iVersion>1 && pFd->pMethods->xShmMap!=0); recover_g.pMethods = pFd->pMethods; recover_g.p = p; recover_methods.iVersion = iVersion; pFd->pMethods = &recover_methods; } } /* ** Uninstall the VFS wrapper that was installed around the file-descriptor open ** on the input database for recover handle p. Mutex RECOVER_MUTEX_ID must be ** held when this function is called. */ static void recoverUninstallWrapper(sqlite3_recover *p){ sqlite3_file *pFd = 0; recoverAssertMutexHeld(); sqlite3_file_control(p->dbIn, p->zDb,SQLITE_FCNTL_FILE_POINTER,(void*)&pFd); if( pFd && pFd->pMethods ){ pFd->pMethods = recover_g.pMethods; recover_g.pMethods = 0; recover_g.p = 0; } } /* ** This function does the work of a single sqlite3_recover_step() call. It ** is guaranteed that the handle is not in an error state when this ** function is called. */ static void recoverStep(sqlite3_recover *p){ assert( p && p->errCode==SQLITE_OK ); switch( p->eState ){ case RECOVER_STATE_INIT: /* This is the very first call to sqlite3_recover_step() on this object. */ recoverSqlCallback(p, "BEGIN"); recoverSqlCallback(p, "PRAGMA writable_schema = on"); recoverEnterMutex(); recoverInstallWrapper(p); /* Open the output database. And register required virtual tables and ** user functions with the new handle. */ recoverOpenOutput(p); /* Open transactions on both the input and output databases. */ sqlite3_file_control(p->dbIn, p->zDb, SQLITE_FCNTL_RESET_CACHE, 0); recoverExec(p, p->dbIn, "PRAGMA writable_schema = on"); recoverExec(p, p->dbIn, "BEGIN"); if( p->errCode==SQLITE_OK ) p->bCloseTransaction = 1; recoverExec(p, p->dbIn, "SELECT 1 FROM sqlite_schema"); recoverTransferSettings(p); recoverOpenRecovery(p); recoverCacheSchema(p); recoverUninstallWrapper(p); recoverLeaveMutex(); recoverExec(p, p->dbOut, "BEGIN"); recoverWriteSchema1(p); p->eState = RECOVER_STATE_WRITING; break; case RECOVER_STATE_WRITING: { if( p->w1.pTbls==0 ){ recoverWriteDataInit(p); } if( SQLITE_DONE==recoverWriteDataStep(p) ){ recoverWriteDataCleanup(p); if( p->zLostAndFound ){ p->eState = RECOVER_STATE_LOSTANDFOUND1; }else{ p->eState = RECOVER_STATE_SCHEMA2; } } break; } case RECOVER_STATE_LOSTANDFOUND1: { if( p->laf.pUsed==0 ){ recoverLostAndFound1Init(p); } if( SQLITE_DONE==recoverLostAndFound1Step(p) ){ p->eState = RECOVER_STATE_LOSTANDFOUND2; } break; } case RECOVER_STATE_LOSTANDFOUND2: { if( p->laf.pAllAndParent==0 ){ recoverLostAndFound2Init(p); } if( SQLITE_DONE==recoverLostAndFound2Step(p) ){ p->eState = RECOVER_STATE_LOSTANDFOUND3; } break; } case RECOVER_STATE_LOSTANDFOUND3: { if( p->laf.pInsert==0 ){ recoverLostAndFound3Init(p); } if( SQLITE_DONE==recoverLostAndFound3Step(p) ){ p->eState = RECOVER_STATE_SCHEMA2; } break; } case RECOVER_STATE_SCHEMA2: { int rc = SQLITE_OK; recoverWriteSchema2(p); p->eState = RECOVER_STATE_DONE; /* If no error has occurred, commit the write transaction on the output ** database. Regardless of whether or not an error has occurred, make ** an attempt to end the read transaction on the input database. */ recoverExec(p, p->dbOut, "COMMIT"); rc = sqlite3_exec(p->dbIn, "END", 0, 0, 0); if( p->errCode==SQLITE_OK ) p->errCode = rc; recoverSqlCallback(p, "PRAGMA writable_schema = off"); recoverSqlCallback(p, "COMMIT"); p->eState = RECOVER_STATE_DONE; recoverFinalCleanup(p); break; }; case RECOVER_STATE_DONE: { /* no-op */ break; }; } } /* ** This is a worker function that does the heavy lifting for both init ** functions: ** ** sqlite3_recover_init() ** sqlite3_recover_init_sql() ** ** All this function does is allocate space for the recover handle and ** take copies of the input parameters. All the real work is done within ** sqlite3_recover_run(). */ sqlite3_recover *recoverInit( sqlite3* db, const char *zDb, const char *zUri, /* Output URI for _recover_init() */ int (*xSql)(void*, const char*),/* SQL callback for _recover_init_sql() */ void *pSqlCtx /* Context arg for _recover_init_sql() */ ){ sqlite3_recover *pRet = 0; int nDb = 0; int nUri = 0; int nByte = 0; if( zDb==0 ){ zDb = "main"; } nDb = recoverStrlen(zDb); nUri = recoverStrlen(zUri); nByte = sizeof(sqlite3_recover) + nDb+1 + nUri+1; pRet = (sqlite3_recover*)sqlite3_malloc(nByte); if( pRet ){ memset(pRet, 0, nByte); pRet->dbIn = db; pRet->zDb = (char*)&pRet[1]; pRet->zUri = &pRet->zDb[nDb+1]; memcpy(pRet->zDb, zDb, nDb); if( nUri>0 && zUri ) memcpy(pRet->zUri, zUri, nUri); pRet->xSql = xSql; pRet->pSqlCtx = pSqlCtx; pRet->bRecoverRowid = RECOVER_ROWID_DEFAULT; } return pRet; } /* ** Initialize a recovery handle that creates a new database containing ** the recovered data. */ sqlite3_recover *sqlite3_recover_init( sqlite3* db, const char *zDb, const char *zUri ){ return recoverInit(db, zDb, zUri, 0, 0); } /* ** Initialize a recovery handle that returns recovered data in the ** form of SQL statements via a callback. */ sqlite3_recover *sqlite3_recover_init_sql( sqlite3* db, const char *zDb, int (*xSql)(void*, const char*), void *pSqlCtx ){ return recoverInit(db, zDb, 0, xSql, pSqlCtx); } /* ** Return the handle error message, if any. */ const char *sqlite3_recover_errmsg(sqlite3_recover *p){ return (p && p->errCode!=SQLITE_NOMEM) ? p->zErrMsg : "out of memory"; } /* ** Return the handle error code. */ int sqlite3_recover_errcode(sqlite3_recover *p){ return p ? p->errCode : SQLITE_NOMEM; } /* ** Configure the handle. */ int sqlite3_recover_config(sqlite3_recover *p, int op, void *pArg){ int rc = SQLITE_OK; if( p==0 ){ rc = SQLITE_NOMEM; }else if( p->eState!=RECOVER_STATE_INIT ){ rc = SQLITE_MISUSE; }else{ switch( op ){ case 789: /* This undocumented magic configuration option is used to set the ** name of the auxiliary database that is ATTACH-ed to the database ** connection and used to hold state information during the ** recovery process. This option is for debugging use only and ** is subject to change or removal at any time. */ sqlite3_free(p->zStateDb); p->zStateDb = recoverMPrintf(p, "%s", (char*)pArg); break; case SQLITE_RECOVER_LOST_AND_FOUND: { const char *zArg = (const char*)pArg; sqlite3_free(p->zLostAndFound); if( zArg ){ p->zLostAndFound = recoverMPrintf(p, "%s", zArg); }else{ p->zLostAndFound = 0; } break; } case SQLITE_RECOVER_FREELIST_CORRUPT: p->bFreelistCorrupt = *(int*)pArg; break; case SQLITE_RECOVER_ROWIDS: p->bRecoverRowid = *(int*)pArg; break; case SQLITE_RECOVER_SLOWINDEXES: p->bSlowIndexes = *(int*)pArg; break; default: rc = SQLITE_NOTFOUND; break; } } return rc; } /* ** Do a unit of work towards the recovery job. Return SQLITE_OK if ** no error has occurred but database recovery is not finished, SQLITE_DONE ** if database recovery has been successfully completed, or an SQLite ** error code if an error has occurred. */ int sqlite3_recover_step(sqlite3_recover *p){ if( p==0 ) return SQLITE_NOMEM; if( p->errCode==SQLITE_OK ) recoverStep(p); if( p->eState==RECOVER_STATE_DONE && p->errCode==SQLITE_OK ){ return SQLITE_DONE; } return p->errCode; } /* ** Do the configured recovery operation. Return SQLITE_OK if successful, or ** else an SQLite error code. */ int sqlite3_recover_run(sqlite3_recover *p){ while( SQLITE_OK==sqlite3_recover_step(p) ); return sqlite3_recover_errcode(p); } /* ** Free all resources associated with the recover handle passed as the only ** argument. The results of using a handle with any sqlite3_recover_** ** API function after it has been passed to this function are undefined. ** ** A copy of the value returned by the first call made to sqlite3_recover_run() ** on this handle is returned, or SQLITE_OK if sqlite3_recover_run() has ** not been called on this handle. */ int sqlite3_recover_finish(sqlite3_recover *p){ int rc; if( p==0 ){ rc = SQLITE_NOMEM; }else{ recoverFinalCleanup(p); if( p->bCloseTransaction && sqlite3_get_autocommit(p->dbIn)==0 ){ rc = sqlite3_exec(p->dbIn, "END", 0, 0, 0); if( p->errCode==SQLITE_OK ) p->errCode = rc; } rc = p->errCode; sqlite3_free(p->zErrMsg); sqlite3_free(p->zStateDb); sqlite3_free(p->zLostAndFound); sqlite3_free(p->pPage1Cache); sqlite3_free(p); } return rc; } #endif /* ifndef SQLITE_OMIT_VIRTUALTABLE */ /************************* End ../ext/recover/sqlite3recover.c ********************/ # endif /* SQLITE_HAVE_SQLITE3R */ #endif #ifdef SQLITE_SHELL_EXTSRC # include SHELL_STRINGIFY(SQLITE_SHELL_EXTSRC) #endif #if defined(SQLITE_ENABLE_SESSION) /* ** State information for a single open session */ typedef struct OpenSession OpenSession; struct OpenSession { char *zName; /* Symbolic name for this session */ int nFilter; /* Number of xFilter rejection GLOB patterns */ char **azFilter; /* Array of xFilter rejection GLOB patterns */ sqlite3_session *p; /* The open session */ }; #endif typedef struct ExpertInfo ExpertInfo; struct ExpertInfo { sqlite3expert *pExpert; int bVerbose; }; /* A single line in the EQP output */ typedef struct EQPGraphRow EQPGraphRow; struct EQPGraphRow { int iEqpId; /* ID for this row */ int iParentId; /* ID of the parent row */ EQPGraphRow *pNext; /* Next row in sequence */ char zText[1]; /* Text to display for this row */ }; /* All EQP output is collected into an instance of the following */ typedef struct EQPGraph EQPGraph; struct EQPGraph { EQPGraphRow *pRow; /* Linked list of all rows of the EQP output */ EQPGraphRow *pLast; /* Last element of the pRow list */ char zPrefix[100]; /* Graph prefix */ }; /* Parameters affecting columnar mode result display (defaulting together) */ typedef struct ColModeOpts { int iWrap; /* In columnar modes, wrap lines reaching this limit */ u8 bQuote; /* Quote results for .mode box and table */ u8 bWordWrap; /* In columnar modes, wrap at word boundaries */ } ColModeOpts; #define ColModeOpts_default { 60, 0, 0 } #define ColModeOpts_default_qbox { 60, 1, 0 } /* ** State information about the database connection is contained in an ** instance of the following structure. */ typedef struct ShellState ShellState; struct ShellState { sqlite3 *db; /* The database */ u8 autoExplain; /* Automatically turn on .explain mode */ u8 autoEQP; /* Run EXPLAIN QUERY PLAN prior to each SQL stmt */ u8 autoEQPtest; /* autoEQP is in test mode */ u8 autoEQPtrace; /* autoEQP is in trace mode */ u8 scanstatsOn; /* True to display scan stats before each finalize */ u8 openMode; /* SHELL_OPEN_NORMAL, _APPENDVFS, or _ZIPFILE */ u8 doXdgOpen; /* Invoke start/open/xdg-open in output_reset() */ u8 nEqpLevel; /* Depth of the EQP output graph */ u8 eTraceType; /* SHELL_TRACE_* value for type of trace */ u8 bSafeMode; /* True to prohibit unsafe operations */ u8 bSafeModePersist; /* The long-term value of bSafeMode */ u8 eRestoreState; /* See comments above doAutoDetectRestore() */ u8 crlfMode; /* Do NL-to-CRLF translations when enabled (maybe) */ ColModeOpts cmOpts; /* Option values affecting columnar mode output */ unsigned statsOn; /* True to display memory stats before each finalize */ unsigned mEqpLines; /* Mask of vertical lines in the EQP output graph */ int inputNesting; /* Track nesting level of .read and other redirects */ int outCount; /* Revert to stdout when reaching zero */ int cnt; /* Number of records displayed so far */ int lineno; /* Line number of last line read from in */ int openFlags; /* Additional flags to open. (SQLITE_OPEN_NOFOLLOW) */ FILE *in; /* Read commands from this stream */ FILE *out; /* Write results here */ FILE *traceOut; /* Output for sqlite3_trace() */ int nErr; /* Number of errors seen */ int mode; /* An output mode setting */ int modePrior; /* Saved mode */ int cMode; /* temporary output mode for the current query */ int normalMode; /* Output mode before ".explain on" */ int writableSchema; /* True if PRAGMA writable_schema=ON */ int showHeader; /* True to show column names in List or Column mode */ int nCheck; /* Number of ".check" commands run */ unsigned nProgress; /* Number of progress callbacks encountered */ unsigned mxProgress; /* Maximum progress callbacks before failing */ unsigned flgProgress; /* Flags for the progress callback */ unsigned shellFlgs; /* Various flags */ unsigned priorShFlgs; /* Saved copy of flags */ sqlite3_int64 szMax; /* --maxsize argument to .open */ char *zDestTable; /* Name of destination table when MODE_Insert */ char *zTempFile; /* Temporary file that might need deleting */ char zTestcase[30]; /* Name of current test case */ char colSeparator[20]; /* Column separator character for several modes */ char rowSeparator[20]; /* Row separator character for MODE_Ascii */ char colSepPrior[20]; /* Saved column separator */ char rowSepPrior[20]; /* Saved row separator */ int *colWidth; /* Requested width of each column in columnar modes */ int *actualWidth; /* Actual width of each column */ int nWidth; /* Number of slots in colWidth[] and actualWidth[] */ char nullValue[20]; /* The text to print when a NULL comes back from ** the database */ char outfile[FILENAME_MAX]; /* Filename for *out */ sqlite3_stmt *pStmt; /* Current statement if any. */ FILE *pLog; /* Write log output here */ struct AuxDb { /* Storage space for auxiliary database connections */ sqlite3 *db; /* Connection pointer */ const char *zDbFilename; /* Filename used to open the connection */ char *zFreeOnClose; /* Free this memory allocation on close */ #if defined(SQLITE_ENABLE_SESSION) int nSession; /* Number of active sessions */ OpenSession aSession[4]; /* Array of sessions. [0] is in focus. */ #endif } aAuxDb[5], /* Array of all database connections */ *pAuxDb; /* Currently active database connection */ int *aiIndent; /* Array of indents used in MODE_Explain */ int nIndent; /* Size of array aiIndent[] */ int iIndent; /* Index of current op in aiIndent[] */ char *zNonce; /* Nonce for temporary safe-mode escapes */ EQPGraph sGraph; /* Information for the graphical EXPLAIN QUERY PLAN */ ExpertInfo expert; /* Valid if previous command was ".expert OPT..." */ #ifdef SQLITE_SHELL_FIDDLE struct { const char * zInput; /* Input string from wasm/JS proxy */ const char * zPos; /* Cursor pos into zInput */ const char * zDefaultDbName; /* Default name for db file */ } wasm; #endif }; #ifdef SQLITE_SHELL_FIDDLE static ShellState shellState; #endif /* Allowed values for ShellState.autoEQP */ #define AUTOEQP_off 0 /* Automatic EXPLAIN QUERY PLAN is off */ #define AUTOEQP_on 1 /* Automatic EQP is on */ #define AUTOEQP_trigger 2 /* On and also show plans for triggers */ #define AUTOEQP_full 3 /* Show full EXPLAIN */ /* Allowed values for ShellState.openMode */ #define SHELL_OPEN_UNSPEC 0 /* No open-mode specified */ #define SHELL_OPEN_NORMAL 1 /* Normal database file */ #define SHELL_OPEN_APPENDVFS 2 /* Use appendvfs */ #define SHELL_OPEN_ZIPFILE 3 /* Use the zipfile virtual table */ #define SHELL_OPEN_READONLY 4 /* Open a normal database read-only */ #define SHELL_OPEN_DESERIALIZE 5 /* Open using sqlite3_deserialize() */ #define SHELL_OPEN_HEXDB 6 /* Use "dbtotxt" output as data source */ /* Allowed values for ShellState.eTraceType */ #define SHELL_TRACE_PLAIN 0 /* Show input SQL text */ #define SHELL_TRACE_EXPANDED 1 /* Show expanded SQL text */ #define SHELL_TRACE_NORMALIZED 2 /* Show normalized SQL text */ /* Bits in the ShellState.flgProgress variable */ #define SHELL_PROGRESS_QUIET 0x01 /* Omit announcing every progress callback */ #define SHELL_PROGRESS_RESET 0x02 /* Reset the count when the progress ** callback limit is reached, and for each ** top-level SQL statement */ #define SHELL_PROGRESS_ONCE 0x04 /* Cancel the --limit after firing once */ /* ** These are the allowed shellFlgs values */ #define SHFLG_Pagecache 0x00000001 /* The --pagecache option is used */ #define SHFLG_Lookaside 0x00000002 /* Lookaside memory is used */ #define SHFLG_Backslash 0x00000004 /* The --backslash option is used */ #define SHFLG_PreserveRowid 0x00000008 /* .dump preserves rowid values */ #define SHFLG_Newlines 0x00000010 /* .dump --newline flag */ #define SHFLG_CountChanges 0x00000020 /* .changes setting */ #define SHFLG_Echo 0x00000040 /* .echo on/off, or --echo setting */ #define SHFLG_HeaderSet 0x00000080 /* showHeader has been specified */ #define SHFLG_DumpDataOnly 0x00000100 /* .dump show data only */ #define SHFLG_DumpNoSys 0x00000200 /* .dump omits system tables */ #define SHFLG_TestingMode 0x00000400 /* allow unsafe testing features */ /* ** Macros for testing and setting shellFlgs */ #define ShellHasFlag(P,X) (((P)->shellFlgs & (X))!=0) #define ShellSetFlag(P,X) ((P)->shellFlgs|=(X)) #define ShellClearFlag(P,X) ((P)->shellFlgs&=(~(X))) /* ** These are the allowed modes. */ #define MODE_Line 0 /* One column per line. Blank line between records */ #define MODE_Column 1 /* One record per line in neat columns */ #define MODE_List 2 /* One record per line with a separator */ #define MODE_Semi 3 /* Same as MODE_List but append ";" to each line */ #define MODE_Html 4 /* Generate an XHTML table */ #define MODE_Insert 5 /* Generate SQL "insert" statements */ #define MODE_Quote 6 /* Quote values as for SQL */ #define MODE_Tcl 7 /* Generate ANSI-C or TCL quoted elements */ #define MODE_Csv 8 /* Quote strings, numbers are plain */ #define MODE_Explain 9 /* Like MODE_Column, but do not truncate data */ #define MODE_Ascii 10 /* Use ASCII unit and record separators (0x1F/0x1E) */ #define MODE_Pretty 11 /* Pretty-print schemas */ #define MODE_EQP 12 /* Converts EXPLAIN QUERY PLAN output into a graph */ #define MODE_Json 13 /* Output JSON */ #define MODE_Markdown 14 /* Markdown formatting */ #define MODE_Table 15 /* MySQL-style table formatting */ #define MODE_Box 16 /* Unicode box-drawing characters */ #define MODE_Count 17 /* Output only a count of the rows of output */ #define MODE_Off 18 /* No query output shown */ #define MODE_ScanExp 19 /* Like MODE_Explain, but for ".scanstats vm" */ #define MODE_Www 20 /* Full web-page output */ static const char *modeDescr[] = { "line", "column", "list", "semi", "html", "insert", "quote", "tcl", "csv", "explain", "ascii", "prettyprint", "eqp", "json", "markdown", "table", "box", "count", "off", "scanexp", "www", }; /* ** These are the column/row/line separators used by the various ** import/export modes. */ #define SEP_Column "|" #define SEP_Row "\n" #define SEP_Tab "\t" #define SEP_Space " " #define SEP_Comma "," #define SEP_CrLf "\r\n" #define SEP_Unit "\x1F" #define SEP_Record "\x1E" /* ** Limit input nesting via .read or any other input redirect. ** It's not too expensive, so a generous allowance can be made. */ #define MAX_INPUT_NESTING 25 /* ** A callback for the sqlite3_log() interface. */ static void shellLog(void *pArg, int iErrCode, const char *zMsg){ ShellState *p = (ShellState*)pArg; if( p->pLog==0 ) return; sqlite3_fprintf(p->pLog, "(%d) %s\n", iErrCode, zMsg); fflush(p->pLog); } /* ** SQL function: shell_putsnl(X) ** ** Write the text X to the screen (or whatever output is being directed) ** adding a newline at the end, and then return X. */ static void shellPutsFunc( sqlite3_context *pCtx, int nVal, sqlite3_value **apVal ){ ShellState *p = (ShellState*)sqlite3_user_data(pCtx); (void)nVal; sqlite3_fprintf(p->out, "%s\n", sqlite3_value_text(apVal[0])); sqlite3_result_value(pCtx, apVal[0]); } /* ** If in safe mode, print an error message described by the arguments ** and exit immediately. */ static void failIfSafeMode( ShellState *p, const char *zErrMsg, ... ){ if( p->bSafeMode ){ va_list ap; char *zMsg; va_start(ap, zErrMsg); zMsg = sqlite3_vmprintf(zErrMsg, ap); va_end(ap); sqlite3_fprintf(stderr, "line %d: %s\n", p->lineno, zMsg); exit(1); } } /* ** SQL function: edit(VALUE) ** edit(VALUE,EDITOR) ** ** These steps: ** ** (1) Write VALUE into a temporary file. ** (2) Run program EDITOR on that temporary file. ** (3) Read the temporary file back and return its content as the result. ** (4) Delete the temporary file ** ** If the EDITOR argument is omitted, use the value in the VISUAL ** environment variable. If still there is no EDITOR, through an error. ** ** Also throw an error if the EDITOR program returns a non-zero exit code. */ #ifndef SQLITE_NOHAVE_SYSTEM static void editFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ const char *zEditor; char *zTempFile = 0; sqlite3 *db; char *zCmd = 0; int bBin; int rc; int hasCRLF = 0; FILE *f = 0; sqlite3_int64 sz; sqlite3_int64 x; unsigned char *p = 0; if( argc==2 ){ zEditor = (const char*)sqlite3_value_text(argv[1]); }else{ zEditor = getenv("VISUAL"); } if( zEditor==0 ){ sqlite3_result_error(context, "no editor for edit()", -1); return; } if( sqlite3_value_type(argv[0])==SQLITE_NULL ){ sqlite3_result_error(context, "NULL input to edit()", -1); return; } db = sqlite3_context_db_handle(context); zTempFile = 0; sqlite3_file_control(db, 0, SQLITE_FCNTL_TEMPFILENAME, &zTempFile); if( zTempFile==0 ){ sqlite3_uint64 r = 0; sqlite3_randomness(sizeof(r), &r); zTempFile = sqlite3_mprintf("temp%llx", r); if( zTempFile==0 ){ sqlite3_result_error_nomem(context); return; } } bBin = sqlite3_value_type(argv[0])==SQLITE_BLOB; /* When writing the file to be edited, do \n to \r\n conversions on systems ** that want \r\n line endings */ f = sqlite3_fopen(zTempFile, bBin ? "wb" : "w"); if( f==0 ){ sqlite3_result_error(context, "edit() cannot open temp file", -1); goto edit_func_end; } sz = sqlite3_value_bytes(argv[0]); if( bBin ){ x = fwrite(sqlite3_value_blob(argv[0]), 1, (size_t)sz, f); }else{ const char *z = (const char*)sqlite3_value_text(argv[0]); /* Remember whether or not the value originally contained \r\n */ if( z && strstr(z,"\r\n")!=0 ) hasCRLF = 1; x = fwrite(sqlite3_value_text(argv[0]), 1, (size_t)sz, f); } fclose(f); f = 0; if( x!=sz ){ sqlite3_result_error(context, "edit() could not write the whole file", -1); goto edit_func_end; } zCmd = sqlite3_mprintf("%s \"%s\"", zEditor, zTempFile); if( zCmd==0 ){ sqlite3_result_error_nomem(context); goto edit_func_end; } rc = system(zCmd); sqlite3_free(zCmd); if( rc ){ sqlite3_result_error(context, "EDITOR returned non-zero", -1); goto edit_func_end; } f = sqlite3_fopen(zTempFile, "rb"); if( f==0 ){ sqlite3_result_error(context, "edit() cannot reopen temp file after edit", -1); goto edit_func_end; } fseek(f, 0, SEEK_END); sz = ftell(f); rewind(f); p = sqlite3_malloc64( sz+1 ); if( p==0 ){ sqlite3_result_error_nomem(context); goto edit_func_end; } x = fread(p, 1, (size_t)sz, f); fclose(f); f = 0; if( x!=sz ){ sqlite3_result_error(context, "could not read back the whole file", -1); goto edit_func_end; } if( bBin ){ sqlite3_result_blob64(context, p, sz, sqlite3_free); }else{ sqlite3_int64 i, j; if( hasCRLF ){ /* If the original contains \r\n then do no conversions back to \n */ }else{ /* If the file did not originally contain \r\n then convert any new ** \r\n back into \n */ p[sz] = 0; for(i=j=0; imodePrior = p->mode; p->priorShFlgs = p->shellFlgs; memcpy(p->colSepPrior, p->colSeparator, sizeof(p->colSeparator)); memcpy(p->rowSepPrior, p->rowSeparator, sizeof(p->rowSeparator)); } static void outputModePop(ShellState *p){ p->mode = p->modePrior; p->shellFlgs = p->priorShFlgs; memcpy(p->colSeparator, p->colSepPrior, sizeof(p->colSeparator)); memcpy(p->rowSeparator, p->rowSepPrior, sizeof(p->rowSeparator)); } /* ** Set output mode to text or binary for Windows. */ static void setCrlfMode(ShellState *p){ #ifdef _WIN32 if( p->crlfMode ){ sqlite3_fsetmode(p->out, _O_TEXT); }else{ sqlite3_fsetmode(p->out, _O_BINARY); } #else UNUSED_PARAMETER(p); #endif } /* ** Output the given string as a hex-encoded blob (eg. X'1234' ) */ static void output_hex_blob(FILE *out, const void *pBlob, int nBlob){ int i; unsigned char *aBlob = (unsigned char*)pBlob; char *zStr = sqlite3_malloc(nBlob*2 + 1); shell_check_oom(zStr); for(i=0; i> 4) ]; zStr[i*2+1] = aHex[ (aBlob[i] & 0x0F) ]; } zStr[i*2] = '\0'; sqlite3_fprintf(out, "X'%s'", zStr); sqlite3_free(zStr); } /* ** Find a string that is not found anywhere in z[]. Return a pointer ** to that string. ** ** Try to use zA and zB first. If both of those are already found in z[] ** then make up some string and store it in the buffer zBuf. */ static const char *unused_string( const char *z, /* Result must not appear anywhere in z */ const char *zA, const char *zB, /* Try these first */ char *zBuf /* Space to store a generated string */ ){ unsigned i = 0; if( strstr(z, zA)==0 ) return zA; if( strstr(z, zB)==0 ) return zB; do{ sqlite3_snprintf(20,zBuf,"(%s%u)", zA, i++); }while( strstr(z,zBuf)!=0 ); return zBuf; } /* ** Output the given string as a quoted string using SQL quoting conventions. ** ** See also: output_quoted_escaped_string() */ static void output_quoted_string(ShellState *p, const char *z){ int i; char c; FILE *out = p->out; sqlite3_fsetmode(out, _O_BINARY); if( z==0 ) return; for(i=0; (c = z[i])!=0 && c!='\''; i++){} if( c==0 ){ sqlite3_fprintf(out, "'%s'",z); }else{ sqlite3_fputs("'", out); while( *z ){ for(i=0; (c = z[i])!=0 && c!='\''; i++){} if( c=='\'' ) i++; if( i ){ sqlite3_fprintf(out, "%.*s", i, z); z += i; } if( c=='\'' ){ sqlite3_fputs("'", out); continue; } if( c==0 ){ break; } z++; } sqlite3_fputs("'", out); } setCrlfMode(p); } /* ** Output the given string as a quoted string using SQL quoting conventions. ** Additionallly , escape the "\n" and "\r" characters so that they do not ** get corrupted by end-of-line translation facilities in some operating ** systems. ** ** This is like output_quoted_string() but with the addition of the \r\n ** escape mechanism. */ static void output_quoted_escaped_string(ShellState *p, const char *z){ int i; char c; FILE *out = p->out; sqlite3_fsetmode(out, _O_BINARY); for(i=0; (c = z[i])!=0 && c!='\'' && c!='\n' && c!='\r'; i++){} if( c==0 ){ sqlite3_fprintf(out, "'%s'",z); }else{ const char *zNL = 0; const char *zCR = 0; int nNL = 0; int nCR = 0; char zBuf1[20], zBuf2[20]; for(i=0; z[i]; i++){ if( z[i]=='\n' ) nNL++; if( z[i]=='\r' ) nCR++; } if( nNL ){ sqlite3_fputs("replace(", out); zNL = unused_string(z, "\\n", "\\012", zBuf1); } if( nCR ){ sqlite3_fputs("replace(", out); zCR = unused_string(z, "\\r", "\\015", zBuf2); } sqlite3_fputs("'", out); while( *z ){ for(i=0; (c = z[i])!=0 && c!='\n' && c!='\r' && c!='\''; i++){} if( c=='\'' ) i++; if( i ){ sqlite3_fprintf(out, "%.*s", i, z); z += i; } if( c=='\'' ){ sqlite3_fputs("'", out); continue; } if( c==0 ){ break; } z++; if( c=='\n' ){ sqlite3_fputs(zNL, out); continue; } sqlite3_fputs(zCR, out); } sqlite3_fputs("'", out); if( nCR ){ sqlite3_fprintf(out, ",'%s',char(13))", zCR); } if( nNL ){ sqlite3_fprintf(out, ",'%s',char(10))", zNL); } } setCrlfMode(p); } /* ** Find earliest of chars within s specified in zAny. ** With ns == ~0, is like strpbrk(s,zAny) and s must be 0-terminated. */ static const char *anyOfInStr(const char *s, const char *zAny, size_t ns){ const char *pcFirst = 0; if( ns == ~(size_t)0 ) ns = strlen(s); while(*zAny){ const char *pc = (const char*)memchr(s, *zAny&0xff, ns); if( pc ){ pcFirst = pc; ns = pcFirst - s; } ++zAny; } return pcFirst; } /* Skip over as much z[] input char sequence as is valid UTF-8, ** limited per nAccept char's or whole characters and containing ** no char cn such that ((1<=0 => char count, nAccept<0 => character */ const char *zSkipValidUtf8(const char *z, int nAccept, long ccm){ int ng = (nAccept<0)? -nAccept : 0; const char *pcLimit = (nAccept>=0)? z+nAccept : 0; assert(z!=0); while( (pcLimit)? (z= pcLimit ) return z; else{ char ct = *zt++; if( ct==0 || (zt-z)>4 || (ct & 0xC0)!=0x80 ){ /* Trailing bytes are too few, too many, or invalid. */ return z; } } } while( ((c <<= 1) & 0x40) == 0x40 ); /* Eat lead byte's count. */ z = zt; } } return z; } /* ** Output the given string as a quoted according to C or TCL quoting rules. */ static void output_c_string(FILE *out, const char *z){ char c; static const char *zq = "\""; static long ctrlMask = ~0L; static const char *zDQBSRO = "\"\\\x7f"; /* double-quote, backslash, rubout */ char ace[3] = "\\?"; char cbsSay; sqlite3_fputs(zq, out); while( *z!=0 ){ const char *pcDQBSRO = anyOfInStr(z, zDQBSRO, ~(size_t)0); const char *pcPast = zSkipValidUtf8(z, INT_MAX, ctrlMask); const char *pcEnd = (pcDQBSRO && pcDQBSRO < pcPast)? pcDQBSRO : pcPast; if( pcEnd > z ){ sqlite3_fprintf(out, "%.*s", (int)(pcEnd-z), z); } if( (c = *pcEnd)==0 ) break; ++pcEnd; switch( c ){ case '\\': case '"': cbsSay = (char)c; break; case '\t': cbsSay = 't'; break; case '\n': cbsSay = 'n'; break; case '\r': cbsSay = 'r'; break; case '\f': cbsSay = 'f'; break; default: cbsSay = 0; break; } if( cbsSay ){ ace[1] = cbsSay; sqlite3_fputs(ace, out); }else if( !isprint(c&0xff) ){ sqlite3_fprintf(out, "\\%03o", c&0xff); }else{ ace[1] = (char)c; sqlite3_fputs(ace+1, out); } z = pcEnd; } sqlite3_fputs(zq, out); } /* ** Output the given string as a quoted according to JSON quoting rules. */ static void output_json_string(FILE *out, const char *z, i64 n){ char c; static const char *zq = "\""; static long ctrlMask = ~0L; static const char *zDQBS = "\"\\"; const char *pcLimit; char ace[3] = "\\?"; char cbsSay; if( z==0 ) z = ""; pcLimit = z + ((n<0)? strlen(z) : (size_t)n); sqlite3_fputs(zq, out); while( z < pcLimit ){ const char *pcDQBS = anyOfInStr(z, zDQBS, pcLimit-z); const char *pcPast = zSkipValidUtf8(z, (int)(pcLimit-z), ctrlMask); const char *pcEnd = (pcDQBS && pcDQBS < pcPast)? pcDQBS : pcPast; if( pcEnd > z ){ sqlite3_fprintf(out, "%.*s", (int)(pcEnd-z), z); z = pcEnd; } if( z >= pcLimit ) break; c = *(z++); switch( c ){ case '"': case '\\': cbsSay = (char)c; break; case '\b': cbsSay = 'b'; break; case '\f': cbsSay = 'f'; break; case '\n': cbsSay = 'n'; break; case '\r': cbsSay = 'r'; break; case '\t': cbsSay = 't'; break; default: cbsSay = 0; break; } if( cbsSay ){ ace[1] = cbsSay; sqlite3_fputs(ace, out); }else if( c<=0x1f ){ sqlite3_fprintf(out, "u%04x", c); }else{ ace[1] = (char)c; sqlite3_fputs(ace+1, out); } } sqlite3_fputs(zq, out); } /* ** Output the given string with characters that are special to ** HTML escaped. */ static void output_html_string(FILE *out, const char *z){ int i; if( z==0 ) z = ""; while( *z ){ for(i=0; z[i] && z[i]!='<' && z[i]!='&' && z[i]!='>' && z[i]!='\"' && z[i]!='\''; i++){} if( i>0 ){ sqlite3_fprintf(out, "%.*s",i,z); } if( z[i]=='<' ){ sqlite3_fputs("<", out); }else if( z[i]=='&' ){ sqlite3_fputs("&", out); }else if( z[i]=='>' ){ sqlite3_fputs(">", out); }else if( z[i]=='\"' ){ sqlite3_fputs(""", out); }else if( z[i]=='\'' ){ sqlite3_fputs("'", out); }else{ break; } z += i + 1; } } /* ** If a field contains any character identified by a 1 in the following ** array, then the string must be quoted for CSV. */ static const char needCsvQuote[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, }; /* ** Output a single term of CSV. Actually, p->colSeparator is used for ** the separator, which may or may not be a comma. p->nullValue is ** the null value. Strings are quoted if necessary. The separator ** is only issued if bSep is true. */ static void output_csv(ShellState *p, const char *z, int bSep){ if( z==0 ){ sqlite3_fprintf(p->out, "%s",p->nullValue); }else{ unsigned i; for(i=0; z[i]; i++){ if( needCsvQuote[((unsigned char*)z)[i]] ){ i = 0; break; } } if( i==0 || strstr(z, p->colSeparator)!=0 ){ char *zQuoted = sqlite3_mprintf("\"%w\"", z); shell_check_oom(zQuoted); sqlite3_fputs(zQuoted, p->out); sqlite3_free(zQuoted); }else{ sqlite3_fputs(z, p->out); } } if( bSep ){ sqlite3_fputs(p->colSeparator, p->out); } } /* ** This routine runs when the user presses Ctrl-C */ static void interrupt_handler(int NotUsed){ UNUSED_PARAMETER(NotUsed); if( ++seenInterrupt>1 ) exit(1); if( globalDb ) sqlite3_interrupt(globalDb); } #if (defined(_WIN32) || defined(WIN32)) && !defined(_WIN32_WCE) /* ** This routine runs for console events (e.g. Ctrl-C) on Win32 */ static BOOL WINAPI ConsoleCtrlHandler( DWORD dwCtrlType /* One of the CTRL_*_EVENT constants */ ){ if( dwCtrlType==CTRL_C_EVENT ){ interrupt_handler(0); return TRUE; } return FALSE; } #endif #ifndef SQLITE_OMIT_AUTHORIZATION /* ** This authorizer runs in safe mode. */ static int safeModeAuth( void *pClientData, int op, const char *zA1, const char *zA2, const char *zA3, const char *zA4 ){ ShellState *p = (ShellState*)pClientData; static const char *azProhibitedFunctions[] = { "edit", "fts3_tokenizer", "load_extension", "readfile", "writefile", "zipfile", "zipfile_cds", }; UNUSED_PARAMETER(zA1); UNUSED_PARAMETER(zA3); UNUSED_PARAMETER(zA4); switch( op ){ case SQLITE_ATTACH: { #ifndef SQLITE_SHELL_FIDDLE /* In WASM builds the filesystem is a virtual sandbox, so ** there's no harm in using ATTACH. */ failIfSafeMode(p, "cannot run ATTACH in safe mode"); #endif break; } case SQLITE_FUNCTION: { int i; for(i=0; iout, "authorizer: %s", azAction[op]); for(i=0; i<4; i++){ sqlite3_fputs(" ", p->out); if( az[i] ){ output_c_string(p->out, az[i]); }else{ sqlite3_fputs("NULL", p->out); } } sqlite3_fputs("\n", p->out); if( p->bSafeMode ) (void)safeModeAuth(pClientData, op, zA1, zA2, zA3, zA4); return SQLITE_OK; } #endif /* ** Print a schema statement. Part of MODE_Semi and MODE_Pretty output. ** ** This routine converts some CREATE TABLE statements for shadow tables ** in FTS3/4/5 into CREATE TABLE IF NOT EXISTS statements. ** ** If the schema statement in z[] contains a start-of-comment and if ** sqlite3_complete() returns false, try to terminate the comment before ** printing the result. https://sqlite.org/forum/forumpost/d7be961c5c */ static void printSchemaLine(FILE *out, const char *z, const char *zTail){ char *zToFree = 0; if( z==0 ) return; if( zTail==0 ) return; if( zTail[0]==';' && (strstr(z, "/*")!=0 || strstr(z,"--")!=0) ){ const char *zOrig = z; static const char *azTerm[] = { "", "*/", "\n" }; int i; for(i=0; iautoEQPtest ){ sqlite3_fprintf(p->out, "%d,%d,%s\n", iEqpId, p2, zText); } pNew = sqlite3_malloc64( sizeof(*pNew) + nText ); shell_check_oom(pNew); pNew->iEqpId = iEqpId; pNew->iParentId = p2; memcpy(pNew->zText, zText, nText+1); pNew->pNext = 0; if( p->sGraph.pLast ){ p->sGraph.pLast->pNext = pNew; }else{ p->sGraph.pRow = pNew; } p->sGraph.pLast = pNew; } /* ** Free and reset the EXPLAIN QUERY PLAN data that has been collected ** in p->sGraph. */ static void eqp_reset(ShellState *p){ EQPGraphRow *pRow, *pNext; for(pRow = p->sGraph.pRow; pRow; pRow = pNext){ pNext = pRow->pNext; sqlite3_free(pRow); } memset(&p->sGraph, 0, sizeof(p->sGraph)); } /* Return the next EXPLAIN QUERY PLAN line with iEqpId that occurs after ** pOld, or return the first such line if pOld is NULL */ static EQPGraphRow *eqp_next_row(ShellState *p, int iEqpId, EQPGraphRow *pOld){ EQPGraphRow *pRow = pOld ? pOld->pNext : p->sGraph.pRow; while( pRow && pRow->iParentId!=iEqpId ) pRow = pRow->pNext; return pRow; } /* Render a single level of the graph that has iEqpId as its parent. Called ** recursively to render sublevels. */ static void eqp_render_level(ShellState *p, int iEqpId){ EQPGraphRow *pRow, *pNext; i64 n = strlen(p->sGraph.zPrefix); char *z; for(pRow = eqp_next_row(p, iEqpId, 0); pRow; pRow = pNext){ pNext = eqp_next_row(p, iEqpId, pRow); z = pRow->zText; sqlite3_fprintf(p->out, "%s%s%s\n", p->sGraph.zPrefix, pNext ? "|--" : "`--", z); if( n<(i64)sizeof(p->sGraph.zPrefix)-7 ){ memcpy(&p->sGraph.zPrefix[n], pNext ? "| " : " ", 4); eqp_render_level(p, pRow->iEqpId); p->sGraph.zPrefix[n] = 0; } } } /* ** Display and reset the EXPLAIN QUERY PLAN data */ static void eqp_render(ShellState *p, i64 nCycle){ EQPGraphRow *pRow = p->sGraph.pRow; if( pRow ){ if( pRow->zText[0]=='-' ){ if( pRow->pNext==0 ){ eqp_reset(p); return; } sqlite3_fprintf(p->out, "%s\n", pRow->zText+3); p->sGraph.pRow = pRow->pNext; sqlite3_free(pRow); }else if( nCycle>0 ){ sqlite3_fprintf(p->out, "QUERY PLAN (cycles=%lld [100%%])\n", nCycle); }else{ sqlite3_fputs("QUERY PLAN\n", p->out); } p->sGraph.zPrefix[0] = 0; eqp_render_level(p, 0); eqp_reset(p); } } #ifndef SQLITE_OMIT_PROGRESS_CALLBACK /* ** Progress handler callback. */ static int progress_handler(void *pClientData) { ShellState *p = (ShellState*)pClientData; p->nProgress++; if( p->nProgress>=p->mxProgress && p->mxProgress>0 ){ sqlite3_fprintf(p->out, "Progress limit reached (%u)\n", p->nProgress); if( p->flgProgress & SHELL_PROGRESS_RESET ) p->nProgress = 0; if( p->flgProgress & SHELL_PROGRESS_ONCE ) p->mxProgress = 0; return 1; } if( (p->flgProgress & SHELL_PROGRESS_QUIET)==0 ){ sqlite3_fprintf(p->out, "Progress %u\n", p->nProgress); } return 0; } #endif /* SQLITE_OMIT_PROGRESS_CALLBACK */ /* ** Print N dashes */ static void print_dashes(FILE *out, int N){ const char zDash[] = "--------------------------------------------------"; const int nDash = sizeof(zDash) - 1; while( N>nDash ){ sqlite3_fputs(zDash, out); N -= nDash; } sqlite3_fprintf(out, "%.*s", N, zDash); } /* ** Print a markdown or table-style row separator using ascii-art */ static void print_row_separator( ShellState *p, int nArg, const char *zSep ){ int i; if( nArg>0 ){ sqlite3_fputs(zSep, p->out); print_dashes(p->out, p->actualWidth[0]+2); for(i=1; iout); print_dashes(p->out, p->actualWidth[i]+2); } sqlite3_fputs(zSep, p->out); } sqlite3_fputs("\n", p->out); } /* ** This is the callback routine that the shell ** invokes for each row of a query result. */ static int shell_callback( void *pArg, int nArg, /* Number of result columns */ char **azArg, /* Text of each result column */ char **azCol, /* Column names */ int *aiType /* Column types. Might be NULL */ ){ int i; ShellState *p = (ShellState*)pArg; if( azArg==0 ) return 0; switch( p->cMode ){ case MODE_Count: case MODE_Off: { break; } case MODE_Line: { int w = 5; if( azArg==0 ) break; for(i=0; iw ) w = len; } if( p->cnt++>0 ) sqlite3_fputs(p->rowSeparator, p->out); for(i=0; iout, "%*s = %s%s", w, azCol[i], azArg[i] ? azArg[i] : p->nullValue, p->rowSeparator); } break; } case MODE_ScanExp: case MODE_Explain: { static const int aExplainWidth[] = {4, 13, 4, 4, 4, 13, 2, 13}; static const int aExplainMap[] = {0, 1, 2, 3, 4, 5, 6, 7 }; static const int aScanExpWidth[] = {4, 15, 6, 13, 4, 4, 4, 13, 2, 13}; static const int aScanExpMap[] = {0, 9, 8, 1, 2, 3, 4, 5, 6, 7 }; const int *aWidth = aExplainWidth; const int *aMap = aExplainMap; int nWidth = ArraySize(aExplainWidth); int iIndent = 1; if( p->cMode==MODE_ScanExp ){ aWidth = aScanExpWidth; aMap = aScanExpMap; nWidth = ArraySize(aScanExpWidth); iIndent = 3; } if( nArg>nWidth ) nArg = nWidth; /* If this is the first row seen, print out the headers */ if( p->cnt++==0 ){ for(i=0; iout, aWidth[i], azCol[ aMap[i] ]); sqlite3_fputs(i==nArg-1 ? "\n" : " ", p->out); } for(i=0; iout, aWidth[i]); sqlite3_fputs(i==nArg-1 ? "\n" : " ", p->out); } } /* If there is no data, exit early. */ if( azArg==0 ) break; for(i=0; iw ){ w = strlenChar(zVal); zSep = " "; } if( i==iIndent && p->aiIndent && p->pStmt ){ if( p->iIndentnIndent ){ sqlite3_fprintf(p->out, "%*.s", p->aiIndent[p->iIndent], ""); } p->iIndent++; } utf8_width_print(p->out, w, zVal ? zVal : p->nullValue); sqlite3_fputs(i==nArg-1 ? "\n" : zSep, p->out); } break; } case MODE_Semi: { /* .schema and .fullschema output */ printSchemaLine(p->out, azArg[0], ";\n"); break; } case MODE_Pretty: { /* .schema and .fullschema with --indent */ char *z; int j; int nParen = 0; char cEnd = 0; char c; int nLine = 0; assert( nArg==1 ); if( azArg[0]==0 ) break; if( sqlite3_strlike("CREATE VIEW%", azArg[0], 0)==0 || sqlite3_strlike("CREATE TRIG%", azArg[0], 0)==0 ){ sqlite3_fprintf(p->out, "%s;\n", azArg[0]); break; } z = sqlite3_mprintf("%s", azArg[0]); shell_check_oom(z); j = 0; for(i=0; IsSpace(z[i]); i++){} for(; (c = z[i])!=0; i++){ if( IsSpace(c) ){ if( z[j-1]=='\r' ) z[j-1] = '\n'; if( IsSpace(z[j-1]) || z[j-1]=='(' ) continue; }else if( (c=='(' || c==')') && j>0 && IsSpace(z[j-1]) ){ j--; } z[j++] = c; } while( j>0 && IsSpace(z[j-1]) ){ j--; } z[j] = 0; if( strlen30(z)>=79 ){ for(i=j=0; (c = z[i])!=0; i++){ /* Copy from z[i] back to z[j] */ if( c==cEnd ){ cEnd = 0; }else if( c=='"' || c=='\'' || c=='`' ){ cEnd = c; }else if( c=='[' ){ cEnd = ']'; }else if( c=='-' && z[i+1]=='-' ){ cEnd = '\n'; }else if( c=='(' ){ nParen++; }else if( c==')' ){ nParen--; if( nLine>0 && nParen==0 && j>0 ){ printSchemaLineN(p->out, z, j, "\n"); j = 0; } } z[j++] = c; if( nParen==1 && cEnd==0 && (c=='(' || c=='\n' || (c==',' && !wsToEol(z+i+1))) ){ if( c=='\n' ) j--; printSchemaLineN(p->out, z, j, "\n "); j = 0; nLine++; while( IsSpace(z[i+1]) ){ i++; } } } z[j] = 0; } printSchemaLine(p->out, z, ";\n"); sqlite3_free(z); break; } case MODE_List: { if( p->cnt++==0 && p->showHeader ){ for(i=0; iout, "%s%s", azCol[i], i==nArg-1 ? p->rowSeparator : p->colSeparator); } } if( azArg==0 ) break; for(i=0; inullValue; sqlite3_fputs(z, p->out); sqlite3_fputs((icolSeparator : p->rowSeparator, p->out); } break; } case MODE_Www: case MODE_Html: { if( p->cnt==0 && p->cMode==MODE_Www ){ sqlite3_fputs( "\n" "\n" ,p->out ); } if( p->cnt==0 && (p->showHeader || p->cMode==MODE_Www) ){ sqlite3_fputs("", p->out); for(i=0; i", p->out); output_html_string(p->out, azCol[i]); sqlite3_fputs("\n", p->out); } sqlite3_fputs("\n", p->out); } p->cnt++; if( azArg==0 ) break; sqlite3_fputs("", p->out); for(i=0; i", p->out); output_html_string(p->out, azArg[i] ? azArg[i] : p->nullValue); sqlite3_fputs("\n", p->out); } sqlite3_fputs("\n", p->out); break; } case MODE_Tcl: { if( p->cnt++==0 && p->showHeader ){ for(i=0; iout, azCol[i] ? azCol[i] : ""); if(icolSeparator, p->out); } sqlite3_fputs(p->rowSeparator, p->out); } if( azArg==0 ) break; for(i=0; iout, azArg[i] ? azArg[i] : p->nullValue); if(icolSeparator, p->out); } sqlite3_fputs(p->rowSeparator, p->out); break; } case MODE_Csv: { sqlite3_fsetmode(p->out, _O_BINARY); if( p->cnt++==0 && p->showHeader ){ for(i=0; irowSeparator, p->out); } if( nArg>0 ){ for(i=0; irowSeparator, p->out); } setCrlfMode(p); break; } case MODE_Insert: { if( azArg==0 ) break; sqlite3_fprintf(p->out, "INSERT INTO %s",p->zDestTable); if( p->showHeader ){ sqlite3_fputs("(", p->out); for(i=0; i0 ) sqlite3_fputs(",", p->out); if( quoteChar(azCol[i]) ){ char *z = sqlite3_mprintf("\"%w\"", azCol[i]); shell_check_oom(z); sqlite3_fputs(z, p->out); sqlite3_free(z); }else{ sqlite3_fprintf(p->out, "%s", azCol[i]); } } sqlite3_fputs(")", p->out); } p->cnt++; for(i=0; i0 ? "," : " VALUES(", p->out); if( (azArg[i]==0) || (aiType && aiType[i]==SQLITE_NULL) ){ sqlite3_fputs("NULL", p->out); }else if( aiType && aiType[i]==SQLITE_TEXT ){ if( ShellHasFlag(p, SHFLG_Newlines) ){ output_quoted_string(p, azArg[i]); }else{ output_quoted_escaped_string(p, azArg[i]); } }else if( aiType && aiType[i]==SQLITE_INTEGER ){ sqlite3_fputs(azArg[i], p->out); }else if( aiType && aiType[i]==SQLITE_FLOAT ){ char z[50]; double r = sqlite3_column_double(p->pStmt, i); sqlite3_uint64 ur; memcpy(&ur,&r,sizeof(r)); if( ur==0x7ff0000000000000LL ){ sqlite3_fputs("9.0e+999", p->out); }else if( ur==0xfff0000000000000LL ){ sqlite3_fputs("-9.0e+999", p->out); }else{ sqlite3_int64 ir = (sqlite3_int64)r; if( r==(double)ir ){ sqlite3_snprintf(50,z,"%lld.0", ir); }else{ sqlite3_snprintf(50,z,"%!.20g", r); } sqlite3_fputs(z, p->out); } }else if( aiType && aiType[i]==SQLITE_BLOB && p->pStmt ){ const void *pBlob = sqlite3_column_blob(p->pStmt, i); int nBlob = sqlite3_column_bytes(p->pStmt, i); output_hex_blob(p->out, pBlob, nBlob); }else if( isNumber(azArg[i], 0) ){ sqlite3_fputs(azArg[i], p->out); }else if( ShellHasFlag(p, SHFLG_Newlines) ){ output_quoted_string(p, azArg[i]); }else{ output_quoted_escaped_string(p, azArg[i]); } } sqlite3_fputs(");\n", p->out); break; } case MODE_Json: { if( azArg==0 ) break; if( p->cnt==0 ){ sqlite3_fputs("[{", p->out); }else{ sqlite3_fputs(",\n{", p->out); } p->cnt++; for(i=0; iout, azCol[i], -1); sqlite3_fputs(":", p->out); if( (azArg[i]==0) || (aiType && aiType[i]==SQLITE_NULL) ){ sqlite3_fputs("null", p->out); }else if( aiType && aiType[i]==SQLITE_FLOAT ){ char z[50]; double r = sqlite3_column_double(p->pStmt, i); sqlite3_uint64 ur; memcpy(&ur,&r,sizeof(r)); if( ur==0x7ff0000000000000LL ){ sqlite3_fputs("9.0e+999", p->out); }else if( ur==0xfff0000000000000LL ){ sqlite3_fputs("-9.0e+999", p->out); }else{ sqlite3_snprintf(50,z,"%!.20g", r); sqlite3_fputs(z, p->out); } }else if( aiType && aiType[i]==SQLITE_BLOB && p->pStmt ){ const void *pBlob = sqlite3_column_blob(p->pStmt, i); int nBlob = sqlite3_column_bytes(p->pStmt, i); output_json_string(p->out, pBlob, nBlob); }else if( aiType && aiType[i]==SQLITE_TEXT ){ output_json_string(p->out, azArg[i], -1); }else{ sqlite3_fputs(azArg[i], p->out); } if( iout); } } sqlite3_fputs("}", p->out); break; } case MODE_Quote: { if( azArg==0 ) break; if( p->cnt==0 && p->showHeader ){ for(i=0; i0 ) sqlite3_fputs(p->colSeparator, p->out); output_quoted_string(p, azCol[i]); } sqlite3_fputs(p->rowSeparator, p->out); } p->cnt++; for(i=0; i0 ) sqlite3_fputs(p->colSeparator, p->out); if( (azArg[i]==0) || (aiType && aiType[i]==SQLITE_NULL) ){ sqlite3_fputs("NULL", p->out); }else if( aiType && aiType[i]==SQLITE_TEXT ){ output_quoted_string(p, azArg[i]); }else if( aiType && aiType[i]==SQLITE_INTEGER ){ sqlite3_fputs(azArg[i], p->out); }else if( aiType && aiType[i]==SQLITE_FLOAT ){ char z[50]; double r = sqlite3_column_double(p->pStmt, i); sqlite3_snprintf(50,z,"%!.20g", r); sqlite3_fputs(z, p->out); }else if( aiType && aiType[i]==SQLITE_BLOB && p->pStmt ){ const void *pBlob = sqlite3_column_blob(p->pStmt, i); int nBlob = sqlite3_column_bytes(p->pStmt, i); output_hex_blob(p->out, pBlob, nBlob); }else if( isNumber(azArg[i], 0) ){ sqlite3_fputs(azArg[i], p->out); }else{ output_quoted_string(p, azArg[i]); } } sqlite3_fputs(p->rowSeparator, p->out); break; } case MODE_Ascii: { if( p->cnt++==0 && p->showHeader ){ for(i=0; i0 ) sqlite3_fputs(p->colSeparator, p->out); sqlite3_fputs(azCol[i] ? azCol[i] : "", p->out); } sqlite3_fputs(p->rowSeparator, p->out); } if( azArg==0 ) break; for(i=0; i0 ) sqlite3_fputs(p->colSeparator, p->out); sqlite3_fputs(azArg[i] ? azArg[i] : p->nullValue, p->out); } sqlite3_fputs(p->rowSeparator, p->out); break; } case MODE_EQP: { eqp_append(p, atoi(azArg[0]), atoi(azArg[1]), azArg[3]); break; } } return 0; } /* ** This is the callback routine that the SQLite library ** invokes for each row of a query result. */ static int callback(void *pArg, int nArg, char **azArg, char **azCol){ /* since we don't have type info, call the shell_callback with a NULL value */ return shell_callback(pArg, nArg, azArg, azCol, NULL); } /* ** This is the callback routine from sqlite3_exec() that appends all ** output onto the end of a ShellText object. */ static int captureOutputCallback(void *pArg, int nArg, char **azArg, char **az){ ShellText *p = (ShellText*)pArg; int i; UNUSED_PARAMETER(az); if( azArg==0 ) return 0; if( p->n ) appendText(p, "|", 0); for(i=0; idb, "SAVEPOINT selftest_init;\n" "CREATE TABLE IF NOT EXISTS selftest(\n" " tno INTEGER PRIMARY KEY,\n" /* Test number */ " op TEXT,\n" /* Operator: memo run */ " cmd TEXT,\n" /* Command text */ " ans TEXT\n" /* Desired answer */ ");" "CREATE TEMP TABLE [_shell$self](op,cmd,ans);\n" "INSERT INTO [_shell$self](rowid,op,cmd)\n" " VALUES(coalesce((SELECT (max(tno)+100)/10 FROM selftest),10),\n" " 'memo','Tests generated by --init');\n" "INSERT INTO [_shell$self]\n" " SELECT 'run',\n" " 'SELECT hex(sha3_query(''SELECT type,name,tbl_name,sql " "FROM sqlite_schema ORDER BY 2'',224))',\n" " hex(sha3_query('SELECT type,name,tbl_name,sql " "FROM sqlite_schema ORDER BY 2',224));\n" "INSERT INTO [_shell$self]\n" " SELECT 'run'," " 'SELECT hex(sha3_query(''SELECT * FROM \"' ||" " printf('%w',name) || '\" NOT INDEXED'',224))',\n" " hex(sha3_query(printf('SELECT * FROM \"%w\" NOT INDEXED',name),224))\n" " FROM (\n" " SELECT name FROM sqlite_schema\n" " WHERE type='table'\n" " AND name<>'selftest'\n" " AND coalesce(rootpage,0)>0\n" " )\n" " ORDER BY name;\n" "INSERT INTO [_shell$self]\n" " VALUES('run','PRAGMA integrity_check','ok');\n" "INSERT INTO selftest(tno,op,cmd,ans)" " SELECT rowid*10,op,cmd,ans FROM [_shell$self];\n" "DROP TABLE [_shell$self];" ,0,0,&zErrMsg); if( zErrMsg ){ sqlite3_fprintf(stderr, "SELFTEST initialization failure: %s\n", zErrMsg); sqlite3_free(zErrMsg); } sqlite3_exec(p->db, "RELEASE selftest_init",0,0,0); } /* ** Set the destination table field of the ShellState structure to ** the name of the table given. Escape any quote characters in the ** table name. */ static void set_table_name(ShellState *p, const char *zName){ int i, n; char cQuote; char *z; if( p->zDestTable ){ free(p->zDestTable); p->zDestTable = 0; } if( zName==0 ) return; cQuote = quoteChar(zName); n = strlen30(zName); if( cQuote ) n += n+2; z = p->zDestTable = malloc( n+1 ); shell_check_oom(z); n = 0; if( cQuote ) z[n++] = cQuote; for(i=0; zName[i]; i++){ z[n++] = zName[i]; if( zName[i]==cQuote ) z[n++] = cQuote; } if( cQuote ) z[n++] = cQuote; z[n] = 0; } /* ** Maybe construct two lines of text that point out the position of a ** syntax error. Return a pointer to the text, in memory obtained from ** sqlite3_malloc(). Or, if the most recent error does not involve a ** specific token that we can point to, return an empty string. ** ** In all cases, the memory returned is obtained from sqlite3_malloc64() ** and should be released by the caller invoking sqlite3_free(). */ static char *shell_error_context(const char *zSql, sqlite3 *db){ int iOffset; size_t len; char *zCode; char *zMsg; int i; if( db==0 || zSql==0 || (iOffset = sqlite3_error_offset(db))<0 || iOffset>=(int)strlen(zSql) ){ return sqlite3_mprintf(""); } while( iOffset>50 ){ iOffset--; zSql++; while( (zSql[0]&0xc0)==0x80 ){ zSql++; iOffset--; } } len = strlen(zSql); if( len>78 ){ len = 78; while( len>0 && (zSql[len]&0xc0)==0x80 ) len--; } zCode = sqlite3_mprintf("%.*s", len, zSql); shell_check_oom(zCode); for(i=0; zCode[i]; i++){ if( IsSpace(zSql[i]) ) zCode[i] = ' '; } if( iOffset<25 ){ zMsg = sqlite3_mprintf("\n %z\n %*s^--- error here", zCode,iOffset,""); }else{ zMsg = sqlite3_mprintf("\n %z\n %*serror here ---^", zCode,iOffset-14,""); } return zMsg; } /* ** Execute a query statement that will generate SQL output. Print ** the result columns, comma-separated, on a line and then add a ** semicolon terminator to the end of that line. ** ** If the number of columns is 1 and that column contains text "--" ** then write the semicolon on a separate line. That way, if a ** "--" comment occurs at the end of the statement, the comment ** won't consume the semicolon terminator. */ static int run_table_dump_query( ShellState *p, /* Query context */ const char *zSelect /* SELECT statement to extract content */ ){ sqlite3_stmt *pSelect; int rc; int nResult; int i; const char *z; rc = sqlite3_prepare_v2(p->db, zSelect, -1, &pSelect, 0); if( rc!=SQLITE_OK || !pSelect ){ char *zContext = shell_error_context(zSelect, p->db); sqlite3_fprintf(p->out, "/**** ERROR: (%d) %s *****/\n%s", rc, sqlite3_errmsg(p->db), zContext); sqlite3_free(zContext); if( (rc&0xff)!=SQLITE_CORRUPT ) p->nErr++; return rc; } rc = sqlite3_step(pSelect); nResult = sqlite3_column_count(pSelect); while( rc==SQLITE_ROW ){ z = (const char*)sqlite3_column_text(pSelect, 0); sqlite3_fprintf(p->out, "%s", z); for(i=1; iout, ",%s", sqlite3_column_text(pSelect, i)); } if( z==0 ) z = ""; while( z[0] && (z[0]!='-' || z[1]!='-') ) z++; if( z[0] ){ sqlite3_fputs("\n;\n", p->out); }else{ sqlite3_fputs(";\n", p->out); } rc = sqlite3_step(pSelect); } rc = sqlite3_finalize(pSelect); if( rc!=SQLITE_OK ){ sqlite3_fprintf(p->out, "/**** ERROR: (%d) %s *****/\n", rc, sqlite3_errmsg(p->db)); if( (rc&0xff)!=SQLITE_CORRUPT ) p->nErr++; } return rc; } /* ** Allocate space and save off string indicating current error. */ static char *save_err_msg( sqlite3 *db, /* Database to query */ const char *zPhase, /* When the error occurs */ int rc, /* Error code returned from API */ const char *zSql /* SQL string, or NULL */ ){ char *zErr; char *zContext; sqlite3_str *pStr = sqlite3_str_new(0); sqlite3_str_appendf(pStr, "%s, %s", zPhase, sqlite3_errmsg(db)); if( rc>1 ){ sqlite3_str_appendf(pStr, " (%d)", rc); } zContext = shell_error_context(zSql, db); if( zContext ){ sqlite3_str_appendall(pStr, zContext); sqlite3_free(zContext); } zErr = sqlite3_str_finish(pStr); shell_check_oom(zErr); return zErr; } #ifdef __linux__ /* ** Attempt to display I/O stats on Linux using /proc/PID/io */ static void displayLinuxIoStats(FILE *out){ FILE *in; char z[200]; sqlite3_snprintf(sizeof(z), z, "/proc/%d/io", getpid()); in = sqlite3_fopen(z, "rb"); if( in==0 ) return; while( sqlite3_fgets(z, sizeof(z), in)!=0 ){ static const struct { const char *zPattern; const char *zDesc; } aTrans[] = { { "rchar: ", "Bytes received by read():" }, { "wchar: ", "Bytes sent to write():" }, { "syscr: ", "Read() system calls:" }, { "syscw: ", "Write() system calls:" }, { "read_bytes: ", "Bytes read from storage:" }, { "write_bytes: ", "Bytes written to storage:" }, { "cancelled_write_bytes: ", "Cancelled write bytes:" }, }; int i; for(i=0; i1 ){ sqlite3_snprintf(sizeof(zLine), zLine, zFormat, iCur, iHiwtr); }else{ sqlite3_snprintf(sizeof(zLine), zLine, zFormat, iHiwtr); } sqlite3_fprintf(out, "%-36s %s\n", zLabel, zLine); } /* ** Display memory stats. */ static int display_stats( sqlite3 *db, /* Database to query */ ShellState *pArg, /* Pointer to ShellState */ int bReset /* True to reset the stats */ ){ int iCur; int iHiwtr; FILE *out; if( pArg==0 || pArg->out==0 ) return 0; out = pArg->out; if( pArg->pStmt && pArg->statsOn==2 ){ int nCol, i, x; sqlite3_stmt *pStmt = pArg->pStmt; char z[100]; nCol = sqlite3_column_count(pStmt); sqlite3_fprintf(out, "%-36s %d\n", "Number of output columns:", nCol); for(i=0; istatsOn==3 ){ if( pArg->pStmt ){ iCur = sqlite3_stmt_status(pArg->pStmt, SQLITE_STMTSTATUS_VM_STEP,bReset); sqlite3_fprintf(out, "VM-steps: %d\n", iCur); } return 0; } displayStatLine(out, "Memory Used:", "%lld (max %lld) bytes", SQLITE_STATUS_MEMORY_USED, bReset); displayStatLine(out, "Number of Outstanding Allocations:", "%lld (max %lld)", SQLITE_STATUS_MALLOC_COUNT, bReset); if( pArg->shellFlgs & SHFLG_Pagecache ){ displayStatLine(out, "Number of Pcache Pages Used:", "%lld (max %lld) pages", SQLITE_STATUS_PAGECACHE_USED, bReset); } displayStatLine(out, "Number of Pcache Overflow Bytes:", "%lld (max %lld) bytes", SQLITE_STATUS_PAGECACHE_OVERFLOW, bReset); displayStatLine(out, "Largest Allocation:", "%lld bytes", SQLITE_STATUS_MALLOC_SIZE, bReset); displayStatLine(out, "Largest Pcache Allocation:", "%lld bytes", SQLITE_STATUS_PAGECACHE_SIZE, bReset); #ifdef YYTRACKMAXSTACKDEPTH displayStatLine(out, "Deepest Parser Stack:", "%lld (max %lld)", SQLITE_STATUS_PARSER_STACK, bReset); #endif if( db ){ if( pArg->shellFlgs & SHFLG_Lookaside ){ iHiwtr = iCur = -1; sqlite3_db_status(db, SQLITE_DBSTATUS_LOOKASIDE_USED, &iCur, &iHiwtr, bReset); sqlite3_fprintf(out, "Lookaside Slots Used: %d (max %d)\n", iCur, iHiwtr); sqlite3_db_status(db, SQLITE_DBSTATUS_LOOKASIDE_HIT, &iCur, &iHiwtr, bReset); sqlite3_fprintf(out, "Successful lookaside attempts: %d\n", iHiwtr); sqlite3_db_status(db, SQLITE_DBSTATUS_LOOKASIDE_MISS_SIZE, &iCur, &iHiwtr, bReset); sqlite3_fprintf(out, "Lookaside failures due to size: %d\n", iHiwtr); sqlite3_db_status(db, SQLITE_DBSTATUS_LOOKASIDE_MISS_FULL, &iCur, &iHiwtr, bReset); sqlite3_fprintf(out, "Lookaside failures due to OOM: %d\n", iHiwtr); } iHiwtr = iCur = -1; sqlite3_db_status(db, SQLITE_DBSTATUS_CACHE_USED, &iCur, &iHiwtr, bReset); sqlite3_fprintf(out, "Pager Heap Usage: %d bytes\n", iCur); iHiwtr = iCur = -1; sqlite3_db_status(db, SQLITE_DBSTATUS_CACHE_HIT, &iCur, &iHiwtr, 1); sqlite3_fprintf(out, "Page cache hits: %d\n", iCur); iHiwtr = iCur = -1; sqlite3_db_status(db, SQLITE_DBSTATUS_CACHE_MISS, &iCur, &iHiwtr, 1); sqlite3_fprintf(out, "Page cache misses: %d\n", iCur); iHiwtr = iCur = -1; sqlite3_db_status(db, SQLITE_DBSTATUS_CACHE_WRITE, &iCur, &iHiwtr, 1); sqlite3_fprintf(out, "Page cache writes: %d\n", iCur); iHiwtr = iCur = -1; sqlite3_db_status(db, SQLITE_DBSTATUS_CACHE_SPILL, &iCur, &iHiwtr, 1); sqlite3_fprintf(out, "Page cache spills: %d\n", iCur); iHiwtr = iCur = -1; sqlite3_db_status(db, SQLITE_DBSTATUS_SCHEMA_USED, &iCur, &iHiwtr, bReset); sqlite3_fprintf(out, "Schema Heap Usage: %d bytes\n", iCur); iHiwtr = iCur = -1; sqlite3_db_status(db, SQLITE_DBSTATUS_STMT_USED, &iCur, &iHiwtr, bReset); sqlite3_fprintf(out, "Statement Heap/Lookaside Usage: %d bytes\n", iCur); } if( pArg->pStmt ){ int iHit, iMiss; iCur = sqlite3_stmt_status(pArg->pStmt, SQLITE_STMTSTATUS_FULLSCAN_STEP, bReset); sqlite3_fprintf(out, "Fullscan Steps: %d\n", iCur); iCur = sqlite3_stmt_status(pArg->pStmt, SQLITE_STMTSTATUS_SORT, bReset); sqlite3_fprintf(out, "Sort Operations: %d\n", iCur); iCur = sqlite3_stmt_status(pArg->pStmt, SQLITE_STMTSTATUS_AUTOINDEX,bReset); sqlite3_fprintf(out, "Autoindex Inserts: %d\n", iCur); iHit = sqlite3_stmt_status(pArg->pStmt, SQLITE_STMTSTATUS_FILTER_HIT, bReset); iMiss = sqlite3_stmt_status(pArg->pStmt, SQLITE_STMTSTATUS_FILTER_MISS, bReset); if( iHit || iMiss ){ sqlite3_fprintf(out, "Bloom filter bypass taken: %d/%d\n", iHit, iHit+iMiss); } iCur = sqlite3_stmt_status(pArg->pStmt, SQLITE_STMTSTATUS_VM_STEP, bReset); sqlite3_fprintf(out, "Virtual Machine Steps: %d\n", iCur); iCur = sqlite3_stmt_status(pArg->pStmt, SQLITE_STMTSTATUS_REPREPARE,bReset); sqlite3_fprintf(out, "Reprepare operations: %d\n", iCur); iCur = sqlite3_stmt_status(pArg->pStmt, SQLITE_STMTSTATUS_RUN, bReset); sqlite3_fprintf(out, "Number of times run: %d\n", iCur); iCur = sqlite3_stmt_status(pArg->pStmt, SQLITE_STMTSTATUS_MEMUSED, bReset); sqlite3_fprintf(out, "Memory used by prepared stmt: %d\n", iCur); } #ifdef __linux__ displayLinuxIoStats(pArg->out); #endif /* Do not remove this machine readable comment: extra-stats-output-here */ return 0; } #ifdef SQLITE_ENABLE_STMT_SCANSTATUS static int scanStatsHeight(sqlite3_stmt *p, int iEntry){ int iPid = 0; int ret = 1; sqlite3_stmt_scanstatus_v2(p, iEntry, SQLITE_SCANSTAT_SELECTID, SQLITE_SCANSTAT_COMPLEX, (void*)&iPid ); while( iPid!=0 ){ int ii; for(ii=0; 1; ii++){ int iId; int res; res = sqlite3_stmt_scanstatus_v2(p, ii, SQLITE_SCANSTAT_SELECTID, SQLITE_SCANSTAT_COMPLEX, (void*)&iId ); if( res ) break; if( iId==iPid ){ sqlite3_stmt_scanstatus_v2(p, ii, SQLITE_SCANSTAT_PARENTID, SQLITE_SCANSTAT_COMPLEX, (void*)&iPid ); } } ret++; } return ret; } #endif #ifdef SQLITE_ENABLE_STMT_SCANSTATUS static void display_explain_scanstats( sqlite3 *db, /* Database to query */ ShellState *pArg /* Pointer to ShellState */ ){ static const int f = SQLITE_SCANSTAT_COMPLEX; sqlite3_stmt *p = pArg->pStmt; int ii = 0; i64 nTotal = 0; int nWidth = 0; eqp_reset(pArg); for(ii=0; 1; ii++){ const char *z = 0; int n = 0; if( sqlite3_stmt_scanstatus_v2(p,ii,SQLITE_SCANSTAT_EXPLAIN,f,(void*)&z) ){ break; } n = (int)strlen(z) + scanStatsHeight(p, ii)*3; if( n>nWidth ) nWidth = n; } nWidth += 4; sqlite3_stmt_scanstatus_v2(p, -1, SQLITE_SCANSTAT_NCYCLE, f, (void*)&nTotal); for(ii=0; 1; ii++){ i64 nLoop = 0; i64 nRow = 0; i64 nCycle = 0; int iId = 0; int iPid = 0; const char *zo = 0; const char *zName = 0; char *zText = 0; double rEst = 0.0; if( sqlite3_stmt_scanstatus_v2(p,ii,SQLITE_SCANSTAT_EXPLAIN,f,(void*)&zo) ){ break; } sqlite3_stmt_scanstatus_v2(p, ii, SQLITE_SCANSTAT_EST,f,(void*)&rEst); sqlite3_stmt_scanstatus_v2(p, ii, SQLITE_SCANSTAT_NLOOP,f,(void*)&nLoop); sqlite3_stmt_scanstatus_v2(p, ii, SQLITE_SCANSTAT_NVISIT,f,(void*)&nRow); sqlite3_stmt_scanstatus_v2(p, ii, SQLITE_SCANSTAT_NCYCLE,f,(void*)&nCycle); sqlite3_stmt_scanstatus_v2(p, ii, SQLITE_SCANSTAT_SELECTID,f,(void*)&iId); sqlite3_stmt_scanstatus_v2(p, ii, SQLITE_SCANSTAT_PARENTID,f,(void*)&iPid); sqlite3_stmt_scanstatus_v2(p, ii, SQLITE_SCANSTAT_NAME,f,(void*)&zName); zText = sqlite3_mprintf("%s", zo); if( nCycle>=0 || nLoop>=0 || nRow>=0 ){ char *z = 0; if( nCycle>=0 && nTotal>0 ){ z = sqlite3_mprintf("%zcycles=%lld [%d%%]", z, nCycle, ((nCycle*100)+nTotal/2) / nTotal ); } if( nLoop>=0 ){ z = sqlite3_mprintf("%z%sloops=%lld", z, z ? " " : "", nLoop); } if( nRow>=0 ){ z = sqlite3_mprintf("%z%srows=%lld", z, z ? " " : "", nRow); } if( zName && pArg->scanstatsOn>1 ){ double rpl = (double)nRow / (double)nLoop; z = sqlite3_mprintf("%z rpl=%.1f est=%.1f", z, rpl, rEst); } zText = sqlite3_mprintf( "% *z (%z)", -1*(nWidth-scanStatsHeight(p, ii)*3), zText, z ); } eqp_append(pArg, iId, iPid, zText); sqlite3_free(zText); } eqp_render(pArg, nTotal); } #endif /* ** Parameter azArray points to a zero-terminated array of strings. zStr ** points to a single nul-terminated string. Return non-zero if zStr ** is equal, according to strcmp(), to any of the strings in the array. ** Otherwise, return zero. */ static int str_in_array(const char *zStr, const char **azArray){ int i; for(i=0; azArray[i]; i++){ if( 0==cli_strcmp(zStr, azArray[i]) ) return 1; } return 0; } /* ** If compiled statement pSql appears to be an EXPLAIN statement, allocate ** and populate the ShellState.aiIndent[] array with the number of ** spaces each opcode should be indented before it is output. ** ** The indenting rules are: ** ** * For each "Next", "Prev", "VNext" or "VPrev" instruction, indent ** all opcodes that occur between the p2 jump destination and the opcode ** itself by 2 spaces. ** ** * Do the previous for "Return" instructions for when P2 is positive. ** See tag-20220407a in wherecode.c and vdbe.c. ** ** * For each "Goto", if the jump destination is earlier in the program ** and ends on one of: ** Yield SeekGt SeekLt RowSetRead Rewind ** or if the P1 parameter is one instead of zero, ** then indent all opcodes between the earlier instruction ** and "Goto" by 2 spaces. */ static void explain_data_prepare(ShellState *p, sqlite3_stmt *pSql){ int *abYield = 0; /* True if op is an OP_Yield */ int nAlloc = 0; /* Allocated size of p->aiIndent[], abYield */ int iOp; /* Index of operation in p->aiIndent[] */ const char *azNext[] = { "Next", "Prev", "VPrev", "VNext", "SorterNext", "Return", 0 }; const char *azYield[] = { "Yield", "SeekLT", "SeekGT", "RowSetRead", "Rewind", 0 }; const char *azGoto[] = { "Goto", 0 }; /* The caller guarantees that the leftmost 4 columns of the statement ** passed to this function are equivalent to the leftmost 4 columns ** of EXPLAIN statement output. In practice the statement may be ** an EXPLAIN, or it may be a query on the bytecode() virtual table. */ assert( sqlite3_column_count(pSql)>=4 ); assert( 0==sqlite3_stricmp( sqlite3_column_name(pSql, 0), "addr" ) ); assert( 0==sqlite3_stricmp( sqlite3_column_name(pSql, 1), "opcode" ) ); assert( 0==sqlite3_stricmp( sqlite3_column_name(pSql, 2), "p1" ) ); assert( 0==sqlite3_stricmp( sqlite3_column_name(pSql, 3), "p2" ) ); for(iOp=0; SQLITE_ROW==sqlite3_step(pSql); iOp++){ int i; int iAddr = sqlite3_column_int(pSql, 0); const char *zOp = (const char*)sqlite3_column_text(pSql, 1); int p1 = sqlite3_column_int(pSql, 2); int p2 = sqlite3_column_int(pSql, 3); /* Assuming that p2 is an instruction address, set variable p2op to the ** index of that instruction in the aiIndent[] array. p2 and p2op may be ** different if the current instruction is part of a sub-program generated ** by an SQL trigger or foreign key. */ int p2op = (p2 + (iOp-iAddr)); /* Grow the p->aiIndent array as required */ if( iOp>=nAlloc ){ nAlloc += 100; p->aiIndent = (int*)sqlite3_realloc64(p->aiIndent, nAlloc*sizeof(int)); shell_check_oom(p->aiIndent); abYield = (int*)sqlite3_realloc64(abYield, nAlloc*sizeof(int)); shell_check_oom(abYield); } abYield[iOp] = str_in_array(zOp, azYield); p->aiIndent[iOp] = 0; p->nIndent = iOp+1; if( str_in_array(zOp, azNext) && p2op>0 ){ for(i=p2op; iaiIndent[i] += 2; } if( str_in_array(zOp, azGoto) && p2opaiIndent[i] += 2; } } p->iIndent = 0; sqlite3_free(abYield); sqlite3_reset(pSql); } /* ** Free the array allocated by explain_data_prepare(). */ static void explain_data_delete(ShellState *p){ sqlite3_free(p->aiIndent); p->aiIndent = 0; p->nIndent = 0; p->iIndent = 0; } static void exec_prepared_stmt(ShellState*, sqlite3_stmt*); /* ** Display scan stats. */ static void display_scanstats( sqlite3 *db, /* Database to query */ ShellState *pArg /* Pointer to ShellState */ ){ #ifndef SQLITE_ENABLE_STMT_SCANSTATUS UNUSED_PARAMETER(db); UNUSED_PARAMETER(pArg); #else if( pArg->scanstatsOn==3 ){ const char *zSql = " SELECT addr, opcode, p1, p2, p3, p4, p5, comment, nexec," " format('% 6s (%.2f%%)'," " CASE WHEN ncycle<100_000 THEN ncycle || ' '" " WHEN ncycle<100_000_000 THEN (ncycle/1_000) || 'K'" " WHEN ncycle<100_000_000_000 THEN (ncycle/1_000_000) || 'M'" " ELSE (ncycle/1000_000_000) || 'G' END," " ncycle*100.0/(sum(ncycle) OVER ())" " ) AS cycles" " FROM bytecode(?)"; int rc = SQLITE_OK; sqlite3_stmt *pStmt = 0; rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0); if( rc==SQLITE_OK ){ sqlite3_stmt *pSave = pArg->pStmt; pArg->pStmt = pStmt; sqlite3_bind_pointer(pStmt, 1, pSave, "stmt-pointer", 0); pArg->cnt = 0; pArg->cMode = MODE_ScanExp; explain_data_prepare(pArg, pStmt); exec_prepared_stmt(pArg, pStmt); explain_data_delete(pArg); sqlite3_finalize(pStmt); pArg->pStmt = pSave; } }else{ display_explain_scanstats(db, pArg); } #endif } /* ** Disable and restore .wheretrace and .treetrace/.selecttrace settings. */ static unsigned int savedSelectTrace; static unsigned int savedWhereTrace; static void disable_debug_trace_modes(void){ unsigned int zero = 0; sqlite3_test_control(SQLITE_TESTCTRL_TRACEFLAGS, 0, &savedSelectTrace); sqlite3_test_control(SQLITE_TESTCTRL_TRACEFLAGS, 1, &zero); sqlite3_test_control(SQLITE_TESTCTRL_TRACEFLAGS, 2, &savedWhereTrace); sqlite3_test_control(SQLITE_TESTCTRL_TRACEFLAGS, 3, &zero); } static void restore_debug_trace_modes(void){ sqlite3_test_control(SQLITE_TESTCTRL_TRACEFLAGS, 1, &savedSelectTrace); sqlite3_test_control(SQLITE_TESTCTRL_TRACEFLAGS, 3, &savedWhereTrace); } /* Create the TEMP table used to store parameter bindings */ static void bind_table_init(ShellState *p){ int wrSchema = 0; int defensiveMode = 0; sqlite3_db_config(p->db, SQLITE_DBCONFIG_DEFENSIVE, -1, &defensiveMode); sqlite3_db_config(p->db, SQLITE_DBCONFIG_DEFENSIVE, 0, 0); sqlite3_db_config(p->db, SQLITE_DBCONFIG_WRITABLE_SCHEMA, -1, &wrSchema); sqlite3_db_config(p->db, SQLITE_DBCONFIG_WRITABLE_SCHEMA, 1, 0); sqlite3_exec(p->db, "CREATE TABLE IF NOT EXISTS temp.sqlite_parameters(\n" " key TEXT PRIMARY KEY,\n" " value\n" ") WITHOUT ROWID;", 0, 0, 0); sqlite3_db_config(p->db, SQLITE_DBCONFIG_WRITABLE_SCHEMA, wrSchema, 0); sqlite3_db_config(p->db, SQLITE_DBCONFIG_DEFENSIVE, defensiveMode, 0); } /* ** Bind parameters on a prepared statement. ** ** Parameter bindings are taken from a TEMP table of the form: ** ** CREATE TEMP TABLE sqlite_parameters(key TEXT PRIMARY KEY, value) ** WITHOUT ROWID; ** ** No bindings occur if this table does not exist. The name of the table ** begins with "sqlite_" so that it will not collide with ordinary application ** tables. The table must be in the TEMP schema. */ static void bind_prepared_stmt(ShellState *pArg, sqlite3_stmt *pStmt){ int nVar; int i; int rc; sqlite3_stmt *pQ = 0; nVar = sqlite3_bind_parameter_count(pStmt); if( nVar==0 ) return; /* Nothing to do */ if( sqlite3_table_column_metadata(pArg->db, "TEMP", "sqlite_parameters", "key", 0, 0, 0, 0, 0)!=SQLITE_OK ){ rc = SQLITE_NOTFOUND; pQ = 0; }else{ rc = sqlite3_prepare_v2(pArg->db, "SELECT value FROM temp.sqlite_parameters" " WHERE key=?1", -1, &pQ, 0); } for(i=1; i<=nVar; i++){ char zNum[30]; const char *zVar = sqlite3_bind_parameter_name(pStmt, i); if( zVar==0 ){ sqlite3_snprintf(sizeof(zNum),zNum,"?%d",i); zVar = zNum; } sqlite3_bind_text(pQ, 1, zVar, -1, SQLITE_STATIC); if( rc==SQLITE_OK && pQ && sqlite3_step(pQ)==SQLITE_ROW ){ sqlite3_bind_value(pStmt, i, sqlite3_column_value(pQ, 0)); #ifdef NAN }else if( sqlite3_strlike("_NAN", zVar, 0)==0 ){ sqlite3_bind_double(pStmt, i, NAN); #endif #ifdef INFINITY }else if( sqlite3_strlike("_INF", zVar, 0)==0 ){ sqlite3_bind_double(pStmt, i, INFINITY); #endif }else if( strncmp(zVar, "$int_", 5)==0 ){ sqlite3_bind_int(pStmt, i, atoi(&zVar[5])); }else if( strncmp(zVar, "$text_", 6)==0 ){ size_t szVar = strlen(zVar); char *zBuf = sqlite3_malloc64( szVar-5 ); if( zBuf ){ memcpy(zBuf, &zVar[6], szVar-5); sqlite3_bind_text64(pStmt, i, zBuf, szVar-6, sqlite3_free, SQLITE_UTF8); } }else{ sqlite3_bind_null(pStmt, i); } sqlite3_reset(pQ); } sqlite3_finalize(pQ); } /* ** UTF8 box-drawing characters. Imagine box lines like this: ** ** 1 ** | ** 4 --+-- 2 ** | ** 3 ** ** Each box characters has between 2 and 4 of the lines leading from ** the center. The characters are here identified by the numbers of ** their corresponding lines. */ #define BOX_24 "\342\224\200" /* U+2500 --- */ #define BOX_13 "\342\224\202" /* U+2502 | */ #define BOX_23 "\342\224\214" /* U+250c ,- */ #define BOX_34 "\342\224\220" /* U+2510 -, */ #define BOX_12 "\342\224\224" /* U+2514 '- */ #define BOX_14 "\342\224\230" /* U+2518 -' */ #define BOX_123 "\342\224\234" /* U+251c |- */ #define BOX_134 "\342\224\244" /* U+2524 -| */ #define BOX_234 "\342\224\254" /* U+252c -,- */ #define BOX_124 "\342\224\264" /* U+2534 -'- */ #define BOX_1234 "\342\224\274" /* U+253c -|- */ /* Draw horizontal line N characters long using unicode box ** characters */ static void print_box_line(FILE *out, int N){ const char zDash[] = BOX_24 BOX_24 BOX_24 BOX_24 BOX_24 BOX_24 BOX_24 BOX_24 BOX_24 BOX_24 BOX_24 BOX_24 BOX_24 BOX_24 BOX_24 BOX_24 BOX_24 BOX_24 BOX_24 BOX_24; const int nDash = sizeof(zDash) - 1; N *= 3; while( N>nDash ){ sqlite3_fputs(zDash, out); N -= nDash; } sqlite3_fprintf(out, "%.*s", N, zDash); } /* ** Draw a horizontal separator for a MODE_Box table. */ static void print_box_row_separator( ShellState *p, int nArg, const char *zSep1, const char *zSep2, const char *zSep3 ){ int i; if( nArg>0 ){ sqlite3_fputs(zSep1, p->out); print_box_line(p->out, p->actualWidth[0]+2); for(i=1; iout); print_box_line(p->out, p->actualWidth[i]+2); } sqlite3_fputs(zSep3, p->out); } sqlite3_fputs("\n", p->out); } /* ** z[] is a line of text that is to be displayed the .mode box or table or ** similar tabular formats. z[] might contain control characters such ** as \n, \t, \f, or \r. ** ** Compute characters to display on the first line of z[]. Stop at the ** first \r, \n, or \f. Expand \t into spaces. Return a copy (obtained ** from malloc()) of that first line, which caller should free sometime. ** Write anything to display on the next line into *pzTail. If this is ** the last line, write a NULL into *pzTail. (*pzTail is not allocated.) */ static char *translateForDisplayAndDup( const unsigned char *z, /* Input text to be transformed */ const unsigned char **pzTail, /* OUT: Tail of the input for next line */ int mxWidth, /* Max width. 0 means no limit */ u8 bWordWrap /* If true, avoid breaking mid-word */ ){ int i; /* Input bytes consumed */ int j; /* Output bytes generated */ int k; /* Input bytes to be displayed */ int n; /* Output column number */ unsigned char *zOut; /* Output text */ if( z==0 ){ *pzTail = 0; return 0; } if( mxWidth<0 ) mxWidth = -mxWidth; if( mxWidth==0 ) mxWidth = 1000000; i = j = n = 0; while( n=0xc0 ){ int u; int len = decodeUtf8(&z[i], &u); i += len; j += len; n += cli_wcwidth(u); continue; } if( c>=' ' ){ n++; i++; j++; continue; } if( c=='\t' ){ do{ n++; j++; }while( (n&7)!=0 && n=mxWidth && bWordWrap ){ /* Perhaps try to back up to a better place to break the line */ for(k=i; k>i/2; k--){ if( isspace(z[k-1]) ) break; } if( k<=i/2 ){ for(k=i; k>i/2; k--){ if( isalnum(z[k-1])!=isalnum(z[k]) && (z[k]&0xc0)!=0x80 ) break; } } if( k<=i/2 ){ k = i; }else{ i = k; while( z[i]==' ' ) i++; } }else{ k = i; } if( n>=mxWidth && z[i]>=' ' ){ *pzTail = &z[i]; }else if( z[i]=='\r' && z[i+1]=='\n' ){ *pzTail = z[i+2] ? &z[i+2] : 0; }else if( z[i]==0 || z[i+1]==0 ){ *pzTail = 0; }else{ *pzTail = &z[i+1]; } zOut = malloc( j+1 ); shell_check_oom(zOut); i = j = n = 0; while( i=0xc0 ){ int u; int len = decodeUtf8(&z[i], &u); do{ zOut[j++] = z[i++]; }while( (--len)>0 ); n += cli_wcwidth(u); continue; } if( c>=' ' ){ n++; zOut[j++] = z[i++]; continue; } if( z[i]=='\t' ){ do{ n++; zOut[j++] = ' '; }while( (n&7)!=0 && ncmOpts.bWordWrap; const char *zEmpty = ""; const char *zShowNull = p->nullValue; rc = sqlite3_step(pStmt); if( rc!=SQLITE_ROW ) return; nColumn = sqlite3_column_count(pStmt); if( nColumn==0 ) goto columnar_end; nAlloc = nColumn*4; if( nAlloc<=0 ) nAlloc = 1; azData = sqlite3_malloc64( nAlloc*sizeof(char*) ); shell_check_oom(azData); azNextLine = sqlite3_malloc64( nColumn*sizeof(char*) ); shell_check_oom(azNextLine); memset((void*)azNextLine, 0, nColumn*sizeof(char*) ); if( p->cmOpts.bQuote ){ azQuoted = sqlite3_malloc64( nColumn*sizeof(char*) ); shell_check_oom(azQuoted); memset(azQuoted, 0, nColumn*sizeof(char*) ); } abRowDiv = sqlite3_malloc64( nAlloc/nColumn ); shell_check_oom(abRowDiv); if( nColumn>p->nWidth ){ p->colWidth = realloc(p->colWidth, (nColumn+1)*2*sizeof(int)); shell_check_oom(p->colWidth); for(i=p->nWidth; icolWidth[i] = 0; p->nWidth = nColumn; p->actualWidth = &p->colWidth[nColumn]; } memset(p->actualWidth, 0, nColumn*sizeof(int)); for(i=0; icolWidth[i]; if( w<0 ) w = -w; p->actualWidth[i] = w; } for(i=0; icolWidth[i]; if( wx==0 ){ wx = p->cmOpts.iWrap; } if( wx<0 ) wx = -wx; uz = (const unsigned char*)sqlite3_column_name(pStmt,i); if( uz==0 ) uz = (u8*)""; azData[i] = translateForDisplayAndDup(uz, &zNotUsed, wx, bw); } do{ int useNextLine = bNextLine; bNextLine = 0; if( (nRow+2)*nColumn >= nAlloc ){ nAlloc *= 2; azData = sqlite3_realloc64(azData, nAlloc*sizeof(char*)); shell_check_oom(azData); abRowDiv = sqlite3_realloc64(abRowDiv, nAlloc/nColumn); shell_check_oom(abRowDiv); } abRowDiv[nRow] = 1; nRow++; for(i=0; icolWidth[i]; if( wx==0 ){ wx = p->cmOpts.iWrap; } if( wx<0 ) wx = -wx; if( useNextLine ){ uz = azNextLine[i]; if( uz==0 ) uz = (u8*)zEmpty; }else if( p->cmOpts.bQuote ){ sqlite3_free(azQuoted[i]); azQuoted[i] = quoted_column(pStmt,i); uz = (const unsigned char*)azQuoted[i]; }else{ uz = (const unsigned char*)sqlite3_column_text(pStmt,i); if( uz==0 ) uz = (u8*)zShowNull; } azData[nRow*nColumn + i] = translateForDisplayAndDup(uz, &azNextLine[i], wx, bw); if( azNextLine[i] ){ bNextLine = 1; abRowDiv[nRow-1] = 0; bMultiLineRowExists = 1; } } }while( bNextLine || sqlite3_step(pStmt)==SQLITE_ROW ); nTotal = nColumn*(nRow+1); for(i=0; ip->actualWidth[j] ) p->actualWidth[j] = n; } if( seenInterrupt ) goto columnar_end; switch( p->cMode ){ case MODE_Column: { colSep = " "; rowSep = "\n"; if( p->showHeader ){ for(i=0; iactualWidth[i]; if( p->colWidth[i]<0 ) w = -w; utf8_width_print(p->out, w, azData[i]); sqlite3_fputs(i==nColumn-1?"\n":" ", p->out); } for(i=0; iout, p->actualWidth[i]); sqlite3_fputs(i==nColumn-1?"\n":" ", p->out); } } break; } case MODE_Table: { colSep = " | "; rowSep = " |\n"; print_row_separator(p, nColumn, "+"); sqlite3_fputs("| ", p->out); for(i=0; iactualWidth[i]; n = strlenChar(azData[i]); sqlite3_fprintf(p->out, "%*s%s%*s", (w-n)/2, "", azData[i], (w-n+1)/2, ""); sqlite3_fputs(i==nColumn-1?" |\n":" | ", p->out); } print_row_separator(p, nColumn, "+"); break; } case MODE_Markdown: { colSep = " | "; rowSep = " |\n"; sqlite3_fputs("| ", p->out); for(i=0; iactualWidth[i]; n = strlenChar(azData[i]); sqlite3_fprintf(p->out, "%*s%s%*s", (w-n)/2, "", azData[i], (w-n+1)/2, ""); sqlite3_fputs(i==nColumn-1?" |\n":" | ", p->out); } print_row_separator(p, nColumn, "|"); break; } case MODE_Box: { colSep = " " BOX_13 " "; rowSep = " " BOX_13 "\n"; print_box_row_separator(p, nColumn, BOX_23, BOX_234, BOX_34); sqlite3_fputs(BOX_13 " ", p->out); for(i=0; iactualWidth[i]; n = strlenChar(azData[i]); sqlite3_fprintf(p->out, "%*s%s%*s%s", (w-n)/2, "", azData[i], (w-n+1)/2, "", i==nColumn-1?" "BOX_13"\n":" "BOX_13" "); } print_box_row_separator(p, nColumn, BOX_123, BOX_1234, BOX_134); break; } } for(i=nColumn, j=0; icMode!=MODE_Column ){ sqlite3_fputs(p->cMode==MODE_Box?BOX_13" ":"| ", p->out); } z = azData[i]; if( z==0 ) z = p->nullValue; w = p->actualWidth[j]; if( p->colWidth[j]<0 ) w = -w; utf8_width_print(p->out, w, z); if( j==nColumn-1 ){ sqlite3_fputs(rowSep, p->out); if( bMultiLineRowExists && abRowDiv[i/nColumn-1] && i+1cMode==MODE_Table ){ print_row_separator(p, nColumn, "+"); }else if( p->cMode==MODE_Box ){ print_box_row_separator(p, nColumn, BOX_123, BOX_1234, BOX_134); }else if( p->cMode==MODE_Column ){ sqlite3_fputs("\n", p->out); } } j = -1; if( seenInterrupt ) goto columnar_end; }else{ sqlite3_fputs(colSep, p->out); } } if( p->cMode==MODE_Table ){ print_row_separator(p, nColumn, "+"); }else if( p->cMode==MODE_Box ){ print_box_row_separator(p, nColumn, BOX_12, BOX_124, BOX_14); } columnar_end: if( seenInterrupt ){ sqlite3_fputs("Interrupt\n", p->out); } nData = (nRow+1)*nColumn; for(i=0; icMode==MODE_Column || pArg->cMode==MODE_Table || pArg->cMode==MODE_Box || pArg->cMode==MODE_Markdown ){ exec_prepared_stmt_columnar(pArg, pStmt); return; } /* perform the first step. this will tell us if we ** have a result set or not and how wide it is. */ rc = sqlite3_step(pStmt); /* if we have a result set... */ if( SQLITE_ROW == rc ){ /* allocate space for col name ptr, value ptr, and type */ int nCol = sqlite3_column_count(pStmt); void *pData = sqlite3_malloc64(3*nCol*sizeof(const char*) + 1); if( !pData ){ shell_out_of_memory(); }else{ char **azCols = (char **)pData; /* Names of result columns */ char **azVals = &azCols[nCol]; /* Results */ int *aiTypes = (int *)&azVals[nCol]; /* Result types */ int i, x; assert(sizeof(int) <= sizeof(char *)); /* save off ptrs to column names */ for(i=0; icMode==MODE_Insert || pArg->cMode==MODE_Quote) ){ azVals[i] = ""; }else{ azVals[i] = (char*)sqlite3_column_text(pStmt, i); } if( !azVals[i] && (aiTypes[i]!=SQLITE_NULL) ){ rc = SQLITE_NOMEM; break; /* from for */ } } /* end for */ /* if data and types extracted successfully... */ if( SQLITE_ROW == rc ){ /* call the supplied callback with the result row data */ if( shell_callback(pArg, nCol, azVals, azCols, aiTypes) ){ rc = SQLITE_ABORT; }else{ rc = sqlite3_step(pStmt); } } } while( SQLITE_ROW == rc ); sqlite3_free(pData); if( pArg->cMode==MODE_Json ){ sqlite3_fputs("]\n", pArg->out); }else if( pArg->cMode==MODE_Www ){ sqlite3_fputs("
\n
\n", pArg->out);
      }else if( pArg->cMode==MODE_Count ){
        char zBuf[200];
        sqlite3_snprintf(sizeof(zBuf), zBuf, "%llu row%s\n",
                         nRow, nRow!=1 ? "s" : "");
        printf("%s", zBuf);
      }
    }
  }
}

#ifndef SQLITE_OMIT_VIRTUALTABLE
/*
** This function is called to process SQL if the previous shell command
** was ".expert". It passes the SQL in the second argument directly to
** the sqlite3expert object.
**
** If successful, SQLITE_OK is returned. Otherwise, an SQLite error
** code. In this case, (*pzErr) may be set to point to a buffer containing
** an English language error message. It is the responsibility of the
** caller to eventually free this buffer using sqlite3_free().
*/
static int expertHandleSQL(
  ShellState *pState,
  const char *zSql,
  char **pzErr
){
  assert( pState->expert.pExpert );
  assert( pzErr==0 || *pzErr==0 );
  return sqlite3_expert_sql(pState->expert.pExpert, zSql, pzErr);
}

/*
** This function is called either to silently clean up the object
** created by the ".expert" command (if bCancel==1), or to generate a
** report from it and then clean it up (if bCancel==0).
**
** If successful, SQLITE_OK is returned. Otherwise, an SQLite error
** code. In this case, (*pzErr) may be set to point to a buffer containing
** an English language error message. It is the responsibility of the
** caller to eventually free this buffer using sqlite3_free().
*/
static int expertFinish(
  ShellState *pState,
  int bCancel,
  char **pzErr
){
  int rc = SQLITE_OK;
  sqlite3expert *p = pState->expert.pExpert;
  FILE *out = pState->out;
  assert( p );
  assert( bCancel || pzErr==0 || *pzErr==0 );
  if( bCancel==0 ){
    int bVerbose = pState->expert.bVerbose;

    rc = sqlite3_expert_analyze(p, pzErr);
    if( rc==SQLITE_OK ){
      int nQuery = sqlite3_expert_count(p);
      int i;

      if( bVerbose ){
        const char *zCand = sqlite3_expert_report(p,0,EXPERT_REPORT_CANDIDATES);
        sqlite3_fputs("-- Candidates -----------------------------\n", out);
        sqlite3_fprintf(out, "%s\n", zCand);
      }
      for(i=0; iexpert.pExpert = 0;
  return rc;
}

/*
** Implementation of ".expert" dot command.
*/
static int expertDotCommand(
  ShellState *pState,             /* Current shell tool state */
  char **azArg,                   /* Array of arguments passed to dot command */
  int nArg                        /* Number of entries in azArg[] */
){
  int rc = SQLITE_OK;
  char *zErr = 0;
  int i;
  int iSample = 0;

  assert( pState->expert.pExpert==0 );
  memset(&pState->expert, 0, sizeof(ExpertInfo));

  for(i=1; rc==SQLITE_OK && i=2 && 0==cli_strncmp(z, "-verbose", n) ){
      pState->expert.bVerbose = 1;
    }
    else if( n>=2 && 0==cli_strncmp(z, "-sample", n) ){
      if( i==(nArg-1) ){
        sqlite3_fprintf(stderr, "option requires an argument: %s\n", z);
        rc = SQLITE_ERROR;
      }else{
        iSample = (int)integerValue(azArg[++i]);
        if( iSample<0 || iSample>100 ){
          sqlite3_fprintf(stderr,"value out of range: %s\n", azArg[i]);
          rc = SQLITE_ERROR;
        }
      }
    }
    else{
      sqlite3_fprintf(stderr,"unknown option: %s\n", z);
      rc = SQLITE_ERROR;
    }
  }

  if( rc==SQLITE_OK ){
    pState->expert.pExpert = sqlite3_expert_new(pState->db, &zErr);
    if( pState->expert.pExpert==0 ){
      sqlite3_fprintf(stderr,
          "sqlite3_expert_new: %s\n", zErr ? zErr : "out of memory");
      rc = SQLITE_ERROR;
    }else{
      sqlite3_expert_config(
          pState->expert.pExpert, EXPERT_CONFIG_SAMPLE, iSample
      );
    }
  }
  sqlite3_free(zErr);

  return rc;
}
#endif /* ifndef SQLITE_OMIT_VIRTUALTABLE */

/*
** Execute a statement or set of statements.  Print
** any result rows/columns depending on the current mode
** set via the supplied callback.
**
** This is very similar to SQLite's built-in sqlite3_exec()
** function except it takes a slightly different callback
** and callback data argument.
*/
static int shell_exec(
  ShellState *pArg,                         /* Pointer to ShellState */
  const char *zSql,                         /* SQL to be evaluated */
  char **pzErrMsg                           /* Error msg written here */
){
  sqlite3_stmt *pStmt = NULL;     /* Statement to execute. */
  int rc = SQLITE_OK;             /* Return Code */
  int rc2;
  const char *zLeftover;          /* Tail of unprocessed SQL */
  sqlite3 *db = pArg->db;

  if( pzErrMsg ){
    *pzErrMsg = NULL;
  }

#ifndef SQLITE_OMIT_VIRTUALTABLE
  if( pArg->expert.pExpert ){
    rc = expertHandleSQL(pArg, zSql, pzErrMsg);
    return expertFinish(pArg, (rc!=SQLITE_OK), pzErrMsg);
  }
#endif

  while( zSql[0] && (SQLITE_OK == rc) ){
    static const char *zStmtSql;
    rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, &zLeftover);
    if( SQLITE_OK != rc ){
      if( pzErrMsg ){
        *pzErrMsg = save_err_msg(db, "in prepare", rc, zSql);
      }
    }else{
      if( !pStmt ){
        /* this happens for a comment or white-space */
        zSql = zLeftover;
        while( IsSpace(zSql[0]) ) zSql++;
        continue;
      }
      zStmtSql = sqlite3_sql(pStmt);
      if( zStmtSql==0 ) zStmtSql = "";
      while( IsSpace(zStmtSql[0]) ) zStmtSql++;

      /* save off the prepared statement handle and reset row count */
      if( pArg ){
        pArg->pStmt = pStmt;
        pArg->cnt = 0;
      }

      /* Show the EXPLAIN QUERY PLAN if .eqp is on */
      if( pArg && pArg->autoEQP && sqlite3_stmt_isexplain(pStmt)==0 ){
        sqlite3_stmt *pExplain;
        int triggerEQP = 0;
        disable_debug_trace_modes();
        sqlite3_db_config(db, SQLITE_DBCONFIG_TRIGGER_EQP, -1, &triggerEQP);
        if( pArg->autoEQP>=AUTOEQP_trigger ){
          sqlite3_db_config(db, SQLITE_DBCONFIG_TRIGGER_EQP, 1, 0);
        }
        pExplain = pStmt;
        sqlite3_reset(pExplain);
        rc = sqlite3_stmt_explain(pExplain, 2);
        if( rc==SQLITE_OK ){
          bind_prepared_stmt(pArg, pExplain);
          while( sqlite3_step(pExplain)==SQLITE_ROW ){
            const char *zEQPLine = (const char*)sqlite3_column_text(pExplain,3);
            int iEqpId = sqlite3_column_int(pExplain, 0);
            int iParentId = sqlite3_column_int(pExplain, 1);
            if( zEQPLine==0 ) zEQPLine = "";
            if( zEQPLine[0]=='-' ) eqp_render(pArg, 0);
            eqp_append(pArg, iEqpId, iParentId, zEQPLine);
          }
          eqp_render(pArg, 0);
        }
        if( pArg->autoEQP>=AUTOEQP_full ){
          /* Also do an EXPLAIN for ".eqp full" mode */
          sqlite3_reset(pExplain);
          rc = sqlite3_stmt_explain(pExplain, 1);
          if( rc==SQLITE_OK ){
            pArg->cMode = MODE_Explain;
            assert( sqlite3_stmt_isexplain(pExplain)==1 );
            bind_prepared_stmt(pArg, pExplain);
            explain_data_prepare(pArg, pExplain);
            exec_prepared_stmt(pArg, pExplain);
            explain_data_delete(pArg);
          }
        }
        if( pArg->autoEQP>=AUTOEQP_trigger && triggerEQP==0 ){
          sqlite3_db_config(db, SQLITE_DBCONFIG_TRIGGER_EQP, 0, 0);
        }
        sqlite3_reset(pStmt);
        sqlite3_stmt_explain(pStmt, 0);
        restore_debug_trace_modes();
      }

      if( pArg ){
        int bIsExplain = (sqlite3_stmt_isexplain(pStmt)==1);
        pArg->cMode = pArg->mode;
        if( pArg->autoExplain ){
          if( bIsExplain ){
            pArg->cMode = MODE_Explain;
          }
          if( sqlite3_stmt_isexplain(pStmt)==2 ){
            pArg->cMode = MODE_EQP;
          }
        }

        /* If the shell is currently in ".explain" mode, gather the extra
        ** data required to add indents to the output.*/
        if( pArg->cMode==MODE_Explain && bIsExplain ){
          explain_data_prepare(pArg, pStmt);
        }
      }

      bind_prepared_stmt(pArg, pStmt);
      exec_prepared_stmt(pArg, pStmt);
      explain_data_delete(pArg);
      eqp_render(pArg, 0);

      /* print usage stats if stats on */
      if( pArg && pArg->statsOn ){
        display_stats(db, pArg, 0);
      }

      /* print loop-counters if required */
      if( pArg && pArg->scanstatsOn ){
        display_scanstats(db, pArg);
      }

      /* Finalize the statement just executed. If this fails, save a
      ** copy of the error message. Otherwise, set zSql to point to the
      ** next statement to execute. */
      rc2 = sqlite3_finalize(pStmt);
      if( rc!=SQLITE_NOMEM ) rc = rc2;
      if( rc==SQLITE_OK ){
        zSql = zLeftover;
        while( IsSpace(zSql[0]) ) zSql++;
      }else if( pzErrMsg ){
        *pzErrMsg = save_err_msg(db, "stepping", rc, 0);
      }

      /* clear saved stmt handle */
      if( pArg ){
        pArg->pStmt = NULL;
      }
    }
  } /* end while */

  return rc;
}

/*
** Release memory previously allocated by tableColumnList().
*/
static void freeColumnList(char **azCol){
  int i;
  for(i=1; azCol[i]; i++){
    sqlite3_free(azCol[i]);
  }
  /* azCol[0] is a static string */
  sqlite3_free(azCol);
}

/*
** Return a list of pointers to strings which are the names of all
** columns in table zTab.   The memory to hold the names is dynamically
** allocated and must be released by the caller using a subsequent call
** to freeColumnList().
**
** The azCol[0] entry is usually NULL.  However, if zTab contains a rowid
** value that needs to be preserved, then azCol[0] is filled in with the
** name of the rowid column.
**
** The first regular column in the table is azCol[1].  The list is terminated
** by an entry with azCol[i]==0.
*/
static char **tableColumnList(ShellState *p, const char *zTab){
  char **azCol = 0;
  sqlite3_stmt *pStmt;
  char *zSql;
  int nCol = 0;
  int nAlloc = 0;
  int nPK = 0;       /* Number of PRIMARY KEY columns seen */
  int isIPK = 0;     /* True if one PRIMARY KEY column of type INTEGER */
  int preserveRowid = ShellHasFlag(p, SHFLG_PreserveRowid);
  int rc;

  zSql = sqlite3_mprintf("PRAGMA table_info=%Q", zTab);
  shell_check_oom(zSql);
  rc = sqlite3_prepare_v2(p->db, zSql, -1, &pStmt, 0);
  sqlite3_free(zSql);
  if( rc ) return 0;
  while( sqlite3_step(pStmt)==SQLITE_ROW ){
    if( nCol>=nAlloc-2 ){
      nAlloc = nAlloc*2 + nCol + 10;
      azCol = sqlite3_realloc(azCol, nAlloc*sizeof(azCol[0]));
      shell_check_oom(azCol);
    }
    azCol[++nCol] = sqlite3_mprintf("%s", sqlite3_column_text(pStmt, 1));
    shell_check_oom(azCol[nCol]);
    if( sqlite3_column_int(pStmt, 5) ){
      nPK++;
      if( nPK==1
       && sqlite3_stricmp((const char*)sqlite3_column_text(pStmt,2),
                          "INTEGER")==0
      ){
        isIPK = 1;
      }else{
        isIPK = 0;
      }
    }
  }
  sqlite3_finalize(pStmt);
  if( azCol==0 ) return 0;
  azCol[0] = 0;
  azCol[nCol+1] = 0;

  /* The decision of whether or not a rowid really needs to be preserved
  ** is tricky.  We never need to preserve a rowid for a WITHOUT ROWID table
  ** or a table with an INTEGER PRIMARY KEY.  We are unable to preserve
  ** rowids on tables where the rowid is inaccessible because there are other
  ** columns in the table named "rowid", "_rowid_", and "oid".
  */
  if( preserveRowid && isIPK ){
    /* If a single PRIMARY KEY column with type INTEGER was seen, then it
    ** might be an alias for the ROWID.  But it might also be a WITHOUT ROWID
    ** table or a INTEGER PRIMARY KEY DESC column, neither of which are
    ** ROWID aliases.  To distinguish these cases, check to see if
    ** there is a "pk" entry in "PRAGMA index_list".  There will be
    ** no "pk" index if the PRIMARY KEY really is an alias for the ROWID.
    */
    zSql = sqlite3_mprintf("SELECT 1 FROM pragma_index_list(%Q)"
                           " WHERE origin='pk'", zTab);
    shell_check_oom(zSql);
    rc = sqlite3_prepare_v2(p->db, zSql, -1, &pStmt, 0);
    sqlite3_free(zSql);
    if( rc ){
      freeColumnList(azCol);
      return 0;
    }
    rc = sqlite3_step(pStmt);
    sqlite3_finalize(pStmt);
    preserveRowid = rc==SQLITE_ROW;
  }
  if( preserveRowid ){
    /* Only preserve the rowid if we can find a name to use for the
    ** rowid */
    static char *azRowid[] = { "rowid", "_rowid_", "oid" };
    int i, j;
    for(j=0; j<3; j++){
      for(i=1; i<=nCol; i++){
        if( sqlite3_stricmp(azRowid[j],azCol[i])==0 ) break;
      }
      if( i>nCol ){
        /* At this point, we know that azRowid[j] is not the name of any
        ** ordinary column in the table.  Verify that azRowid[j] is a valid
        ** name for the rowid before adding it to azCol[0].  WITHOUT ROWID
        ** tables will fail this last check */
        rc = sqlite3_table_column_metadata(p->db,0,zTab,azRowid[j],0,0,0,0,0);
        if( rc==SQLITE_OK ) azCol[0] = azRowid[j];
        break;
      }
    }
  }
  return azCol;
}

/*
** Toggle the reverse_unordered_selects setting.
*/
static void toggleSelectOrder(sqlite3 *db){
  sqlite3_stmt *pStmt = 0;
  int iSetting = 0;
  char zStmt[100];
  sqlite3_prepare_v2(db, "PRAGMA reverse_unordered_selects", -1, &pStmt, 0);
  if( sqlite3_step(pStmt)==SQLITE_ROW ){
    iSetting = sqlite3_column_int(pStmt, 0);
  }
  sqlite3_finalize(pStmt);
  sqlite3_snprintf(sizeof(zStmt), zStmt,
       "PRAGMA reverse_unordered_selects(%d)", !iSetting);
  sqlite3_exec(db, zStmt, 0, 0, 0);
}

/*
** This is a different callback routine used for dumping the database.
** Each row received by this callback consists of a table name,
** the table type ("index" or "table") and SQL to create the table.
** This routine should print text sufficient to recreate the table.
*/
static int dump_callback(void *pArg, int nArg, char **azArg, char **azNotUsed){
  int rc;
  const char *zTable;
  const char *zType;
  const char *zSql;
  ShellState *p = (ShellState *)pArg;
  int dataOnly;
  int noSys;

  UNUSED_PARAMETER(azNotUsed);
  if( nArg!=3 || azArg==0 ) return 0;
  zTable = azArg[0];
  zType = azArg[1];
  zSql = azArg[2];
  if( zTable==0 ) return 0;
  if( zType==0 ) return 0;
  dataOnly = (p->shellFlgs & SHFLG_DumpDataOnly)!=0;
  noSys    = (p->shellFlgs & SHFLG_DumpNoSys)!=0;

  if( cli_strcmp(zTable, "sqlite_sequence")==0 && !noSys ){
    /* no-op */
  }else if( sqlite3_strglob("sqlite_stat?", zTable)==0 && !noSys ){
    if( !dataOnly ) sqlite3_fputs("ANALYZE sqlite_schema;\n", p->out);
  }else if( cli_strncmp(zTable, "sqlite_", 7)==0 ){
    return 0;
  }else if( dataOnly ){
    /* no-op */
  }else if( cli_strncmp(zSql, "CREATE VIRTUAL TABLE", 20)==0 ){
    char *zIns;
    if( !p->writableSchema ){
      sqlite3_fputs("PRAGMA writable_schema=ON;\n", p->out);
      p->writableSchema = 1;
    }
    zIns = sqlite3_mprintf(
       "INSERT INTO sqlite_schema(type,name,tbl_name,rootpage,sql)"
       "VALUES('table','%q','%q',0,'%q');",
       zTable, zTable, zSql);
    shell_check_oom(zIns);
    sqlite3_fprintf(p->out, "%s\n", zIns);
    sqlite3_free(zIns);
    return 0;
  }else{
    printSchemaLine(p->out, zSql, ";\n");
  }

  if( cli_strcmp(zType, "table")==0 ){
    ShellText sSelect;
    ShellText sTable;
    char **azCol;
    int i;
    char *savedDestTable;
    int savedMode;

    azCol = tableColumnList(p, zTable);
    if( azCol==0 ){
      p->nErr++;
      return 0;
    }

    /* Always quote the table name, even if it appears to be pure ascii,
    ** in case it is a keyword. Ex:  INSERT INTO "table" ... */
    initText(&sTable);
    appendText(&sTable, zTable, quoteChar(zTable));
    /* If preserving the rowid, add a column list after the table name.
    ** In other words:  "INSERT INTO tab(rowid,a,b,c,...) VALUES(...)"
    ** instead of the usual "INSERT INTO tab VALUES(...)".
    */
    if( azCol[0] ){
      appendText(&sTable, "(", 0);
      appendText(&sTable, azCol[0], 0);
      for(i=1; azCol[i]; i++){
        appendText(&sTable, ",", 0);
        appendText(&sTable, azCol[i], quoteChar(azCol[i]));
      }
      appendText(&sTable, ")", 0);
    }

    /* Build an appropriate SELECT statement */
    initText(&sSelect);
    appendText(&sSelect, "SELECT ", 0);
    if( azCol[0] ){
      appendText(&sSelect, azCol[0], 0);
      appendText(&sSelect, ",", 0);
    }
    for(i=1; azCol[i]; i++){
      appendText(&sSelect, azCol[i], quoteChar(azCol[i]));
      if( azCol[i+1] ){
        appendText(&sSelect, ",", 0);
      }
    }
    freeColumnList(azCol);
    appendText(&sSelect, " FROM ", 0);
    appendText(&sSelect, zTable, quoteChar(zTable));

    savedDestTable = p->zDestTable;
    savedMode = p->mode;
    p->zDestTable = sTable.z;
    p->mode = p->cMode = MODE_Insert;
    rc = shell_exec(p, sSelect.z, 0);
    if( (rc&0xff)==SQLITE_CORRUPT ){
      sqlite3_fputs("/****** CORRUPTION ERROR *******/\n", p->out);
      toggleSelectOrder(p->db);
      shell_exec(p, sSelect.z, 0);
      toggleSelectOrder(p->db);
    }
    p->zDestTable = savedDestTable;
    p->mode = savedMode;
    freeText(&sTable);
    freeText(&sSelect);
    if( rc ) p->nErr++;
  }
  return 0;
}

/*
** Run zQuery.  Use dump_callback() as the callback routine so that
** the contents of the query are output as SQL statements.
**
** If we get a SQLITE_CORRUPT error, rerun the query after appending
** "ORDER BY rowid DESC" to the end.
*/
static int run_schema_dump_query(
  ShellState *p,
  const char *zQuery
){
  int rc;
  char *zErr = 0;
  rc = sqlite3_exec(p->db, zQuery, dump_callback, p, &zErr);
  if( rc==SQLITE_CORRUPT ){
    char *zQ2;
    int len = strlen30(zQuery);
    sqlite3_fputs("/****** CORRUPTION ERROR *******/\n", p->out);
    if( zErr ){
      sqlite3_fprintf(p->out, "/****** %s ******/\n", zErr);
      sqlite3_free(zErr);
      zErr = 0;
    }
    zQ2 = malloc( len+100 );
    if( zQ2==0 ) return rc;
    sqlite3_snprintf(len+100, zQ2, "%s ORDER BY rowid DESC", zQuery);
    rc = sqlite3_exec(p->db, zQ2, dump_callback, p, &zErr);
    if( rc ){
      sqlite3_fprintf(p->out, "/****** ERROR: %s ******/\n", zErr);
    }else{
      rc = SQLITE_CORRUPT;
    }
    sqlite3_free(zErr);
    free(zQ2);
  }
  return rc;
}

/*
** Text of help messages.
**
** The help text for each individual command begins with a line that starts
** with ".".  Subsequent lines are supplemental information.
**
** There must be two or more spaces between the end of the command and the
** start of the description of what that command does.
*/
static const char *(azHelp[]) = {
#if defined(SQLITE_HAVE_ZLIB) && !defined(SQLITE_OMIT_VIRTUALTABLE) \
  && !defined(SQLITE_SHELL_FIDDLE)
  ".archive ...             Manage SQL archives",
  "   Each command must have exactly one of the following options:",
  "     -c, --create               Create a new archive",
  "     -u, --update               Add or update files with changed mtime",
  "     -i, --insert               Like -u but always add even if unchanged",
  "     -r, --remove               Remove files from archive",
  "     -t, --list                 List contents of archive",
  "     -x, --extract              Extract files from archive",
  "   Optional arguments:",
  "     -v, --verbose              Print each filename as it is processed",
  "     -f FILE, --file FILE       Use archive FILE (default is current db)",
  "     -a FILE, --append FILE     Open FILE using the apndvfs VFS",
  "     -C DIR, --directory DIR    Read/extract files from directory DIR",
  "     -g, --glob                 Use glob matching for names in archive",
  "     -n, --dryrun               Show the SQL that would have occurred",
  "   Examples:",
  "     .ar -cf ARCHIVE foo bar  # Create ARCHIVE from files foo and bar",
  "     .ar -tf ARCHIVE          # List members of ARCHIVE",
  "     .ar -xvf ARCHIVE         # Verbosely extract files from ARCHIVE",
  "   See also:",
  "      http://sqlite.org/cli.html#sqlite_archive_support",
#endif
#ifndef SQLITE_OMIT_AUTHORIZATION
  ".auth ON|OFF             Show authorizer callbacks",
#endif
#ifndef SQLITE_SHELL_FIDDLE
  ".backup ?DB? FILE        Backup DB (default \"main\") to FILE",
  "   Options:",
  "       --append            Use the appendvfs",
  "       --async             Write to FILE without journal and fsync()",
#endif
  ".bail on|off             Stop after hitting an error.  Default OFF",
#ifndef SQLITE_SHELL_FIDDLE
  ".cd DIRECTORY            Change the working directory to DIRECTORY",
#endif
  ".changes on|off          Show number of rows changed by SQL",
#ifndef SQLITE_SHELL_FIDDLE
  ".check GLOB              Fail if output since .testcase does not match",
  ".clone NEWDB             Clone data into NEWDB from the existing database",
#endif
  ".connection [close] [#]  Open or close an auxiliary database connection",
  ".crlf ?on|off?           Whether or not to use \\r\\n line endings",
  ".databases               List names and files of attached databases",
  ".dbconfig ?op? ?val?     List or change sqlite3_db_config() options",
#if SQLITE_SHELL_HAVE_RECOVER
  ".dbinfo ?DB?             Show status information about the database",
#endif
  ".dump ?OBJECTS?          Render database content as SQL",
  "   Options:",
  "     --data-only            Output only INSERT statements",
  "     --newlines             Allow unescaped newline characters in output",
  "     --nosys                Omit system tables (ex: \"sqlite_stat1\")",
  "     --preserve-rowids      Include ROWID values in the output",
  "   OBJECTS is a LIKE pattern for tables, indexes, triggers or views to dump",
  "   Additional LIKE patterns can be given in subsequent arguments",
  ".echo on|off             Turn command echo on or off",
  ".eqp on|off|full|...     Enable or disable automatic EXPLAIN QUERY PLAN",
  "   Other Modes:",
#ifdef SQLITE_DEBUG
  "      test                  Show raw EXPLAIN QUERY PLAN output",
  "      trace                 Like \"full\" but enable \"PRAGMA vdbe_trace\"",
#endif
  "      trigger               Like \"full\" but also show trigger bytecode",
#ifndef SQLITE_SHELL_FIDDLE
  ".excel                   Display the output of next command in spreadsheet",
  "   --bom                   Put a UTF8 byte-order mark on intermediate file",
#endif
#ifndef SQLITE_SHELL_FIDDLE
  ".exit ?CODE?             Exit this program with return-code CODE",
#endif
  ".expert                  EXPERIMENTAL. Suggest indexes for queries",
  ".explain ?on|off|auto?   Change the EXPLAIN formatting mode.  Default: auto",
  ".filectrl CMD ...        Run various sqlite3_file_control() operations",
  "   --schema SCHEMA         Use SCHEMA instead of \"main\"",
  "   --help                  Show CMD details",
  ".fullschema ?--indent?   Show schema and the content of sqlite_stat tables",
  ".headers on|off          Turn display of headers on or off",
  ".help ?-all? ?PATTERN?   Show help text for PATTERN",
#ifndef SQLITE_SHELL_FIDDLE
  ".import FILE TABLE       Import data from FILE into TABLE",
  "   Options:",
  "     --ascii               Use \\037 and \\036 as column and row separators",
  "     --csv                 Use , and \\n as column and row separators",
  "     --skip N              Skip the first N rows of input",
  "     --schema S            Target table to be S.TABLE",
  "     -v                    \"Verbose\" - increase auxiliary output",
  "   Notes:",
  "     *  If TABLE does not exist, it is created.  The first row of input",
  "        determines the column names.",
  "     *  If neither --csv or --ascii are used, the input mode is derived",
  "        from the \".mode\" output mode",
  "     *  If FILE begins with \"|\" then it is a command that generates the",
  "        input text.",
#endif
#ifndef SQLITE_OMIT_TEST_CONTROL
  ",imposter INDEX TABLE    Create imposter table TABLE on index INDEX",
#endif
  ".indexes ?TABLE?         Show names of indexes",
  "                           If TABLE is specified, only show indexes for",
  "                           tables matching TABLE using the LIKE operator.",
  ".intck ?STEPS_PER_UNLOCK?  Run an incremental integrity check on the db",
#ifdef SQLITE_ENABLE_IOTRACE
  ",iotrace FILE            Enable I/O diagnostic logging to FILE",
#endif
  ".limit ?LIMIT? ?VAL?     Display or change the value of an SQLITE_LIMIT",
  ".lint OPTIONS            Report potential schema issues.",
  "     Options:",
  "        fkey-indexes     Find missing foreign key indexes",
#if !defined(SQLITE_OMIT_LOAD_EXTENSION) && !defined(SQLITE_SHELL_FIDDLE)
  ".load FILE ?ENTRY?       Load an extension library",
#endif
#if !defined(SQLITE_SHELL_FIDDLE)
  ".log FILE|on|off         Turn logging on or off.  FILE can be stderr/stdout",
#else
  ".log on|off              Turn logging on or off.",
#endif
  ".mode MODE ?OPTIONS?     Set output mode",
  "   MODE is one of:",
  "     ascii       Columns/rows delimited by 0x1F and 0x1E",
  "     box         Tables using unicode box-drawing characters",
  "     csv         Comma-separated values",
  "     column      Output in columns.  (See .width)",
  "     html        HTML  code",
  "     insert      SQL insert statements for TABLE",
  "     json        Results in a JSON array",
  "     line        One value per line",
  "     list        Values delimited by \"|\"",
  "     markdown    Markdown table format",
  "     qbox        Shorthand for \"box --wrap 60 --quote\"",
  "     quote       Escape answers as for SQL",
  "     table       ASCII-art table",
  "     tabs        Tab-separated values",
  "     tcl         TCL list elements",
  "   OPTIONS: (for columnar modes or insert mode):",
  "     --wrap N       Wrap output lines to no longer than N characters",
  "     --wordwrap B   Wrap or not at word boundaries per B (on/off)",
  "     --ww           Shorthand for \"--wordwrap 1\"",
  "     --quote        Quote output text as SQL literals",
  "     --noquote      Do not quote output text",
  "     TABLE          The name of SQL table used for \"insert\" mode",
#ifndef SQLITE_SHELL_FIDDLE
  ".nonce STRING            Suspend safe mode for one command if nonce matches",
#endif
  ".nullvalue STRING        Use STRING in place of NULL values",
#ifndef SQLITE_SHELL_FIDDLE
  ".once ?OPTIONS? ?FILE?   Output for the next SQL command only to FILE",
  "     If FILE begins with '|' then open as a pipe",
  "       --bom    Put a UTF8 byte-order mark at the beginning",
  "       -e       Send output to the system text editor",
  "       --plain  Use text/plain output instead of HTML for -w option",
  "       -w       Send output as HTML to a web browser (same as \".www\")",
  "       -x       Send output as CSV to a spreadsheet (same as \".excel\")",
  /* Note that .open is (partially) available in WASM builds but is
  ** currently only intended to be used by the fiddle tool, not
  ** end users, so is "undocumented." */
  ".open ?OPTIONS? ?FILE?   Close existing database and reopen FILE",
  "     Options:",
  "        --append        Use appendvfs to append database to the end of FILE",
#endif
#ifndef SQLITE_OMIT_DESERIALIZE
  "        --deserialize   Load into memory using sqlite3_deserialize()",
  "        --hexdb         Load the output of \"dbtotxt\" as an in-memory db",
  "        --maxsize N     Maximum size for --hexdb or --deserialized database",
#endif
  "        --new           Initialize FILE to an empty database",
  "        --nofollow      Do not follow symbolic links",
  "        --readonly      Open FILE readonly",
  "        --zip           FILE is a ZIP archive",
#ifndef SQLITE_SHELL_FIDDLE
  ".output ?FILE?           Send output to FILE or stdout if FILE is omitted",
  "   If FILE begins with '|' then open it as a pipe.",
  "   Options:",
  "     --bom                 Prefix output with a UTF8 byte-order mark",
  "     -e                    Send output to the system text editor",
  "     --plain               Use text/plain for -w option",
  "     -w                    Send output to a web browser",
  "     -x                    Send output as CSV to a spreadsheet",
#endif
  ".parameter CMD ...       Manage SQL parameter bindings",
  "   clear                   Erase all bindings",
  "   init                    Initialize the TEMP table that holds bindings",
  "   list                    List the current parameter bindings",
  "   set PARAMETER VALUE     Given SQL parameter PARAMETER a value of VALUE",
  "                           PARAMETER should start with one of: $ : @ ?",
  "   unset PARAMETER         Remove PARAMETER from the binding table",
  ".print STRING...         Print literal STRING",
#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
  ".progress N              Invoke progress handler after every N opcodes",
  "   --limit N                 Interrupt after N progress callbacks",
  "   --once                    Do no more than one progress interrupt",
  "   --quiet|-q                No output except at interrupts",
  "   --reset                   Reset the count for each input and interrupt",
#endif
  ".prompt MAIN CONTINUE    Replace the standard prompts",
#ifndef SQLITE_SHELL_FIDDLE
  ".quit                    Stop interpreting input stream, exit if primary.",
  ".read FILE               Read input from FILE or command output",
  "    If FILE begins with \"|\", it is a command that generates the input.",
#endif
#if SQLITE_SHELL_HAVE_RECOVER
  ".recover                 Recover as much data as possible from corrupt db.",
  "   --ignore-freelist        Ignore pages that appear to be on db freelist",
  "   --lost-and-found TABLE   Alternative name for the lost-and-found table",
  "   --no-rowids              Do not attempt to recover rowid values",
  "                            that are not also INTEGER PRIMARY KEYs",
#endif
#ifndef SQLITE_SHELL_FIDDLE
  ".restore ?DB? FILE       Restore content of DB (default \"main\") from FILE",
  ".save ?OPTIONS? FILE     Write database to FILE (an alias for .backup ...)",
#endif
  ".scanstats on|off|est    Turn sqlite3_stmt_scanstatus() metrics on or off",
  ".schema ?PATTERN?        Show the CREATE statements matching PATTERN",
  "   Options:",
  "      --indent             Try to pretty-print the schema",
  "      --nosys              Omit objects whose names start with \"sqlite_\"",
  ",selftest ?OPTIONS?      Run tests defined in the SELFTEST table",
  "    Options:",
  "       --init               Create a new SELFTEST table",
  "       -v                   Verbose output",
  ".separator COL ?ROW?     Change the column and row separators",
#if defined(SQLITE_ENABLE_SESSION)
  ".session ?NAME? CMD ...  Create or control sessions",
  "   Subcommands:",
  "     attach TABLE             Attach TABLE",
  "     changeset FILE           Write a changeset into FILE",
  "     close                    Close one session",
  "     enable ?BOOLEAN?         Set or query the enable bit",
  "     filter GLOB...           Reject tables matching GLOBs",
  "     indirect ?BOOLEAN?       Mark or query the indirect status",
  "     isempty                  Query whether the session is empty",
  "     list                     List currently open session names",
  "     open DB NAME             Open a new session on DB",
  "     patchset FILE            Write a patchset into FILE",
  "   If ?NAME? is omitted, the first defined session is used.",
#endif
  ".sha3sum ...             Compute a SHA3 hash of database content",
  "    Options:",
  "      --schema              Also hash the sqlite_schema table",
  "      --sha3-224            Use the sha3-224 algorithm",
  "      --sha3-256            Use the sha3-256 algorithm (default)",
  "      --sha3-384            Use the sha3-384 algorithm",
  "      --sha3-512            Use the sha3-512 algorithm",
  "    Any other argument is a LIKE pattern for tables to hash",
#if !defined(SQLITE_NOHAVE_SYSTEM) && !defined(SQLITE_SHELL_FIDDLE)
  ".shell CMD ARGS...       Run CMD ARGS... in a system shell",
#endif
  ".show                    Show the current values for various settings",
  ".stats ?ARG?             Show stats or turn stats on or off",
  "   off                      Turn off automatic stat display",
  "   on                       Turn on automatic stat display",
  "   stmt                     Show statement stats",
  "   vmstep                   Show the virtual machine step count only",
#if !defined(SQLITE_NOHAVE_SYSTEM) && !defined(SQLITE_SHELL_FIDDLE)
  ".system CMD ARGS...      Run CMD ARGS... in a system shell",
#endif
  ".tables ?TABLE?          List names of tables matching LIKE pattern TABLE",
#ifndef SQLITE_SHELL_FIDDLE
  ",testcase NAME           Begin redirecting output to 'testcase-out.txt'",
#endif
  ",testctrl CMD ...        Run various sqlite3_test_control() operations",
  "                           Run \".testctrl\" with no arguments for details",
  ".timeout MS              Try opening locked tables for MS milliseconds",
  ".timer on|off            Turn SQL timer on or off",
#ifndef SQLITE_OMIT_TRACE
  ".trace ?OPTIONS?         Output each SQL statement as it is run",
  "    FILE                    Send output to FILE",
  "    stdout                  Send output to stdout",
  "    stderr                  Send output to stderr",
  "    off                     Disable tracing",
  "    --expanded              Expand query parameters",
#ifdef SQLITE_ENABLE_NORMALIZE
  "    --normalized            Normal the SQL statements",
#endif
  "    --plain                 Show SQL as it is input",
  "    --stmt                  Trace statement execution (SQLITE_TRACE_STMT)",
  "    --profile               Profile statements (SQLITE_TRACE_PROFILE)",
  "    --row                   Trace each row (SQLITE_TRACE_ROW)",
  "    --close                 Trace connection close (SQLITE_TRACE_CLOSE)",
#endif /* SQLITE_OMIT_TRACE */
#ifdef SQLITE_DEBUG
  ".unmodule NAME ...       Unregister virtual table modules",
  "    --allexcept             Unregister everything except those named",
#endif
  ".version                 Show source, library and compiler versions",
  ".vfsinfo ?AUX?           Information about the top-level VFS",
  ".vfslist                 List all available VFSes",
  ".vfsname ?AUX?           Print the name of the VFS stack",
  ".width NUM1 NUM2 ...     Set minimum column widths for columnar output",
  "     Negative values right-justify",
#ifndef SQLITE_SHELL_FIDDLE
  ".www                     Display output of the next command in web browser",
  "    --plain                 Show results as text/plain, not as HTML",
#endif
};

/*
** Output help text.
**
** zPattern describes the set of commands for which help text is provided.
** If zPattern is NULL, then show all commands, but only give a one-line
** description of each.
**
** Return the number of matches.
*/
static int showHelp(FILE *out, const char *zPattern){
  int i = 0;
  int j = 0;
  int n = 0;
  char *zPat;
  if( zPattern==0
   || zPattern[0]=='0'
   || cli_strcmp(zPattern,"-a")==0
   || cli_strcmp(zPattern,"-all")==0
   || cli_strcmp(zPattern,"--all")==0
  ){
    enum HelpWanted { HW_NoCull = 0, HW_SummaryOnly = 1, HW_Undoc = 2 };
    enum HelpHave { HH_Undoc = 2, HH_Summary = 1, HH_More = 0 };
    /* Show all or most commands
    ** *zPattern==0   => summary of documented commands only
    ** *zPattern=='0' => whole help for undocumented commands
    ** Otherwise      => whole help for documented commands
    */
    enum HelpWanted hw = HW_SummaryOnly;
    enum HelpHave hh = HH_More;
    if( zPattern!=0 ){
      hw = (*zPattern=='0')? HW_NoCull|HW_Undoc : HW_NoCull;
    }
    for(i=0; ip);
  sqlite3_free(pSession->zName);
  for(i=0; inFilter; i++){
    sqlite3_free(pSession->azFilter[i]);
  }
  sqlite3_free(pSession->azFilter);
  memset(pSession, 0, sizeof(OpenSession));
}
#endif

/*
** Close all OpenSession objects and release all associated resources.
*/
#if defined(SQLITE_ENABLE_SESSION)
static void session_close_all(ShellState *p, int i){
  int j;
  struct AuxDb *pAuxDb = i<0 ? p->pAuxDb : &p->aAuxDb[i];
  for(j=0; jnSession; j++){
    session_close(&pAuxDb->aSession[j]);
  }
  pAuxDb->nSession = 0;
}
#else
# define session_close_all(X,Y)
#endif

/*
** Implementation of the xFilter function for an open session.  Omit
** any tables named by ".session filter" but let all other table through.
*/
#if defined(SQLITE_ENABLE_SESSION)
static int session_filter(void *pCtx, const char *zTab){
  OpenSession *pSession = (OpenSession*)pCtx;
  int i;
  for(i=0; inFilter; i++){
    if( sqlite3_strglob(pSession->azFilter[i], zTab)==0 ) return 0;
  }
  return 1;
}
#endif

/*
** Try to deduce the type of file for zName based on its content.  Return
** one of the SHELL_OPEN_* constants.
**
** If the file does not exist or is empty but its name looks like a ZIP
** archive and the dfltZip flag is true, then assume it is a ZIP archive.
** Otherwise, assume an ordinary database regardless of the filename if
** the type cannot be determined from content.
*/
int deduceDatabaseType(const char *zName, int dfltZip){
  FILE *f = sqlite3_fopen(zName, "rb");
  size_t n;
  int rc = SHELL_OPEN_UNSPEC;
  char zBuf[100];
  if( f==0 ){
    if( dfltZip && sqlite3_strlike("%.zip",zName,0)==0 ){
       return SHELL_OPEN_ZIPFILE;
    }else{
       return SHELL_OPEN_NORMAL;
    }
  }
  n = fread(zBuf, 16, 1, f);
  if( n==1 && memcmp(zBuf, "SQLite format 3", 16)==0 ){
    fclose(f);
    return SHELL_OPEN_NORMAL;
  }
  fseek(f, -25, SEEK_END);
  n = fread(zBuf, 25, 1, f);
  if( n==1 && memcmp(zBuf, "Start-Of-SQLite3-", 17)==0 ){
    rc = SHELL_OPEN_APPENDVFS;
  }else{
    fseek(f, -22, SEEK_END);
    n = fread(zBuf, 22, 1, f);
    if( n==1 && zBuf[0]==0x50 && zBuf[1]==0x4b && zBuf[2]==0x05
       && zBuf[3]==0x06 ){
      rc = SHELL_OPEN_ZIPFILE;
    }else if( n==0 && dfltZip && sqlite3_strlike("%.zip",zName,0)==0 ){
      rc = SHELL_OPEN_ZIPFILE;
    }
  }
  fclose(f);
  return rc;
}

#ifndef SQLITE_OMIT_DESERIALIZE
/*
** Reconstruct an in-memory database using the output from the "dbtotxt"
** program.  Read content from the file in p->aAuxDb[].zDbFilename.
** If p->aAuxDb[].zDbFilename is 0, then read from standard input.
*/
static unsigned char *readHexDb(ShellState *p, int *pnData){
  unsigned char *a = 0;
  int nLine;
  int n = 0;
  int pgsz = 0;
  int iOffset = 0;
  int j, k;
  int rc;
  FILE *in;
  const char *zDbFilename = p->pAuxDb->zDbFilename;
  unsigned int x[16];
  char zLine[1000];
  if( zDbFilename ){
    in = sqlite3_fopen(zDbFilename, "r");
    if( in==0 ){
      sqlite3_fprintf(stderr,"cannot open \"%s\" for reading\n", zDbFilename);
      return 0;
    }
    nLine = 0;
  }else{
    in = p->in;
    nLine = p->lineno;
    if( in==0 ) in = stdin;
  }
  *pnData = 0;
  nLine++;
  if( sqlite3_fgets(zLine, sizeof(zLine), in)==0 ) goto readHexDb_error;
  rc = sscanf(zLine, "| size %d pagesize %d", &n, &pgsz);
  if( rc!=2 ) goto readHexDb_error;
  if( n<0 ) goto readHexDb_error;
  if( pgsz<512 || pgsz>65536 || (pgsz&(pgsz-1))!=0 ) goto readHexDb_error;
  n = (n+pgsz-1)&~(pgsz-1);  /* Round n up to the next multiple of pgsz */
  a = sqlite3_malloc( n ? n : 1 );
  shell_check_oom(a);
  memset(a, 0, n);
  if( pgsz<512 || pgsz>65536 || (pgsz & (pgsz-1))!=0 ){
    sqlite3_fputs("invalid pagesize\n", stderr);
    goto readHexDb_error;
  }
  for(nLine++; sqlite3_fgets(zLine, sizeof(zLine), in)!=0; nLine++){
    rc = sscanf(zLine, "| page %d offset %d", &j, &k);
    if( rc==2 ){
      iOffset = k;
      continue;
    }
    if( cli_strncmp(zLine, "| end ", 6)==0 ){
      break;
    }
    rc = sscanf(zLine,"| %d: %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x",
                &j, &x[0], &x[1], &x[2], &x[3], &x[4], &x[5], &x[6], &x[7],
                &x[8], &x[9], &x[10], &x[11], &x[12], &x[13], &x[14], &x[15]);
    if( rc==17 ){
      k = iOffset+j;
      if( k+16<=n && k>=0 ){
        int ii;
        for(ii=0; ii<16; ii++) a[k+ii] = x[ii]&0xff;
      }
    }
  }
  *pnData = n;
  if( in!=p->in ){
    fclose(in);
  }else{
    p->lineno = nLine;
  }
  return a;

readHexDb_error:
  if( in!=p->in ){
    fclose(in);
  }else{
    while( sqlite3_fgets(zLine, sizeof(zLine), p->in)!=0 ){
      nLine++;
      if(cli_strncmp(zLine, "| end ", 6)==0 ) break;
    }
    p->lineno = nLine;
  }
  sqlite3_free(a);
  sqlite3_fprintf(stderr,"Error on line %d of --hexdb input\n", nLine);
  return 0;
}
#endif /* SQLITE_OMIT_DESERIALIZE */

/*
** Scalar function "usleep(X)" invokes sqlite3_sleep(X) and returns X.
*/
static void shellUSleepFunc(
  sqlite3_context *context,
  int argcUnused,
  sqlite3_value **argv
){
  int sleep = sqlite3_value_int(argv[0]);
  (void)argcUnused;
  sqlite3_sleep(sleep/1000);
  sqlite3_result_int(context, sleep);
}

/* Flags for open_db().
**
** The default behavior of open_db() is to exit(1) if the database fails to
** open.  The OPEN_DB_KEEPALIVE flag changes that so that it prints an error
** but still returns without calling exit.
**
** The OPEN_DB_ZIPFILE flag causes open_db() to prefer to open files as a
** ZIP archive if the file does not exist or is empty and its name matches
** the *.zip pattern.
*/
#define OPEN_DB_KEEPALIVE   0x001   /* Return after error if true */
#define OPEN_DB_ZIPFILE     0x002   /* Open as ZIP if name matches *.zip */

/*
** Make sure the database is open.  If it is not, then open it.  If
** the database fails to open, print an error message and exit.
*/
static void open_db(ShellState *p, int openFlags){
  if( p->db==0 ){
    const char *zDbFilename = p->pAuxDb->zDbFilename;
    if( p->openMode==SHELL_OPEN_UNSPEC ){
      if( zDbFilename==0 || zDbFilename[0]==0 ){
        p->openMode = SHELL_OPEN_NORMAL;
      }else{
        p->openMode = (u8)deduceDatabaseType(zDbFilename,
                             (openFlags & OPEN_DB_ZIPFILE)!=0);
      }
    }
    switch( p->openMode ){
      case SHELL_OPEN_APPENDVFS: {
        sqlite3_open_v2(zDbFilename, &p->db,
           SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|p->openFlags, "apndvfs");
        break;
      }
      case SHELL_OPEN_HEXDB:
      case SHELL_OPEN_DESERIALIZE: {
        sqlite3_open(0, &p->db);
        break;
      }
      case SHELL_OPEN_ZIPFILE: {
        sqlite3_open(":memory:", &p->db);
        break;
      }
      case SHELL_OPEN_READONLY: {
        sqlite3_open_v2(zDbFilename, &p->db,
            SQLITE_OPEN_READONLY|p->openFlags, 0);
        break;
      }
      case SHELL_OPEN_UNSPEC:
      case SHELL_OPEN_NORMAL: {
        sqlite3_open_v2(zDbFilename, &p->db,
           SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|p->openFlags, 0);
        break;
      }
    }
    if( p->db==0 || SQLITE_OK!=sqlite3_errcode(p->db) ){
      sqlite3_fprintf(stderr,"Error: unable to open database \"%s\": %s\n",
            zDbFilename, sqlite3_errmsg(p->db));
      if( (openFlags & OPEN_DB_KEEPALIVE)==0 ){
        exit(1);
      }
      sqlite3_close(p->db);
      sqlite3_open(":memory:", &p->db);
      if( p->db==0 || SQLITE_OK!=sqlite3_errcode(p->db) ){
        sqlite3_fputs("Also: unable to open substitute in-memory database.\n",
                      stderr);
        exit(1);
      }else{
        sqlite3_fprintf(stderr,
              "Notice: using substitute in-memory database instead of \"%s\"\n",
              zDbFilename);
      }
    }
    globalDb = p->db;
    sqlite3_db_config(p->db, SQLITE_DBCONFIG_STMT_SCANSTATUS, (int)0, (int*)0);

    /* Reflect the use or absence of --unsafe-testing invocation. */
    {
      int testmode_on = ShellHasFlag(p,SHFLG_TestingMode);
      sqlite3_db_config(p->db, SQLITE_DBCONFIG_TRUSTED_SCHEMA, testmode_on,0);
      sqlite3_db_config(p->db, SQLITE_DBCONFIG_DEFENSIVE, !testmode_on,0);
    }

#ifndef SQLITE_OMIT_LOAD_EXTENSION
    sqlite3_enable_load_extension(p->db, 1);
#endif
    sqlite3_sha_init(p->db, 0, 0);
    sqlite3_shathree_init(p->db, 0, 0);
    sqlite3_uint_init(p->db, 0, 0);
    sqlite3_stmtrand_init(p->db, 0, 0);
    sqlite3_decimal_init(p->db, 0, 0);
    sqlite3_percentile_init(p->db, 0, 0);
    sqlite3_base64_init(p->db, 0, 0);
    sqlite3_base85_init(p->db, 0, 0);
    sqlite3_regexp_init(p->db, 0, 0);
    sqlite3_ieee_init(p->db, 0, 0);
    sqlite3_series_init(p->db, 0, 0);
#ifndef SQLITE_SHELL_FIDDLE
    sqlite3_fileio_init(p->db, 0, 0);
    sqlite3_completion_init(p->db, 0, 0);
#endif
#ifdef SQLITE_HAVE_ZLIB
    if( !p->bSafeModePersist ){
      sqlite3_zipfile_init(p->db, 0, 0);
      sqlite3_sqlar_init(p->db, 0, 0);
    }
#endif
#ifdef SQLITE_SHELL_EXTFUNCS
    /* Create a preprocessing mechanism for extensions to make
     * their own provisions for being built into the shell.
     * This is a short-span macro. See further below for usage.
     */
#define SHELL_SUB_MACRO(base, variant) base ## _ ## variant
#define SHELL_SUBMACRO(base, variant) SHELL_SUB_MACRO(base, variant)
    /* Let custom-included extensions get their ..._init() called.
     * The WHATEVER_INIT( db, pzErrorMsg, pApi ) macro should cause
     * the extension's sqlite3_*_init( db, pzErrorMsg, pApi )
     * initialization routine to be called.
     */
    {
      int irc = SHELL_SUBMACRO(SQLITE_SHELL_EXTFUNCS, INIT)(p->db);
    /* Let custom-included extensions expose their functionality.
     * The WHATEVER_EXPOSE( db, pzErrorMsg ) macro should cause
     * the SQL functions, virtual tables, collating sequences or
     * VFS's implemented by the extension to be registered.
     */
      if( irc==SQLITE_OK
          || irc==SQLITE_OK_LOAD_PERMANENTLY ){
        SHELL_SUBMACRO(SQLITE_SHELL_EXTFUNCS, EXPOSE)(p->db, 0);
      }
#undef SHELL_SUB_MACRO
#undef SHELL_SUBMACRO
    }
#endif

    sqlite3_create_function(p->db, "strtod", 1, SQLITE_UTF8, 0,
                            shellStrtod, 0, 0);
    sqlite3_create_function(p->db, "dtostr", 1, SQLITE_UTF8, 0,
                            shellDtostr, 0, 0);
    sqlite3_create_function(p->db, "dtostr", 2, SQLITE_UTF8, 0,
                            shellDtostr, 0, 0);
    sqlite3_create_function(p->db, "shell_add_schema", 3, SQLITE_UTF8, 0,
                            shellAddSchemaName, 0, 0);
    sqlite3_create_function(p->db, "shell_module_schema", 1, SQLITE_UTF8, 0,
                            shellModuleSchema, 0, 0);
    sqlite3_create_function(p->db, "shell_putsnl", 1, SQLITE_UTF8, p,
                            shellPutsFunc, 0, 0);
    sqlite3_create_function(p->db, "usleep",1,SQLITE_UTF8,0,
                            shellUSleepFunc, 0, 0);
#ifndef SQLITE_NOHAVE_SYSTEM
    sqlite3_create_function(p->db, "edit", 1, SQLITE_UTF8, 0,
                            editFunc, 0, 0);
    sqlite3_create_function(p->db, "edit", 2, SQLITE_UTF8, 0,
                            editFunc, 0, 0);
#endif

    if( p->openMode==SHELL_OPEN_ZIPFILE ){
      char *zSql = sqlite3_mprintf(
         "CREATE VIRTUAL TABLE zip USING zipfile(%Q);", zDbFilename);
      shell_check_oom(zSql);
      sqlite3_exec(p->db, zSql, 0, 0, 0);
      sqlite3_free(zSql);
    }
#ifndef SQLITE_OMIT_DESERIALIZE
    else
    if( p->openMode==SHELL_OPEN_DESERIALIZE || p->openMode==SHELL_OPEN_HEXDB ){
      int rc;
      int nData = 0;
      unsigned char *aData;
      if( p->openMode==SHELL_OPEN_DESERIALIZE ){
        aData = (unsigned char*)readFile(zDbFilename, &nData);
      }else{
        aData = readHexDb(p, &nData);
      }
      if( aData==0 ){
        return;
      }
      rc = sqlite3_deserialize(p->db, "main", aData, nData, nData,
                   SQLITE_DESERIALIZE_RESIZEABLE |
                   SQLITE_DESERIALIZE_FREEONCLOSE);
      if( rc ){
        sqlite3_fprintf(stderr,"Error: sqlite3_deserialize() returns %d\n", rc);
      }
      if( p->szMax>0 ){
        sqlite3_file_control(p->db, "main", SQLITE_FCNTL_SIZE_LIMIT, &p->szMax);
      }
    }
#endif
  }
  if( p->db!=0 ){
    if( p->bSafeModePersist ){
      sqlite3_set_authorizer(p->db, safeModeAuth, p);
    }
    sqlite3_db_config(
        p->db, SQLITE_DBCONFIG_STMT_SCANSTATUS, p->scanstatsOn, (int*)0
    );
  }
}

/*
** Attempt to close the database connection.  Report errors.
*/
void close_db(sqlite3 *db){
  int rc = sqlite3_close(db);
  if( rc ){
    sqlite3_fprintf(stderr,
        "Error: sqlite3_close() returns %d: %s\n", rc, sqlite3_errmsg(db));
  }
}

#if HAVE_READLINE || HAVE_EDITLINE
/*
** Readline completion callbacks
*/
static char *readline_completion_generator(const char *text, int state){
  static sqlite3_stmt *pStmt = 0;
  char *zRet;
  if( state==0 ){
    char *zSql;
    sqlite3_finalize(pStmt);
    zSql = sqlite3_mprintf("SELECT DISTINCT candidate COLLATE nocase"
                           "  FROM completion(%Q) ORDER BY 1", text);
    shell_check_oom(zSql);
    sqlite3_prepare_v2(globalDb, zSql, -1, &pStmt, 0);
    sqlite3_free(zSql);
  }
  if( sqlite3_step(pStmt)==SQLITE_ROW ){
    const char *z = (const char*)sqlite3_column_text(pStmt,0);
    zRet = z ? strdup(z) : 0;
  }else{
    sqlite3_finalize(pStmt);
    pStmt = 0;
    zRet = 0;
  }
  return zRet;
}
static char **readline_completion(const char *zText, int iStart, int iEnd){
  (void)iStart;
  (void)iEnd;
  rl_attempted_completion_over = 1;
  return rl_completion_matches(zText, readline_completion_generator);
}

#elif HAVE_LINENOISE
/*
** Linenoise completion callback. Note that the 3rd argument is from
** the "msteveb" version of linenoise, not the "antirez" version.
*/
static void linenoise_completion(const char *zLine, linenoiseCompletions *lc,
                                 void *pUserData){
  i64 nLine = strlen(zLine);
  i64 i, iStart;
  sqlite3_stmt *pStmt = 0;
  char *zSql;
  char zBuf[1000];

  UNUSED_PARAMETER(pUserData);
  if( nLine>(i64)sizeof(zBuf)-30 ) return;
  if( zLine[0]=='.' || zLine[0]=='#') return;
  for(i=nLine-1; i>=0 && (isalnum(zLine[i]) || zLine[i]=='_'); i--){}
  if( i==nLine-1 ) return;
  iStart = i+1;
  memcpy(zBuf, zLine, iStart);
  zSql = sqlite3_mprintf("SELECT DISTINCT candidate COLLATE nocase"
                         "  FROM completion(%Q,%Q) ORDER BY 1",
                         &zLine[iStart], zLine);
  shell_check_oom(zSql);
  sqlite3_prepare_v2(globalDb, zSql, -1, &pStmt, 0);
  sqlite3_free(zSql);
  sqlite3_exec(globalDb, "PRAGMA page_count", 0, 0, 0); /* Load the schema */
  while( sqlite3_step(pStmt)==SQLITE_ROW ){
    const char *zCompletion = (const char*)sqlite3_column_text(pStmt, 0);
    int nCompletion = sqlite3_column_bytes(pStmt, 0);
    if( iStart+nCompletion < (i64)sizeof(zBuf)-1 && zCompletion ){
      memcpy(zBuf+iStart, zCompletion, nCompletion+1);
      linenoiseAddCompletion(lc, zBuf);
    }
  }
  sqlite3_finalize(pStmt);
}
#endif

/*
** Do C-language style dequoting.
**
**    \a    -> alarm
**    \b    -> backspace
**    \t    -> tab
**    \n    -> newline
**    \v    -> vertical tab
**    \f    -> form feed
**    \r    -> carriage return
**    \s    -> space
**    \"    -> "
**    \'    -> '
**    \\    -> backslash
**    \NNN  -> ascii character NNN in octal
**    \xHH  -> ascii character HH in hexadecimal
*/
static void resolve_backslashes(char *z){
  int i, j;
  char c;
  while( *z && *z!='\\' ) z++;
  for(i=j=0; (c = z[i])!=0; i++, j++){
    if( c=='\\' && z[i+1]!=0 ){
      c = z[++i];
      if( c=='a' ){
        c = '\a';
      }else if( c=='b' ){
        c = '\b';
      }else if( c=='t' ){
        c = '\t';
      }else if( c=='n' ){
        c = '\n';
      }else if( c=='v' ){
        c = '\v';
      }else if( c=='f' ){
        c = '\f';
      }else if( c=='r' ){
        c = '\r';
      }else if( c=='"' ){
        c = '"';
      }else if( c=='\'' ){
        c = '\'';
      }else if( c=='\\' ){
        c = '\\';
      }else if( c=='x' ){
        int nhd = 0, hdv;
        u8 hv = 0;
        while( nhd<2 && (c=z[i+1+nhd])!=0 && (hdv=hexDigitValue(c))>=0 ){
          hv = (u8)((hv<<4)|hdv);
          ++nhd;
        }
        i += nhd;
        c = (u8)hv;
      }else if( c>='0' && c<='7' ){
        c -= '0';
        if( z[i+1]>='0' && z[i+1]<='7' ){
          i++;
          c = (c<<3) + z[i] - '0';
          if( z[i+1]>='0' && z[i+1]<='7' ){
            i++;
            c = (c<<3) + z[i] - '0';
          }
        }
      }
    }
    z[j] = c;
  }
  if( j=0; i++){}
  }else{
    for(i=0; zArg[i]>='0' && zArg[i]<='9'; i++){}
  }
  if( i>0 && zArg[i]==0 ) return (int)(integerValue(zArg) & 0xffffffff);
  if( sqlite3_stricmp(zArg, "on")==0 || sqlite3_stricmp(zArg,"yes")==0 ){
    return 1;
  }
  if( sqlite3_stricmp(zArg, "off")==0 || sqlite3_stricmp(zArg,"no")==0 ){
    return 0;
  }
  sqlite3_fprintf(stderr,
       "ERROR: Not a boolean value: \"%s\". Assuming \"no\".\n", zArg);
  return 0;
}

/*
** Set or clear a shell flag according to a boolean value.
*/
static void setOrClearFlag(ShellState *p, unsigned mFlag, const char *zArg){
  if( booleanValue(zArg) ){
    ShellSetFlag(p, mFlag);
  }else{
    ShellClearFlag(p, mFlag);
  }
}

/*
** Close an output file, assuming it is not stderr or stdout
*/
static void output_file_close(FILE *f){
  if( f && f!=stdout && f!=stderr ) fclose(f);
}

/*
** Try to open an output file.   The names "stdout" and "stderr" are
** recognized and do the right thing.  NULL is returned if the output
** filename is "off".
*/
static FILE *output_file_open(const char *zFile){
  FILE *f;
  if( cli_strcmp(zFile,"stdout")==0 ){
    f = stdout;
  }else if( cli_strcmp(zFile, "stderr")==0 ){
    f = stderr;
  }else if( cli_strcmp(zFile, "off")==0 ){
    f = 0;
  }else{
    f = sqlite3_fopen(zFile, "w");
    if( f==0 ){
      sqlite3_fprintf(stderr,"Error: cannot open \"%s\"\n", zFile);
    }
  }
  return f;
}

#ifndef SQLITE_OMIT_TRACE
/*
** A routine for handling output from sqlite3_trace().
*/
static int sql_trace_callback(
  unsigned mType,         /* The trace type */
  void *pArg,             /* The ShellState pointer */
  void *pP,               /* Usually a pointer to sqlite_stmt */
  void *pX                /* Auxiliary output */
){
  ShellState *p = (ShellState*)pArg;
  sqlite3_stmt *pStmt;
  const char *zSql;
  i64 nSql;
  if( p->traceOut==0 ) return 0;
  if( mType==SQLITE_TRACE_CLOSE ){
    sputz(p->traceOut, "-- closing database connection\n");
    return 0;
  }
  if( mType!=SQLITE_TRACE_ROW && pX!=0 && ((const char*)pX)[0]=='-' ){
    zSql = (const char*)pX;
  }else{
    pStmt = (sqlite3_stmt*)pP;
    switch( p->eTraceType ){
      case SHELL_TRACE_EXPANDED: {
        zSql = sqlite3_expanded_sql(pStmt);
        break;
      }
#ifdef SQLITE_ENABLE_NORMALIZE
      case SHELL_TRACE_NORMALIZED: {
        zSql = sqlite3_normalized_sql(pStmt);
        break;
      }
#endif
      default: {
        zSql = sqlite3_sql(pStmt);
        break;
      }
    }
  }
  if( zSql==0 ) return 0;
  nSql = strlen(zSql);
  if( nSql>1000000000 ) nSql = 1000000000;
  while( nSql>0 && zSql[nSql-1]==';' ){ nSql--; }
  switch( mType ){
    case SQLITE_TRACE_ROW:
    case SQLITE_TRACE_STMT: {
      sqlite3_fprintf(p->traceOut, "%.*s;\n", (int)nSql, zSql);
      break;
    }
    case SQLITE_TRACE_PROFILE: {
      sqlite3_int64 nNanosec = pX ? *(sqlite3_int64*)pX : 0;
      sqlite3_fprintf(p->traceOut,
                      "%.*s; -- %lld ns\n", (int)nSql, zSql, nNanosec);
      break;
    }
  }
  return 0;
}
#endif

/*
** A no-op routine that runs with the ".breakpoint" doc-command.  This is
** a useful spot to set a debugger breakpoint.
**
** This routine does not do anything practical.  The code are there simply
** to prevent the compiler from optimizing this routine out.
*/
static void test_breakpoint(void){
  static unsigned int nCall = 0;
  if( (nCall++)==0xffffffff ) printf("Many .breakpoints have run\n");
}

/*
** An object used to read a CSV and other files for import.
*/
typedef struct ImportCtx ImportCtx;
struct ImportCtx {
  const char *zFile;  /* Name of the input file */
  FILE *in;           /* Read the CSV text from this input stream */
  int (SQLITE_CDECL *xCloser)(FILE*);      /* Func to close in */
  char *z;            /* Accumulated text for a field */
  int n;              /* Number of bytes in z */
  int nAlloc;         /* Space allocated for z[] */
  int nLine;          /* Current line number */
  int nRow;           /* Number of rows imported */
  int nErr;           /* Number of errors encountered */
  int bNotFirst;      /* True if one or more bytes already read */
  int cTerm;          /* Character that terminated the most recent field */
  int cColSep;        /* The column separator character.  (Usually ",") */
  int cRowSep;        /* The row separator character.  (Usually "\n") */
};

/* Clean up resourced used by an ImportCtx */
static void import_cleanup(ImportCtx *p){
  if( p->in!=0 && p->xCloser!=0 ){
    p->xCloser(p->in);
    p->in = 0;
  }
  sqlite3_free(p->z);
  p->z = 0;
}

/* Append a single byte to z[] */
static void import_append_char(ImportCtx *p, int c){
  if( p->n+1>=p->nAlloc ){
    p->nAlloc += p->nAlloc + 100;
    p->z = sqlite3_realloc64(p->z, p->nAlloc);
    shell_check_oom(p->z);
  }
  p->z[p->n++] = (char)c;
}

/* Read a single field of CSV text.  Compatible with rfc4180 and extended
** with the option of having a separator other than ",".
**
**   +  Input comes from p->in.
**   +  Store results in p->z of length p->n.  Space to hold p->z comes
**      from sqlite3_malloc64().
**   +  Use p->cSep as the column separator.  The default is ",".
**   +  Use p->rSep as the row separator.  The default is "\n".
**   +  Keep track of the line number in p->nLine.
**   +  Store the character that terminates the field in p->cTerm.  Store
**      EOF on end-of-file.
**   +  Report syntax errors on stderr
*/
static char *SQLITE_CDECL csv_read_one_field(ImportCtx *p){
  int c;
  int cSep = (u8)p->cColSep;
  int rSep = (u8)p->cRowSep;
  p->n = 0;
  c = fgetc(p->in);
  if( c==EOF || seenInterrupt ){
    p->cTerm = EOF;
    return 0;
  }
  if( c=='"' ){
    int pc, ppc;
    int startLine = p->nLine;
    int cQuote = c;
    pc = ppc = 0;
    while( 1 ){
      c = fgetc(p->in);
      if( c==rSep ) p->nLine++;
      if( c==cQuote ){
        if( pc==cQuote ){
          pc = 0;
          continue;
        }
      }
      if( (c==cSep && pc==cQuote)
       || (c==rSep && pc==cQuote)
       || (c==rSep && pc=='\r' && ppc==cQuote)
       || (c==EOF && pc==cQuote)
      ){
        do{ p->n--; }while( p->z[p->n]!=cQuote );
        p->cTerm = c;
        break;
      }
      if( pc==cQuote && c!='\r' ){
        sqlite3_fprintf(stderr,"%s:%d: unescaped %c character\n", 
                        p->zFile, p->nLine, cQuote);
      }
      if( c==EOF ){
        sqlite3_fprintf(stderr,"%s:%d: unterminated %c-quoted field\n",
              p->zFile, startLine, cQuote);
        p->cTerm = c;
        break;
      }
      import_append_char(p, c);
      ppc = pc;
      pc = c;
    }
  }else{
    /* If this is the first field being parsed and it begins with the
    ** UTF-8 BOM  (0xEF BB BF) then skip the BOM */
    if( (c&0xff)==0xef && p->bNotFirst==0 ){
      import_append_char(p, c);
      c = fgetc(p->in);
      if( (c&0xff)==0xbb ){
        import_append_char(p, c);
        c = fgetc(p->in);
        if( (c&0xff)==0xbf ){
          p->bNotFirst = 1;
          p->n = 0;
          return csv_read_one_field(p);
        }
      }
    }
    while( c!=EOF && c!=cSep && c!=rSep ){
      import_append_char(p, c);
      c = fgetc(p->in);
    }
    if( c==rSep ){
      p->nLine++;
      if( p->n>0 && p->z[p->n-1]=='\r' ) p->n--;
    }
    p->cTerm = c;
  }
  if( p->z ) p->z[p->n] = 0;
  p->bNotFirst = 1;
  return p->z;
}

/* Read a single field of ASCII delimited text.
**
**   +  Input comes from p->in.
**   +  Store results in p->z of length p->n.  Space to hold p->z comes
**      from sqlite3_malloc64().
**   +  Use p->cSep as the column separator.  The default is "\x1F".
**   +  Use p->rSep as the row separator.  The default is "\x1E".
**   +  Keep track of the row number in p->nLine.
**   +  Store the character that terminates the field in p->cTerm.  Store
**      EOF on end-of-file.
**   +  Report syntax errors on stderr
*/
static char *SQLITE_CDECL ascii_read_one_field(ImportCtx *p){
  int c;
  int cSep = (u8)p->cColSep;
  int rSep = (u8)p->cRowSep;
  p->n = 0;
  c = fgetc(p->in);
  if( c==EOF || seenInterrupt ){
    p->cTerm = EOF;
    return 0;
  }
  while( c!=EOF && c!=cSep && c!=rSep ){
    import_append_char(p, c);
    c = fgetc(p->in);
  }
  if( c==rSep ){
    p->nLine++;
  }
  p->cTerm = c;
  if( p->z ) p->z[p->n] = 0;
  return p->z;
}

/*
** Try to transfer data for table zTable.  If an error is seen while
** moving forward, try to go backwards.  The backwards movement won't
** work for WITHOUT ROWID tables.
*/
static void tryToCloneData(
  ShellState *p,
  sqlite3 *newDb,
  const char *zTable
){
  sqlite3_stmt *pQuery = 0;
  sqlite3_stmt *pInsert = 0;
  char *zQuery = 0;
  char *zInsert = 0;
  int rc;
  int i, j, n;
  int nTable = strlen30(zTable);
  int k = 0;
  int cnt = 0;
  const int spinRate = 10000;

  zQuery = sqlite3_mprintf("SELECT * FROM \"%w\"", zTable);
  shell_check_oom(zQuery);
  rc = sqlite3_prepare_v2(p->db, zQuery, -1, &pQuery, 0);
  if( rc ){
    sqlite3_fprintf(stderr,"Error %d: %s on [%s]\n",
          sqlite3_extended_errcode(p->db), sqlite3_errmsg(p->db), zQuery);
    goto end_data_xfer;
  }
  n = sqlite3_column_count(pQuery);
  zInsert = sqlite3_malloc64(200 + nTable + n*3);
  shell_check_oom(zInsert);
  sqlite3_snprintf(200+nTable,zInsert,
                   "INSERT OR IGNORE INTO \"%s\" VALUES(?", zTable);
  i = strlen30(zInsert);
  for(j=1; jdb, zQuery, -1, &pQuery, 0);
    if( rc ){
      sqlite3_fprintf(stderr,"Warning: cannot step \"%s\" backwards", zTable);
      break;
    }
  } /* End for(k=0...) */

end_data_xfer:
  sqlite3_finalize(pQuery);
  sqlite3_finalize(pInsert);
  sqlite3_free(zQuery);
  sqlite3_free(zInsert);
}


/*
** Try to transfer all rows of the schema that match zWhere.  For
** each row, invoke xForEach() on the object defined by that row.
** If an error is encountered while moving forward through the
** sqlite_schema table, try again moving backwards.
*/
static void tryToCloneSchema(
  ShellState *p,
  sqlite3 *newDb,
  const char *zWhere,
  void (*xForEach)(ShellState*,sqlite3*,const char*)
){
  sqlite3_stmt *pQuery = 0;
  char *zQuery = 0;
  int rc;
  const unsigned char *zName;
  const unsigned char *zSql;
  char *zErrMsg = 0;

  zQuery = sqlite3_mprintf("SELECT name, sql FROM sqlite_schema"
                           " WHERE %s ORDER BY rowid ASC", zWhere);
  shell_check_oom(zQuery);
  rc = sqlite3_prepare_v2(p->db, zQuery, -1, &pQuery, 0);
  if( rc ){
    sqlite3_fprintf(stderr,
          "Error: (%d) %s on [%s]\n", sqlite3_extended_errcode(p->db),
          sqlite3_errmsg(p->db), zQuery);
    goto end_schema_xfer;
  }
  while( (rc = sqlite3_step(pQuery))==SQLITE_ROW ){
    zName = sqlite3_column_text(pQuery, 0);
    zSql = sqlite3_column_text(pQuery, 1);
    if( zName==0 || zSql==0 ) continue;
    if( sqlite3_stricmp((char*)zName, "sqlite_sequence")!=0 ){
      sqlite3_fprintf(stdout, "%s... ", zName); fflush(stdout);
      sqlite3_exec(newDb, (const char*)zSql, 0, 0, &zErrMsg);
      if( zErrMsg ){
        sqlite3_fprintf(stderr,"Error: %s\nSQL: [%s]\n", zErrMsg, zSql);
        sqlite3_free(zErrMsg);
        zErrMsg = 0;
      }
    }
    if( xForEach ){
      xForEach(p, newDb, (const char*)zName);
    }
    sputz(stdout, "done\n");
  }
  if( rc!=SQLITE_DONE ){
    sqlite3_finalize(pQuery);
    sqlite3_free(zQuery);
    zQuery = sqlite3_mprintf("SELECT name, sql FROM sqlite_schema"
                             " WHERE %s ORDER BY rowid DESC", zWhere);
    shell_check_oom(zQuery);
    rc = sqlite3_prepare_v2(p->db, zQuery, -1, &pQuery, 0);
    if( rc ){
      sqlite3_fprintf(stderr,"Error: (%d) %s on [%s]\n",
            sqlite3_extended_errcode(p->db), sqlite3_errmsg(p->db), zQuery);
      goto end_schema_xfer;
    }
    while( sqlite3_step(pQuery)==SQLITE_ROW ){
      zName = sqlite3_column_text(pQuery, 0);
      zSql = sqlite3_column_text(pQuery, 1);
      if( zName==0 || zSql==0 ) continue;
      if( sqlite3_stricmp((char*)zName, "sqlite_sequence")==0 ) continue;
      sqlite3_fprintf(stdout, "%s... ", zName); fflush(stdout);
      sqlite3_exec(newDb, (const char*)zSql, 0, 0, &zErrMsg);
      if( zErrMsg ){
        sqlite3_fprintf(stderr,"Error: %s\nSQL: [%s]\n", zErrMsg, zSql);
        sqlite3_free(zErrMsg);
        zErrMsg = 0;
      }
      if( xForEach ){
        xForEach(p, newDb, (const char*)zName);
      }
      sputz(stdout, "done\n");
    }
  }
end_schema_xfer:
  sqlite3_finalize(pQuery);
  sqlite3_free(zQuery);
}

/*
** Open a new database file named "zNewDb".  Try to recover as much information
** as possible out of the main database (which might be corrupt) and write it
** into zNewDb.
*/
static void tryToClone(ShellState *p, const char *zNewDb){
  int rc;
  sqlite3 *newDb = 0;
  if( access(zNewDb,0)==0 ){
    sqlite3_fprintf(stderr,"File \"%s\" already exists.\n", zNewDb);
    return;
  }
  rc = sqlite3_open(zNewDb, &newDb);
  if( rc ){
    sqlite3_fprintf(stderr,
        "Cannot create output database: %s\n", sqlite3_errmsg(newDb));
  }else{
    sqlite3_exec(p->db, "PRAGMA writable_schema=ON;", 0, 0, 0);
    sqlite3_exec(newDb, "BEGIN EXCLUSIVE;", 0, 0, 0);
    tryToCloneSchema(p, newDb, "type='table'", tryToCloneData);
    tryToCloneSchema(p, newDb, "type!='table'", 0);
    sqlite3_exec(newDb, "COMMIT;", 0, 0, 0);
    sqlite3_exec(p->db, "PRAGMA writable_schema=OFF;", 0, 0, 0);
  }
  close_db(newDb);
}

#ifndef SQLITE_SHELL_FIDDLE
/*
** Change the output stream (file or pipe or console) to something else.
*/
static void output_redir(ShellState *p, FILE *pfNew){
  if( p->out != stdout ){
    sqlite3_fputs("Output already redirected.\n", stderr);
  }else{
    p->out = pfNew;
    setCrlfMode(p);
    if( p->mode==MODE_Www ){
      sqlite3_fputs(
        "\n"
        "
\n",
        p->out
      );
    }
  }
}

/*
** Change the output file back to stdout.
**
** If the p->doXdgOpen flag is set, that means the output was being
** redirected to a temporary file named by p->zTempFile.  In that case,
** launch start/open/xdg-open on that temporary file.
*/
static void output_reset(ShellState *p){
  if( p->outfile[0]=='|' ){
#ifndef SQLITE_OMIT_POPEN
    pclose(p->out);
#endif
  }else{
    if( p->mode==MODE_Www ){
      sqlite3_fputs("
\n", p->out); } output_file_close(p->out); #ifndef SQLITE_NOHAVE_SYSTEM if( p->doXdgOpen ){ const char *zXdgOpenCmd = #if defined(_WIN32) "start"; #elif defined(__APPLE__) "open"; #else "xdg-open"; #endif char *zCmd; zCmd = sqlite3_mprintf("%s %s", zXdgOpenCmd, p->zTempFile); if( system(zCmd) ){ sqlite3_fprintf(stderr,"Failed: [%s]\n", zCmd); }else{ /* Give the start/open/xdg-open command some time to get ** going before we continue, and potential delete the ** p->zTempFile data file out from under it */ sqlite3_sleep(2000); } sqlite3_free(zCmd); outputModePop(p); p->doXdgOpen = 0; } #endif /* !defined(SQLITE_NOHAVE_SYSTEM) */ } p->outfile[0] = 0; p->out = stdout; setCrlfMode(p); } #else # define output_redir(SS,pfO) # define output_reset(SS) #endif /* ** Run an SQL command and return the single integer result. */ static int db_int(sqlite3 *db, const char *zSql){ sqlite3_stmt *pStmt; int res = 0; sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0); if( pStmt && sqlite3_step(pStmt)==SQLITE_ROW ){ res = sqlite3_column_int(pStmt,0); } sqlite3_finalize(pStmt); return res; } #if SQLITE_SHELL_HAVE_RECOVER /* ** Convert a 2-byte or 4-byte big-endian integer into a native integer */ static unsigned int get2byteInt(unsigned char *a){ return (a[0]<<8) + a[1]; } static unsigned int get4byteInt(unsigned char *a){ return (a[0]<<24) + (a[1]<<16) + (a[2]<<8) + a[3]; } /* ** Implementation of the ".dbinfo" command. ** ** Return 1 on error, 2 to exit, and 0 otherwise. */ static int shell_dbinfo_command(ShellState *p, int nArg, char **azArg){ static const struct { const char *zName; int ofst; } aField[] = { { "file change counter:", 24 }, { "database page count:", 28 }, { "freelist page count:", 36 }, { "schema cookie:", 40 }, { "schema format:", 44 }, { "default cache size:", 48 }, { "autovacuum top root:", 52 }, { "incremental vacuum:", 64 }, { "text encoding:", 56 }, { "user version:", 60 }, { "application id:", 68 }, { "software version:", 96 }, }; static const struct { const char *zName; const char *zSql; } aQuery[] = { { "number of tables:", "SELECT count(*) FROM %s WHERE type='table'" }, { "number of indexes:", "SELECT count(*) FROM %s WHERE type='index'" }, { "number of triggers:", "SELECT count(*) FROM %s WHERE type='trigger'" }, { "number of views:", "SELECT count(*) FROM %s WHERE type='view'" }, { "schema size:", "SELECT total(length(sql)) FROM %s" }, }; int i, rc; unsigned iDataVersion; char *zSchemaTab; char *zDb = nArg>=2 ? azArg[1] : "main"; sqlite3_stmt *pStmt = 0; unsigned char aHdr[100]; open_db(p, 0); if( p->db==0 ) return 1; rc = sqlite3_prepare_v2(p->db, "SELECT data FROM sqlite_dbpage(?1) WHERE pgno=1", -1, &pStmt, 0); if( rc ){ sqlite3_fprintf(stderr,"error: %s\n", sqlite3_errmsg(p->db)); sqlite3_finalize(pStmt); return 1; } sqlite3_bind_text(pStmt, 1, zDb, -1, SQLITE_STATIC); if( sqlite3_step(pStmt)==SQLITE_ROW && sqlite3_column_bytes(pStmt,0)>100 ){ const u8 *pb = sqlite3_column_blob(pStmt,0); shell_check_oom(pb); memcpy(aHdr, pb, 100); sqlite3_finalize(pStmt); }else{ sqlite3_fputs("unable to read database header\n", stderr); sqlite3_finalize(pStmt); return 1; } i = get2byteInt(aHdr+16); if( i==1 ) i = 65536; sqlite3_fprintf(p->out, "%-20s %d\n", "database page size:", i); sqlite3_fprintf(p->out, "%-20s %d\n", "write format:", aHdr[18]); sqlite3_fprintf(p->out, "%-20s %d\n", "read format:", aHdr[19]); sqlite3_fprintf(p->out, "%-20s %d\n", "reserved bytes:", aHdr[20]); for(i=0; iout, "%-20s %u", aField[i].zName, val); switch( ofst ){ case 56: { if( val==1 ) sqlite3_fputs(" (utf8)", p->out); if( val==2 ) sqlite3_fputs(" (utf16le)", p->out); if( val==3 ) sqlite3_fputs(" (utf16be)", p->out); } } sqlite3_fputs("\n", p->out); } if( zDb==0 ){ zSchemaTab = sqlite3_mprintf("main.sqlite_schema"); }else if( cli_strcmp(zDb,"temp")==0 ){ zSchemaTab = sqlite3_mprintf("%s", "sqlite_temp_schema"); }else{ zSchemaTab = sqlite3_mprintf("\"%w\".sqlite_schema", zDb); } for(i=0; idb, zSql); sqlite3_free(zSql); sqlite3_fprintf(p->out, "%-20s %d\n", aQuery[i].zName, val); } sqlite3_free(zSchemaTab); sqlite3_file_control(p->db, zDb, SQLITE_FCNTL_DATA_VERSION, &iDataVersion); sqlite3_fprintf(p->out, "%-20s %u\n", "data version", iDataVersion); return 0; } #endif /* SQLITE_SHELL_HAVE_RECOVER */ /* ** Print the given string as an error message. */ static void shellEmitError(const char *zErr){ sqlite3_fprintf(stderr,"Error: %s\n", zErr); } /* ** Print the current sqlite3_errmsg() value to stderr and return 1. */ static int shellDatabaseError(sqlite3 *db){ shellEmitError(sqlite3_errmsg(db)); return 1; } /* ** Compare the pattern in zGlob[] against the text in z[]. Return TRUE ** if they match and FALSE (0) if they do not match. ** ** Globbing rules: ** ** '*' Matches any sequence of zero or more characters. ** ** '?' Matches exactly one character. ** ** [...] Matches one character from the enclosed list of ** characters. ** ** [^...] Matches one character not in the enclosed list. ** ** '#' Matches any sequence of one or more digits with an ** optional + or - sign in front ** ** ' ' Any span of whitespace matches any other span of ** whitespace. ** ** Extra whitespace at the end of z[] is ignored. */ static int testcase_glob(const char *zGlob, const char *z){ int c, c2; int invert; int seen; while( (c = (*(zGlob++)))!=0 ){ if( IsSpace(c) ){ if( !IsSpace(*z) ) return 0; while( IsSpace(*zGlob) ) zGlob++; while( IsSpace(*z) ) z++; }else if( c=='*' ){ while( (c=(*(zGlob++))) == '*' || c=='?' ){ if( c=='?' && (*(z++))==0 ) return 0; } if( c==0 ){ return 1; }else if( c=='[' ){ while( *z && testcase_glob(zGlob-1,z)==0 ){ z++; } return (*z)!=0; } while( (c2 = (*(z++)))!=0 ){ while( c2!=c ){ c2 = *(z++); if( c2==0 ) return 0; } if( testcase_glob(zGlob,z) ) return 1; } return 0; }else if( c=='?' ){ if( (*(z++))==0 ) return 0; }else if( c=='[' ){ int prior_c = 0; seen = 0; invert = 0; c = *(z++); if( c==0 ) return 0; c2 = *(zGlob++); if( c2=='^' ){ invert = 1; c2 = *(zGlob++); } if( c2==']' ){ if( c==']' ) seen = 1; c2 = *(zGlob++); } while( c2 && c2!=']' ){ if( c2=='-' && zGlob[0]!=']' && zGlob[0]!=0 && prior_c>0 ){ c2 = *(zGlob++); if( c>=prior_c && c<=c2 ) seen = 1; prior_c = 0; }else{ if( c==c2 ){ seen = 1; } prior_c = c2; } c2 = *(zGlob++); } if( c2==0 || (seen ^ invert)==0 ) return 0; }else if( c=='#' ){ if( (z[0]=='-' || z[0]=='+') && IsDigit(z[1]) ) z++; if( !IsDigit(z[0]) ) return 0; z++; while( IsDigit(z[0]) ){ z++; } }else{ if( c!=(*(z++)) ) return 0; } } while( IsSpace(*z) ){ z++; } return *z==0; } /* ** Compare the string as a command-line option with either one or two ** initial "-" characters. */ static int optionMatch(const char *zStr, const char *zOpt){ if( zStr[0]!='-' ) return 0; zStr++; if( zStr[0]=='-' ) zStr++; return cli_strcmp(zStr, zOpt)==0; } /* ** Delete a file. */ int shellDeleteFile(const char *zFilename){ int rc; #ifdef _WIN32 wchar_t *z = sqlite3_win32_utf8_to_unicode(zFilename); rc = _wunlink(z); sqlite3_free(z); #else rc = unlink(zFilename); #endif return rc; } /* ** Try to delete the temporary file (if there is one) and free the ** memory used to hold the name of the temp file. */ static void clearTempFile(ShellState *p){ if( p->zTempFile==0 ) return; if( p->doXdgOpen ) return; if( shellDeleteFile(p->zTempFile) ) return; sqlite3_free(p->zTempFile); p->zTempFile = 0; } /* ** Create a new temp file name with the given suffix. */ static void newTempFile(ShellState *p, const char *zSuffix){ clearTempFile(p); sqlite3_free(p->zTempFile); p->zTempFile = 0; if( p->db ){ sqlite3_file_control(p->db, 0, SQLITE_FCNTL_TEMPFILENAME, &p->zTempFile); } if( p->zTempFile==0 ){ /* If p->db is an in-memory database then the TEMPFILENAME file-control ** will not work and we will need to fallback to guessing */ char *zTemp; sqlite3_uint64 r; sqlite3_randomness(sizeof(r), &r); zTemp = getenv("TEMP"); if( zTemp==0 ) zTemp = getenv("TMP"); if( zTemp==0 ){ #ifdef _WIN32 zTemp = "\\tmp"; #else zTemp = "/tmp"; #endif } p->zTempFile = sqlite3_mprintf("%s/temp%llx.%s", zTemp, r, zSuffix); }else{ p->zTempFile = sqlite3_mprintf("%z.%s", p->zTempFile, zSuffix); } shell_check_oom(p->zTempFile); } /* ** The implementation of SQL scalar function fkey_collate_clause(), used ** by the ".lint fkey-indexes" command. This scalar function is always ** called with four arguments - the parent table name, the parent column name, ** the child table name and the child column name. ** ** fkey_collate_clause('parent-tab', 'parent-col', 'child-tab', 'child-col') ** ** If either of the named tables or columns do not exist, this function ** returns an empty string. An empty string is also returned if both tables ** and columns exist but have the same default collation sequence. Or, ** if both exist but the default collation sequences are different, this ** function returns the string " COLLATE ", where ** is the default collation sequence of the parent column. */ static void shellFkeyCollateClause( sqlite3_context *pCtx, int nVal, sqlite3_value **apVal ){ sqlite3 *db = sqlite3_context_db_handle(pCtx); const char *zParent; const char *zParentCol; const char *zParentSeq; const char *zChild; const char *zChildCol; const char *zChildSeq = 0; /* Initialize to avoid false-positive warning */ int rc; assert( nVal==4 ); zParent = (const char*)sqlite3_value_text(apVal[0]); zParentCol = (const char*)sqlite3_value_text(apVal[1]); zChild = (const char*)sqlite3_value_text(apVal[2]); zChildCol = (const char*)sqlite3_value_text(apVal[3]); sqlite3_result_text(pCtx, "", -1, SQLITE_STATIC); rc = sqlite3_table_column_metadata( db, "main", zParent, zParentCol, 0, &zParentSeq, 0, 0, 0 ); if( rc==SQLITE_OK ){ rc = sqlite3_table_column_metadata( db, "main", zChild, zChildCol, 0, &zChildSeq, 0, 0, 0 ); } if( rc==SQLITE_OK && sqlite3_stricmp(zParentSeq, zChildSeq) ){ char *z = sqlite3_mprintf(" COLLATE %s", zParentSeq); sqlite3_result_text(pCtx, z, -1, SQLITE_TRANSIENT); sqlite3_free(z); } } /* ** The implementation of dot-command ".lint fkey-indexes". */ static int lintFkeyIndexes( ShellState *pState, /* Current shell tool state */ char **azArg, /* Array of arguments passed to dot command */ int nArg /* Number of entries in azArg[] */ ){ sqlite3 *db = pState->db; /* Database handle to query "main" db of */ int bVerbose = 0; /* If -verbose is present */ int bGroupByParent = 0; /* If -groupbyparent is present */ int i; /* To iterate through azArg[] */ const char *zIndent = ""; /* How much to indent CREATE INDEX by */ int rc; /* Return code */ sqlite3_stmt *pSql = 0; /* Compiled version of SQL statement below */ FILE *out = pState->out; /* Send output here */ /* ** This SELECT statement returns one row for each foreign key constraint ** in the schema of the main database. The column values are: ** ** 0. The text of an SQL statement similar to: ** ** "EXPLAIN QUERY PLAN SELECT 1 FROM child_table WHERE child_key=?" ** ** This SELECT is similar to the one that the foreign keys implementation ** needs to run internally on child tables. If there is an index that can ** be used to optimize this query, then it can also be used by the FK ** implementation to optimize DELETE or UPDATE statements on the parent ** table. ** ** 1. A GLOB pattern suitable for sqlite3_strglob(). If the plan output by ** the EXPLAIN QUERY PLAN command matches this pattern, then the schema ** contains an index that can be used to optimize the query. ** ** 2. Human readable text that describes the child table and columns. e.g. ** ** "child_table(child_key1, child_key2)" ** ** 3. Human readable text that describes the parent table and columns. e.g. ** ** "parent_table(parent_key1, parent_key2)" ** ** 4. A full CREATE INDEX statement for an index that could be used to ** optimize DELETE or UPDATE statements on the parent table. e.g. ** ** "CREATE INDEX child_table_child_key ON child_table(child_key)" ** ** 5. The name of the parent table. ** ** These six values are used by the C logic below to generate the report. */ const char *zSql = "SELECT " " 'EXPLAIN QUERY PLAN SELECT 1 FROM ' || quote(s.name) || ' WHERE '" " || group_concat(quote(s.name) || '.' || quote(f.[from]) || '=?' " " || fkey_collate_clause(" " f.[table], COALESCE(f.[to], p.[name]), s.name, f.[from]),' AND ')" ", " " 'SEARCH ' || s.name || ' USING COVERING INDEX*('" " || group_concat('*=?', ' AND ') || ')'" ", " " s.name || '(' || group_concat(f.[from], ', ') || ')'" ", " " f.[table] || '(' || group_concat(COALESCE(f.[to], p.[name])) || ')'" ", " " 'CREATE INDEX ' || quote(s.name ||'_'|| group_concat(f.[from], '_'))" " || ' ON ' || quote(s.name) || '('" " || group_concat(quote(f.[from]) ||" " fkey_collate_clause(" " f.[table], COALESCE(f.[to], p.[name]), s.name, f.[from]), ', ')" " || ');'" ", " " f.[table] " "FROM sqlite_schema AS s, pragma_foreign_key_list(s.name) AS f " "LEFT JOIN pragma_table_info AS p ON (pk-1=seq AND p.arg=f.[table]) " "GROUP BY s.name, f.id " "ORDER BY (CASE WHEN ? THEN f.[table] ELSE s.name END)" ; const char *zGlobIPK = "SEARCH * USING INTEGER PRIMARY KEY (rowid=?)"; for(i=2; i1 && sqlite3_strnicmp("-verbose", azArg[i], n)==0 ){ bVerbose = 1; } else if( n>1 && sqlite3_strnicmp("-groupbyparent", azArg[i], n)==0 ){ bGroupByParent = 1; zIndent = " "; } else{ sqlite3_fprintf(stderr, "Usage: %s %s ?-verbose? ?-groupbyparent?\n", azArg[0], azArg[1]); return SQLITE_ERROR; } } /* Register the fkey_collate_clause() SQL function */ rc = sqlite3_create_function(db, "fkey_collate_clause", 4, SQLITE_UTF8, 0, shellFkeyCollateClause, 0, 0 ); if( rc==SQLITE_OK ){ rc = sqlite3_prepare_v2(db, zSql, -1, &pSql, 0); } if( rc==SQLITE_OK ){ sqlite3_bind_int(pSql, 1, bGroupByParent); } if( rc==SQLITE_OK ){ int rc2; char *zPrev = 0; while( SQLITE_ROW==sqlite3_step(pSql) ){ int res = -1; sqlite3_stmt *pExplain = 0; const char *zEQP = (const char*)sqlite3_column_text(pSql, 0); const char *zGlob = (const char*)sqlite3_column_text(pSql, 1); const char *zFrom = (const char*)sqlite3_column_text(pSql, 2); const char *zTarget = (const char*)sqlite3_column_text(pSql, 3); const char *zCI = (const char*)sqlite3_column_text(pSql, 4); const char *zParent = (const char*)sqlite3_column_text(pSql, 5); if( zEQP==0 ) continue; if( zGlob==0 ) continue; rc = sqlite3_prepare_v2(db, zEQP, -1, &pExplain, 0); if( rc!=SQLITE_OK ) break; if( SQLITE_ROW==sqlite3_step(pExplain) ){ const char *zPlan = (const char*)sqlite3_column_text(pExplain, 3); res = zPlan!=0 && ( 0==sqlite3_strglob(zGlob, zPlan) || 0==sqlite3_strglob(zGlobIPK, zPlan)); } rc = sqlite3_finalize(pExplain); if( rc!=SQLITE_OK ) break; if( res<0 ){ sqlite3_fputs("Error: internal error", stderr); break; }else{ if( bGroupByParent && (bVerbose || res==0) && (zPrev==0 || sqlite3_stricmp(zParent, zPrev)) ){ sqlite3_fprintf(out, "-- Parent table %s\n", zParent); sqlite3_free(zPrev); zPrev = sqlite3_mprintf("%s", zParent); } if( res==0 ){ sqlite3_fprintf(out, "%s%s --> %s\n", zIndent, zCI, zTarget); }else if( bVerbose ){ sqlite3_fprintf(out, "%s/* no extra indexes required for %s -> %s */\n", zIndent, zFrom, zTarget ); } } } sqlite3_free(zPrev); if( rc!=SQLITE_OK ){ sqlite3_fprintf(stderr,"%s\n", sqlite3_errmsg(db)); } rc2 = sqlite3_finalize(pSql); if( rc==SQLITE_OK && rc2!=SQLITE_OK ){ rc = rc2; sqlite3_fprintf(stderr,"%s\n", sqlite3_errmsg(db)); } }else{ sqlite3_fprintf(stderr,"%s\n", sqlite3_errmsg(db)); } return rc; } /* ** Implementation of ".lint" dot command. */ static int lintDotCommand( ShellState *pState, /* Current shell tool state */ char **azArg, /* Array of arguments passed to dot command */ int nArg /* Number of entries in azArg[] */ ){ int n; n = (nArg>=2 ? strlen30(azArg[1]) : 0); if( n<1 || sqlite3_strnicmp(azArg[1], "fkey-indexes", n) ) goto usage; return lintFkeyIndexes(pState, azArg, nArg); usage: sqlite3_fprintf(stderr,"Usage %s sub-command ?switches...?\n", azArg[0]); sqlite3_fprintf(stderr, "Where sub-commands are:\n"); sqlite3_fprintf(stderr, " fkey-indexes\n"); return SQLITE_ERROR; } static void shellPrepare( sqlite3 *db, int *pRc, const char *zSql, sqlite3_stmt **ppStmt ){ *ppStmt = 0; if( *pRc==SQLITE_OK ){ int rc = sqlite3_prepare_v2(db, zSql, -1, ppStmt, 0); if( rc!=SQLITE_OK ){ sqlite3_fprintf(stderr, "sql error: %s (%d)\n", sqlite3_errmsg(db), sqlite3_errcode(db)); *pRc = rc; } } } /* ** Create a prepared statement using printf-style arguments for the SQL. */ static void shellPreparePrintf( sqlite3 *db, int *pRc, sqlite3_stmt **ppStmt, const char *zFmt, ... ){ *ppStmt = 0; if( *pRc==SQLITE_OK ){ va_list ap; char *z; va_start(ap, zFmt); z = sqlite3_vmprintf(zFmt, ap); va_end(ap); if( z==0 ){ *pRc = SQLITE_NOMEM; }else{ shellPrepare(db, pRc, z, ppStmt); sqlite3_free(z); } } } /* ** Finalize the prepared statement created using shellPreparePrintf(). */ static void shellFinalize( int *pRc, sqlite3_stmt *pStmt ){ if( pStmt ){ sqlite3 *db = sqlite3_db_handle(pStmt); int rc = sqlite3_finalize(pStmt); if( *pRc==SQLITE_OK ){ if( rc!=SQLITE_OK ){ sqlite3_fprintf(stderr,"SQL error: %s\n", sqlite3_errmsg(db)); } *pRc = rc; } } } #if !defined SQLITE_OMIT_VIRTUALTABLE /* Reset the prepared statement created using shellPreparePrintf(). ** ** This routine is could be marked "static". But it is not always used, ** depending on compile-time options. By omitting the "static", we avoid ** nuisance compiler warnings about "defined but not used". */ void shellReset( int *pRc, sqlite3_stmt *pStmt ){ int rc = sqlite3_reset(pStmt); if( *pRc==SQLITE_OK ){ if( rc!=SQLITE_OK ){ sqlite3 *db = sqlite3_db_handle(pStmt); sqlite3_fprintf(stderr,"SQL error: %s\n", sqlite3_errmsg(db)); } *pRc = rc; } } #endif /* !defined SQLITE_OMIT_VIRTUALTABLE */ #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(SQLITE_HAVE_ZLIB) /****************************************************************************** ** The ".archive" or ".ar" command. */ /* ** Structure representing a single ".ar" command. */ typedef struct ArCommand ArCommand; struct ArCommand { u8 eCmd; /* An AR_CMD_* value */ u8 bVerbose; /* True if --verbose */ u8 bZip; /* True if the archive is a ZIP */ u8 bDryRun; /* True if --dry-run */ u8 bAppend; /* True if --append */ u8 bGlob; /* True if --glob */ u8 fromCmdLine; /* Run from -A instead of .archive */ int nArg; /* Number of command arguments */ char *zSrcTable; /* "sqlar", "zipfile($file)" or "zip" */ const char *zFile; /* --file argument, or NULL */ const char *zDir; /* --directory argument, or NULL */ char **azArg; /* Array of command arguments */ ShellState *p; /* Shell state */ FILE *out; /* Output to this stream */ sqlite3 *db; /* Database containing the archive */ }; /* ** Print a usage message for the .ar command to stderr and return SQLITE_ERROR. */ static int arUsage(FILE *f){ showHelp(f,"archive"); return SQLITE_ERROR; } /* ** Print an error message for the .ar command to stderr and return ** SQLITE_ERROR. */ static int arErrorMsg(ArCommand *pAr, const char *zFmt, ...){ va_list ap; char *z; va_start(ap, zFmt); z = sqlite3_vmprintf(zFmt, ap); va_end(ap); shellEmitError(z); if( pAr->fromCmdLine ){ sqlite3_fputs("Use \"-A\" for more help\n", stderr); }else{ sqlite3_fputs("Use \".archive --help\" for more help\n", stderr); } sqlite3_free(z); return SQLITE_ERROR; } /* ** Values for ArCommand.eCmd. */ #define AR_CMD_CREATE 1 #define AR_CMD_UPDATE 2 #define AR_CMD_INSERT 3 #define AR_CMD_EXTRACT 4 #define AR_CMD_LIST 5 #define AR_CMD_HELP 6 #define AR_CMD_REMOVE 7 /* ** Other (non-command) switches. */ #define AR_SWITCH_VERBOSE 8 #define AR_SWITCH_FILE 9 #define AR_SWITCH_DIRECTORY 10 #define AR_SWITCH_APPEND 11 #define AR_SWITCH_DRYRUN 12 #define AR_SWITCH_GLOB 13 static int arProcessSwitch(ArCommand *pAr, int eSwitch, const char *zArg){ switch( eSwitch ){ case AR_CMD_CREATE: case AR_CMD_EXTRACT: case AR_CMD_LIST: case AR_CMD_REMOVE: case AR_CMD_UPDATE: case AR_CMD_INSERT: case AR_CMD_HELP: if( pAr->eCmd ){ return arErrorMsg(pAr, "multiple command options"); } pAr->eCmd = eSwitch; break; case AR_SWITCH_DRYRUN: pAr->bDryRun = 1; break; case AR_SWITCH_GLOB: pAr->bGlob = 1; break; case AR_SWITCH_VERBOSE: pAr->bVerbose = 1; break; case AR_SWITCH_APPEND: pAr->bAppend = 1; deliberate_fall_through; case AR_SWITCH_FILE: pAr->zFile = zArg; break; case AR_SWITCH_DIRECTORY: pAr->zDir = zArg; break; } return SQLITE_OK; } /* ** Parse the command line for an ".ar" command. The results are written into ** structure (*pAr). SQLITE_OK is returned if the command line is parsed ** successfully, otherwise an error message is written to stderr and ** SQLITE_ERROR returned. */ static int arParseCommand( char **azArg, /* Array of arguments passed to dot command */ int nArg, /* Number of entries in azArg[] */ ArCommand *pAr /* Populate this object */ ){ struct ArSwitch { const char *zLong; char cShort; u8 eSwitch; u8 bArg; } aSwitch[] = { { "create", 'c', AR_CMD_CREATE, 0 }, { "extract", 'x', AR_CMD_EXTRACT, 0 }, { "insert", 'i', AR_CMD_INSERT, 0 }, { "list", 't', AR_CMD_LIST, 0 }, { "remove", 'r', AR_CMD_REMOVE, 0 }, { "update", 'u', AR_CMD_UPDATE, 0 }, { "help", 'h', AR_CMD_HELP, 0 }, { "verbose", 'v', AR_SWITCH_VERBOSE, 0 }, { "file", 'f', AR_SWITCH_FILE, 1 }, { "append", 'a', AR_SWITCH_APPEND, 1 }, { "directory", 'C', AR_SWITCH_DIRECTORY, 1 }, { "dryrun", 'n', AR_SWITCH_DRYRUN, 0 }, { "glob", 'g', AR_SWITCH_GLOB, 0 }, }; int nSwitch = sizeof(aSwitch) / sizeof(struct ArSwitch); struct ArSwitch *pEnd = &aSwitch[nSwitch]; if( nArg<=1 ){ sqlite3_fprintf(stderr, "Wrong number of arguments. Usage:\n"); return arUsage(stderr); }else{ char *z = azArg[1]; if( z[0]!='-' ){ /* Traditional style [tar] invocation */ int i; int iArg = 2; for(i=0; z[i]; i++){ const char *zArg = 0; struct ArSwitch *pOpt; for(pOpt=&aSwitch[0]; pOptcShort ) break; } if( pOpt==pEnd ){ return arErrorMsg(pAr, "unrecognized option: %c", z[i]); } if( pOpt->bArg ){ if( iArg>=nArg ){ return arErrorMsg(pAr, "option requires an argument: %c",z[i]); } zArg = azArg[iArg++]; } if( arProcessSwitch(pAr, pOpt->eSwitch, zArg) ) return SQLITE_ERROR; } pAr->nArg = nArg-iArg; if( pAr->nArg>0 ){ pAr->azArg = &azArg[iArg]; } }else{ /* Non-traditional invocation */ int iArg; for(iArg=1; iArgazArg = &azArg[iArg]; pAr->nArg = nArg-iArg; break; } n = strlen30(z); if( z[1]!='-' ){ int i; /* One or more short options */ for(i=1; icShort ) break; } if( pOpt==pEnd ){ return arErrorMsg(pAr, "unrecognized option: %c", z[i]); } if( pOpt->bArg ){ if( i<(n-1) ){ zArg = &z[i+1]; i = n; }else{ if( iArg>=(nArg-1) ){ return arErrorMsg(pAr, "option requires an argument: %c", z[i]); } zArg = azArg[++iArg]; } } if( arProcessSwitch(pAr, pOpt->eSwitch, zArg) ) return SQLITE_ERROR; } }else if( z[2]=='\0' ){ /* A -- option, indicating that all remaining command line words ** are command arguments. */ pAr->azArg = &azArg[iArg+1]; pAr->nArg = nArg-iArg-1; break; }else{ /* A long option */ const char *zArg = 0; /* Argument for option, if any */ struct ArSwitch *pMatch = 0; /* Matching option */ struct ArSwitch *pOpt; /* Iterator */ for(pOpt=&aSwitch[0]; pOptzLong; if( (n-2)<=strlen30(zLong) && 0==memcmp(&z[2], zLong, n-2) ){ if( pMatch ){ return arErrorMsg(pAr, "ambiguous option: %s",z); }else{ pMatch = pOpt; } } } if( pMatch==0 ){ return arErrorMsg(pAr, "unrecognized option: %s", z); } if( pMatch->bArg ){ if( iArg>=(nArg-1) ){ return arErrorMsg(pAr, "option requires an argument: %s", z); } zArg = azArg[++iArg]; } if( arProcessSwitch(pAr, pMatch->eSwitch, zArg) ) return SQLITE_ERROR; } } } } if( pAr->eCmd==0 ){ sqlite3_fprintf(stderr, "Required argument missing. Usage:\n"); return arUsage(stderr); } return SQLITE_OK; } /* ** This function assumes that all arguments within the ArCommand.azArg[] ** array refer to archive members, as for the --extract, --list or --remove ** commands. It checks that each of them are "present". If any specified ** file is not present in the archive, an error is printed to stderr and an ** error code returned. Otherwise, if all specified arguments are present ** in the archive, SQLITE_OK is returned. Here, "present" means either an ** exact equality when pAr->bGlob is false or a "name GLOB pattern" match ** when pAr->bGlob is true. ** ** This function strips any trailing '/' characters from each argument. ** This is consistent with the way the [tar] command seems to work on ** Linux. */ static int arCheckEntries(ArCommand *pAr){ int rc = SQLITE_OK; if( pAr->nArg ){ int i, j; sqlite3_stmt *pTest = 0; const char *zSel = (pAr->bGlob) ? "SELECT name FROM %s WHERE glob($name,name)" : "SELECT name FROM %s WHERE name=$name"; shellPreparePrintf(pAr->db, &rc, &pTest, zSel, pAr->zSrcTable); j = sqlite3_bind_parameter_index(pTest, "$name"); for(i=0; inArg && rc==SQLITE_OK; i++){ char *z = pAr->azArg[i]; int n = strlen30(z); int bOk = 0; while( n>0 && z[n-1]=='/' ) n--; z[n] = '\0'; sqlite3_bind_text(pTest, j, z, -1, SQLITE_STATIC); if( SQLITE_ROW==sqlite3_step(pTest) ){ bOk = 1; } shellReset(&rc, pTest); if( rc==SQLITE_OK && bOk==0 ){ sqlite3_fprintf(stderr,"not found in archive: %s\n", z); rc = SQLITE_ERROR; } } shellFinalize(&rc, pTest); } return rc; } /* ** Format a WHERE clause that can be used against the "sqlar" table to ** identify all archive members that match the command arguments held ** in (*pAr). Leave this WHERE clause in (*pzWhere) before returning. ** The caller is responsible for eventually calling sqlite3_free() on ** any non-NULL (*pzWhere) value. Here, "match" means strict equality ** when pAr->bGlob is false and GLOB match when pAr->bGlob is true. */ static void arWhereClause( int *pRc, ArCommand *pAr, char **pzWhere /* OUT: New WHERE clause */ ){ char *zWhere = 0; const char *zSameOp = (pAr->bGlob)? "GLOB" : "="; if( *pRc==SQLITE_OK ){ if( pAr->nArg==0 ){ zWhere = sqlite3_mprintf("1"); }else{ int i; const char *zSep = ""; for(i=0; inArg; i++){ const char *z = pAr->azArg[i]; zWhere = sqlite3_mprintf( "%z%s name %s '%q' OR substr(name,1,%d) %s '%q/'", zWhere, zSep, zSameOp, z, strlen30(z)+1, zSameOp, z ); if( zWhere==0 ){ *pRc = SQLITE_NOMEM; break; } zSep = " OR "; } } } *pzWhere = zWhere; } /* ** Implementation of .ar "lisT" command. */ static int arListCommand(ArCommand *pAr){ const char *zSql = "SELECT %s FROM %s WHERE %s"; const char *azCols[] = { "name", "lsmode(mode), sz, datetime(mtime, 'unixepoch'), name" }; char *zWhere = 0; sqlite3_stmt *pSql = 0; int rc; rc = arCheckEntries(pAr); arWhereClause(&rc, pAr, &zWhere); shellPreparePrintf(pAr->db, &rc, &pSql, zSql, azCols[pAr->bVerbose], pAr->zSrcTable, zWhere); if( pAr->bDryRun ){ sqlite3_fprintf(pAr->out, "%s\n", sqlite3_sql(pSql)); }else{ while( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pSql) ){ if( pAr->bVerbose ){ sqlite3_fprintf(pAr->out, "%s % 10d %s %s\n", sqlite3_column_text(pSql, 0), sqlite3_column_int(pSql, 1), sqlite3_column_text(pSql, 2),sqlite3_column_text(pSql, 3)); }else{ sqlite3_fprintf(pAr->out, "%s\n", sqlite3_column_text(pSql, 0)); } } } shellFinalize(&rc, pSql); sqlite3_free(zWhere); return rc; } /* ** Implementation of .ar "Remove" command. */ static int arRemoveCommand(ArCommand *pAr){ int rc = 0; char *zSql = 0; char *zWhere = 0; if( pAr->nArg ){ /* Verify that args actually exist within the archive before proceeding. ** And formulate a WHERE clause to match them. */ rc = arCheckEntries(pAr); arWhereClause(&rc, pAr, &zWhere); } if( rc==SQLITE_OK ){ zSql = sqlite3_mprintf("DELETE FROM %s WHERE %s;", pAr->zSrcTable, zWhere); if( pAr->bDryRun ){ sqlite3_fprintf(pAr->out, "%s\n", zSql); }else{ char *zErr = 0; rc = sqlite3_exec(pAr->db, "SAVEPOINT ar;", 0, 0, 0); if( rc==SQLITE_OK ){ rc = sqlite3_exec(pAr->db, zSql, 0, 0, &zErr); if( rc!=SQLITE_OK ){ sqlite3_exec(pAr->db, "ROLLBACK TO ar; RELEASE ar;", 0, 0, 0); }else{ rc = sqlite3_exec(pAr->db, "RELEASE ar;", 0, 0, 0); } } if( zErr ){ sqlite3_fprintf(stdout, "ERROR: %s\n", zErr); /* stdout? */ sqlite3_free(zErr); } } } sqlite3_free(zWhere); sqlite3_free(zSql); return rc; } /* ** Implementation of .ar "eXtract" command. */ static int arExtractCommand(ArCommand *pAr){ const char *zSql1 = "SELECT " " ($dir || name)," " writefile(($dir || name), %s, mode, mtime) " "FROM %s WHERE (%s) AND (data IS NULL OR $dirOnly = 0)" " AND name NOT GLOB '*..[/\\]*'"; const char *azExtraArg[] = { "sqlar_uncompress(data, sz)", "data" }; sqlite3_stmt *pSql = 0; int rc = SQLITE_OK; char *zDir = 0; char *zWhere = 0; int i, j; /* If arguments are specified, check that they actually exist within ** the archive before proceeding. And formulate a WHERE clause to ** match them. */ rc = arCheckEntries(pAr); arWhereClause(&rc, pAr, &zWhere); if( rc==SQLITE_OK ){ if( pAr->zDir ){ zDir = sqlite3_mprintf("%s/", pAr->zDir); }else{ zDir = sqlite3_mprintf(""); } if( zDir==0 ) rc = SQLITE_NOMEM; } shellPreparePrintf(pAr->db, &rc, &pSql, zSql1, azExtraArg[pAr->bZip], pAr->zSrcTable, zWhere ); if( rc==SQLITE_OK ){ j = sqlite3_bind_parameter_index(pSql, "$dir"); sqlite3_bind_text(pSql, j, zDir, -1, SQLITE_STATIC); /* Run the SELECT statement twice. The first time, writefile() is called ** for all archive members that should be extracted. The second time, ** only for the directories. This is because the timestamps for ** extracted directories must be reset after they are populated (as ** populating them changes the timestamp). */ for(i=0; i<2; i++){ j = sqlite3_bind_parameter_index(pSql, "$dirOnly"); sqlite3_bind_int(pSql, j, i); if( pAr->bDryRun ){ sqlite3_fprintf(pAr->out, "%s\n", sqlite3_sql(pSql)); }else{ while( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pSql) ){ if( i==0 && pAr->bVerbose ){ sqlite3_fprintf(pAr->out, "%s\n", sqlite3_column_text(pSql, 0)); } } } shellReset(&rc, pSql); } shellFinalize(&rc, pSql); } sqlite3_free(zDir); sqlite3_free(zWhere); return rc; } /* ** Run the SQL statement in zSql. Or if doing a --dryrun, merely print it out. */ static int arExecSql(ArCommand *pAr, const char *zSql){ int rc; if( pAr->bDryRun ){ sqlite3_fprintf(pAr->out, "%s\n", zSql); rc = SQLITE_OK; }else{ char *zErr = 0; rc = sqlite3_exec(pAr->db, zSql, 0, 0, &zErr); if( zErr ){ sqlite3_fprintf(stdout, "ERROR: %s\n", zErr); sqlite3_free(zErr); } } return rc; } /* ** Implementation of .ar "create", "insert", and "update" commands. ** ** create -> Create a new SQL archive ** insert -> Insert or reinsert all files listed ** update -> Insert files that have changed or that were not ** previously in the archive ** ** Create the "sqlar" table in the database if it does not already exist. ** Then add each file in the azFile[] array to the archive. Directories ** are added recursively. If argument bVerbose is non-zero, a message is ** printed on stdout for each file archived. ** ** The create command is the same as update, except that it drops ** any existing "sqlar" table before beginning. The "insert" command ** always overwrites every file named on the command-line, where as ** "update" only overwrites if the size or mtime or mode has changed. */ static int arCreateOrUpdateCommand( ArCommand *pAr, /* Command arguments and options */ int bUpdate, /* true for a --create. */ int bOnlyIfChanged /* Only update if file has changed */ ){ const char *zCreate = "CREATE TABLE IF NOT EXISTS sqlar(\n" " name TEXT PRIMARY KEY, -- name of the file\n" " mode INT, -- access permissions\n" " mtime INT, -- last modification time\n" " sz INT, -- original file size\n" " data BLOB -- compressed content\n" ")"; const char *zDrop = "DROP TABLE IF EXISTS sqlar"; const char *zInsertFmt[2] = { "REPLACE INTO %s(name,mode,mtime,sz,data)\n" " SELECT\n" " %s,\n" " mode,\n" " mtime,\n" " CASE substr(lsmode(mode),1,1)\n" " WHEN '-' THEN length(data)\n" " WHEN 'd' THEN 0\n" " ELSE -1 END,\n" " sqlar_compress(data)\n" " FROM fsdir(%Q,%Q) AS disk\n" " WHERE lsmode(mode) NOT LIKE '?%%'%s;" , "REPLACE INTO %s(name,mode,mtime,data)\n" " SELECT\n" " %s,\n" " mode,\n" " mtime,\n" " data\n" " FROM fsdir(%Q,%Q) AS disk\n" " WHERE lsmode(mode) NOT LIKE '?%%'%s;" }; int i; /* For iterating through azFile[] */ int rc; /* Return code */ const char *zTab = 0; /* SQL table into which to insert */ char *zSql; char zTemp[50]; char *zExists = 0; arExecSql(pAr, "PRAGMA page_size=512"); rc = arExecSql(pAr, "SAVEPOINT ar;"); if( rc!=SQLITE_OK ) return rc; zTemp[0] = 0; if( pAr->bZip ){ /* Initialize the zipfile virtual table, if necessary */ if( pAr->zFile ){ sqlite3_uint64 r; sqlite3_randomness(sizeof(r),&r); sqlite3_snprintf(sizeof(zTemp),zTemp,"zip%016llx",r); zTab = zTemp; zSql = sqlite3_mprintf( "CREATE VIRTUAL TABLE temp.%s USING zipfile(%Q)", zTab, pAr->zFile ); rc = arExecSql(pAr, zSql); sqlite3_free(zSql); }else{ zTab = "zip"; } }else{ /* Initialize the table for an SQLAR */ zTab = "sqlar"; if( bUpdate==0 ){ rc = arExecSql(pAr, zDrop); if( rc!=SQLITE_OK ) goto end_ar_transaction; } rc = arExecSql(pAr, zCreate); } if( bOnlyIfChanged ){ zExists = sqlite3_mprintf( " AND NOT EXISTS(" "SELECT 1 FROM %s AS mem" " WHERE mem.name=disk.name" " AND mem.mtime=disk.mtime" " AND mem.mode=disk.mode)", zTab); }else{ zExists = sqlite3_mprintf(""); } if( zExists==0 ) rc = SQLITE_NOMEM; for(i=0; inArg && rc==SQLITE_OK; i++){ char *zSql2 = sqlite3_mprintf(zInsertFmt[pAr->bZip], zTab, pAr->bVerbose ? "shell_putsnl(name)" : "name", pAr->azArg[i], pAr->zDir, zExists); rc = arExecSql(pAr, zSql2); sqlite3_free(zSql2); } end_ar_transaction: if( rc!=SQLITE_OK ){ sqlite3_exec(pAr->db, "ROLLBACK TO ar; RELEASE ar;", 0, 0, 0); }else{ rc = arExecSql(pAr, "RELEASE ar;"); if( pAr->bZip && pAr->zFile ){ zSql = sqlite3_mprintf("DROP TABLE %s", zTemp); arExecSql(pAr, zSql); sqlite3_free(zSql); } } sqlite3_free(zExists); return rc; } /* ** Implementation of ".ar" dot command. */ static int arDotCommand( ShellState *pState, /* Current shell tool state */ int fromCmdLine, /* True if -A command-line option, not .ar cmd */ char **azArg, /* Array of arguments passed to dot command */ int nArg /* Number of entries in azArg[] */ ){ ArCommand cmd; int rc; memset(&cmd, 0, sizeof(cmd)); cmd.fromCmdLine = fromCmdLine; rc = arParseCommand(azArg, nArg, &cmd); if( rc==SQLITE_OK ){ int eDbType = SHELL_OPEN_UNSPEC; cmd.p = pState; cmd.out = pState->out; cmd.db = pState->db; if( cmd.zFile ){ eDbType = deduceDatabaseType(cmd.zFile, 1); }else{ eDbType = pState->openMode; } if( eDbType==SHELL_OPEN_ZIPFILE ){ if( cmd.eCmd==AR_CMD_EXTRACT || cmd.eCmd==AR_CMD_LIST ){ if( cmd.zFile==0 ){ cmd.zSrcTable = sqlite3_mprintf("zip"); }else{ cmd.zSrcTable = sqlite3_mprintf("zipfile(%Q)", cmd.zFile); } } cmd.bZip = 1; }else if( cmd.zFile ){ int flags; if( cmd.bAppend ) eDbType = SHELL_OPEN_APPENDVFS; if( cmd.eCmd==AR_CMD_CREATE || cmd.eCmd==AR_CMD_INSERT || cmd.eCmd==AR_CMD_REMOVE || cmd.eCmd==AR_CMD_UPDATE ){ flags = SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE; }else{ flags = SQLITE_OPEN_READONLY; } cmd.db = 0; if( cmd.bDryRun ){ sqlite3_fprintf(cmd.out, "-- open database '%s'%s\n", cmd.zFile, eDbType==SHELL_OPEN_APPENDVFS ? " using 'apndvfs'" : ""); } rc = sqlite3_open_v2(cmd.zFile, &cmd.db, flags, eDbType==SHELL_OPEN_APPENDVFS ? "apndvfs" : 0); if( rc!=SQLITE_OK ){ sqlite3_fprintf(stderr, "cannot open file: %s (%s)\n", cmd.zFile, sqlite3_errmsg(cmd.db)); goto end_ar_command; } sqlite3_fileio_init(cmd.db, 0, 0); sqlite3_sqlar_init(cmd.db, 0, 0); sqlite3_create_function(cmd.db, "shell_putsnl", 1, SQLITE_UTF8, cmd.p, shellPutsFunc, 0, 0); } if( cmd.zSrcTable==0 && cmd.bZip==0 && cmd.eCmd!=AR_CMD_HELP ){ if( cmd.eCmd!=AR_CMD_CREATE && sqlite3_table_column_metadata(cmd.db,0,"sqlar","name",0,0,0,0,0) ){ sqlite3_fprintf(stderr, "database does not contain an 'sqlar' table\n"); rc = SQLITE_ERROR; goto end_ar_command; } cmd.zSrcTable = sqlite3_mprintf("sqlar"); } switch( cmd.eCmd ){ case AR_CMD_CREATE: rc = arCreateOrUpdateCommand(&cmd, 0, 0); break; case AR_CMD_EXTRACT: rc = arExtractCommand(&cmd); break; case AR_CMD_LIST: rc = arListCommand(&cmd); break; case AR_CMD_HELP: arUsage(pState->out); break; case AR_CMD_INSERT: rc = arCreateOrUpdateCommand(&cmd, 1, 0); break; case AR_CMD_REMOVE: rc = arRemoveCommand(&cmd); break; default: assert( cmd.eCmd==AR_CMD_UPDATE ); rc = arCreateOrUpdateCommand(&cmd, 1, 1); break; } } end_ar_command: if( cmd.db!=pState->db ){ close_db(cmd.db); } sqlite3_free(cmd.zSrcTable); return rc; } /* End of the ".archive" or ".ar" command logic *******************************************************************************/ #endif /* !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(SQLITE_HAVE_ZLIB) */ #if SQLITE_SHELL_HAVE_RECOVER /* ** This function is used as a callback by the recover extension. Simply ** print the supplied SQL statement to stdout. */ static int recoverSqlCb(void *pCtx, const char *zSql){ ShellState *pState = (ShellState*)pCtx; sqlite3_fprintf(pState->out, "%s;\n", zSql); return SQLITE_OK; } /* ** This function is called to recover data from the database. A script ** to construct a new database containing all recovered data is output ** on stream pState->out. */ static int recoverDatabaseCmd(ShellState *pState, int nArg, char **azArg){ int rc = SQLITE_OK; const char *zRecoveryDb = ""; /* Name of "recovery" database. Debug only */ const char *zLAF = "lost_and_found"; int bFreelist = 1; /* 0 if --ignore-freelist is specified */ int bRowids = 1; /* 0 if --no-rowids */ sqlite3_recover *p = 0; int i = 0; for(i=1; iout, azArg[0]); return 1; } } p = sqlite3_recover_init_sql( pState->db, "main", recoverSqlCb, (void*)pState ); sqlite3_recover_config(p, 789, (void*)zRecoveryDb); /* Debug use only */ sqlite3_recover_config(p, SQLITE_RECOVER_LOST_AND_FOUND, (void*)zLAF); sqlite3_recover_config(p, SQLITE_RECOVER_ROWIDS, (void*)&bRowids); sqlite3_recover_config(p, SQLITE_RECOVER_FREELIST_CORRUPT,(void*)&bFreelist); sqlite3_recover_run(p); if( sqlite3_recover_errcode(p)!=SQLITE_OK ){ const char *zErr = sqlite3_recover_errmsg(p); int errCode = sqlite3_recover_errcode(p); sqlite3_fprintf(stderr,"sql error: %s (%d)\n", zErr, errCode); } rc = sqlite3_recover_finish(p); return rc; } #endif /* SQLITE_SHELL_HAVE_RECOVER */ /* ** Implementation of ".intck STEPS_PER_UNLOCK" command. */ static int intckDatabaseCmd(ShellState *pState, i64 nStepPerUnlock){ sqlite3_intck *p = 0; int rc = SQLITE_OK; rc = sqlite3_intck_open(pState->db, "main", &p); if( rc==SQLITE_OK ){ i64 nStep = 0; i64 nError = 0; const char *zErr = 0; while( SQLITE_OK==sqlite3_intck_step(p) ){ const char *zMsg = sqlite3_intck_message(p); if( zMsg ){ sqlite3_fprintf(pState->out, "%s\n", zMsg); nError++; } nStep++; if( nStepPerUnlock && (nStep % nStepPerUnlock)==0 ){ sqlite3_intck_unlock(p); } } rc = sqlite3_intck_error(p, &zErr); if( zErr ){ sqlite3_fprintf(stderr,"%s\n", zErr); } sqlite3_intck_close(p); sqlite3_fprintf(pState->out, "%lld steps, %lld errors\n", nStep, nError); } return rc; } /* * zAutoColumn(zCol, &db, ?) => Maybe init db, add column zCol to it. * zAutoColumn(0, &db, ?) => (db!=0) Form columns spec for CREATE TABLE, * close db and set it to 0, and return the columns spec, to later * be sqlite3_free()'ed by the caller. * The return is 0 when either: * (a) The db was not initialized and zCol==0 (There are no columns.) * (b) zCol!=0 (Column was added, db initialized as needed.) * The 3rd argument, pRenamed, references an out parameter. If the * pointer is non-zero, its referent will be set to a summary of renames * done if renaming was necessary, or set to 0 if none was done. The out * string (if any) must be sqlite3_free()'ed by the caller. */ #ifdef SHELL_DEBUG #define rc_err_oom_die(rc) \ if( rc==SQLITE_NOMEM ) shell_check_oom(0); \ else if(!(rc==SQLITE_OK||rc==SQLITE_DONE)) \ sqlite3_fprintf(stderr,"E:%d\n",rc), assert(0) #else static void rc_err_oom_die(int rc){ if( rc==SQLITE_NOMEM ) shell_check_oom(0); assert(rc==SQLITE_OK||rc==SQLITE_DONE); } #endif #ifdef SHELL_COLFIX_DB /* If this is set, the DB can be in a file. */ static char zCOL_DB[] = SHELL_STRINGIFY(SHELL_COLFIX_DB); #else /* Otherwise, memory is faster/better for the transient DB. */ static const char *zCOL_DB = ":memory:"; #endif /* Define character (as C string) to separate generated column ordinal * from protected part of incoming column names. This defaults to "_" * so that incoming column identifiers that did not need not be quoted * remain usable without being quoted. It must be one character. */ #ifndef SHELL_AUTOCOLUMN_SEP # define AUTOCOLUMN_SEP "_" #else # define AUTOCOLUMN_SEP SHELL_STRINGIFY(SHELL_AUTOCOLUMN_SEP) #endif static char *zAutoColumn(const char *zColNew, sqlite3 **pDb, char **pzRenamed){ /* Queries and D{D,M}L used here */ static const char * const zTabMake = "\ CREATE TABLE ColNames(\ cpos INTEGER PRIMARY KEY,\ name TEXT, nlen INT, chop INT, reps INT, suff TEXT);\ CREATE VIEW RepeatedNames AS \ SELECT DISTINCT t.name FROM ColNames t \ WHERE t.name COLLATE NOCASE IN (\ SELECT o.name FROM ColNames o WHERE o.cpos<>t.cpos\ );\ "; static const char * const zTabFill = "\ INSERT INTO ColNames(name,nlen,chop,reps,suff)\ VALUES(iif(length(?1)>0,?1,'?'),max(length(?1),1),0,0,'')\ "; static const char * const zHasDupes = "\ SELECT count(DISTINCT (substring(name,1,nlen-chop)||suff) COLLATE NOCASE)\ 1, printf('%c%0*d', '"AUTOCOLUMN_SEP"', $1, cpos), '')" #else /* ...RENAME_MINIMAL_ONE_PASS */ "WITH Lzn(nlz) AS (" /* Find minimum extraneous leading 0's for uniqueness */ " SELECT 0 AS nlz" " UNION" " SELECT nlz+1 AS nlz FROM Lzn" " WHERE EXISTS(" " SELECT 1" " FROM ColNames t, ColNames o" " WHERE" " iif(t.name IN (SELECT * FROM RepeatedNames)," " printf('%s"AUTOCOLUMN_SEP"%s'," " t.name, substring(printf('%.*c%0.*d',nlz+1,'0',$1,t.cpos),2))," " t.name" " )" " =" " iif(o.name IN (SELECT * FROM RepeatedNames)," " printf('%s"AUTOCOLUMN_SEP"%s'," " o.name, substring(printf('%.*c%0.*d',nlz+1,'0',$1,o.cpos),2))," " o.name" " )" " COLLATE NOCASE" " AND o.cpos<>t.cpos" " GROUP BY t.cpos" " )" ") UPDATE Colnames AS t SET" " chop = 0," /* No chopping, never touch incoming names. */ " suff = iif(name IN (SELECT * FROM RepeatedNames)," " printf('"AUTOCOLUMN_SEP"%s', substring(" " printf('%.*c%0.*d',(SELECT max(nlz) FROM Lzn)+1,'0',1,t.cpos),2))," " ''" " )" #endif ; static const char * const zCollectVar = "\ SELECT\ '('||x'0a'\ || group_concat(\ cname||' TEXT',\ ','||iif((cpos-1)%4>0, ' ', x'0a'||' '))\ ||')' AS ColsSpec \ FROM (\ SELECT cpos, printf('\"%w\"',printf('%!.*s%s', nlen-chop,name,suff)) AS cname \ FROM ColNames ORDER BY cpos\ )"; static const char * const zRenamesDone = "SELECT group_concat(" " printf('\"%w\" to \"%w\"',name,printf('%!.*s%s', nlen-chop, name, suff))," " ','||x'0a')" "FROM ColNames WHERE suff<>'' OR chop!=0" ; int rc; sqlite3_stmt *pStmt = 0; assert(pDb!=0); if( zColNew ){ /* Add initial or additional column. Init db if necessary. */ if( *pDb==0 ){ if( SQLITE_OK!=sqlite3_open(zCOL_DB, pDb) ) return 0; #ifdef SHELL_COLFIX_DB if(*zCOL_DB!=':') sqlite3_exec(*pDb,"drop table if exists ColNames;" "drop view if exists RepeatedNames;",0,0,0); #endif #undef SHELL_COLFIX_DB rc = sqlite3_exec(*pDb, zTabMake, 0, 0, 0); rc_err_oom_die(rc); } assert(*pDb!=0); rc = sqlite3_prepare_v2(*pDb, zTabFill, -1, &pStmt, 0); rc_err_oom_die(rc); rc = sqlite3_bind_text(pStmt, 1, zColNew, -1, 0); rc_err_oom_die(rc); rc = sqlite3_step(pStmt); rc_err_oom_die(rc); sqlite3_finalize(pStmt); return 0; }else if( *pDb==0 ){ return 0; }else{ /* Formulate the columns spec, close the DB, zero *pDb. */ char *zColsSpec = 0; int hasDupes = db_int(*pDb, zHasDupes); int nDigits = (hasDupes)? db_int(*pDb, zColDigits) : 0; if( hasDupes ){ #ifdef SHELL_COLUMN_RENAME_CLEAN rc = sqlite3_exec(*pDb, zDedoctor, 0, 0, 0); rc_err_oom_die(rc); #endif rc = sqlite3_exec(*pDb, zSetReps, 0, 0, 0); rc_err_oom_die(rc); rc = sqlite3_prepare_v2(*pDb, zRenameRank, -1, &pStmt, 0); rc_err_oom_die(rc); sqlite3_bind_int(pStmt, 1, nDigits); rc = sqlite3_step(pStmt); sqlite3_finalize(pStmt); if( rc!=SQLITE_DONE ) rc_err_oom_die(SQLITE_NOMEM); } assert(db_int(*pDb, zHasDupes)==0); /* Consider: remove this */ rc = sqlite3_prepare_v2(*pDb, zCollectVar, -1, &pStmt, 0); rc_err_oom_die(rc); rc = sqlite3_step(pStmt); if( rc==SQLITE_ROW ){ zColsSpec = sqlite3_mprintf("%s", sqlite3_column_text(pStmt, 0)); }else{ zColsSpec = 0; } if( pzRenamed!=0 ){ if( !hasDupes ) *pzRenamed = 0; else{ sqlite3_finalize(pStmt); if( SQLITE_OK==sqlite3_prepare_v2(*pDb, zRenamesDone, -1, &pStmt, 0) && SQLITE_ROW==sqlite3_step(pStmt) ){ *pzRenamed = sqlite3_mprintf("%s", sqlite3_column_text(pStmt, 0)); }else *pzRenamed = 0; } } sqlite3_finalize(pStmt); sqlite3_close(*pDb); *pDb = 0; return zColsSpec; } } /* ** Check if the sqlite_schema table contains one or more virtual tables. If ** parameter zLike is not NULL, then it is an SQL expression that the ** sqlite_schema row must also match. If one or more such rows are found, ** print the following warning to the output: ** ** WARNING: Script requires that SQLITE_DBCONFIG_DEFENSIVE be disabled */ static int outputDumpWarning(ShellState *p, const char *zLike){ int rc = SQLITE_OK; sqlite3_stmt *pStmt = 0; shellPreparePrintf(p->db, &rc, &pStmt, "SELECT 1 FROM sqlite_schema o WHERE " "sql LIKE 'CREATE VIRTUAL TABLE%%' AND %s", zLike ? zLike : "true" ); if( rc==SQLITE_OK && sqlite3_step(pStmt)==SQLITE_ROW ){ sqlite3_fputs("/* WARNING: " "Script requires that SQLITE_DBCONFIG_DEFENSIVE be disabled */\n", p->out ); } shellFinalize(&rc, pStmt); return rc; } /* ** Fault-Simulator state and logic. */ static struct { int iId; /* ID that triggers a simulated fault. -1 means "any" */ int iErr; /* The error code to return on a fault */ int iCnt; /* Trigger the fault only if iCnt is already zero */ int iInterval; /* Reset iCnt to this value after each fault */ int eVerbose; /* When to print output */ int nHit; /* Number of hits seen so far */ int nRepeat; /* Turn off after this many hits. 0 for never */ int nSkip; /* Skip this many before first fault */ } faultsim_state = {-1, 0, 0, 0, 0, 0, 0, 0}; /* ** This is the fault-sim callback */ static int faultsim_callback(int iArg){ if( faultsim_state.iId>0 && faultsim_state.iId!=iArg ){ return SQLITE_OK; } if( faultsim_state.iCnt ){ if( faultsim_state.iCnt>0 ) faultsim_state.iCnt--; if( faultsim_state.eVerbose>=2 ){ sqlite3_fprintf(stdout, "FAULT-SIM id=%d no-fault (cnt=%d)\n", iArg, faultsim_state.iCnt); } return SQLITE_OK; } if( faultsim_state.eVerbose>=1 ){ sqlite3_fprintf(stdout, "FAULT-SIM id=%d returns %d\n", iArg, faultsim_state.iErr); } faultsim_state.iCnt = faultsim_state.iInterval; faultsim_state.nHit++; if( faultsim_state.nRepeat>0 && faultsim_state.nRepeat<=faultsim_state.nHit ){ faultsim_state.iCnt = -1; } return faultsim_state.iErr; } /* ** If an input line begins with "." then invoke this routine to ** process that line. ** ** Return 1 on error, 2 to exit, and 0 otherwise. */ static int do_meta_command(char *zLine, ShellState *p){ int h = 1; int nArg = 0; int n, c; int rc = 0; char *azArg[52]; #ifndef SQLITE_OMIT_VIRTUALTABLE if( p->expert.pExpert ){ expertFinish(p, 1, 0); } #endif /* Parse the input line into tokens. */ while( zLine[h] && nArgdb, shellAuth, p); }else if( p->bSafeModePersist ){ sqlite3_set_authorizer(p->db, safeModeAuth, p); }else{ sqlite3_set_authorizer(p->db, 0, 0); } }else #endif #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(SQLITE_HAVE_ZLIB) \ && !defined(SQLITE_SHELL_FIDDLE) if( c=='a' && cli_strncmp(azArg[0], "archive", n)==0 ){ open_db(p, 0); failIfSafeMode(p, "cannot run .archive in safe mode"); rc = arDotCommand(p, 0, azArg, nArg); }else #endif #ifndef SQLITE_SHELL_FIDDLE if( (c=='b' && n>=3 && cli_strncmp(azArg[0], "backup", n)==0) || (c=='s' && n>=3 && cli_strncmp(azArg[0], "save", n)==0) ){ const char *zDestFile = 0; const char *zDb = 0; sqlite3 *pDest; sqlite3_backup *pBackup; int j; int bAsync = 0; const char *zVfs = 0; failIfSafeMode(p, "cannot run .%s in safe mode", azArg[0]); for(j=1; jdb, zDb); if( pBackup==0 ){ shellDatabaseError(pDest); close_db(pDest); return 1; } while( (rc = sqlite3_backup_step(pBackup,100))==SQLITE_OK ){} sqlite3_backup_finish(pBackup); if( rc==SQLITE_DONE ){ rc = 0; }else{ shellDatabaseError(pDest); rc = 1; } close_db(pDest); }else #endif /* !defined(SQLITE_SHELL_FIDDLE) */ if( c=='b' && n>=3 && cli_strncmp(azArg[0], "bail", n)==0 ){ if( nArg==2 ){ bail_on_error = booleanValue(azArg[1]); }else{ eputz("Usage: .bail on|off\n"); rc = 1; } }else /* Undocumented. Legacy only. See "crlf" below */ if( c=='b' && n>=3 && cli_strncmp(azArg[0], "binary", n)==0 ){ eputz("The \".binary\" command is deprecated.\n"); rc = 1; }else /* The undocumented ".breakpoint" command causes a call to the no-op ** routine named test_breakpoint(). */ if( c=='b' && n>=3 && cli_strncmp(azArg[0], "breakpoint", n)==0 ){ test_breakpoint(); }else #ifndef SQLITE_SHELL_FIDDLE if( c=='c' && cli_strcmp(azArg[0],"cd")==0 ){ failIfSafeMode(p, "cannot run .cd in safe mode"); if( nArg==2 ){ #if defined(_WIN32) || defined(WIN32) wchar_t *z = sqlite3_win32_utf8_to_unicode(azArg[1]); rc = !SetCurrentDirectoryW(z); sqlite3_free(z); #else rc = chdir(azArg[1]); #endif if( rc ){ sqlite3_fprintf(stderr,"Cannot change to directory \"%s\"\n", azArg[1]); rc = 1; } }else{ eputz("Usage: .cd DIRECTORY\n"); rc = 1; } }else #endif /* !defined(SQLITE_SHELL_FIDDLE) */ if( c=='c' && n>=3 && cli_strncmp(azArg[0], "changes", n)==0 ){ if( nArg==2 ){ setOrClearFlag(p, SHFLG_CountChanges, azArg[1]); }else{ eputz("Usage: .changes on|off\n"); rc = 1; } }else #ifndef SQLITE_SHELL_FIDDLE /* Cancel output redirection, if it is currently set (by .testcase) ** Then read the content of the testcase-out.txt file and compare against ** azArg[1]. If there are differences, report an error and exit. */ if( c=='c' && n>=3 && cli_strncmp(azArg[0], "check", n)==0 ){ char *zRes = 0; output_reset(p); if( nArg!=2 ){ eputz("Usage: .check GLOB-PATTERN\n"); rc = 2; }else if( (zRes = readFile("testcase-out.txt", 0))==0 ){ rc = 2; }else if( testcase_glob(azArg[1],zRes)==0 ){ sqlite3_fprintf(stderr, "testcase-%s FAILED\n Expected: [%s]\n Got: [%s]\n", p->zTestcase, azArg[1], zRes); rc = 1; }else{ sqlite3_fprintf(p->out, "testcase-%s ok\n", p->zTestcase); p->nCheck++; } sqlite3_free(zRes); }else #endif /* !defined(SQLITE_SHELL_FIDDLE) */ #ifndef SQLITE_SHELL_FIDDLE if( c=='c' && cli_strncmp(azArg[0], "clone", n)==0 ){ failIfSafeMode(p, "cannot run .clone in safe mode"); if( nArg==2 ){ tryToClone(p, azArg[1]); }else{ eputz("Usage: .clone FILENAME\n"); rc = 1; } }else #endif /* !defined(SQLITE_SHELL_FIDDLE) */ if( c=='c' && cli_strncmp(azArg[0], "connection", n)==0 ){ if( nArg==1 ){ /* List available connections */ int i; for(i=0; iaAuxDb); i++){ const char *zFile = p->aAuxDb[i].zDbFilename; if( p->aAuxDb[i].db==0 && p->pAuxDb!=&p->aAuxDb[i] ){ zFile = "(not open)"; }else if( zFile==0 ){ zFile = "(memory)"; }else if( zFile[0]==0 ){ zFile = "(temporary-file)"; } if( p->pAuxDb == &p->aAuxDb[i] ){ sqlite3_fprintf(stdout, "ACTIVE %d: %s\n", i, zFile); }else if( p->aAuxDb[i].db!=0 ){ sqlite3_fprintf(stdout, " %d: %s\n", i, zFile); } } }else if( nArg==2 && IsDigit(azArg[1][0]) && azArg[1][1]==0 ){ int i = azArg[1][0] - '0'; if( p->pAuxDb != &p->aAuxDb[i] && i>=0 && iaAuxDb) ){ p->pAuxDb->db = p->db; p->pAuxDb = &p->aAuxDb[i]; globalDb = p->db = p->pAuxDb->db; p->pAuxDb->db = 0; } }else if( nArg==3 && cli_strcmp(azArg[1], "close")==0 && IsDigit(azArg[2][0]) && azArg[2][1]==0 ){ int i = azArg[2][0] - '0'; if( i<0 || i>=ArraySize(p->aAuxDb) ){ /* No-op */ }else if( p->pAuxDb == &p->aAuxDb[i] ){ eputz("cannot close the active database connection\n"); rc = 1; }else if( p->aAuxDb[i].db ){ session_close_all(p, i); close_db(p->aAuxDb[i].db); p->aAuxDb[i].db = 0; } }else{ eputz("Usage: .connection [close] [CONNECTION-NUMBER]\n"); rc = 1; } }else if( c=='c' && n==4 && (cli_strncmp(azArg[0], "crlf", n)==0 || cli_strncmp(azArg[0], "crnl",n)==0) ){ if( nArg==2 ){ #ifdef _WIN32 p->crlfMode = booleanValue(azArg[1]); #else p->crlfMode = 0; #endif } sqlite3_fprintf(stderr, "crlf is %s\n", p->crlfMode ? "ON" : "OFF"); }else if( c=='d' && n>1 && cli_strncmp(azArg[0], "databases", n)==0 ){ char **azName = 0; int nName = 0; sqlite3_stmt *pStmt; int i; open_db(p, 0); rc = sqlite3_prepare_v2(p->db, "PRAGMA database_list", -1, &pStmt, 0); if( rc ){ shellDatabaseError(p->db); rc = 1; }else{ while( sqlite3_step(pStmt)==SQLITE_ROW ){ const char *zSchema = (const char *)sqlite3_column_text(pStmt,1); const char *zFile = (const char*)sqlite3_column_text(pStmt,2); if( zSchema==0 || zFile==0 ) continue; azName = sqlite3_realloc(azName, (nName+1)*2*sizeof(char*)); shell_check_oom(azName); azName[nName*2] = strdup(zSchema); azName[nName*2+1] = strdup(zFile); nName++; } } sqlite3_finalize(pStmt); for(i=0; idb, azName[i*2]); int bRdonly = sqlite3_db_readonly(p->db, azName[i*2]); const char *z = azName[i*2+1]; sqlite3_fprintf(p->out, "%s: %s %s%s\n", azName[i*2], z && z[0] ? z : "\"\"", bRdonly ? "r/o" : "r/w", eTxn==SQLITE_TXN_NONE ? "" : eTxn==SQLITE_TXN_READ ? " read-txn" : " write-txn"); free(azName[i*2]); free(azName[i*2+1]); } sqlite3_free(azName); }else if( c=='d' && n>=3 && cli_strncmp(azArg[0], "dbconfig", n)==0 ){ static const struct DbConfigChoices { const char *zName; int op; } aDbConfig[] = { { "defensive", SQLITE_DBCONFIG_DEFENSIVE }, { "dqs_ddl", SQLITE_DBCONFIG_DQS_DDL }, { "dqs_dml", SQLITE_DBCONFIG_DQS_DML }, { "enable_fkey", SQLITE_DBCONFIG_ENABLE_FKEY }, { "enable_qpsg", SQLITE_DBCONFIG_ENABLE_QPSG }, { "enable_trigger", SQLITE_DBCONFIG_ENABLE_TRIGGER }, { "enable_view", SQLITE_DBCONFIG_ENABLE_VIEW }, { "fts3_tokenizer", SQLITE_DBCONFIG_ENABLE_FTS3_TOKENIZER }, { "legacy_alter_table", SQLITE_DBCONFIG_LEGACY_ALTER_TABLE }, { "legacy_file_format", SQLITE_DBCONFIG_LEGACY_FILE_FORMAT }, { "load_extension", SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION }, { "no_ckpt_on_close", SQLITE_DBCONFIG_NO_CKPT_ON_CLOSE }, { "reset_database", SQLITE_DBCONFIG_RESET_DATABASE }, { "reverse_scanorder", SQLITE_DBCONFIG_REVERSE_SCANORDER }, { "stmt_scanstatus", SQLITE_DBCONFIG_STMT_SCANSTATUS }, { "trigger_eqp", SQLITE_DBCONFIG_TRIGGER_EQP }, { "trusted_schema", SQLITE_DBCONFIG_TRUSTED_SCHEMA }, { "writable_schema", SQLITE_DBCONFIG_WRITABLE_SCHEMA }, }; int ii, v; open_db(p, 0); for(ii=0; ii1 && cli_strcmp(azArg[1], aDbConfig[ii].zName)!=0 ) continue; if( nArg>=3 ){ sqlite3_db_config(p->db, aDbConfig[ii].op, booleanValue(azArg[2]), 0); } sqlite3_db_config(p->db, aDbConfig[ii].op, -1, &v); sqlite3_fprintf(p->out, "%19s %s\n", aDbConfig[ii].zName, v ? "on" : "off"); if( nArg>1 ) break; } if( nArg>1 && ii==ArraySize(aDbConfig) ){ sqlite3_fprintf(stderr,"Error: unknown dbconfig \"%s\"\n", azArg[1]); eputz("Enter \".dbconfig\" with no arguments for a list\n"); } }else #if SQLITE_SHELL_HAVE_RECOVER if( c=='d' && n>=3 && cli_strncmp(azArg[0], "dbinfo", n)==0 ){ rc = shell_dbinfo_command(p, nArg, azArg); }else if( c=='r' && cli_strncmp(azArg[0], "recover", n)==0 ){ open_db(p, 0); rc = recoverDatabaseCmd(p, nArg, azArg); }else #endif /* SQLITE_SHELL_HAVE_RECOVER */ if( c=='d' && cli_strncmp(azArg[0], "dump", n)==0 ){ char *zLike = 0; char *zSql; int i; int savedShowHeader = p->showHeader; int savedShellFlags = p->shellFlgs; ShellClearFlag(p, SHFLG_PreserveRowid|SHFLG_Newlines|SHFLG_Echo |SHFLG_DumpDataOnly|SHFLG_DumpNoSys); for(i=1; ishellFlgs & SHFLG_DumpDataOnly)==0 ){ /* When playing back a "dump", the content might appear in an order ** which causes immediate foreign key constraints to be violated. ** So disable foreign-key constraint enforcement to prevent problems. */ sqlite3_fputs("PRAGMA foreign_keys=OFF;\n", p->out); sqlite3_fputs("BEGIN TRANSACTION;\n", p->out); } p->writableSchema = 0; p->showHeader = 0; /* Set writable_schema=ON since doing so forces SQLite to initialize ** as much of the schema as it can even if the sqlite_schema table is ** corrupt. */ sqlite3_exec(p->db, "SAVEPOINT dump; PRAGMA writable_schema=ON", 0, 0, 0); p->nErr = 0; if( zLike==0 ) zLike = sqlite3_mprintf("true"); zSql = sqlite3_mprintf( "SELECT name, type, sql FROM sqlite_schema AS o " "WHERE (%s) AND type=='table'" " AND sql NOT NULL" " ORDER BY tbl_name='sqlite_sequence', rowid", zLike ); run_schema_dump_query(p,zSql); sqlite3_free(zSql); if( (p->shellFlgs & SHFLG_DumpDataOnly)==0 ){ zSql = sqlite3_mprintf( "SELECT sql FROM sqlite_schema AS o " "WHERE (%s) AND sql NOT NULL" " AND type IN ('index','trigger','view') " "ORDER BY type COLLATE NOCASE DESC", zLike ); run_table_dump_query(p, zSql); sqlite3_free(zSql); } sqlite3_free(zLike); if( p->writableSchema ){ sqlite3_fputs("PRAGMA writable_schema=OFF;\n", p->out); p->writableSchema = 0; } sqlite3_exec(p->db, "PRAGMA writable_schema=OFF;", 0, 0, 0); sqlite3_exec(p->db, "RELEASE dump;", 0, 0, 0); if( (p->shellFlgs & SHFLG_DumpDataOnly)==0 ){ sqlite3_fputs(p->nErr?"ROLLBACK; -- due to errors\n":"COMMIT;\n", p->out); } p->showHeader = savedShowHeader; p->shellFlgs = savedShellFlags; }else if( c=='e' && cli_strncmp(azArg[0], "echo", n)==0 ){ if( nArg==2 ){ setOrClearFlag(p, SHFLG_Echo, azArg[1]); }else{ eputz("Usage: .echo on|off\n"); rc = 1; } }else if( c=='e' && cli_strncmp(azArg[0], "eqp", n)==0 ){ if( nArg==2 ){ p->autoEQPtest = 0; if( p->autoEQPtrace ){ if( p->db ) sqlite3_exec(p->db, "PRAGMA vdbe_trace=OFF;", 0, 0, 0); p->autoEQPtrace = 0; } if( cli_strcmp(azArg[1],"full")==0 ){ p->autoEQP = AUTOEQP_full; }else if( cli_strcmp(azArg[1],"trigger")==0 ){ p->autoEQP = AUTOEQP_trigger; #ifdef SQLITE_DEBUG }else if( cli_strcmp(azArg[1],"test")==0 ){ p->autoEQP = AUTOEQP_on; p->autoEQPtest = 1; }else if( cli_strcmp(azArg[1],"trace")==0 ){ p->autoEQP = AUTOEQP_full; p->autoEQPtrace = 1; open_db(p, 0); sqlite3_exec(p->db, "SELECT name FROM sqlite_schema LIMIT 1", 0, 0, 0); sqlite3_exec(p->db, "PRAGMA vdbe_trace=ON;", 0, 0, 0); #endif }else{ p->autoEQP = (u8)booleanValue(azArg[1]); } }else{ eputz("Usage: .eqp off|on|trace|trigger|full\n"); rc = 1; } }else #ifndef SQLITE_SHELL_FIDDLE if( c=='e' && cli_strncmp(azArg[0], "exit", n)==0 ){ if( nArg>1 && (rc = (int)integerValue(azArg[1]))!=0 ) exit(rc); rc = 2; }else #endif /* The ".explain" command is automatic now. It is largely pointless. It ** retained purely for backwards compatibility */ if( c=='e' && cli_strncmp(azArg[0], "explain", n)==0 ){ int val = 1; if( nArg>=2 ){ if( cli_strcmp(azArg[1],"auto")==0 ){ val = 99; }else{ val = booleanValue(azArg[1]); } } if( val==1 && p->mode!=MODE_Explain ){ p->normalMode = p->mode; p->mode = MODE_Explain; p->autoExplain = 0; }else if( val==0 ){ if( p->mode==MODE_Explain ) p->mode = p->normalMode; p->autoExplain = 0; }else if( val==99 ){ if( p->mode==MODE_Explain ) p->mode = p->normalMode; p->autoExplain = 1; } }else #ifndef SQLITE_OMIT_VIRTUALTABLE if( c=='e' && cli_strncmp(azArg[0], "expert", n)==0 ){ if( p->bSafeMode ){ sqlite3_fprintf(stderr, "Cannot run experimental commands such as \"%s\" in safe mode\n", azArg[0]); rc = 1; }else{ open_db(p, 0); expertDotCommand(p, azArg, nArg); } }else #endif if( c=='f' && cli_strncmp(azArg[0], "filectrl", n)==0 ){ static const struct { const char *zCtrlName; /* Name of a test-control option */ int ctrlCode; /* Integer code for that option */ const char *zUsage; /* Usage notes */ } aCtrl[] = { { "chunk_size", SQLITE_FCNTL_CHUNK_SIZE, "SIZE" }, { "data_version", SQLITE_FCNTL_DATA_VERSION, "" }, { "has_moved", SQLITE_FCNTL_HAS_MOVED, "" }, { "lock_timeout", SQLITE_FCNTL_LOCK_TIMEOUT, "MILLISEC" }, { "persist_wal", SQLITE_FCNTL_PERSIST_WAL, "[BOOLEAN]" }, /* { "pragma", SQLITE_FCNTL_PRAGMA, "NAME ARG" },*/ { "psow", SQLITE_FCNTL_POWERSAFE_OVERWRITE, "[BOOLEAN]" }, { "reserve_bytes", SQLITE_FCNTL_RESERVE_BYTES, "[N]" }, { "size_limit", SQLITE_FCNTL_SIZE_LIMIT, "[LIMIT]" }, { "tempfilename", SQLITE_FCNTL_TEMPFILENAME, "" }, /* { "win32_av_retry", SQLITE_FCNTL_WIN32_AV_RETRY, "COUNT DELAY" },*/ }; int filectrl = -1; int iCtrl = -1; sqlite3_int64 iRes = 0; /* Integer result to display if rc2==1 */ int isOk = 0; /* 0: usage 1: %lld 2: no-result */ int n2, i; const char *zCmd = 0; const char *zSchema = 0; open_db(p, 0); zCmd = nArg>=2 ? azArg[1] : "help"; if( zCmd[0]=='-' && (cli_strcmp(zCmd,"--schema")==0 || cli_strcmp(zCmd,"-schema")==0) && nArg>=4 ){ zSchema = azArg[2]; for(i=3; iout); for(i=0; iout, " .filectrl %s %s\n", aCtrl[i].zCtrlName, aCtrl[i].zUsage); } rc = 1; goto meta_command_exit; } /* convert filectrl text option to value. allow any unique prefix ** of the option name, or a numerical value. */ n2 = strlen30(zCmd); for(i=0; idb, zSchema, SQLITE_FCNTL_SIZE_LIMIT, &iRes); isOk = 1; break; } case SQLITE_FCNTL_LOCK_TIMEOUT: case SQLITE_FCNTL_CHUNK_SIZE: { int x; if( nArg!=3 ) break; x = (int)integerValue(azArg[2]); sqlite3_file_control(p->db, zSchema, filectrl, &x); isOk = 2; break; } case SQLITE_FCNTL_PERSIST_WAL: case SQLITE_FCNTL_POWERSAFE_OVERWRITE: { int x; if( nArg!=2 && nArg!=3 ) break; x = nArg==3 ? booleanValue(azArg[2]) : -1; sqlite3_file_control(p->db, zSchema, filectrl, &x); iRes = x; isOk = 1; break; } case SQLITE_FCNTL_DATA_VERSION: case SQLITE_FCNTL_HAS_MOVED: { int x; if( nArg!=2 ) break; sqlite3_file_control(p->db, zSchema, filectrl, &x); iRes = x; isOk = 1; break; } case SQLITE_FCNTL_TEMPFILENAME: { char *z = 0; if( nArg!=2 ) break; sqlite3_file_control(p->db, zSchema, filectrl, &z); if( z ){ sqlite3_fprintf(p->out, "%s\n", z); sqlite3_free(z); } isOk = 2; break; } case SQLITE_FCNTL_RESERVE_BYTES: { int x; if( nArg>=3 ){ x = atoi(azArg[2]); sqlite3_file_control(p->db, zSchema, filectrl, &x); } x = -1; sqlite3_file_control(p->db, zSchema, filectrl, &x); sqlite3_fprintf(p->out, "%d\n", x); isOk = 2; break; } } } if( isOk==0 && iCtrl>=0 ){ sqlite3_fprintf(p->out, "Usage: .filectrl %s %s\n", zCmd, aCtrl[iCtrl].zUsage); rc = 1; }else if( isOk==1 ){ char zBuf[100]; sqlite3_snprintf(sizeof(zBuf), zBuf, "%lld", iRes); sqlite3_fprintf(p->out, "%s\n", zBuf); } }else if( c=='f' && cli_strncmp(azArg[0], "fullschema", n)==0 ){ ShellState data; int doStats = 0; memcpy(&data, p, sizeof(data)); data.showHeader = 0; data.cMode = data.mode = MODE_Semi; if( nArg==2 && optionMatch(azArg[1], "indent") ){ data.cMode = data.mode = MODE_Pretty; nArg = 1; } if( nArg!=1 ){ eputz("Usage: .fullschema ?--indent?\n"); rc = 1; goto meta_command_exit; } open_db(p, 0); rc = sqlite3_exec(p->db, "SELECT sql FROM" " (SELECT sql sql, type type, tbl_name tbl_name, name name, rowid x" " FROM sqlite_schema UNION ALL" " SELECT sql, type, tbl_name, name, rowid FROM sqlite_temp_schema) " "WHERE type!='meta' AND sql NOTNULL AND name NOT LIKE 'sqlite_%' " "ORDER BY x", callback, &data, 0 ); if( rc==SQLITE_OK ){ sqlite3_stmt *pStmt; rc = sqlite3_prepare_v2(p->db, "SELECT rowid FROM sqlite_schema" " WHERE name GLOB 'sqlite_stat[134]'", -1, &pStmt, 0); if( rc==SQLITE_OK ){ doStats = sqlite3_step(pStmt)==SQLITE_ROW; sqlite3_finalize(pStmt); } } if( doStats==0 ){ sqlite3_fputs("/* No STAT tables available */\n", p->out); }else{ sqlite3_fputs("ANALYZE sqlite_schema;\n", p->out); data.cMode = data.mode = MODE_Insert; data.zDestTable = "sqlite_stat1"; shell_exec(&data, "SELECT * FROM sqlite_stat1", 0); data.zDestTable = "sqlite_stat4"; shell_exec(&data, "SELECT * FROM sqlite_stat4", 0); sqlite3_fputs("ANALYZE sqlite_schema;\n", p->out); } }else if( c=='h' && cli_strncmp(azArg[0], "headers", n)==0 ){ if( nArg==2 ){ p->showHeader = booleanValue(azArg[1]); p->shellFlgs |= SHFLG_HeaderSet; }else{ eputz("Usage: .headers on|off\n"); rc = 1; } }else if( c=='h' && cli_strncmp(azArg[0], "help", n)==0 ){ if( nArg>=2 ){ n = showHelp(p->out, azArg[1]); if( n==0 ){ sqlite3_fprintf(p->out, "Nothing matches '%s'\n", azArg[1]); } }else{ showHelp(p->out, 0); } }else #ifndef SQLITE_SHELL_FIDDLE if( c=='i' && cli_strncmp(azArg[0], "import", n)==0 ){ char *zTable = 0; /* Insert data into this table */ char *zSchema = 0; /* Schema of zTable */ char *zFile = 0; /* Name of file to extra content from */ sqlite3_stmt *pStmt = NULL; /* A statement */ int nCol; /* Number of columns in the table */ i64 nByte; /* Number of bytes in an SQL string */ int i, j; /* Loop counters */ int needCommit; /* True to COMMIT or ROLLBACK at end */ int nSep; /* Number of bytes in p->colSeparator[] */ char *zSql = 0; /* An SQL statement */ ImportCtx sCtx; /* Reader context */ char *(SQLITE_CDECL *xRead)(ImportCtx*); /* Func to read one value */ int eVerbose = 0; /* Larger for more console output */ int nSkip = 0; /* Initial lines to skip */ int useOutputMode = 1; /* Use output mode to determine separators */ char *zCreate = 0; /* CREATE TABLE statement text */ failIfSafeMode(p, "cannot run .import in safe mode"); memset(&sCtx, 0, sizeof(sCtx)); if( p->mode==MODE_Ascii ){ xRead = ascii_read_one_field; }else{ xRead = csv_read_one_field; } rc = 1; for(i=1; iout, "ERROR: extra argument: \"%s\". Usage:\n",z); showHelp(p->out, "import"); goto meta_command_exit; } }else if( cli_strcmp(z,"-v")==0 ){ eVerbose++; }else if( cli_strcmp(z,"-schema")==0 && iout, "ERROR: unknown option: \"%s\". Usage:\n", z); showHelp(p->out, "import"); goto meta_command_exit; } } if( zTable==0 ){ sqlite3_fprintf(p->out, "ERROR: missing %s argument. Usage:\n", zFile==0 ? "FILE" : "TABLE"); showHelp(p->out, "import"); goto meta_command_exit; } seenInterrupt = 0; open_db(p, 0); if( useOutputMode ){ /* If neither the --csv or --ascii options are specified, then set ** the column and row separator characters from the output mode. */ nSep = strlen30(p->colSeparator); if( nSep==0 ){ eputz("Error: non-null column separator required for import\n"); goto meta_command_exit; } if( nSep>1 ){ eputz("Error: multi-character column separators not allowed" " for import\n"); goto meta_command_exit; } nSep = strlen30(p->rowSeparator); if( nSep==0 ){ eputz("Error: non-null row separator required for import\n"); goto meta_command_exit; } if( nSep==2 && p->mode==MODE_Csv && cli_strcmp(p->rowSeparator,SEP_CrLf)==0 ){ /* When importing CSV (only), if the row separator is set to the ** default output row separator, change it to the default input ** row separator. This avoids having to maintain different input ** and output row separators. */ sqlite3_snprintf(sizeof(p->rowSeparator), p->rowSeparator, SEP_Row); nSep = strlen30(p->rowSeparator); } if( nSep>1 ){ eputz("Error: multi-character row separators not allowed" " for import\n"); goto meta_command_exit; } sCtx.cColSep = (u8)p->colSeparator[0]; sCtx.cRowSep = (u8)p->rowSeparator[0]; } sCtx.zFile = zFile; sCtx.nLine = 1; if( sCtx.zFile[0]=='|' ){ #ifdef SQLITE_OMIT_POPEN eputz("Error: pipes are not supported in this OS\n"); goto meta_command_exit; #else sCtx.in = sqlite3_popen(sCtx.zFile+1, "r"); sCtx.zFile = ""; sCtx.xCloser = pclose; #endif }else{ sCtx.in = sqlite3_fopen(sCtx.zFile, "rb"); sCtx.xCloser = fclose; } if( sCtx.in==0 ){ sqlite3_fprintf(stderr,"Error: cannot open \"%s\"\n", zFile); goto meta_command_exit; } if( eVerbose>=2 || (eVerbose>=1 && useOutputMode) ){ char zSep[2]; zSep[1] = 0; zSep[0] = sCtx.cColSep; sqlite3_fputs("Column separator ", p->out); output_c_string(p->out, zSep); sqlite3_fputs(", row separator ", p->out); zSep[0] = sCtx.cRowSep; output_c_string(p->out, zSep); sqlite3_fputs("\n", p->out); } sCtx.z = sqlite3_malloc64(120); if( sCtx.z==0 ){ import_cleanup(&sCtx); shell_out_of_memory(); } /* Below, resources must be freed before exit. */ while( (nSkip--)>0 ){ while( xRead(&sCtx) && sCtx.cTerm==sCtx.cColSep ){} } import_append_char(&sCtx, 0); /* To ensure sCtx.z is allocated */ if( sqlite3_table_column_metadata(p->db, zSchema, zTable,0,0,0,0,0,0) ){ /* Table does not exist. Create it. */ sqlite3 *dbCols = 0; char *zRenames = 0; char *zColDefs; zCreate = sqlite3_mprintf("CREATE TABLE \"%w\".\"%w\"", zSchema ? zSchema : "main", zTable); while( xRead(&sCtx) ){ zAutoColumn(sCtx.z, &dbCols, 0); if( sCtx.cTerm!=sCtx.cColSep ) break; } zColDefs = zAutoColumn(0, &dbCols, &zRenames); if( zRenames!=0 ){ sqlite3_fprintf((stdin_is_interactive && p->in==stdin)? p->out : stderr, "Columns renamed during .import %s due to duplicates:\n" "%s\n", sCtx.zFile, zRenames); sqlite3_free(zRenames); } assert(dbCols==0); if( zColDefs==0 ){ sqlite3_fprintf(stderr,"%s: empty file\n", sCtx.zFile); import_cleanup(&sCtx); rc = 1; sqlite3_free(zCreate); goto meta_command_exit; } zCreate = sqlite3_mprintf("%z%z\n", zCreate, zColDefs); if( zCreate==0 ){ import_cleanup(&sCtx); shell_out_of_memory(); } if( eVerbose>=1 ){ sqlite3_fprintf(p->out, "%s\n", zCreate); } rc = sqlite3_exec(p->db, zCreate, 0, 0, 0); if( rc ){ sqlite3_fprintf(stderr, "%s failed:\n%s\n", zCreate, sqlite3_errmsg(p->db)); } sqlite3_free(zCreate); zCreate = 0; if( rc ){ import_cleanup(&sCtx); rc = 1; goto meta_command_exit; } } zSql = sqlite3_mprintf("SELECT count(*) FROM pragma_table_info(%Q,%Q);", zTable, zSchema); if( zSql==0 ){ import_cleanup(&sCtx); shell_out_of_memory(); } rc = sqlite3_prepare_v2(p->db, zSql, -1, &pStmt, 0); sqlite3_free(zSql); zSql = 0; if( rc ){ if (pStmt) sqlite3_finalize(pStmt); shellDatabaseError(p->db); import_cleanup(&sCtx); rc = 1; goto meta_command_exit; } if( sqlite3_step(pStmt)==SQLITE_ROW ){ nCol = sqlite3_column_int(pStmt, 0); }else{ nCol = 0; } sqlite3_finalize(pStmt); pStmt = 0; if( nCol==0 ) return 0; /* no columns, no error */ nByte = 64 /* space for "INSERT INTO", "VALUES(", ")\0" */ + (zSchema ? strlen(zSchema)*2 + 2: 0) /* Quoted schema name */ + strlen(zTable)*2 + 2 /* Quoted table name */ + nCol*2; /* Space for ",?" for each column */ zSql = sqlite3_malloc64( nByte ); if( zSql==0 ){ import_cleanup(&sCtx); shell_out_of_memory(); } if( zSchema ){ sqlite3_snprintf(nByte, zSql, "INSERT INTO \"%w\".\"%w\" VALUES(?", zSchema, zTable); }else{ sqlite3_snprintf(nByte, zSql, "INSERT INTO \"%w\" VALUES(?", zTable); } j = strlen30(zSql); for(i=1; i=2 ){ sqlite3_fprintf(p->out, "Insert using: %s\n", zSql); } rc = sqlite3_prepare_v2(p->db, zSql, -1, &pStmt, 0); sqlite3_free(zSql); zSql = 0; if( rc ){ shellDatabaseError(p->db); if (pStmt) sqlite3_finalize(pStmt); import_cleanup(&sCtx); rc = 1; goto meta_command_exit; } needCommit = sqlite3_get_autocommit(p->db); if( needCommit ) sqlite3_exec(p->db, "BEGIN", 0, 0, 0); do{ int startLine = sCtx.nLine; for(i=0; imode==MODE_Ascii && (z==0 || z[0]==0) && i==0 ) break; /* ** For CSV mode, per RFC 4180, accept EOF in lieu of final ** record terminator but only for last field of multi-field row. ** (If there are too few fields, it's not valid CSV anyway.) */ if( z==0 && (xRead==csv_read_one_field) && i==nCol-1 && i>0 ){ z = ""; } sqlite3_bind_text(pStmt, i+1, z, -1, SQLITE_TRANSIENT); if( i=nCol ){ sqlite3_step(pStmt); rc = sqlite3_reset(pStmt); if( rc!=SQLITE_OK ){ sqlite3_fprintf(stderr,"%s:%d: INSERT failed: %s\n", sCtx.zFile, startLine, sqlite3_errmsg(p->db)); sCtx.nErr++; }else{ sCtx.nRow++; } } }while( sCtx.cTerm!=EOF ); import_cleanup(&sCtx); sqlite3_finalize(pStmt); if( needCommit ) sqlite3_exec(p->db, "COMMIT", 0, 0, 0); if( eVerbose>0 ){ sqlite3_fprintf(p->out, "Added %d rows with %d errors using %d lines of input\n", sCtx.nRow, sCtx.nErr, sCtx.nLine-1); } }else #endif /* !defined(SQLITE_SHELL_FIDDLE) */ #ifndef SQLITE_UNTESTABLE if( c=='i' && cli_strncmp(azArg[0], "imposter", n)==0 ){ char *zSql; char *zCollist = 0; sqlite3_stmt *pStmt; int tnum = 0; int isWO = 0; /* True if making an imposter of a WITHOUT ROWID table */ int lenPK = 0; /* Length of the PRIMARY KEY string for isWO tables */ int i; if( !ShellHasFlag(p,SHFLG_TestingMode) ){ sqlite3_fprintf(stderr,".%s unavailable without --unsafe-testing\n", "imposter"); rc = 1; goto meta_command_exit; } if( !(nArg==3 || (nArg==2 && sqlite3_stricmp(azArg[1],"off")==0)) ){ eputz("Usage: .imposter INDEX IMPOSTER\n" " .imposter off\n"); /* Also allowed, but not documented: ** ** .imposter TABLE IMPOSTER ** ** where TABLE is a WITHOUT ROWID table. In that case, the ** imposter is another WITHOUT ROWID table with the columns in ** storage order. */ rc = 1; goto meta_command_exit; } open_db(p, 0); if( nArg==2 ){ sqlite3_test_control(SQLITE_TESTCTRL_IMPOSTER, p->db, "main", 0, 1); goto meta_command_exit; } zSql = sqlite3_mprintf( "SELECT rootpage, 0 FROM sqlite_schema" " WHERE name='%q' AND type='index'" "UNION ALL " "SELECT rootpage, 1 FROM sqlite_schema" " WHERE name='%q' AND type='table'" " AND sql LIKE '%%without%%rowid%%'", azArg[1], azArg[1] ); sqlite3_prepare_v2(p->db, zSql, -1, &pStmt, 0); sqlite3_free(zSql); if( sqlite3_step(pStmt)==SQLITE_ROW ){ tnum = sqlite3_column_int(pStmt, 0); isWO = sqlite3_column_int(pStmt, 1); } sqlite3_finalize(pStmt); zSql = sqlite3_mprintf("PRAGMA index_xinfo='%q'", azArg[1]); rc = sqlite3_prepare_v2(p->db, zSql, -1, &pStmt, 0); sqlite3_free(zSql); i = 0; while( rc==SQLITE_OK && sqlite3_step(pStmt)==SQLITE_ROW ){ char zLabel[20]; const char *zCol = (const char*)sqlite3_column_text(pStmt,2); i++; if( zCol==0 ){ if( sqlite3_column_int(pStmt,1)==-1 ){ zCol = "_ROWID_"; }else{ sqlite3_snprintf(sizeof(zLabel),zLabel,"expr%d",i); zCol = zLabel; } } if( isWO && lenPK==0 && sqlite3_column_int(pStmt,5)==0 && zCollist ){ lenPK = (int)strlen(zCollist); } if( zCollist==0 ){ zCollist = sqlite3_mprintf("\"%w\"", zCol); }else{ zCollist = sqlite3_mprintf("%z,\"%w\"", zCollist, zCol); } } sqlite3_finalize(pStmt); if( i==0 || tnum==0 ){ sqlite3_fprintf(stderr,"no such index: \"%s\"\n", azArg[1]); rc = 1; sqlite3_free(zCollist); goto meta_command_exit; } if( lenPK==0 ) lenPK = 100000; zSql = sqlite3_mprintf( "CREATE TABLE \"%w\"(%s,PRIMARY KEY(%.*s))WITHOUT ROWID", azArg[2], zCollist, lenPK, zCollist); sqlite3_free(zCollist); rc = sqlite3_test_control(SQLITE_TESTCTRL_IMPOSTER, p->db, "main", 1, tnum); if( rc==SQLITE_OK ){ rc = sqlite3_exec(p->db, zSql, 0, 0, 0); sqlite3_test_control(SQLITE_TESTCTRL_IMPOSTER, p->db, "main", 0, 0); if( rc ){ sqlite3_fprintf(stderr, "Error in [%s]: %s\n", zSql, sqlite3_errmsg(p->db)); }else{ sqlite3_fprintf(stdout, "%s;\n", zSql); sqlite3_fprintf(stdout, "WARNING: writing to an imposter table will corrupt" " the \"%s\" %s!\n", azArg[1], isWO ? "table" : "index"); } }else{ sqlite3_fprintf(stderr,"SQLITE_TESTCTRL_IMPOSTER returns %d\n", rc); rc = 1; } sqlite3_free(zSql); }else #endif /* !defined(SQLITE_OMIT_TEST_CONTROL) */ if( c=='i' && cli_strncmp(azArg[0], "intck", n)==0 ){ i64 iArg = 0; if( nArg==2 ){ iArg = integerValue(azArg[1]); if( iArg==0 ) iArg = -1; } if( (nArg!=1 && nArg!=2) || iArg<0 ){ sqlite3_fprintf(stderr,"%s","Usage: .intck STEPS_PER_UNLOCK\n"); rc = 1; goto meta_command_exit; } open_db(p, 0); rc = intckDatabaseCmd(p, iArg); }else #ifdef SQLITE_ENABLE_IOTRACE if( c=='i' && cli_strncmp(azArg[0], "iotrace", n)==0 ){ SQLITE_API extern void (SQLITE_CDECL *sqlite3IoTrace)(const char*, ...); if( iotrace && iotrace!=stdout ) fclose(iotrace); iotrace = 0; if( nArg<2 ){ sqlite3IoTrace = 0; }else if( cli_strcmp(azArg[1], "-")==0 ){ sqlite3IoTrace = iotracePrintf; iotrace = stdout; }else{ iotrace = sqlite3_fopen(azArg[1], "w"); if( iotrace==0 ){ sqlite3_fprintf(stderr,"Error: cannot open \"%s\"\n", azArg[1]); sqlite3IoTrace = 0; rc = 1; }else{ sqlite3IoTrace = iotracePrintf; } } }else #endif if( c=='l' && n>=5 && cli_strncmp(azArg[0], "limits", n)==0 ){ static const struct { const char *zLimitName; /* Name of a limit */ int limitCode; /* Integer code for that limit */ } aLimit[] = { { "length", SQLITE_LIMIT_LENGTH }, { "sql_length", SQLITE_LIMIT_SQL_LENGTH }, { "column", SQLITE_LIMIT_COLUMN }, { "expr_depth", SQLITE_LIMIT_EXPR_DEPTH }, { "compound_select", SQLITE_LIMIT_COMPOUND_SELECT }, { "vdbe_op", SQLITE_LIMIT_VDBE_OP }, { "function_arg", SQLITE_LIMIT_FUNCTION_ARG }, { "attached", SQLITE_LIMIT_ATTACHED }, { "like_pattern_length", SQLITE_LIMIT_LIKE_PATTERN_LENGTH }, { "variable_number", SQLITE_LIMIT_VARIABLE_NUMBER }, { "trigger_depth", SQLITE_LIMIT_TRIGGER_DEPTH }, { "worker_threads", SQLITE_LIMIT_WORKER_THREADS }, }; int i, n2; open_db(p, 0); if( nArg==1 ){ for(i=0; idb, aLimit[i].limitCode, -1)); } }else if( nArg>3 ){ eputz("Usage: .limit NAME ?NEW-VALUE?\n"); rc = 1; goto meta_command_exit; }else{ int iLimit = -1; n2 = strlen30(azArg[1]); for(i=0; idb, aLimit[iLimit].limitCode, (int)integerValue(azArg[2])); } sqlite3_fprintf(stdout, "%20s %d\n", aLimit[iLimit].zLimitName, sqlite3_limit(p->db, aLimit[iLimit].limitCode, -1)); } }else if( c=='l' && n>2 && cli_strncmp(azArg[0], "lint", n)==0 ){ open_db(p, 0); lintDotCommand(p, azArg, nArg); }else #if !defined(SQLITE_OMIT_LOAD_EXTENSION) && !defined(SQLITE_SHELL_FIDDLE) if( c=='l' && cli_strncmp(azArg[0], "load", n)==0 ){ const char *zFile, *zProc; char *zErrMsg = 0; failIfSafeMode(p, "cannot run .load in safe mode"); if( nArg<2 || azArg[1][0]==0 ){ /* Must have a non-empty FILE. (Will not load self.) */ eputz("Usage: .load FILE ?ENTRYPOINT?\n"); rc = 1; goto meta_command_exit; } zFile = azArg[1]; zProc = nArg>=3 ? azArg[2] : 0; open_db(p, 0); rc = sqlite3_load_extension(p->db, zFile, zProc, &zErrMsg); if( rc!=SQLITE_OK ){ shellEmitError(zErrMsg); sqlite3_free(zErrMsg); rc = 1; } }else #endif if( c=='l' && cli_strncmp(azArg[0], "log", n)==0 ){ if( nArg!=2 ){ eputz("Usage: .log FILENAME\n"); rc = 1; }else{ const char *zFile = azArg[1]; if( p->bSafeMode && cli_strcmp(zFile,"on")!=0 && cli_strcmp(zFile,"off")!=0 ){ sputz(stdout, "cannot set .log to anything other" " than \"on\" or \"off\"\n"); zFile = "off"; } output_file_close(p->pLog); if( cli_strcmp(zFile,"on")==0 ) zFile = "stdout"; p->pLog = output_file_open(zFile); } }else if( c=='m' && cli_strncmp(azArg[0], "mode", n)==0 ){ const char *zMode = 0; const char *zTabname = 0; int i, n2; ColModeOpts cmOpts = ColModeOpts_default; for(i=1; imode==MODE_Column || (p->mode>=MODE_Markdown && p->mode<=MODE_Box) ){ sqlite3_fprintf(p->out, "current output mode: %s --wrap %d --wordwrap %s --%squote\n", modeDescr[p->mode], p->cmOpts.iWrap, p->cmOpts.bWordWrap ? "on" : "off", p->cmOpts.bQuote ? "" : "no"); }else{ sqlite3_fprintf(p->out, "current output mode: %s\n", modeDescr[p->mode]); } zMode = modeDescr[p->mode]; } n2 = strlen30(zMode); if( cli_strncmp(zMode,"lines",n2)==0 ){ p->mode = MODE_Line; sqlite3_snprintf(sizeof(p->rowSeparator), p->rowSeparator, SEP_Row); }else if( cli_strncmp(zMode,"columns",n2)==0 ){ p->mode = MODE_Column; if( (p->shellFlgs & SHFLG_HeaderSet)==0 ){ p->showHeader = 1; } sqlite3_snprintf(sizeof(p->rowSeparator), p->rowSeparator, SEP_Row); p->cmOpts = cmOpts; }else if( cli_strncmp(zMode,"list",n2)==0 ){ p->mode = MODE_List; sqlite3_snprintf(sizeof(p->colSeparator), p->colSeparator, SEP_Column); sqlite3_snprintf(sizeof(p->rowSeparator), p->rowSeparator, SEP_Row); }else if( cli_strncmp(zMode,"html",n2)==0 ){ p->mode = MODE_Html; }else if( cli_strncmp(zMode,"tcl",n2)==0 ){ p->mode = MODE_Tcl; sqlite3_snprintf(sizeof(p->colSeparator), p->colSeparator, SEP_Space); sqlite3_snprintf(sizeof(p->rowSeparator), p->rowSeparator, SEP_Row); }else if( cli_strncmp(zMode,"csv",n2)==0 ){ p->mode = MODE_Csv; sqlite3_snprintf(sizeof(p->colSeparator), p->colSeparator, SEP_Comma); sqlite3_snprintf(sizeof(p->rowSeparator), p->rowSeparator, SEP_CrLf); }else if( cli_strncmp(zMode,"tabs",n2)==0 ){ p->mode = MODE_List; sqlite3_snprintf(sizeof(p->colSeparator), p->colSeparator, SEP_Tab); }else if( cli_strncmp(zMode,"insert",n2)==0 ){ p->mode = MODE_Insert; set_table_name(p, zTabname ? zTabname : "table"); }else if( cli_strncmp(zMode,"quote",n2)==0 ){ p->mode = MODE_Quote; sqlite3_snprintf(sizeof(p->colSeparator), p->colSeparator, SEP_Comma); sqlite3_snprintf(sizeof(p->rowSeparator), p->rowSeparator, SEP_Row); }else if( cli_strncmp(zMode,"ascii",n2)==0 ){ p->mode = MODE_Ascii; sqlite3_snprintf(sizeof(p->colSeparator), p->colSeparator, SEP_Unit); sqlite3_snprintf(sizeof(p->rowSeparator), p->rowSeparator, SEP_Record); }else if( cli_strncmp(zMode,"markdown",n2)==0 ){ p->mode = MODE_Markdown; p->cmOpts = cmOpts; }else if( cli_strncmp(zMode,"table",n2)==0 ){ p->mode = MODE_Table; p->cmOpts = cmOpts; }else if( cli_strncmp(zMode,"box",n2)==0 ){ p->mode = MODE_Box; p->cmOpts = cmOpts; }else if( cli_strncmp(zMode,"count",n2)==0 ){ p->mode = MODE_Count; }else if( cli_strncmp(zMode,"off",n2)==0 ){ p->mode = MODE_Off; }else if( cli_strncmp(zMode,"json",n2)==0 ){ p->mode = MODE_Json; }else{ eputz("Error: mode should be one of: " "ascii box column csv html insert json line list markdown " "qbox quote table tabs tcl\n"); rc = 1; } p->cMode = p->mode; }else #ifndef SQLITE_SHELL_FIDDLE if( c=='n' && cli_strcmp(azArg[0], "nonce")==0 ){ if( nArg!=2 ){ eputz("Usage: .nonce NONCE\n"); rc = 1; }else if( p->zNonce==0 || cli_strcmp(azArg[1],p->zNonce)!=0 ){ sqlite3_fprintf(stderr,"line %d: incorrect nonce: \"%s\"\n", p->lineno, azArg[1]); exit(1); }else{ p->bSafeMode = 0; return 0; /* Return immediately to bypass the safe mode reset ** at the end of this procedure */ } }else #endif /* !defined(SQLITE_SHELL_FIDDLE) */ if( c=='n' && cli_strncmp(azArg[0], "nullvalue", n)==0 ){ if( nArg==2 ){ sqlite3_snprintf(sizeof(p->nullValue), p->nullValue, "%.*s", (int)ArraySize(p->nullValue)-1, azArg[1]); }else{ eputz("Usage: .nullvalue STRING\n"); rc = 1; } }else if( c=='o' && cli_strncmp(azArg[0], "open", n)==0 && n>=2 ){ const char *zFN = 0; /* Pointer to constant filename */ char *zNewFilename = 0; /* Name of the database file to open */ int iName = 1; /* Index in azArg[] of the filename */ int newFlag = 0; /* True to delete file before opening */ int openMode = SHELL_OPEN_UNSPEC; /* Check for command-line arguments */ for(iName=1; iNameopenFlags |= SQLITE_OPEN_NOFOLLOW; #ifndef SQLITE_OMIT_DESERIALIZE }else if( optionMatch(z, "deserialize") ){ openMode = SHELL_OPEN_DESERIALIZE; }else if( optionMatch(z, "hexdb") ){ openMode = SHELL_OPEN_HEXDB; }else if( optionMatch(z, "maxsize") && iName+1szMax = integerValue(azArg[++iName]); #endif /* SQLITE_OMIT_DESERIALIZE */ }else #endif /* !SQLITE_SHELL_FIDDLE */ if( z[0]=='-' ){ sqlite3_fprintf(stderr,"unknown option: %s\n", z); rc = 1; goto meta_command_exit; }else if( zFN ){ sqlite3_fprintf(stderr,"extra argument: \"%s\"\n", z); rc = 1; goto meta_command_exit; }else{ zFN = z; } } /* Close the existing database */ session_close_all(p, -1); close_db(p->db); p->db = 0; p->pAuxDb->zDbFilename = 0; sqlite3_free(p->pAuxDb->zFreeOnClose); p->pAuxDb->zFreeOnClose = 0; p->openMode = openMode; p->openFlags = 0; p->szMax = 0; /* If a filename is specified, try to open it first */ if( zFN || p->openMode==SHELL_OPEN_HEXDB ){ if( newFlag && zFN && !p->bSafeMode ) shellDeleteFile(zFN); #ifndef SQLITE_SHELL_FIDDLE if( p->bSafeMode && p->openMode!=SHELL_OPEN_HEXDB && zFN && cli_strcmp(zFN,":memory:")!=0 ){ failIfSafeMode(p, "cannot open disk-based database files in safe mode"); } #else /* WASM mode has its own sandboxed pseudo-filesystem. */ #endif if( zFN ){ zNewFilename = sqlite3_mprintf("%s", zFN); shell_check_oom(zNewFilename); }else{ zNewFilename = 0; } p->pAuxDb->zDbFilename = zNewFilename; open_db(p, OPEN_DB_KEEPALIVE); if( p->db==0 ){ sqlite3_fprintf(stderr,"Error: cannot open '%s'\n", zNewFilename); sqlite3_free(zNewFilename); }else{ p->pAuxDb->zFreeOnClose = zNewFilename; } } if( p->db==0 ){ /* As a fall-back open a TEMP database */ p->pAuxDb->zDbFilename = 0; open_db(p, 0); } }else #ifndef SQLITE_SHELL_FIDDLE if( (c=='o' && (cli_strncmp(azArg[0], "output", n)==0 || cli_strncmp(azArg[0], "once", n)==0)) || (c=='e' && n==5 && cli_strcmp(azArg[0],"excel")==0) || (c=='w' && n==3 && cli_strcmp(azArg[0],"www")==0) ){ char *zFile = 0; int i; int eMode = 0; int bOnce = 0; /* 0: .output, 1: .once, 2: .excel/.www */ int bPlain = 0; /* --plain option */ static const char *zBomUtf8 = "\357\273\277"; const char *zBom = 0; failIfSafeMode(p, "cannot run .%s in safe mode", azArg[0]); if( c=='e' ){ eMode = 'x'; bOnce = 2; }else if( c=='w' ){ eMode = 'w'; bOnce = 2; }else if( cli_strncmp(azArg[0],"once",n)==0 ){ bOnce = 1; } for(i=1; iout, "ERROR: unknown option: \"%s\". Usage:\n", azArg[i]); showHelp(p->out, azArg[0]); rc = 1; goto meta_command_exit; } }else if( zFile==0 && eMode==0 ){ zFile = sqlite3_mprintf("%s", z); if( zFile && zFile[0]=='|' ){ while( i+1out, "ERROR: extra parameter: \"%s\". Usage:\n", azArg[i]); showHelp(p->out, azArg[0]); rc = 1; sqlite3_free(zFile); goto meta_command_exit; } } if( zFile==0 ){ zFile = sqlite3_mprintf("stdout"); } if( bOnce ){ p->outCount = 2; }else{ p->outCount = 0; } output_reset(p); #ifndef SQLITE_NOHAVE_SYSTEM if( eMode=='e' || eMode=='x' || eMode=='w' ){ p->doXdgOpen = 1; outputModePush(p); if( eMode=='x' ){ /* spreadsheet mode. Output as CSV. */ newTempFile(p, "csv"); ShellClearFlag(p, SHFLG_Echo); p->mode = MODE_Csv; sqlite3_snprintf(sizeof(p->colSeparator), p->colSeparator, SEP_Comma); sqlite3_snprintf(sizeof(p->rowSeparator), p->rowSeparator, SEP_CrLf); #ifdef _WIN32 zBom = zBomUtf8; /* Always include the BOM on Windows, as Excel does ** not work without it. */ #endif }else if( eMode=='w' ){ /* web-browser mode. */ newTempFile(p, "html"); if( !bPlain ) p->mode = MODE_Www; }else{ /* text editor mode */ newTempFile(p, "txt"); } sqlite3_free(zFile); zFile = sqlite3_mprintf("%s", p->zTempFile); } #endif /* SQLITE_NOHAVE_SYSTEM */ shell_check_oom(zFile); if( zFile[0]=='|' ){ #ifdef SQLITE_OMIT_POPEN eputz("Error: pipes are not supported in this OS\n"); rc = 1; output_redir(p, stdout); #else FILE *pfPipe = sqlite3_popen(zFile + 1, "w"); if( pfPipe==0 ){ sqlite3_fprintf(stderr,"Error: cannot open pipe \"%s\"\n", zFile + 1); rc = 1; }else{ output_redir(p, pfPipe); if( zBom ) sqlite3_fputs(zBom, pfPipe); sqlite3_snprintf(sizeof(p->outfile), p->outfile, "%s", zFile); } #endif }else{ FILE *pfFile = output_file_open(zFile); if( pfFile==0 ){ if( cli_strcmp(zFile,"off")!=0 ){ sqlite3_fprintf(stderr,"Error: cannot write to \"%s\"\n", zFile); } rc = 1; } else { output_redir(p, pfFile); if( zBom ) sqlite3_fputs(zBom, pfFile); if( bPlain && eMode=='w' ){ sqlite3_fputs( "\n\n\n", pfFile ); } sqlite3_snprintf(sizeof(p->outfile), p->outfile, "%s", zFile); } } sqlite3_free(zFile); }else #endif /* !defined(SQLITE_SHELL_FIDDLE) */ if( c=='p' && n>=3 && cli_strncmp(azArg[0], "parameter", n)==0 ){ open_db(p,0); if( nArg<=1 ) goto parameter_syntax_error; /* .parameter clear ** Clear all bind parameters by dropping the TEMP table that holds them. */ if( nArg==2 && cli_strcmp(azArg[1],"clear")==0 ){ sqlite3_exec(p->db, "DROP TABLE IF EXISTS temp.sqlite_parameters;", 0, 0, 0); }else /* .parameter list ** List all bind parameters. */ if( nArg==2 && cli_strcmp(azArg[1],"list")==0 ){ sqlite3_stmt *pStmt = 0; int rx; int len = 0; rx = sqlite3_prepare_v2(p->db, "SELECT max(length(key)) " "FROM temp.sqlite_parameters;", -1, &pStmt, 0); if( rx==SQLITE_OK && sqlite3_step(pStmt)==SQLITE_ROW ){ len = sqlite3_column_int(pStmt, 0); if( len>40 ) len = 40; } sqlite3_finalize(pStmt); pStmt = 0; if( len ){ rx = sqlite3_prepare_v2(p->db, "SELECT key, quote(value) " "FROM temp.sqlite_parameters;", -1, &pStmt, 0); while( rx==SQLITE_OK && sqlite3_step(pStmt)==SQLITE_ROW ){ sqlite3_fprintf(p->out, "%-*s %s\n", len, sqlite3_column_text(pStmt,0), sqlite3_column_text(pStmt,1)); } sqlite3_finalize(pStmt); } }else /* .parameter init ** Make sure the TEMP table used to hold bind parameters exists. ** Create it if necessary. */ if( nArg==2 && cli_strcmp(azArg[1],"init")==0 ){ bind_table_init(p); }else /* .parameter set NAME VALUE ** Set or reset a bind parameter. NAME should be the full parameter ** name exactly as it appears in the query. (ex: $abc, @def). The ** VALUE can be in either SQL literal notation, or if not it will be ** understood to be a text string. */ if( nArg==4 && cli_strcmp(azArg[1],"set")==0 ){ int rx; char *zSql; sqlite3_stmt *pStmt; const char *zKey = azArg[2]; const char *zValue = azArg[3]; bind_table_init(p); zSql = sqlite3_mprintf( "REPLACE INTO temp.sqlite_parameters(key,value)" "VALUES(%Q,%s);", zKey, zValue); shell_check_oom(zSql); pStmt = 0; rx = sqlite3_prepare_v2(p->db, zSql, -1, &pStmt, 0); sqlite3_free(zSql); if( rx!=SQLITE_OK ){ sqlite3_finalize(pStmt); pStmt = 0; zSql = sqlite3_mprintf( "REPLACE INTO temp.sqlite_parameters(key,value)" "VALUES(%Q,%Q);", zKey, zValue); shell_check_oom(zSql); rx = sqlite3_prepare_v2(p->db, zSql, -1, &pStmt, 0); sqlite3_free(zSql); if( rx!=SQLITE_OK ){ sqlite3_fprintf(p->out, "Error: %s\n", sqlite3_errmsg(p->db)); sqlite3_finalize(pStmt); pStmt = 0; rc = 1; } } sqlite3_step(pStmt); sqlite3_finalize(pStmt); }else /* .parameter unset NAME ** Remove the NAME binding from the parameter binding table, if it ** exists. */ if( nArg==3 && cli_strcmp(azArg[1],"unset")==0 ){ char *zSql = sqlite3_mprintf( "DELETE FROM temp.sqlite_parameters WHERE key=%Q", azArg[2]); shell_check_oom(zSql); sqlite3_exec(p->db, zSql, 0, 0, 0); sqlite3_free(zSql); }else /* If no command name matches, show a syntax error */ parameter_syntax_error: showHelp(p->out, "parameter"); }else if( c=='p' && n>=3 && cli_strncmp(azArg[0], "print", n)==0 ){ int i; for(i=1; i<nArg; i++){ if( i>1 ) sqlite3_fputs(" ", p->out); sqlite3_fputs(azArg[i], p->out); } sqlite3_fputs("\n", p->out); }else #ifndef SQLITE_OMIT_PROGRESS_CALLBACK if( c=='p' && n>=3 && cli_strncmp(azArg[0], "progress", n)==0 ){ int i; int nn = 0; p->flgProgress = 0; p->mxProgress = 0; p->nProgress = 0; for(i=1; i<nArg; i++){ const char *z = azArg[i]; if( z[0]=='-' ){ z++; if( z[0]=='-' ) z++; if( cli_strcmp(z,"quiet")==0 || cli_strcmp(z,"q")==0 ){ p->flgProgress |= SHELL_PROGRESS_QUIET; continue; } if( cli_strcmp(z,"reset")==0 ){ p->flgProgress |= SHELL_PROGRESS_RESET; continue; } if( cli_strcmp(z,"once")==0 ){ p->flgProgress |= SHELL_PROGRESS_ONCE; continue; } if( cli_strcmp(z,"limit")==0 ){ if( i+1>=nArg ){ eputz("Error: missing argument on --limit\n"); rc = 1; goto meta_command_exit; }else{ p->mxProgress = (int)integerValue(azArg[++i]); } continue; } sqlite3_fprintf(stderr,"Error: unknown option: \"%s\"\n", azArg[i]); rc = 1; goto meta_command_exit; }else{ nn = (int)integerValue(z); } } open_db(p, 0); sqlite3_progress_handler(p->db, nn, progress_handler, p); }else #endif /* SQLITE_OMIT_PROGRESS_CALLBACK */ if( c=='p' && cli_strncmp(azArg[0], "prompt", n)==0 ){ if( nArg >= 2) { shell_strncpy(mainPrompt,azArg[1],(int)ArraySize(mainPrompt)-1); } if( nArg >= 3) { shell_strncpy(continuePrompt,azArg[2],(int)ArraySize(continuePrompt)-1); } }else #ifndef SQLITE_SHELL_FIDDLE if( c=='q' && cli_strncmp(azArg[0], "quit", n)==0 ){ rc = 2; }else #endif #ifndef SQLITE_SHELL_FIDDLE if( c=='r' && n>=3 && cli_strncmp(azArg[0], "read", n)==0 ){ FILE *inSaved = p->in; int savedLineno = p->lineno; failIfSafeMode(p, "cannot run .read in safe mode"); if( nArg!=2 ){ eputz("Usage: .read FILE\n"); rc = 1; goto meta_command_exit; } if( azArg[1][0]=='|' ){ #ifdef SQLITE_OMIT_POPEN eputz("Error: pipes are not supported in this OS\n"); rc = 1; #else p->in = sqlite3_popen(azArg[1]+1, "r"); if( p->in==0 ){ sqlite3_fprintf(stderr,"Error: cannot open \"%s\"\n", azArg[1]); rc = 1; }else{ rc = process_input(p); pclose(p->in); } #endif }else if( (p->in = openChrSource(azArg[1]))==0 ){ sqlite3_fprintf(stderr,"Error: cannot open \"%s\"\n", azArg[1]); rc = 1; }else{ rc = process_input(p); fclose(p->in); } p->in = inSaved; p->lineno = savedLineno; }else #endif /* !defined(SQLITE_SHELL_FIDDLE) */ #ifndef SQLITE_SHELL_FIDDLE if( c=='r' && n>=3 && cli_strncmp(azArg[0], "restore", n)==0 ){ const char *zSrcFile; const char *zDb; sqlite3 *pSrc; sqlite3_backup *pBackup; int nTimeout = 0; failIfSafeMode(p, "cannot run .restore in safe mode"); if( nArg==2 ){ zSrcFile = azArg[1]; zDb = "main"; }else if( nArg==3 ){ zSrcFile = azArg[2]; zDb = azArg[1]; }else{ eputz("Usage: .restore ?DB? FILE\n"); rc = 1; goto meta_command_exit; } rc = sqlite3_open(zSrcFile, &pSrc); if( rc!=SQLITE_OK ){ sqlite3_fprintf(stderr,"Error: cannot open \"%s\"\n", zSrcFile); close_db(pSrc); return 1; } open_db(p, 0); pBackup = sqlite3_backup_init(p->db, zDb, pSrc, "main"); if( pBackup==0 ){ shellDatabaseError(p->db); close_db(pSrc); return 1; } while( (rc = sqlite3_backup_step(pBackup,100))==SQLITE_OK || rc==SQLITE_BUSY ){ if( rc==SQLITE_BUSY ){ if( nTimeout++ >= 3 ) break; sqlite3_sleep(100); } } sqlite3_backup_finish(pBackup); if( rc==SQLITE_DONE ){ rc = 0; }else if( rc==SQLITE_BUSY || rc==SQLITE_LOCKED ){ eputz("Error: source database is busy\n"); rc = 1; }else{ shellDatabaseError(p->db); rc = 1; } close_db(pSrc); }else #endif /* !defined(SQLITE_SHELL_FIDDLE) */ if( c=='s' && cli_strncmp(azArg[0], "scanstats", n)==0 ){ if( nArg==2 ){ if( cli_strcmp(azArg[1], "vm")==0 ){ p->scanstatsOn = 3; }else if( cli_strcmp(azArg[1], "est")==0 ){ p->scanstatsOn = 2; }else{ p->scanstatsOn = (u8)booleanValue(azArg[1]); } open_db(p, 0); sqlite3_db_config( p->db, SQLITE_DBCONFIG_STMT_SCANSTATUS, p->scanstatsOn, (int*)0 ); #if !defined(SQLITE_ENABLE_STMT_SCANSTATUS) eputz("Warning: .scanstats not available in this build.\n"); #elif !defined(SQLITE_ENABLE_BYTECODE_VTAB) if( p->scanstatsOn==3 ){ eputz("Warning: \".scanstats vm\" not available in this build.\n"); } #endif }else{ eputz("Usage: .scanstats on|off|est\n"); rc = 1; } }else if( c=='s' && cli_strncmp(azArg[0], "schema", n)==0 ){ ShellText sSelect; ShellState data; char *zErrMsg = 0; const char *zDiv = "("; const char *zName = 0; int iSchema = 0; int bDebug = 0; int bNoSystemTabs = 0; int ii; open_db(p, 0); memcpy(&data, p, sizeof(data)); data.showHeader = 0; data.cMode = data.mode = MODE_Semi; initText(&sSelect); for(ii=1; ii<nArg; ii++){ if( optionMatch(azArg[ii],"indent") ){ data.cMode = data.mode = MODE_Pretty; }else if( optionMatch(azArg[ii],"debug") ){ bDebug = 1; }else if( optionMatch(azArg[ii],"nosys") ){ bNoSystemTabs = 1; }else if( azArg[ii][0]=='-' ){ sqlite3_fprintf(stderr,"Unknown option: \"%s\"\n", azArg[ii]); rc = 1; goto meta_command_exit; }else if( zName==0 ){ zName = azArg[ii]; }else{ eputz("Usage: .schema ?--indent? ?--nosys? ?LIKE-PATTERN?\n"); rc = 1; goto meta_command_exit; } } if( zName!=0 ){ int isSchema = sqlite3_strlike(zName, "sqlite_master", '\\')==0 || sqlite3_strlike(zName, "sqlite_schema", '\\')==0 || sqlite3_strlike(zName,"sqlite_temp_master", '\\')==0 || sqlite3_strlike(zName,"sqlite_temp_schema", '\\')==0; if( isSchema ){ char *new_argv[2], *new_colv[2]; new_argv[0] = sqlite3_mprintf( "CREATE TABLE %s (\n" " type text,\n" " name text,\n" " tbl_name text,\n" " rootpage integer,\n" " sql text\n" ")", zName); shell_check_oom(new_argv[0]); new_argv[1] = 0; new_colv[0] = "sql"; new_colv[1] = 0; callback(&data, 1, new_argv, new_colv); sqlite3_free(new_argv[0]); } } if( zDiv ){ sqlite3_stmt *pStmt = 0; rc = sqlite3_prepare_v2(p->db, "SELECT name FROM pragma_database_list", -1, &pStmt, 0); if( rc ){ shellDatabaseError(p->db); sqlite3_finalize(pStmt); rc = 1; goto meta_command_exit; } appendText(&sSelect, "SELECT sql FROM", 0); iSchema = 0; while( sqlite3_step(pStmt)==SQLITE_ROW ){ const char *zDb = (const char*)sqlite3_column_text(pStmt, 0); char zScNum[30]; sqlite3_snprintf(sizeof(zScNum), zScNum, "%d", ++iSchema); appendText(&sSelect, zDiv, 0); zDiv = " UNION ALL "; appendText(&sSelect, "SELECT shell_add_schema(sql,", 0); if( sqlite3_stricmp(zDb, "main")!=0 ){ appendText(&sSelect, zDb, '\''); }else{ appendText(&sSelect, "NULL", 0); } appendText(&sSelect, ",name) AS sql, type, tbl_name, name, rowid,", 0); appendText(&sSelect, zScNum, 0); appendText(&sSelect, " AS snum, ", 0); appendText(&sSelect, zDb, '\''); appendText(&sSelect, " AS sname FROM ", 0); appendText(&sSelect, zDb, quoteChar(zDb)); appendText(&sSelect, ".sqlite_schema", 0); } sqlite3_finalize(pStmt); #ifndef SQLITE_OMIT_INTROSPECTION_PRAGMAS if( zName ){ appendText(&sSelect, " UNION ALL SELECT shell_module_schema(name)," " 'table', name, name, name, 9e+99, 'main' FROM pragma_module_list", 0); } #endif appendText(&sSelect, ") WHERE ", 0); if( zName ){ char *zQarg = sqlite3_mprintf("%Q", zName); int bGlob; shell_check_oom(zQarg); bGlob = strchr(zName, '*') != 0 || strchr(zName, '?') != 0 || strchr(zName, '[') != 0; if( strchr(zName, '.') ){ appendText(&sSelect, "lower(printf('%s.%s',sname,tbl_name))", 0); }else{ appendText(&sSelect, "lower(tbl_name)", 0); } appendText(&sSelect, bGlob ? " GLOB " : " LIKE ", 0); appendText(&sSelect, zQarg, 0); if( !bGlob ){ appendText(&sSelect, " ESCAPE '\\' ", 0); } appendText(&sSelect, " AND ", 0); sqlite3_free(zQarg); } if( bNoSystemTabs ){ appendText(&sSelect, "name NOT LIKE 'sqlite_%%' AND ", 0); } appendText(&sSelect, "sql IS NOT NULL" " ORDER BY snum, rowid", 0); if( bDebug ){ sqlite3_fprintf(p->out, "SQL: %s;\n", sSelect.z); }else{ rc = sqlite3_exec(p->db, sSelect.z, callback, &data, &zErrMsg); } freeText(&sSelect); } if( zErrMsg ){ shellEmitError(zErrMsg); sqlite3_free(zErrMsg); rc = 1; }else if( rc != SQLITE_OK ){ eputz("Error: querying schema information\n"); rc = 1; }else{ rc = 0; } }else if( (c=='s' && n==11 && cli_strncmp(azArg[0], "selecttrace", n)==0) || (c=='t' && n==9 && cli_strncmp(azArg[0], "treetrace", n)==0) ){ unsigned int x = nArg>=2? (unsigned int)integerValue(azArg[1]) : 0xffffffff; sqlite3_test_control(SQLITE_TESTCTRL_TRACEFLAGS, 1, &x); }else #if defined(SQLITE_ENABLE_SESSION) if( c=='s' && cli_strncmp(azArg[0],"session",n)==0 && n>=3 ){ struct AuxDb *pAuxDb = p->pAuxDb; OpenSession *pSession = &pAuxDb->aSession[0]; char **azCmd = &azArg[1]; int iSes = 0; int nCmd = nArg - 1; int i; if( nArg<=1 ) goto session_syntax_error; open_db(p, 0); if( nArg>=3 ){ for(iSes=0; iSes<pAuxDb->nSession; iSes++){ if( cli_strcmp(pAuxDb->aSession[iSes].zName, azArg[1])==0 ) break; } if( iSes<pAuxDb->nSession ){ pSession = &pAuxDb->aSession[iSes]; azCmd++; nCmd--; }else{ pSession = &pAuxDb->aSession[0]; iSes = 0; } } /* .session attach TABLE ** Invoke the sqlite3session_attach() interface to attach a particular ** table so that it is never filtered. */ if( cli_strcmp(azCmd[0],"attach")==0 ){ if( nCmd!=2 ) goto session_syntax_error; if( pSession->p==0 ){ session_not_open: eputz("ERROR: No sessions are open\n"); }else{ rc = sqlite3session_attach(pSession->p, azCmd[1]); if( rc ){ sqlite3_fprintf(stderr, "ERROR: sqlite3session_attach() returns %d\n",rc); rc = 0; } } }else /* .session changeset FILE ** .session patchset FILE ** Write a changeset or patchset into a file. The file is overwritten. */ if( cli_strcmp(azCmd[0],"changeset")==0 || cli_strcmp(azCmd[0],"patchset")==0 ){ FILE *out = 0; failIfSafeMode(p, "cannot run \".session %s\" in safe mode", azCmd[0]); if( nCmd!=2 ) goto session_syntax_error; if( pSession->p==0 ) goto session_not_open; out = sqlite3_fopen(azCmd[1], "wb"); if( out==0 ){ sqlite3_fprintf(stderr,"ERROR: cannot open \"%s\" for writing\n", azCmd[1]); }else{ int szChng; void *pChng; if( azCmd[0][0]=='c' ){ rc = sqlite3session_changeset(pSession->p, &szChng, &pChng); }else{ rc = sqlite3session_patchset(pSession->p, &szChng, &pChng); } if( rc ){ sqlite3_fprintf(stdout, "Error: error code %d\n", rc); rc = 0; } if( pChng && fwrite(pChng, szChng, 1, out)!=1 ){ sqlite3_fprintf(stderr, "ERROR: Failed to write entire %d-byte output\n", szChng); } sqlite3_free(pChng); fclose(out); } }else /* .session close ** Close the identified session */ if( cli_strcmp(azCmd[0], "close")==0 ){ if( nCmd!=1 ) goto session_syntax_error; if( pAuxDb->nSession ){ session_close(pSession); pAuxDb->aSession[iSes] = pAuxDb->aSession[--pAuxDb->nSession]; } }else /* .session enable ?BOOLEAN? ** Query or set the enable flag */ if( cli_strcmp(azCmd[0], "enable")==0 ){ int ii; if( nCmd>2 ) goto session_syntax_error; ii = nCmd==1 ? -1 : booleanValue(azCmd[1]); if( pAuxDb->nSession ){ ii = sqlite3session_enable(pSession->p, ii); sqlite3_fprintf(p->out, "session %s enable flag = %d\n", pSession->zName, ii); } }else /* .session filter GLOB .... ** Set a list of GLOB patterns of table names to be excluded. */ if( cli_strcmp(azCmd[0], "filter")==0 ){ int ii, nByte; if( nCmd<2 ) goto session_syntax_error; if( pAuxDb->nSession ){ for(ii=0; ii<pSession->nFilter; ii++){ sqlite3_free(pSession->azFilter[ii]); } sqlite3_free(pSession->azFilter); nByte = sizeof(pSession->azFilter[0])*(nCmd-1); pSession->azFilter = sqlite3_malloc( nByte ); shell_check_oom( pSession->azFilter ); for(ii=1; ii<nCmd; ii++){ char *x = pSession->azFilter[ii-1] = sqlite3_mprintf("%s", azCmd[ii]); shell_check_oom(x); } pSession->nFilter = ii-1; } }else /* .session indirect ?BOOLEAN? ** Query or set the indirect flag */ if( cli_strcmp(azCmd[0], "indirect")==0 ){ int ii; if( nCmd>2 ) goto session_syntax_error; ii = nCmd==1 ? -1 : booleanValue(azCmd[1]); if( pAuxDb->nSession ){ ii = sqlite3session_indirect(pSession->p, ii); sqlite3_fprintf(p->out, "session %s indirect flag = %d\n", pSession->zName, ii); } }else /* .session isempty ** Determine if the session is empty */ if( cli_strcmp(azCmd[0], "isempty")==0 ){ int ii; if( nCmd!=1 ) goto session_syntax_error; if( pAuxDb->nSession ){ ii = sqlite3session_isempty(pSession->p); sqlite3_fprintf(p->out, "session %s isempty flag = %d\n", pSession->zName, ii); } }else /* .session list ** List all currently open sessions */ if( cli_strcmp(azCmd[0],"list")==0 ){ for(i=0; i<pAuxDb->nSession; i++){ sqlite3_fprintf(p->out, "%d %s\n", i, pAuxDb->aSession[i].zName); } }else /* .session open DB NAME ** Open a new session called NAME on the attached database DB. ** DB is normally "main". */ if( cli_strcmp(azCmd[0],"open")==0 ){ char *zName; if( nCmd!=3 ) goto session_syntax_error; zName = azCmd[2]; if( zName[0]==0 ) goto session_syntax_error; for(i=0; i<pAuxDb->nSession; i++){ if( cli_strcmp(pAuxDb->aSession[i].zName,zName)==0 ){ sqlite3_fprintf(stderr,"Session \"%s\" already exists\n", zName); goto meta_command_exit; } } if( pAuxDb->nSession>=ArraySize(pAuxDb->aSession) ){ sqlite3_fprintf(stderr, "Maximum of %d sessions\n", ArraySize(pAuxDb->aSession)); goto meta_command_exit; } pSession = &pAuxDb->aSession[pAuxDb->nSession]; rc = sqlite3session_create(p->db, azCmd[1], &pSession->p); if( rc ){ sqlite3_fprintf(stderr,"Cannot open session: error code=%d\n", rc); rc = 0; goto meta_command_exit; } pSession->nFilter = 0; sqlite3session_table_filter(pSession->p, session_filter, pSession); pAuxDb->nSession++; pSession->zName = sqlite3_mprintf("%s", zName); shell_check_oom(pSession->zName); }else /* If no command name matches, show a syntax error */ session_syntax_error: showHelp(p->out, "session"); }else #endif #ifdef SQLITE_DEBUG /* Undocumented commands for internal testing. Subject to change ** without notice. */ if( c=='s' && n>=10 && cli_strncmp(azArg[0], "selftest-", 9)==0 ){ if( cli_strncmp(azArg[0]+9, "boolean", n-9)==0 ){ int i, v; for(i=1; i<nArg; i++){ v = booleanValue(azArg[i]); sqlite3_fprintf(p->out, "%s: %d 0x%x\n", azArg[i], v, v); } } if( cli_strncmp(azArg[0]+9, "integer", n-9)==0 ){ int i; sqlite3_int64 v; for(i=1; i<nArg; i++){ char zBuf[200]; v = integerValue(azArg[i]); sqlite3_snprintf(sizeof(zBuf),zBuf,"%s: %lld 0x%llx\n", azArg[i],v,v); sqlite3_fputs(zBuf, p->out); } } }else #endif if( c=='s' && n>=4 && cli_strncmp(azArg[0],"selftest",n)==0 ){ int bIsInit = 0; /* True to initialize the SELFTEST table */ int bVerbose = 0; /* Verbose output */ int bSelftestExists; /* True if SELFTEST already exists */ int i, k; /* Loop counters */ int nTest = 0; /* Number of tests runs */ int nErr = 0; /* Number of errors seen */ ShellText str; /* Answer for a query */ sqlite3_stmt *pStmt = 0; /* Query against the SELFTEST table */ open_db(p,0); for(i=1; i<nArg; i++){ const char *z = azArg[i]; if( z[0]=='-' && z[1]=='-' ) z++; if( cli_strcmp(z,"-init")==0 ){ bIsInit = 1; }else if( cli_strcmp(z,"-v")==0 ){ bVerbose++; }else { sqlite3_fprintf(stderr, "Unknown option \"%s\" on \"%s\"\n", azArg[i], azArg[0]); sqlite3_fputs("Should be one of: --init -v\n", stderr); rc = 1; goto meta_command_exit; } } if( sqlite3_table_column_metadata(p->db,"main","selftest",0,0,0,0,0,0) != SQLITE_OK ){ bSelftestExists = 0; }else{ bSelftestExists = 1; } if( bIsInit ){ createSelftestTable(p); bSelftestExists = 1; } initText(&str); appendText(&str, "x", 0); for(k=bSelftestExists; k>=0; k--){ if( k==1 ){ rc = sqlite3_prepare_v2(p->db, "SELECT tno,op,cmd,ans FROM selftest ORDER BY tno", -1, &pStmt, 0); }else{ rc = sqlite3_prepare_v2(p->db, "VALUES(0,'memo','Missing SELFTEST table - default checks only','')," " (1,'run','PRAGMA integrity_check','ok')", -1, &pStmt, 0); } if( rc ){ eputz("Error querying the selftest table\n"); rc = 1; sqlite3_finalize(pStmt); goto meta_command_exit; } for(i=1; sqlite3_step(pStmt)==SQLITE_ROW; i++){ int tno = sqlite3_column_int(pStmt, 0); const char *zOp = (const char*)sqlite3_column_text(pStmt, 1); const char *zSql = (const char*)sqlite3_column_text(pStmt, 2); const char *zAns = (const char*)sqlite3_column_text(pStmt, 3); if( zOp==0 ) continue; if( zSql==0 ) continue; if( zAns==0 ) continue; k = 0; if( bVerbose>0 ){ sqlite3_fprintf(stdout, "%d: %s %s\n", tno, zOp, zSql); } if( cli_strcmp(zOp,"memo")==0 ){ sqlite3_fprintf(p->out, "%s\n", zSql); }else if( cli_strcmp(zOp,"run")==0 ){ char *zErrMsg = 0; str.n = 0; str.z[0] = 0; rc = sqlite3_exec(p->db, zSql, captureOutputCallback, &str, &zErrMsg); nTest++; if( bVerbose ){ sqlite3_fprintf(p->out, "Result: %s\n", str.z); } if( rc || zErrMsg ){ nErr++; rc = 1; sqlite3_fprintf(p->out, "%d: error-code-%d: %s\n", tno, rc,zErrMsg); sqlite3_free(zErrMsg); }else if( cli_strcmp(zAns,str.z)!=0 ){ nErr++; rc = 1; sqlite3_fprintf(p->out, "%d: Expected: [%s]\n", tno, zAns); sqlite3_fprintf(p->out, "%d: Got: [%s]\n", tno, str.z); } } else{ sqlite3_fprintf(stderr, "Unknown operation \"%s\" on selftest line %d\n", zOp, tno); rc = 1; break; } } /* End loop over rows of content from SELFTEST */ sqlite3_finalize(pStmt); } /* End loop over k */ freeText(&str); sqlite3_fprintf(p->out, "%d errors out of %d tests\n", nErr, nTest); }else if( c=='s' && cli_strncmp(azArg[0], "separator", n)==0 ){ if( nArg<2 || nArg>3 ){ eputz("Usage: .separator COL ?ROW?\n"); rc = 1; } if( nArg>=2 ){ sqlite3_snprintf(sizeof(p->colSeparator), p->colSeparator, "%.*s", (int)ArraySize(p->colSeparator)-1, azArg[1]); } if( nArg>=3 ){ sqlite3_snprintf(sizeof(p->rowSeparator), p->rowSeparator, "%.*s", (int)ArraySize(p->rowSeparator)-1, azArg[2]); } }else if( c=='s' && n>=4 && cli_strncmp(azArg[0],"sha3sum",n)==0 ){ const char *zLike = 0; /* Which table to checksum. 0 means everything */ int i; /* Loop counter */ int bSchema = 0; /* Also hash the schema */ int bSeparate = 0; /* Hash each table separately */ int iSize = 224; /* Hash algorithm to use */ int bDebug = 0; /* Only show the query that would have run */ sqlite3_stmt *pStmt; /* For querying tables names */ char *zSql; /* SQL to be run */ char *zSep; /* Separator */ ShellText sSql; /* Complete SQL for the query to run the hash */ ShellText sQuery; /* Set of queries used to read all content */ open_db(p, 0); for(i=1; i<nArg; i++){ const char *z = azArg[i]; if( z[0]=='-' ){ z++; if( z[0]=='-' ) z++; if( cli_strcmp(z,"schema")==0 ){ bSchema = 1; }else if( cli_strcmp(z,"sha3-224")==0 || cli_strcmp(z,"sha3-256")==0 || cli_strcmp(z,"sha3-384")==0 || cli_strcmp(z,"sha3-512")==0 ){ iSize = atoi(&z[5]); }else if( cli_strcmp(z,"debug")==0 ){ bDebug = 1; }else { sqlite3_fprintf(stderr, "Unknown option \"%s\" on \"%s\"\n", azArg[i], azArg[0]); showHelp(p->out, azArg[0]); rc = 1; goto meta_command_exit; } }else if( zLike ){ eputz("Usage: .sha3sum ?OPTIONS? ?LIKE-PATTERN?\n"); rc = 1; goto meta_command_exit; }else{ zLike = z; bSeparate = 1; if( sqlite3_strlike("sqlite\\_%", zLike, '\\')==0 ) bSchema = 1; } } if( bSchema ){ zSql = "SELECT lower(name) as tname FROM sqlite_schema" " WHERE type='table' AND coalesce(rootpage,0)>1" " UNION ALL SELECT 'sqlite_schema'" " ORDER BY 1 collate nocase"; }else{ zSql = "SELECT lower(name) as tname FROM sqlite_schema" " WHERE type='table' AND coalesce(rootpage,0)>1" " AND name NOT LIKE 'sqlite_%'" " ORDER BY 1 collate nocase"; } sqlite3_prepare_v2(p->db, zSql, -1, &pStmt, 0); initText(&sQuery); initText(&sSql); appendText(&sSql, "WITH [sha3sum$query](a,b) AS(",0); zSep = "VALUES("; while( SQLITE_ROW==sqlite3_step(pStmt) ){ const char *zTab = (const char*)sqlite3_column_text(pStmt,0); if( zTab==0 ) continue; if( zLike && sqlite3_strlike(zLike, zTab, 0)!=0 ) continue; if( cli_strncmp(zTab, "sqlite_",7)!=0 ){ appendText(&sQuery,"SELECT * FROM ", 0); appendText(&sQuery,zTab,'"'); appendText(&sQuery," NOT INDEXED;", 0); }else if( cli_strcmp(zTab, "sqlite_schema")==0 ){ appendText(&sQuery,"SELECT type,name,tbl_name,sql FROM sqlite_schema" " ORDER BY name;", 0); }else if( cli_strcmp(zTab, "sqlite_sequence")==0 ){ appendText(&sQuery,"SELECT name,seq FROM sqlite_sequence" " ORDER BY name;", 0); }else if( cli_strcmp(zTab, "sqlite_stat1")==0 ){ appendText(&sQuery,"SELECT tbl,idx,stat FROM sqlite_stat1" " ORDER BY tbl,idx;", 0); }else if( cli_strcmp(zTab, "sqlite_stat4")==0 ){ appendText(&sQuery, "SELECT * FROM ", 0); appendText(&sQuery, zTab, 0); appendText(&sQuery, " ORDER BY tbl, idx, rowid;\n", 0); } appendText(&sSql, zSep, 0); appendText(&sSql, sQuery.z, '\''); sQuery.n = 0; appendText(&sSql, ",", 0); appendText(&sSql, zTab, '\''); zSep = "),("; } sqlite3_finalize(pStmt); if( bSeparate ){ zSql = sqlite3_mprintf( "%s))" " SELECT lower(hex(sha3_query(a,%d))) AS hash, b AS label" " FROM [sha3sum$query]", sSql.z, iSize); }else{ zSql = sqlite3_mprintf( "%s))" " SELECT lower(hex(sha3_query(group_concat(a,''),%d))) AS hash" " FROM [sha3sum$query]", sSql.z, iSize); } shell_check_oom(zSql); freeText(&sQuery); freeText(&sSql); if( bDebug ){ sqlite3_fprintf(p->out, "%s\n", zSql); }else{ shell_exec(p, zSql, 0); } #if !defined(SQLITE_OMIT_SCHEMA_PRAGMAS) && !defined(SQLITE_OMIT_VIRTUALTABLE) { int lrc; char *zRevText = /* Query for reversible to-blob-to-text check */ "SELECT lower(name) as tname FROM sqlite_schema\n" "WHERE type='table' AND coalesce(rootpage,0)>1\n" "AND name NOT LIKE 'sqlite_%%'%s\n" "ORDER BY 1 collate nocase"; zRevText = sqlite3_mprintf(zRevText, zLike? " AND name LIKE $tspec" : ""); zRevText = sqlite3_mprintf( /* lower-case query is first run, producing upper-case query. */ "with tabcols as materialized(\n" "select tname, cname\n" "from (" " select printf('\"%%w\"',ss.tname) as tname," " printf('\"%%w\"',ti.name) as cname\n" " from (%z) ss\n inner join pragma_table_info(tname) ti))\n" "select 'SELECT total(bad_text_count) AS bad_text_count\n" "FROM ('||group_concat(query, ' UNION ALL ')||')' as btc_query\n" " from (select 'SELECT COUNT(*) AS bad_text_count\n" "FROM '||tname||' WHERE '\n" "||group_concat('CAST(CAST('||cname||' AS BLOB) AS TEXT)<>'||cname\n" "|| ' AND typeof('||cname||')=''text'' ',\n" "' OR ') as query, tname from tabcols group by tname)" , zRevText); shell_check_oom(zRevText); if( bDebug ) sqlite3_fprintf(p->out, "%s\n", zRevText); lrc = sqlite3_prepare_v2(p->db, zRevText, -1, &pStmt, 0); if( lrc!=SQLITE_OK ){ /* assert(lrc==SQLITE_NOMEM); // might also be SQLITE_ERROR if the ** user does cruel and unnatural things like ".limit expr_depth 0". */ rc = 1; }else{ if( zLike ) sqlite3_bind_text(pStmt,1,zLike,-1,SQLITE_STATIC); lrc = SQLITE_ROW==sqlite3_step(pStmt); if( lrc ){ const char *zGenQuery = (char*)sqlite3_column_text(pStmt,0); sqlite3_stmt *pCheckStmt; lrc = sqlite3_prepare_v2(p->db, zGenQuery, -1, &pCheckStmt, 0); if( bDebug ) sqlite3_fprintf(p->out, "%s\n", zGenQuery); if( lrc!=SQLITE_OK ){ rc = 1; }else{ if( SQLITE_ROW==sqlite3_step(pCheckStmt) ){ double countIrreversible = sqlite3_column_double(pCheckStmt, 0); if( countIrreversible>0 ){ int sz = (int)(countIrreversible + 0.5); sqlite3_fprintf(stderr, "Digest includes %d invalidly encoded text field%s.\n", sz, (sz>1)? "s": ""); } } sqlite3_finalize(pCheckStmt); } sqlite3_finalize(pStmt); } } if( rc ) eputz(".sha3sum failed.\n"); sqlite3_free(zRevText); } #endif /* !defined(*_OMIT_SCHEMA_PRAGMAS) && !defined(*_OMIT_VIRTUALTABLE) */ sqlite3_free(zSql); }else #if !defined(SQLITE_NOHAVE_SYSTEM) && !defined(SQLITE_SHELL_FIDDLE) if( c=='s' && (cli_strncmp(azArg[0], "shell", n)==0 || cli_strncmp(azArg[0],"system",n)==0) ){ char *zCmd; int i, x; failIfSafeMode(p, "cannot run .%s in safe mode", azArg[0]); if( nArg<2 ){ eputz("Usage: .system COMMAND\n"); rc = 1; goto meta_command_exit; } zCmd = sqlite3_mprintf(strchr(azArg[1],' ')==0?"%s":"\"%s\"", azArg[1]); for(i=2; i<nArg && zCmd!=0; i++){ zCmd = sqlite3_mprintf(strchr(azArg[i],' ')==0?"%z %s":"%z \"%s\"", zCmd, azArg[i]); } /*consoleRestore();*/ x = zCmd!=0 ? system(zCmd) : 1; /*consoleRenewSetup();*/ sqlite3_free(zCmd); if( x ) sqlite3_fprintf(stderr,"System command returns %d\n", x); }else #endif /* !defined(SQLITE_NOHAVE_SYSTEM) && !defined(SQLITE_SHELL_FIDDLE) */ if( c=='s' && cli_strncmp(azArg[0], "show", n)==0 ){ static const char *azBool[] = { "off", "on", "trigger", "full"}; const char *zOut; int i; if( nArg!=1 ){ eputz("Usage: .show\n"); rc = 1; goto meta_command_exit; } sqlite3_fprintf(p->out, "%12.12s: %s\n","echo", azBool[ShellHasFlag(p, SHFLG_Echo)]); sqlite3_fprintf(p->out, "%12.12s: %s\n","eqp", azBool[p->autoEQP&3]); sqlite3_fprintf(p->out, "%12.12s: %s\n","explain", p->mode==MODE_Explain ? "on" : p->autoExplain ? "auto" : "off"); sqlite3_fprintf(p->out, "%12.12s: %s\n","headers", azBool[p->showHeader!=0]); if( p->mode==MODE_Column || (p->mode>=MODE_Markdown && p->mode<=MODE_Box) ){ sqlite3_fprintf(p->out, "%12.12s: %s --wrap %d --wordwrap %s --%squote\n", "mode", modeDescr[p->mode], p->cmOpts.iWrap, p->cmOpts.bWordWrap ? "on" : "off", p->cmOpts.bQuote ? "" : "no"); }else{ sqlite3_fprintf(p->out, "%12.12s: %s\n","mode", modeDescr[p->mode]); } sqlite3_fprintf(p->out, "%12.12s: ", "nullvalue"); output_c_string(p->out, p->nullValue); sqlite3_fputs("\n", p->out); sqlite3_fprintf(p->out, "%12.12s: %s\n","output", strlen30(p->outfile) ? p->outfile : "stdout"); sqlite3_fprintf(p->out, "%12.12s: ", "colseparator"); output_c_string(p->out, p->colSeparator); sqlite3_fputs("\n", p->out); sqlite3_fprintf(p->out, "%12.12s: ", "rowseparator"); output_c_string(p->out, p->rowSeparator); sqlite3_fputs("\n", p->out); switch( p->statsOn ){ case 0: zOut = "off"; break; default: zOut = "on"; break; case 2: zOut = "stmt"; break; case 3: zOut = "vmstep"; break; } sqlite3_fprintf(p->out, "%12.12s: %s\n","stats", zOut); sqlite3_fprintf(p->out, "%12.12s: ", "width"); for (i=0;i<p->nWidth;i++) { sqlite3_fprintf(p->out, "%d ", p->colWidth[i]); } sqlite3_fputs("\n", p->out); sqlite3_fprintf(p->out, "%12.12s: %s\n", "filename", p->pAuxDb->zDbFilename ? p->pAuxDb->zDbFilename : ""); }else if( c=='s' && cli_strncmp(azArg[0], "stats", n)==0 ){ if( nArg==2 ){ if( cli_strcmp(azArg[1],"stmt")==0 ){ p->statsOn = 2; }else if( cli_strcmp(azArg[1],"vmstep")==0 ){ p->statsOn = 3; }else{ p->statsOn = (u8)booleanValue(azArg[1]); } }else if( nArg==1 ){ display_stats(p->db, p, 0); }else{ eputz("Usage: .stats ?on|off|stmt|vmstep?\n"); rc = 1; } }else if( (c=='t' && n>1 && cli_strncmp(azArg[0], "tables", n)==0) || (c=='i' && (cli_strncmp(azArg[0], "indices", n)==0 || cli_strncmp(azArg[0], "indexes", n)==0) ) ){ sqlite3_stmt *pStmt; char **azResult; int nRow, nAlloc; int ii; ShellText s; initText(&s); open_db(p, 0); rc = sqlite3_prepare_v2(p->db, "PRAGMA database_list", -1, &pStmt, 0); if( rc ){ sqlite3_finalize(pStmt); return shellDatabaseError(p->db); } if( nArg>2 && c=='i' ){ /* It is an historical accident that the .indexes command shows an error ** when called with the wrong number of arguments whereas the .tables ** command does not. */ eputz("Usage: .indexes ?LIKE-PATTERN?\n"); rc = 1; sqlite3_finalize(pStmt); goto meta_command_exit; } for(ii=0; sqlite3_step(pStmt)==SQLITE_ROW; ii++){ const char *zDbName = (const char*)sqlite3_column_text(pStmt, 1); if( zDbName==0 ) continue; if( s.z && s.z[0] ) appendText(&s, " UNION ALL ", 0); if( sqlite3_stricmp(zDbName, "main")==0 ){ appendText(&s, "SELECT name FROM ", 0); }else{ appendText(&s, "SELECT ", 0); appendText(&s, zDbName, '\''); appendText(&s, "||'.'||name FROM ", 0); } appendText(&s, zDbName, '"'); appendText(&s, ".sqlite_schema ", 0); if( c=='t' ){ appendText(&s," WHERE type IN ('table','view')" " AND name NOT LIKE 'sqlite_%'" " AND name LIKE ?1", 0); }else{ appendText(&s," WHERE type='index'" " AND tbl_name LIKE ?1", 0); } } rc = sqlite3_finalize(pStmt); if( rc==SQLITE_OK ){ appendText(&s, " ORDER BY 1", 0); rc = sqlite3_prepare_v2(p->db, s.z, -1, &pStmt, 0); } freeText(&s); if( rc ) return shellDatabaseError(p->db); /* Run the SQL statement prepared by the above block. Store the results ** as an array of nul-terminated strings in azResult[]. */ nRow = nAlloc = 0; azResult = 0; if( nArg>1 ){ sqlite3_bind_text(pStmt, 1, azArg[1], -1, SQLITE_TRANSIENT); }else{ sqlite3_bind_text(pStmt, 1, "%", -1, SQLITE_STATIC); } while( sqlite3_step(pStmt)==SQLITE_ROW ){ if( nRow>=nAlloc ){ char **azNew; int n2 = nAlloc*2 + 10; azNew = sqlite3_realloc64(azResult, sizeof(azResult[0])*n2); shell_check_oom(azNew); nAlloc = n2; azResult = azNew; } azResult[nRow] = sqlite3_mprintf("%s", sqlite3_column_text(pStmt, 0)); shell_check_oom(azResult[nRow]); nRow++; } if( sqlite3_finalize(pStmt)!=SQLITE_OK ){ rc = shellDatabaseError(p->db); } /* Pretty-print the contents of array azResult[] to the output */ if( rc==0 && nRow>0 ){ int len, maxlen = 0; int i, j; int nPrintCol, nPrintRow; for(i=0; i<nRow; i++){ len = strlen30(azResult[i]); if( len>maxlen ) maxlen = len; } nPrintCol = 80/(maxlen+2); if( nPrintCol<1 ) nPrintCol = 1; nPrintRow = (nRow + nPrintCol - 1)/nPrintCol; for(i=0; i<nPrintRow; i++){ for(j=i; j<nRow; j+=nPrintRow){ char *zSp = j<nPrintRow ? "" : " "; sqlite3_fprintf(p->out, "%s%-*s", zSp, maxlen, azResult[j] ? azResult[j]:""); } sqlite3_fputs("\n", p->out); } } for(ii=0; ii<nRow; ii++) sqlite3_free(azResult[ii]); sqlite3_free(azResult); }else #ifndef SQLITE_SHELL_FIDDLE /* Begin redirecting output to the file "testcase-out.txt" */ if( c=='t' && cli_strcmp(azArg[0],"testcase")==0 ){ output_reset(p); p->out = output_file_open("testcase-out.txt"); if( p->out==0 ){ eputz("Error: cannot open 'testcase-out.txt'\n"); } if( nArg>=2 ){ sqlite3_snprintf(sizeof(p->zTestcase), p->zTestcase, "%s", azArg[1]); }else{ sqlite3_snprintf(sizeof(p->zTestcase), p->zTestcase, "?"); } }else #endif /* !defined(SQLITE_SHELL_FIDDLE) */ #ifndef SQLITE_UNTESTABLE if( c=='t' && n>=8 && cli_strncmp(azArg[0], "testctrl", n)==0 ){ static const struct { const char *zCtrlName; /* Name of a test-control option */ int ctrlCode; /* Integer code for that option */ int unSafe; /* Not valid unless --unsafe-testing */ const char *zUsage; /* Usage notes */ } aCtrl[] = { {"always", SQLITE_TESTCTRL_ALWAYS, 1, "BOOLEAN" }, {"assert", SQLITE_TESTCTRL_ASSERT, 1, "BOOLEAN" }, /*{"benign_malloc_hooks",SQLITE_TESTCTRL_BENIGN_MALLOC_HOOKS,1, "" },*/ /*{"bitvec_test", SQLITE_TESTCTRL_BITVEC_TEST, 1, "" },*/ {"byteorder", SQLITE_TESTCTRL_BYTEORDER, 0, "" }, {"extra_schema_checks",SQLITE_TESTCTRL_EXTRA_SCHEMA_CHECKS,0,"BOOLEAN" }, {"fault_install", SQLITE_TESTCTRL_FAULT_INSTALL, 1,"args..." }, {"fk_no_action", SQLITE_TESTCTRL_FK_NO_ACTION, 0, "BOOLEAN" }, {"imposter", SQLITE_TESTCTRL_IMPOSTER,1,"SCHEMA ON/OFF ROOTPAGE"}, {"internal_functions", SQLITE_TESTCTRL_INTERNAL_FUNCTIONS,0,"" }, {"json_selfcheck", SQLITE_TESTCTRL_JSON_SELFCHECK ,0,"BOOLEAN" }, {"localtime_fault", SQLITE_TESTCTRL_LOCALTIME_FAULT,0,"BOOLEAN" }, {"never_corrupt", SQLITE_TESTCTRL_NEVER_CORRUPT,1, "BOOLEAN" }, {"optimizations", SQLITE_TESTCTRL_OPTIMIZATIONS,0,"DISABLE-MASK ..."}, #ifdef YYCOVERAGE {"parser_coverage", SQLITE_TESTCTRL_PARSER_COVERAGE,0,"" }, #endif {"pending_byte", SQLITE_TESTCTRL_PENDING_BYTE,1, "OFFSET " }, {"prng_restore", SQLITE_TESTCTRL_PRNG_RESTORE,0, "" }, {"prng_save", SQLITE_TESTCTRL_PRNG_SAVE, 0, "" }, {"prng_seed", SQLITE_TESTCTRL_PRNG_SEED, 0, "SEED ?db?" }, {"seek_count", SQLITE_TESTCTRL_SEEK_COUNT, 0, "" }, {"sorter_mmap", SQLITE_TESTCTRL_SORTER_MMAP, 0, "NMAX" }, {"tune", SQLITE_TESTCTRL_TUNE, 1, "ID VALUE" }, }; int testctrl = -1; int iCtrl = -1; int rc2 = 0; /* 0: usage. 1: %d 2: %x 3: no-output */ int isOk = 0; int i, n2; const char *zCmd = 0; open_db(p, 0); zCmd = nArg>=2 ? azArg[1] : "help"; /* The argument can optionally begin with "-" or "--" */ if( zCmd[0]=='-' && zCmd[1] ){ zCmd++; if( zCmd[0]=='-' && zCmd[1] ) zCmd++; } /* --help lists all test-controls */ if( cli_strcmp(zCmd,"help")==0 ){ sqlite3_fputs("Available test-controls:\n", p->out); for(i=0; i<ArraySize(aCtrl); i++){ if( aCtrl[i].unSafe && !ShellHasFlag(p,SHFLG_TestingMode) ) continue; sqlite3_fprintf(p->out, " .testctrl %s %s\n", aCtrl[i].zCtrlName, aCtrl[i].zUsage); } rc = 1; goto meta_command_exit; } /* convert testctrl text option to value. allow any unique prefix ** of the option name, or a numerical value. */ n2 = strlen30(zCmd); for(i=0; i<ArraySize(aCtrl); i++){ if( aCtrl[i].unSafe && !ShellHasFlag(p,SHFLG_TestingMode) ) continue; if( cli_strncmp(zCmd, aCtrl[i].zCtrlName, n2)==0 ){ if( testctrl<0 ){ testctrl = aCtrl[i].ctrlCode; iCtrl = i; }else{ sqlite3_fprintf(stderr,"Error: ambiguous test-control: \"%s\"\n" "Use \".testctrl --help\" for help\n", zCmd); rc = 1; goto meta_command_exit; } } } if( testctrl<0 ){ sqlite3_fprintf(stderr,"Error: unknown test-control: %s\n" "Use \".testctrl --help\" for help\n", zCmd); }else{ switch(testctrl){ /* Special processing for .testctrl opt MASK ... ** Each MASK argument can be one of: ** ** +LABEL Enable the named optimization ** ** -LABEL Disable the named optimization ** ** INTEGER Mask of optimizations to disable */ case SQLITE_TESTCTRL_OPTIMIZATIONS: { static const struct { unsigned int mask; /* Mask for this optimization */ unsigned int bDsply; /* Display this on output */ const char *zLabel; /* Name of optimization */ } aLabel[] = { { 0x00000001, 1, "QueryFlattener" }, { 0x00000001, 0, "Flatten" }, { 0x00000002, 1, "WindowFunc" }, { 0x00000004, 1, "GroupByOrder" }, { 0x00000008, 1, "FactorOutConst" }, { 0x00000010, 1, "DistinctOpt" }, { 0x00000020, 1, "CoverIdxScan" }, { 0x00000040, 1, "OrderByIdxJoin" }, { 0x00000080, 1, "Transitive" }, { 0x00000100, 1, "OmitNoopJoin" }, { 0x00000200, 1, "CountOfView" }, { 0x00000400, 1, "CurosrHints" }, { 0x00000800, 1, "Stat4" }, { 0x00001000, 1, "PushDown" }, { 0x00002000, 1, "SimplifyJoin" }, { 0x00004000, 1, "SkipScan" }, { 0x00008000, 1, "PropagateConst" }, { 0x00010000, 1, "MinMaxOpt" }, { 0x00020000, 1, "SeekScan" }, { 0x00040000, 1, "OmitOrderBy" }, { 0x00080000, 1, "BloomFilter" }, { 0x00100000, 1, "BloomPulldown" }, { 0x00200000, 1, "BalancedMerge" }, { 0x00400000, 1, "ReleaseReg" }, { 0x00800000, 1, "FlttnUnionAll" }, { 0x01000000, 1, "IndexedEXpr" }, { 0x02000000, 1, "Coroutines" }, { 0x04000000, 1, "NullUnusedCols" }, { 0x08000000, 1, "OnePass" }, { 0x10000000, 1, "OrderBySubq" }, { 0xffffffff, 0, "All" }, }; unsigned int curOpt; unsigned int newOpt; int ii; sqlite3_test_control(SQLITE_TESTCTRL_GETOPT, p->db, &curOpt); newOpt = curOpt; for(ii=2; ii<nArg; ii++){ const char *z = azArg[ii]; int useLabel = 0; const char *zLabel = 0; if( (z[0]=='+'|| z[0]=='-') && !IsDigit(z[1]) ){ useLabel = z[0]; zLabel = &z[1]; }else if( !IsDigit(z[0]) && z[0]!=0 && !IsDigit(z[1]) ){ useLabel = '+'; zLabel = z; }else{ newOpt = (unsigned int)strtol(z,0,0); } if( useLabel ){ int jj; for(jj=0; jj<ArraySize(aLabel); jj++){ if( sqlite3_stricmp(zLabel, aLabel[jj].zLabel)==0 ) break; } if( jj>=ArraySize(aLabel) ){ sqlite3_fprintf(stderr, "Error: no such optimization: \"%s\"\n", zLabel); sqlite3_fputs("Should be one of:", stderr); for(jj=0; jj<ArraySize(aLabel); jj++){ sqlite3_fprintf(stderr," %s", aLabel[jj].zLabel); } sqlite3_fputs("\n", stderr); rc = 1; goto meta_command_exit; } if( useLabel=='+' ){ newOpt &= ~aLabel[jj].mask; }else{ newOpt |= aLabel[jj].mask; } } } if( curOpt!=newOpt ){ sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS,p->db,newOpt); }else if( nArg<3 ){ curOpt = ~newOpt; } if( newOpt==0 ){ sqlite3_fputs("+All\n", p->out); }else if( newOpt==0xffffffff ){ sqlite3_fputs("-All\n", p->out); }else{ int jj; for(jj=0; jj<ArraySize(aLabel); jj++){ unsigned int m = aLabel[jj].mask; if( !aLabel[jj].bDsply ) continue; if( (curOpt&m)!=(newOpt&m) ){ sqlite3_fprintf(p->out, "%c%s\n", (newOpt & m)==0 ? '+' : '-', aLabel[jj].zLabel); } } } rc2 = isOk = 3; break; } /* sqlite3_test_control(int, db, int) */ case SQLITE_TESTCTRL_FK_NO_ACTION: if( nArg==3 ){ unsigned int opt = (unsigned int)strtol(azArg[2], 0, 0); rc2 = sqlite3_test_control(testctrl, p->db, opt); isOk = 3; } break; /* sqlite3_test_control(int) */ case SQLITE_TESTCTRL_PRNG_SAVE: case SQLITE_TESTCTRL_PRNG_RESTORE: case SQLITE_TESTCTRL_BYTEORDER: if( nArg==2 ){ rc2 = sqlite3_test_control(testctrl); isOk = testctrl==SQLITE_TESTCTRL_BYTEORDER ? 1 : 3; } break; /* sqlite3_test_control(int, uint) */ case SQLITE_TESTCTRL_PENDING_BYTE: if( nArg==3 ){ unsigned int opt = (unsigned int)integerValue(azArg[2]); rc2 = sqlite3_test_control(testctrl, opt); isOk = 3; } break; /* sqlite3_test_control(int, int, sqlite3*) */ case SQLITE_TESTCTRL_PRNG_SEED: if( nArg==3 || nArg==4 ){ int ii = (int)integerValue(azArg[2]); sqlite3 *db; if( ii==0 && cli_strcmp(azArg[2],"random")==0 ){ sqlite3_randomness(sizeof(ii),&ii); sqlite3_fprintf(stdout, "-- random seed: %d\n", ii); } if( nArg==3 ){ db = 0; }else{ db = p->db; /* Make sure the schema has been loaded */ sqlite3_table_column_metadata(db, 0, "x", 0, 0, 0, 0, 0, 0); } rc2 = sqlite3_test_control(testctrl, ii, db); isOk = 3; } break; /* sqlite3_test_control(int, int) */ case SQLITE_TESTCTRL_ASSERT: case SQLITE_TESTCTRL_ALWAYS: if( nArg==3 ){ int opt = booleanValue(azArg[2]); rc2 = sqlite3_test_control(testctrl, opt); isOk = 1; } break; /* sqlite3_test_control(int, int) */ case SQLITE_TESTCTRL_LOCALTIME_FAULT: case SQLITE_TESTCTRL_NEVER_CORRUPT: if( nArg==3 ){ int opt = booleanValue(azArg[2]); rc2 = sqlite3_test_control(testctrl, opt); isOk = 3; } break; /* sqlite3_test_control(sqlite3*) */ case SQLITE_TESTCTRL_INTERNAL_FUNCTIONS: rc2 = sqlite3_test_control(testctrl, p->db); isOk = 3; break; case SQLITE_TESTCTRL_IMPOSTER: if( nArg==5 ){ rc2 = sqlite3_test_control(testctrl, p->db, azArg[2], integerValue(azArg[3]), integerValue(azArg[4])); isOk = 3; } break; case SQLITE_TESTCTRL_SEEK_COUNT: { u64 x = 0; rc2 = sqlite3_test_control(testctrl, p->db, &x); sqlite3_fprintf(p->out, "%llu\n", x); isOk = 3; break; } #ifdef YYCOVERAGE case SQLITE_TESTCTRL_PARSER_COVERAGE: { if( nArg==2 ){ sqlite3_test_control(testctrl, p->out); isOk = 3; } break; } #endif #ifdef SQLITE_DEBUG case SQLITE_TESTCTRL_TUNE: { if( nArg==4 ){ int id = (int)integerValue(azArg[2]); int val = (int)integerValue(azArg[3]); sqlite3_test_control(testctrl, id, &val); isOk = 3; }else if( nArg==3 ){ int id = (int)integerValue(azArg[2]); sqlite3_test_control(testctrl, -id, &rc2); isOk = 1; }else if( nArg==2 ){ int id = 1; while(1){ int val = 0; rc2 = sqlite3_test_control(testctrl, -id, &val); if( rc2!=SQLITE_OK ) break; if( id>1 ) sqlite3_fputs(" ", p->out); sqlite3_fprintf(p->out, "%d: %d", id, val); id++; } if( id>1 ) sqlite3_fputs("\n", p->out); isOk = 3; } break; } #endif case SQLITE_TESTCTRL_SORTER_MMAP: if( nArg==3 ){ int opt = (unsigned int)integerValue(azArg[2]); rc2 = sqlite3_test_control(testctrl, p->db, opt); isOk = 3; } break; case SQLITE_TESTCTRL_JSON_SELFCHECK: if( nArg==2 ){ rc2 = -1; isOk = 1; }else{ rc2 = booleanValue(azArg[2]); isOk = 3; } sqlite3_test_control(testctrl, &rc2); break; case SQLITE_TESTCTRL_FAULT_INSTALL: { int kk; int bShowHelp = nArg<=2; isOk = 3; for(kk=2; kk<nArg; kk++){ const char *z = azArg[kk]; if( z[0]=='-' && z[1]=='-' ) z++; if( cli_strcmp(z,"off")==0 ){ sqlite3_test_control(testctrl, 0); }else if( cli_strcmp(z,"on")==0 ){ faultsim_state.iCnt = faultsim_state.nSkip; if( faultsim_state.iErr==0 ) faultsim_state.iErr = 1; faultsim_state.nHit = 0; sqlite3_test_control(testctrl, faultsim_callback); }else if( cli_strcmp(z,"reset")==0 ){ faultsim_state.iCnt = faultsim_state.nSkip; faultsim_state.nHit = 0; sqlite3_test_control(testctrl, faultsim_callback); }else if( cli_strcmp(z,"status")==0 ){ sqlite3_fprintf(p->out, "faultsim.iId: %d\n", faultsim_state.iId); sqlite3_fprintf(p->out, "faultsim.iErr: %d\n", faultsim_state.iErr); sqlite3_fprintf(p->out, "faultsim.iCnt: %d\n", faultsim_state.iCnt); sqlite3_fprintf(p->out, "faultsim.nHit: %d\n", faultsim_state.nHit); sqlite3_fprintf(p->out, "faultsim.iInterval: %d\n", faultsim_state.iInterval); sqlite3_fprintf(p->out, "faultsim.eVerbose: %d\n", faultsim_state.eVerbose); sqlite3_fprintf(p->out, "faultsim.nRepeat: %d\n", faultsim_state.nRepeat); sqlite3_fprintf(p->out, "faultsim.nSkip: %d\n", faultsim_state.nSkip); }else if( cli_strcmp(z,"-v")==0 ){ if( faultsim_state.eVerbose<2 ) faultsim_state.eVerbose++; }else if( cli_strcmp(z,"-q")==0 ){ if( faultsim_state.eVerbose>0 ) faultsim_state.eVerbose--; }else if( cli_strcmp(z,"-id")==0 && kk+1<nArg ){ faultsim_state.iId = atoi(azArg[++kk]); }else if( cli_strcmp(z,"-errcode")==0 && kk+1<nArg ){ faultsim_state.iErr = atoi(azArg[++kk]); }else if( cli_strcmp(z,"-interval")==0 && kk+1<nArg ){ faultsim_state.iInterval = atoi(azArg[++kk]); }else if( cli_strcmp(z,"-repeat")==0 && kk+1<nArg ){ faultsim_state.nRepeat = atoi(azArg[++kk]); }else if( cli_strcmp(z,"-skip")==0 && kk+1<nArg ){ faultsim_state.nSkip = atoi(azArg[++kk]); }else if( cli_strcmp(z,"-?")==0 || sqlite3_strglob("*help*",z)==0){ bShowHelp = 1; }else{ sqlite3_fprintf(stderr, "Unrecognized fault_install argument: \"%s\"\n", azArg[kk]); rc = 1; bShowHelp = 1; break; } } if( bShowHelp ){ sqlite3_fputs( "Usage: .testctrl fault_install ARGS\n" "Possible arguments:\n" " off Disable faultsim\n" " on Activate faultsim\n" " reset Reset the trigger counter\n" " status Show current status\n" " -v Increase verbosity\n" " -q Decrease verbosity\n" " --errcode N When triggered, return N as error code\n" " --id ID Trigger only for the ID specified\n" " --interval N Trigger only after every N-th call\n" " --repeat N Turn off after N hits. 0 means never\n" " --skip N Skip the first N encounters\n" ,p->out ); } break; } } } if( isOk==0 && iCtrl>=0 ){ sqlite3_fprintf(p->out, "Usage: .testctrl %s %s\n", zCmd,aCtrl[iCtrl].zUsage); rc = 1; }else if( isOk==1 ){ sqlite3_fprintf(p->out, "%d\n", rc2); }else if( isOk==2 ){ sqlite3_fprintf(p->out, "0x%08x\n", rc2); } }else #endif /* !defined(SQLITE_UNTESTABLE) */ if( c=='t' && n>4 && cli_strncmp(azArg[0], "timeout", n)==0 ){ open_db(p, 0); sqlite3_busy_timeout(p->db, nArg>=2 ? (int)integerValue(azArg[1]) : 0); }else if( c=='t' && n>=5 && cli_strncmp(azArg[0], "timer", n)==0 ){ if( nArg==2 ){ enableTimer = booleanValue(azArg[1]); if( enableTimer && !HAS_TIMER ){ eputz("Error: timer not available on this system.\n"); enableTimer = 0; } }else{ eputz("Usage: .timer on|off\n"); rc = 1; } }else #ifndef SQLITE_OMIT_TRACE if( c=='t' && cli_strncmp(azArg[0], "trace", n)==0 ){ int mType = 0; int jj; open_db(p, 0); for(jj=1; jj<nArg; jj++){ const char *z = azArg[jj]; if( z[0]=='-' ){ if( optionMatch(z, "expanded") ){ p->eTraceType = SHELL_TRACE_EXPANDED; } #ifdef SQLITE_ENABLE_NORMALIZE else if( optionMatch(z, "normalized") ){ p->eTraceType = SHELL_TRACE_NORMALIZED; } #endif else if( optionMatch(z, "plain") ){ p->eTraceType = SHELL_TRACE_PLAIN; } else if( optionMatch(z, "profile") ){ mType |= SQLITE_TRACE_PROFILE; } else if( optionMatch(z, "row") ){ mType |= SQLITE_TRACE_ROW; } else if( optionMatch(z, "stmt") ){ mType |= SQLITE_TRACE_STMT; } else if( optionMatch(z, "close") ){ mType |= SQLITE_TRACE_CLOSE; } else { sqlite3_fprintf(stderr,"Unknown option \"%s\" on \".trace\"\n", z); rc = 1; goto meta_command_exit; } }else{ output_file_close(p->traceOut); p->traceOut = output_file_open(z); } } if( p->traceOut==0 ){ sqlite3_trace_v2(p->db, 0, 0, 0); }else{ if( mType==0 ) mType = SQLITE_TRACE_STMT; sqlite3_trace_v2(p->db, mType, sql_trace_callback, p); } }else #endif /* !defined(SQLITE_OMIT_TRACE) */ #if defined(SQLITE_DEBUG) && !defined(SQLITE_OMIT_VIRTUALTABLE) if( c=='u' && cli_strncmp(azArg[0], "unmodule", n)==0 ){ int ii; int lenOpt; char *zOpt; if( nArg<2 ){ eputz("Usage: .unmodule [--allexcept] NAME ...\n"); rc = 1; goto meta_command_exit; } open_db(p, 0); zOpt = azArg[1]; if( zOpt[0]=='-' && zOpt[1]=='-' && zOpt[2]!=0 ) zOpt++; lenOpt = (int)strlen(zOpt); if( lenOpt>=3 && cli_strncmp(zOpt, "-allexcept",lenOpt)==0 ){ assert( azArg[nArg]==0 ); sqlite3_drop_modules(p->db, nArg>2 ? (const char**)(azArg+2) : 0); }else{ for(ii=1; ii<nArg; ii++){ sqlite3_create_module(p->db, azArg[ii], 0, 0); } } }else #endif #if SQLITE_USER_AUTHENTICATION if( c=='u' && cli_strncmp(azArg[0], "user", n)==0 ){ if( nArg<2 ){ eputz("Usage: .user SUBCOMMAND ...\n"); rc = 1; goto meta_command_exit; } open_db(p, 0); if( cli_strcmp(azArg[1],"login")==0 ){ if( nArg!=4 ){ eputz("Usage: .user login USER PASSWORD\n"); rc = 1; goto meta_command_exit; } rc = sqlite3_user_authenticate(p->db, azArg[2], azArg[3], strlen30(azArg[3])); if( rc ){ sqlite3_fprintf(stderr,"Authentication failed for user %s\n", azArg[2]); rc = 1; } }else if( cli_strcmp(azArg[1],"add")==0 ){ if( nArg!=5 ){ eputz("Usage: .user add USER PASSWORD ISADMIN\n"); rc = 1; goto meta_command_exit; } rc = sqlite3_user_add(p->db, azArg[2], azArg[3], strlen30(azArg[3]), booleanValue(azArg[4])); if( rc ){ sqlite3_fprintf(stderr,"User-Add failed: %d\n", rc); rc = 1; } }else if( cli_strcmp(azArg[1],"edit")==0 ){ if( nArg!=5 ){ eputz("Usage: .user edit USER PASSWORD ISADMIN\n"); rc = 1; goto meta_command_exit; } rc = sqlite3_user_change(p->db, azArg[2], azArg[3], strlen30(azArg[3]), booleanValue(azArg[4])); if( rc ){ sqlite3_fprintf(stderr,"User-Edit failed: %d\n", rc); rc = 1; } }else if( cli_strcmp(azArg[1],"delete")==0 ){ if( nArg!=3 ){ eputz("Usage: .user delete USER\n"); rc = 1; goto meta_command_exit; } rc = sqlite3_user_delete(p->db, azArg[2]); if( rc ){ sqlite3_fprintf(stderr,"User-Delete failed: %d\n", rc); rc = 1; } }else{ eputz("Usage: .user login|add|edit|delete ...\n"); rc = 1; goto meta_command_exit; } }else #endif /* SQLITE_USER_AUTHENTICATION */ if( c=='v' && cli_strncmp(azArg[0], "version", n)==0 ){ char *zPtrSz = sizeof(void*)==8 ? "64-bit" : "32-bit"; sqlite3_fprintf(p->out, "SQLite %s %s\n" /*extra-version-info*/, sqlite3_libversion(), sqlite3_sourceid()); #if SQLITE_HAVE_ZLIB sqlite3_fprintf(p->out, "zlib version %s\n", zlibVersion()); #endif #define CTIMEOPT_VAL_(opt) #opt #define CTIMEOPT_VAL(opt) CTIMEOPT_VAL_(opt) #if defined(__clang__) && defined(__clang_major__) sqlite3_fprintf(p->out, "clang-" CTIMEOPT_VAL(__clang_major__) "." CTIMEOPT_VAL(__clang_minor__) "." CTIMEOPT_VAL(__clang_patchlevel__) " (%s)\n", zPtrSz); #elif defined(_MSC_VER) sqlite3_fprintf(p->out, "msvc-" CTIMEOPT_VAL(_MSC_VER) " (%s)\n", zPtrSz); #elif defined(__GNUC__) && defined(__VERSION__) sqlite3_fprintf(p->out, "gcc-" __VERSION__ " (%s)\n", zPtrSz); #endif }else if( c=='v' && cli_strncmp(azArg[0], "vfsinfo", n)==0 ){ const char *zDbName = nArg==2 ? azArg[1] : "main"; sqlite3_vfs *pVfs = 0; if( p->db ){ sqlite3_file_control(p->db, zDbName, SQLITE_FCNTL_VFS_POINTER, &pVfs); if( pVfs ){ sqlite3_fprintf(p->out, "vfs.zName = \"%s\"\n", pVfs->zName); sqlite3_fprintf(p->out, "vfs.iVersion = %d\n", pVfs->iVersion); sqlite3_fprintf(p->out, "vfs.szOsFile = %d\n", pVfs->szOsFile); sqlite3_fprintf(p->out, "vfs.mxPathname = %d\n", pVfs->mxPathname); } } }else if( c=='v' && cli_strncmp(azArg[0], "vfslist", n)==0 ){ sqlite3_vfs *pVfs; sqlite3_vfs *pCurrent = 0; if( p->db ){ sqlite3_file_control(p->db, "main", SQLITE_FCNTL_VFS_POINTER, &pCurrent); } for(pVfs=sqlite3_vfs_find(0); pVfs; pVfs=pVfs->pNext){ sqlite3_fprintf(p->out, "vfs.zName = \"%s\"%s\n", pVfs->zName, pVfs==pCurrent ? " <--- CURRENT" : ""); sqlite3_fprintf(p->out, "vfs.iVersion = %d\n", pVfs->iVersion); sqlite3_fprintf(p->out, "vfs.szOsFile = %d\n", pVfs->szOsFile); sqlite3_fprintf(p->out, "vfs.mxPathname = %d\n", pVfs->mxPathname); if( pVfs->pNext ){ sqlite3_fputs("-----------------------------------\n", p->out); } } }else if( c=='v' && cli_strncmp(azArg[0], "vfsname", n)==0 ){ const char *zDbName = nArg==2 ? azArg[1] : "main"; char *zVfsName = 0; if( p->db ){ sqlite3_file_control(p->db, zDbName, SQLITE_FCNTL_VFSNAME, &zVfsName); if( zVfsName ){ sqlite3_fprintf(p->out, "%s\n", zVfsName); sqlite3_free(zVfsName); } } }else if( c=='w' && cli_strncmp(azArg[0], "wheretrace", n)==0 ){ unsigned int x = nArg>=2? (unsigned int)integerValue(azArg[1]) : 0xffffffff; sqlite3_test_control(SQLITE_TESTCTRL_TRACEFLAGS, 3, &x); }else if( c=='w' && cli_strncmp(azArg[0], "width", n)==0 ){ int j; assert( nArg<=ArraySize(azArg) ); p->nWidth = nArg-1; p->colWidth = realloc(p->colWidth, (p->nWidth+1)*sizeof(int)*2); if( p->colWidth==0 && p->nWidth>0 ) shell_out_of_memory(); if( p->nWidth ) p->actualWidth = &p->colWidth[p->nWidth]; for(j=1; j<nArg; j++){ p->colWidth[j-1] = (int)integerValue(azArg[j]); } }else { sqlite3_fprintf(stderr,"Error: unknown command or invalid arguments: " " \"%s\". Enter \".help\" for help\n", azArg[0]); rc = 1; } meta_command_exit: if( p->outCount ){ p->outCount--; if( p->outCount==0 ) output_reset(p); } p->bSafeMode = p->bSafeModePersist; return rc; } /* Line scan result and intermediate states (supporting scan resumption) */ #ifndef CHAR_BIT # define CHAR_BIT 8 #endif typedef enum { QSS_HasDark = 1<<CHAR_BIT, QSS_EndingSemi = 2<<CHAR_BIT, QSS_CharMask = (1<<CHAR_BIT)-1, QSS_ScanMask = 3<<CHAR_BIT, QSS_Start = 0 } QuickScanState; #define QSS_SETV(qss, newst) ((newst) | ((qss) & QSS_ScanMask)) #define QSS_INPLAIN(qss) (((qss)&QSS_CharMask)==QSS_Start) #define QSS_PLAINWHITE(qss) (((qss)&~QSS_EndingSemi)==QSS_Start) #define QSS_PLAINDARK(qss) (((qss)&~QSS_EndingSemi)==QSS_HasDark) #define QSS_SEMITERM(qss) (((qss)&~QSS_HasDark)==QSS_EndingSemi) /* ** Scan line for classification to guide shell's handling. ** The scan is resumable for subsequent lines when prior ** return values are passed as the 2nd argument. */ static QuickScanState quickscan(char *zLine, QuickScanState qss, SCAN_TRACKER_REFTYPE pst){ char cin; char cWait = (char)qss; /* intentional narrowing loss */ if( cWait==0 ){ PlainScan: while( (cin = *zLine++)!=0 ){ if( IsSpace(cin) ) continue; switch (cin){ case '-': if( *zLine!='-' ) break; while((cin = *++zLine)!=0 ) if( cin=='\n') goto PlainScan; return qss; case ';': qss |= QSS_EndingSemi; continue; case '/': if( *zLine=='*' ){ ++zLine; cWait = '*'; CONTINUE_PROMPT_AWAITS(pst, "/*"); qss = QSS_SETV(qss, cWait); goto TermScan; } break; case '[': cin = ']'; deliberate_fall_through; case '`': case '\'': case '"': cWait = cin; qss = QSS_HasDark | cWait; CONTINUE_PROMPT_AWAITC(pst, cin); goto TermScan; case '(': CONTINUE_PAREN_INCR(pst, 1); break; case ')': CONTINUE_PAREN_INCR(pst, -1); break; default: break; } qss = (qss & ~QSS_EndingSemi) | QSS_HasDark; } }else{ TermScan: while( (cin = *zLine++)!=0 ){ if( cin==cWait ){ switch( cWait ){ case '*': if( *zLine != '/' ) continue; ++zLine; CONTINUE_PROMPT_AWAITC(pst, 0); qss = QSS_SETV(qss, 0); goto PlainScan; case '`': case '\'': case '"': if(*zLine==cWait){ /* Swallow doubled end-delimiter.*/ ++zLine; continue; } deliberate_fall_through; case ']': CONTINUE_PROMPT_AWAITC(pst, 0); qss = QSS_SETV(qss, 0); goto PlainScan; default: assert(0); } } } } return qss; } /* ** Return TRUE if the line typed in is an SQL command terminator other ** than a semi-colon. The SQL Server style "go" command is understood ** as is the Oracle "/". */ static int line_is_command_terminator(char *zLine){ while( IsSpace(zLine[0]) ){ zLine++; }; if( zLine[0]=='/' ) zLine += 1; /* Oracle */ else if ( ToLower(zLine[0])=='g' && ToLower(zLine[1])=='o' ) zLine += 2; /* SQL Server */ else return 0; return quickscan(zLine, QSS_Start, 0)==QSS_Start; } /* ** The CLI needs a working sqlite3_complete() to work properly. So error ** out of the build if compiling with SQLITE_OMIT_COMPLETE. */ #ifdef SQLITE_OMIT_COMPLETE # error the CLI application is imcompatable with SQLITE_OMIT_COMPLETE. #endif /* ** Return true if zSql is a complete SQL statement. Return false if it ** ends in the middle of a string literal or C-style comment. */ static int line_is_complete(char *zSql, int nSql){ int rc; if( zSql==0 ) return 1; zSql[nSql] = ';'; zSql[nSql+1] = 0; rc = sqlite3_complete(zSql); zSql[nSql] = 0; return rc; } /* ** This function is called after processing each line of SQL in the ** runOneSqlLine() function. Its purpose is to detect scenarios where ** defensive mode should be automatically turned off. Specifically, when ** ** 1. The first line of input is "PRAGMA foreign_keys=OFF;", ** 2. The second line of input is "BEGIN TRANSACTION;", ** 3. The database is empty, and ** 4. The shell is not running in --safe mode. ** ** The implementation uses the ShellState.eRestoreState to maintain state: ** ** 0: Have not seen any SQL. ** 1: Have seen "PRAGMA foreign_keys=OFF;". ** 2-6: Currently running .dump transaction. If the "2" bit is set, ** disable DEFENSIVE when done. If "4" is set, disable DQS_DDL. ** 7: Nothing left to do. This function becomes a no-op. */ static int doAutoDetectRestore(ShellState *p, const char *zSql){ int rc = SQLITE_OK; if( p->eRestoreState<7 ){ switch( p->eRestoreState ){ case 0: { const char *zExpect = "PRAGMA foreign_keys=OFF;"; assert( strlen(zExpect)==24 ); if( p->bSafeMode==0 && strlen(zSql)>=24 && memcmp(zSql, zExpect, 25)==0 ){ p->eRestoreState = 1; }else{ p->eRestoreState = 7; } break; }; case 1: { int bIsDump = 0; const char *zExpect = "BEGIN TRANSACTION;"; assert( strlen(zExpect)==18 ); if( memcmp(zSql, zExpect, 19)==0 ){ /* Now check if the database is empty. */ const char *zQuery = "SELECT 1 FROM sqlite_schema LIMIT 1"; sqlite3_stmt *pStmt = 0; bIsDump = 1; shellPrepare(p->db, &rc, zQuery, &pStmt); if( rc==SQLITE_OK && sqlite3_step(pStmt)==SQLITE_ROW ){ bIsDump = 0; } shellFinalize(&rc, pStmt); } if( bIsDump && rc==SQLITE_OK ){ int bDefense = 0; int bDqsDdl = 0; sqlite3_db_config(p->db, SQLITE_DBCONFIG_DEFENSIVE, -1, &bDefense); sqlite3_db_config(p->db, SQLITE_DBCONFIG_DQS_DDL, -1, &bDqsDdl); sqlite3_db_config(p->db, SQLITE_DBCONFIG_DEFENSIVE, 0, 0); sqlite3_db_config(p->db, SQLITE_DBCONFIG_DQS_DDL, 1, 0); p->eRestoreState = (bDefense ? 2 : 0) + (bDqsDdl ? 4 : 0); }else{ p->eRestoreState = 7; } break; } default: { if( sqlite3_get_autocommit(p->db) ){ if( (p->eRestoreState & 2) ){ sqlite3_db_config(p->db, SQLITE_DBCONFIG_DEFENSIVE, 1, 0); } if( (p->eRestoreState & 4) ){ sqlite3_db_config(p->db, SQLITE_DBCONFIG_DQS_DDL, 0, 0); } p->eRestoreState = 7; } break; } } } return rc; } /* ** Run a single line of SQL. Return the number of errors. */ static int runOneSqlLine(ShellState *p, char *zSql, FILE *in, int startline){ int rc; char *zErrMsg = 0; open_db(p, 0); if( ShellHasFlag(p,SHFLG_Backslash) ) resolve_backslashes(zSql); if( p->flgProgress & SHELL_PROGRESS_RESET ) p->nProgress = 0; BEGIN_TIMER; rc = shell_exec(p, zSql, &zErrMsg); END_TIMER(p->out); if( rc || zErrMsg ){ char zPrefix[100]; const char *zErrorTail; const char *zErrorType; if( zErrMsg==0 ){ zErrorType = "Error"; zErrorTail = sqlite3_errmsg(p->db); }else if( cli_strncmp(zErrMsg, "in prepare, ",12)==0 ){ zErrorType = "Parse error"; zErrorTail = &zErrMsg[12]; }else if( cli_strncmp(zErrMsg, "stepping, ", 10)==0 ){ zErrorType = "Runtime error"; zErrorTail = &zErrMsg[10]; }else{ zErrorType = "Error"; zErrorTail = zErrMsg; } if( in!=0 || !stdin_is_interactive ){ sqlite3_snprintf(sizeof(zPrefix), zPrefix, "%s near line %d:", zErrorType, startline); }else{ sqlite3_snprintf(sizeof(zPrefix), zPrefix, "%s:", zErrorType); } sqlite3_fprintf(stderr,"%s %s\n", zPrefix, zErrorTail); sqlite3_free(zErrMsg); zErrMsg = 0; return 1; }else if( ShellHasFlag(p, SHFLG_CountChanges) ){ char zLineBuf[2000]; sqlite3_snprintf(sizeof(zLineBuf), zLineBuf, "changes: %lld total_changes: %lld", sqlite3_changes64(p->db), sqlite3_total_changes64(p->db)); sqlite3_fprintf(p->out, "%s\n", zLineBuf); } if( doAutoDetectRestore(p, zSql) ) return 1; return 0; } static void echo_group_input(ShellState *p, const char *zDo){ if( ShellHasFlag(p, SHFLG_Echo) ) sqlite3_fprintf(p->out, "%s\n", zDo); } #ifdef SQLITE_SHELL_FIDDLE /* ** Alternate one_input_line() impl for wasm mode. This is not in the primary ** impl because we need the global shellState and cannot access it from that ** function without moving lots of code around (creating a larger/messier diff). */ static char *one_input_line(FILE *in, char *zPrior, int isContinuation){ /* Parse the next line from shellState.wasm.zInput. */ const char *zBegin = shellState.wasm.zPos; const char *z = zBegin; char *zLine = 0; i64 nZ = 0; UNUSED_PARAMETER(in); UNUSED_PARAMETER(isContinuation); if(!z || !*z){ return 0; } while(*z && isspace(*z)) ++z; zBegin = z; for(; *z && '\n'!=*z; ++nZ, ++z){} if(nZ>0 && '\r'==zBegin[nZ-1]){ --nZ; } shellState.wasm.zPos = z; zLine = realloc(zPrior, nZ+1); shell_check_oom(zLine); memcpy(zLine, zBegin, nZ); zLine[nZ] = 0; return zLine; } #endif /* SQLITE_SHELL_FIDDLE */ /* ** Read input from *in and process it. If *in==0 then input ** is interactive - the user is typing it it. Otherwise, input ** is coming from a file or device. A prompt is issued and history ** is saved only if input is interactive. An interrupt signal will ** cause this routine to exit immediately, unless input is interactive. ** ** Return the number of errors. */ static int process_input(ShellState *p){ char *zLine = 0; /* A single input line */ char *zSql = 0; /* Accumulated SQL text */ i64 nLine; /* Length of current line */ i64 nSql = 0; /* Bytes of zSql[] used */ i64 nAlloc = 0; /* Allocated zSql[] space */ int rc; /* Error code */ int errCnt = 0; /* Number of errors seen */ i64 startline = 0; /* Line number for start of current input */ QuickScanState qss = QSS_Start; /* Accumulated line status (so far) */ if( p->inputNesting==MAX_INPUT_NESTING ){ /* This will be more informative in a later version. */ sqlite3_fprintf(stderr,"Input nesting limit (%d) reached at line %d." " Check recursion.\n", MAX_INPUT_NESTING, p->lineno); return 1; } ++p->inputNesting; p->lineno = 0; CONTINUE_PROMPT_RESET; while( errCnt==0 || !bail_on_error || (p->in==0 && stdin_is_interactive) ){ fflush(p->out); zLine = one_input_line(p->in, zLine, nSql>0); if( zLine==0 ){ /* End of input */ if( p->in==0 && stdin_is_interactive ) sqlite3_fputs("\n", p->out); break; } if( seenInterrupt ){ if( p->in!=0 ) break; seenInterrupt = 0; } p->lineno++; if( QSS_INPLAIN(qss) && line_is_command_terminator(zLine) && line_is_complete(zSql, nSql) ){ memcpy(zLine,";",2); } qss = quickscan(zLine, qss, CONTINUE_PROMPT_PSTATE); if( QSS_PLAINWHITE(qss) && nSql==0 ){ /* Just swallow single-line whitespace */ echo_group_input(p, zLine); qss = QSS_Start; continue; } if( zLine && (zLine[0]=='.' || zLine[0]=='#') && nSql==0 ){ CONTINUE_PROMPT_RESET; echo_group_input(p, zLine); if( zLine[0]=='.' ){ rc = do_meta_command(zLine, p); if( rc==2 ){ /* exit requested */ break; }else if( rc ){ errCnt++; } } qss = QSS_Start; continue; } /* No single-line dispositions remain; accumulate line(s). */ nLine = strlen(zLine); if( nSql+nLine+2>=nAlloc ){ /* Grow buffer by half-again increments when big. */ nAlloc = nSql+(nSql>>1)+nLine+100; zSql = realloc(zSql, nAlloc); shell_check_oom(zSql); } if( nSql==0 ){ i64 i; for(i=0; zLine[i] && IsSpace(zLine[i]); i++){} assert( nAlloc>0 && zSql!=0 ); memcpy(zSql, zLine+i, nLine+1-i); startline = p->lineno; nSql = nLine-i; }else{ zSql[nSql++] = '\n'; memcpy(zSql+nSql, zLine, nLine+1); nSql += nLine; } if( nSql && QSS_SEMITERM(qss) && sqlite3_complete(zSql) ){ echo_group_input(p, zSql); errCnt += runOneSqlLine(p, zSql, p->in, startline); CONTINUE_PROMPT_RESET; nSql = 0; if( p->outCount ){ output_reset(p); p->outCount = 0; }else{ clearTempFile(p); } p->bSafeMode = p->bSafeModePersist; qss = QSS_Start; }else if( nSql && QSS_PLAINWHITE(qss) ){ echo_group_input(p, zSql); nSql = 0; qss = QSS_Start; } } if( nSql ){ /* This may be incomplete. Let the SQL parser deal with that. */ echo_group_input(p, zSql); errCnt += runOneSqlLine(p, zSql, p->in, startline); CONTINUE_PROMPT_RESET; } free(zSql); free(zLine); --p->inputNesting; return errCnt>0; } /* ** Return a pathname which is the user's home directory. A ** 0 return indicates an error of some kind. */ static char *find_home_dir(int clearFlag){ static char *home_dir = NULL; if( clearFlag ){ free(home_dir); home_dir = 0; return 0; } if( home_dir ) return home_dir; #if !defined(_WIN32) && !defined(WIN32) && !defined(_WIN32_WCE) \ && !defined(__RTP__) && !defined(_WRS_KERNEL) && !defined(SQLITE_WASI) { struct passwd *pwent; uid_t uid = getuid(); if( (pwent=getpwuid(uid)) != NULL) { home_dir = pwent->pw_dir; } } #endif #if defined(_WIN32_WCE) /* Windows CE (arm-wince-mingw32ce-gcc) does not provide getenv() */ home_dir = "/"; #else #if defined(_WIN32) || defined(WIN32) if (!home_dir) { home_dir = getenv("USERPROFILE"); } #endif if (!home_dir) { home_dir = getenv("HOME"); } #if defined(_WIN32) || defined(WIN32) if (!home_dir) { char *zDrive, *zPath; int n; zDrive = getenv("HOMEDRIVE"); zPath = getenv("HOMEPATH"); if( zDrive && zPath ){ n = strlen30(zDrive) + strlen30(zPath) + 1; home_dir = malloc( n ); if( home_dir==0 ) return 0; sqlite3_snprintf(n, home_dir, "%s%s", zDrive, zPath); return home_dir; } home_dir = "c:\\"; } #endif #endif /* !_WIN32_WCE */ if( home_dir ){ i64 n = strlen(home_dir) + 1; char *z = malloc( n ); if( z ) memcpy(z, home_dir, n); home_dir = z; } return home_dir; } /* ** On non-Windows platforms, look for $XDG_CONFIG_HOME. ** If ${XDG_CONFIG_HOME}/sqlite3/sqliterc is found, return ** the path to it. If there is no $(XDG_CONFIG_HOME) then ** look for $(HOME)/.config/sqlite3/sqliterc and if found ** return that. If none of these are found, return 0. ** ** The string returned is obtained from sqlite3_malloc() and ** should be freed by the caller. */ static char *find_xdg_config(void){ #if defined(_WIN32) || defined(WIN32) || defined(_WIN32_WCE) \ || defined(__RTP__) || defined(_WRS_KERNEL) return 0; #else char *zConfig = 0; const char *zXdgHome; zXdgHome = getenv("XDG_CONFIG_HOME"); if( zXdgHome==0 ){ const char *zHome = getenv("HOME"); if( zHome==0 ) return 0; zConfig = sqlite3_mprintf("%s/.config/sqlite3/sqliterc", zHome); }else{ zConfig = sqlite3_mprintf("%s/sqlite3/sqliterc", zXdgHome); } shell_check_oom(zConfig); if( access(zConfig,0)!=0 ){ sqlite3_free(zConfig); zConfig = 0; } return zConfig; #endif } /* ** Read input from the file given by sqliterc_override. Or if that ** parameter is NULL, take input from the first of find_xdg_config() ** or ~/.sqliterc which is found. ** ** Returns the number of errors. */ static void process_sqliterc( ShellState *p, /* Configuration data */ const char *sqliterc_override /* Name of config file. NULL to use default */ ){ char *home_dir = NULL; const char *sqliterc = sqliterc_override; char *zBuf = 0; FILE *inSaved = p->in; int savedLineno = p->lineno; if( sqliterc == NULL ){ sqliterc = zBuf = find_xdg_config(); } if( sqliterc == NULL ){ home_dir = find_home_dir(0); if( home_dir==0 ){ eputz("-- warning: cannot find home directory;" " cannot read ~/.sqliterc\n"); return; } zBuf = sqlite3_mprintf("%s/.sqliterc",home_dir); shell_check_oom(zBuf); sqliterc = zBuf; } p->in = sqlite3_fopen(sqliterc,"rb"); if( p->in ){ if( stdin_is_interactive ){ sqlite3_fprintf(stderr,"-- Loading resources from %s\n", sqliterc); } if( process_input(p) && bail_on_error ) exit(1); fclose(p->in); }else if( sqliterc_override!=0 ){ sqlite3_fprintf(stderr,"cannot open: \"%s\"\n", sqliterc); if( bail_on_error ) exit(1); } p->in = inSaved; p->lineno = savedLineno; sqlite3_free(zBuf); } /* ** Show available command line options */ static const char zOptions[] = " -- treat no subsequent arguments as options\n" #if defined(SQLITE_HAVE_ZLIB) && !defined(SQLITE_OMIT_VIRTUALTABLE) " -A ARGS... run \".archive ARGS\" and exit\n" #endif " -append append the database to the end of the file\n" " -ascii set output mode to 'ascii'\n" " -bail stop after hitting an error\n" " -batch force batch I/O\n" " -box set output mode to 'box'\n" " -column set output mode to 'column'\n" " -cmd COMMAND run \"COMMAND\" before reading stdin\n" " -csv set output mode to 'csv'\n" #if !defined(SQLITE_OMIT_DESERIALIZE) " -deserialize open the database using sqlite3_deserialize()\n" #endif " -echo print inputs before execution\n" " -init FILENAME read/process named file\n" " -[no]header turn headers on or off\n" #if defined(SQLITE_ENABLE_MEMSYS3) || defined(SQLITE_ENABLE_MEMSYS5) " -heap SIZE Size of heap for memsys3 or memsys5\n" #endif " -help show this message\n" " -html set output mode to HTML\n" " -interactive force interactive I/O\n" " -json set output mode to 'json'\n" " -line set output mode to 'line'\n" " -list set output mode to 'list'\n" " -lookaside SIZE N use N entries of SZ bytes for lookaside memory\n" " -markdown set output mode to 'markdown'\n" #if !defined(SQLITE_OMIT_DESERIALIZE) " -maxsize N maximum size for a --deserialize database\n" #endif " -memtrace trace all memory allocations and deallocations\n" " -mmap N default mmap size set to N\n" #ifdef SQLITE_ENABLE_MULTIPLEX " -multiplex enable the multiplexor VFS\n" #endif " -newline SEP set output row separator. Default: '\\n'\n" " -nofollow refuse to open symbolic links to database files\n" " -nonce STRING set the safe-mode escape nonce\n" " -no-rowid-in-view Disable rowid-in-view using sqlite3_config()\n" " -nullvalue TEXT set text string for NULL values. Default ''\n" " -pagecache SIZE N use N slots of SZ bytes each for page cache memory\n" " -pcachetrace trace all page cache operations\n" " -quote set output mode to 'quote'\n" " -readonly open the database read-only\n" " -safe enable safe-mode\n" " -separator SEP set output column separator. Default: '|'\n" #ifdef SQLITE_ENABLE_SORTER_REFERENCES " -sorterref SIZE sorter references threshold size\n" #endif " -stats print memory stats before each finalize\n" " -table set output mode to 'table'\n" " -tabs set output mode to 'tabs'\n" " -unsafe-testing allow unsafe commands and modes for testing\n" " -version show SQLite version\n" " -vfs NAME use NAME as the default VFS\n" " -vfstrace enable tracing of all VFS calls\n" #ifdef SQLITE_HAVE_ZLIB " -zip open the file as a ZIP Archive\n" #endif ; static void usage(int showDetail){ sqlite3_fprintf(stderr,"Usage: %s [OPTIONS] [FILENAME [SQL]]\n" "FILENAME is the name of an SQLite database. A new database is created\n" "if the file does not previously exist. Defaults to :memory:.\n", Argv0); if( showDetail ){ sqlite3_fprintf(stderr,"OPTIONS include:\n%s", zOptions); }else{ eputz("Use the -help option for additional information\n"); } exit(0); } /* ** Internal check: Verify that the SQLite is uninitialized. Print a ** error message if it is initialized. */ static void verify_uninitialized(void){ if( sqlite3_config(-1)==SQLITE_MISUSE ){ sputz(stdout, "WARNING: attempt to configure SQLite after" " initialization.\n"); } } /* ** Initialize the state information in data */ static void main_init(ShellState *data) { memset(data, 0, sizeof(*data)); data->normalMode = data->cMode = data->mode = MODE_List; data->autoExplain = 1; #ifdef _WIN32 data->crlfMode = 1; #endif data->pAuxDb = &data->aAuxDb[0]; memcpy(data->colSeparator,SEP_Column, 2); memcpy(data->rowSeparator,SEP_Row, 2); data->showHeader = 0; data->shellFlgs = SHFLG_Lookaside; sqlite3_config(SQLITE_CONFIG_LOG, shellLog, data); #if !defined(SQLITE_SHELL_FIDDLE) verify_uninitialized(); #endif sqlite3_config(SQLITE_CONFIG_URI, 1); sqlite3_config(SQLITE_CONFIG_MULTITHREAD); sqlite3_snprintf(sizeof(mainPrompt), mainPrompt,"sqlite> "); sqlite3_snprintf(sizeof(continuePrompt), continuePrompt," ...> "); } /* ** Output text to the console in a font that attracts extra attention. */ #if defined(_WIN32) || defined(WIN32) static void printBold(const char *zText){ #if !SQLITE_OS_WINRT HANDLE out = GetStdHandle(STD_OUTPUT_HANDLE); CONSOLE_SCREEN_BUFFER_INFO defaultScreenInfo; GetConsoleScreenBufferInfo(out, &defaultScreenInfo); SetConsoleTextAttribute(out, FOREGROUND_RED|FOREGROUND_INTENSITY ); #endif sputz(stdout, zText); #if !SQLITE_OS_WINRT SetConsoleTextAttribute(out, defaultScreenInfo.wAttributes); #endif } #else static void printBold(const char *zText){ sqlite3_fprintf(stdout, "\033[1m%s\033[0m", zText); } #endif /* ** Get the argument to an --option. Throw an error and die if no argument ** is available. */ static char *cmdline_option_value(int argc, char **argv, int i){ if( i==argc ){ sqlite3_fprintf(stderr, "%s: Error: missing argument to %s\n", argv[0], argv[argc-1]); exit(1); } return argv[i]; } static void sayAbnormalExit(void){ if( seenInterrupt ) eputz("Program interrupted.\n"); } #ifndef SQLITE_SHELL_IS_UTF8 # if (defined(_WIN32) || defined(WIN32)) \ && (defined(_MSC_VER) || (defined(UNICODE) && defined(__GNUC__))) # define SQLITE_SHELL_IS_UTF8 (0) # else # define SQLITE_SHELL_IS_UTF8 (1) # endif #endif #ifdef SQLITE_SHELL_FIDDLE # define main fiddle_main #endif #if SQLITE_SHELL_IS_UTF8 int SQLITE_CDECL main(int argc, char **argv){ #else int SQLITE_CDECL wmain(int argc, wchar_t **wargv){ char **argv; #endif #ifdef SQLITE_DEBUG sqlite3_int64 mem_main_enter = 0; #endif char *zErrMsg = 0; #ifdef SQLITE_SHELL_FIDDLE # define data shellState #else ShellState data; #endif const char *zInitFile = 0; int i; int rc = 0; int warnInmemoryDb = 0; int readStdin = 1; int nCmd = 0; int nOptsEnd = argc; int bEnableVfstrace = 0; char **azCmd = 0; const char *zVfs = 0; /* Value of -vfs command-line option */ #if !SQLITE_SHELL_IS_UTF8 char **argvToFree = 0; int argcToFree = 0; #endif setvbuf(stderr, 0, _IONBF, 0); /* Make sure stderr is unbuffered */ #ifdef SQLITE_SHELL_FIDDLE stdin_is_interactive = 0; stdout_is_console = 1; data.wasm.zDefaultDbName = "/fiddle.sqlite3"; #else stdin_is_interactive = isatty(0); stdout_is_console = isatty(1); #endif atexit(sayAbnormalExit); #ifdef SQLITE_DEBUG mem_main_enter = sqlite3_memory_used(); #endif #if !defined(_WIN32_WCE) if( getenv("SQLITE_DEBUG_BREAK") ){ if( isatty(0) && isatty(2) ){ char zLine[100]; sqlite3_fprintf(stderr, "attach debugger to process %d and press ENTER to continue...", GETPID()); if( sqlite3_fgets(zLine, sizeof(zLine), stdin)!=0 && cli_strcmp(zLine,"stop")==0 ){ exit(1); } }else{ #if defined(_WIN32) || defined(WIN32) #if SQLITE_OS_WINRT __debugbreak(); #else DebugBreak(); #endif #elif defined(SIGTRAP) raise(SIGTRAP); #endif } } #endif /* Register a valid signal handler early, before much else is done. */ #ifdef SIGINT signal(SIGINT, interrupt_handler); #elif (defined(_WIN32) || defined(WIN32)) && !defined(_WIN32_WCE) if( !SetConsoleCtrlHandler(ConsoleCtrlHandler, TRUE) ){ eputz("No ^C handler.\n"); } #endif #if USE_SYSTEM_SQLITE+0!=1 if( cli_strncmp(sqlite3_sourceid(),SQLITE_SOURCE_ID,60)!=0 ){ sqlite3_fprintf(stderr, "SQLite header and source version mismatch\n%s\n%s\n", sqlite3_sourceid(), SQLITE_SOURCE_ID); exit(1); } #endif main_init(&data); /* On Windows, we must translate command-line arguments into UTF-8. ** The SQLite memory allocator subsystem has to be enabled in order to ** do this. But we want to run an sqlite3_shutdown() afterwards so that ** subsequent sqlite3_config() calls will work. So copy all results into ** memory that does not come from the SQLite memory allocator. */ #if !SQLITE_SHELL_IS_UTF8 sqlite3_initialize(); argvToFree = malloc(sizeof(argv[0])*argc*2); shell_check_oom(argvToFree); argcToFree = argc; argv = argvToFree + argc; for(i=0; i<argc; i++){ char *z = sqlite3_win32_unicode_to_utf8(wargv[i]); i64 n; shell_check_oom(z); n = strlen(z); argv[i] = malloc( n+1 ); shell_check_oom(argv[i]); memcpy(argv[i], z, n+1); argvToFree[i] = argv[i]; sqlite3_free(z); } sqlite3_shutdown(); #endif assert( argc>=1 && argv && argv[0] ); Argv0 = argv[0]; #ifdef SQLITE_SHELL_DBNAME_PROC { /* If the SQLITE_SHELL_DBNAME_PROC macro is defined, then it is the name ** of a C-function that will provide the name of the database file. Use ** this compile-time option to embed this shell program in larger ** applications. */ extern void SQLITE_SHELL_DBNAME_PROC(const char**); SQLITE_SHELL_DBNAME_PROC(&data.pAuxDb->zDbFilename); warnInmemoryDb = 0; } #endif /* Do an initial pass through the command-line argument to locate ** the name of the database file, the name of the initialization file, ** the size of the alternative malloc heap, options affecting commands ** or SQL run from the command line, and the first command to execute. */ #ifndef SQLITE_SHELL_FIDDLE verify_uninitialized(); #endif for(i=1; i<argc; i++){ char *z; z = argv[i]; if( z[0]!='-' || i>nOptsEnd ){ if( data.aAuxDb->zDbFilename==0 ){ data.aAuxDb->zDbFilename = z; }else{ /* Excess arguments are interpreted as SQL (or dot-commands) and ** mean that nothing is read from stdin */ readStdin = 0; nCmd++; azCmd = realloc(azCmd, sizeof(azCmd[0])*nCmd); shell_check_oom(azCmd); azCmd[nCmd-1] = z; } continue; } if( z[1]=='-' ) z++; if( cli_strcmp(z, "-")==0 ){ nOptsEnd = i; continue; }else if( cli_strcmp(z,"-separator")==0 || cli_strcmp(z,"-nullvalue")==0 || cli_strcmp(z,"-newline")==0 || cli_strcmp(z,"-cmd")==0 ){ (void)cmdline_option_value(argc, argv, ++i); }else if( cli_strcmp(z,"-init")==0 ){ zInitFile = cmdline_option_value(argc, argv, ++i); }else if( cli_strcmp(z,"-interactive")==0 ){ }else if( cli_strcmp(z,"-batch")==0 ){ /* Need to check for batch mode here to so we can avoid printing ** informational messages (like from process_sqliterc) before ** we do the actual processing of arguments later in a second pass. */ stdin_is_interactive = 0; }else if( cli_strcmp(z,"-utf8")==0 ){ }else if( cli_strcmp(z,"-no-utf8")==0 ){ }else if( cli_strcmp(z,"-no-rowid-in-view")==0 ){ int val = 0; sqlite3_config(SQLITE_CONFIG_ROWID_IN_VIEW, &val); assert( val==0 ); }else if( cli_strcmp(z,"-heap")==0 ){ #if defined(SQLITE_ENABLE_MEMSYS3) || defined(SQLITE_ENABLE_MEMSYS5) const char *zSize; sqlite3_int64 szHeap; zSize = cmdline_option_value(argc, argv, ++i); szHeap = integerValue(zSize); if( szHeap>0x7fff0000 ) szHeap = 0x7fff0000; verify_uninitialized(); sqlite3_config(SQLITE_CONFIG_HEAP, malloc((int)szHeap), (int)szHeap, 64); #else (void)cmdline_option_value(argc, argv, ++i); #endif }else if( cli_strcmp(z,"-pagecache")==0 ){ sqlite3_int64 n, sz; sz = integerValue(cmdline_option_value(argc,argv,++i)); if( sz>70000 ) sz = 70000; if( sz<0 ) sz = 0; n = integerValue(cmdline_option_value(argc,argv,++i)); if( sz>0 && n>0 && 0xffffffffffffLL/sz<n ){ n = 0xffffffffffffLL/sz; } verify_uninitialized(); sqlite3_config(SQLITE_CONFIG_PAGECACHE, (n>0 && sz>0) ? malloc(n*sz) : 0, sz, n); data.shellFlgs |= SHFLG_Pagecache; }else if( cli_strcmp(z,"-lookaside")==0 ){ int n, sz; sz = (int)integerValue(cmdline_option_value(argc,argv,++i)); if( sz<0 ) sz = 0; n = (int)integerValue(cmdline_option_value(argc,argv,++i)); if( n<0 ) n = 0; verify_uninitialized(); sqlite3_config(SQLITE_CONFIG_LOOKASIDE, sz, n); if( sz*n==0 ) data.shellFlgs &= ~SHFLG_Lookaside; }else if( cli_strcmp(z,"-threadsafe")==0 ){ int n; n = (int)integerValue(cmdline_option_value(argc,argv,++i)); verify_uninitialized(); switch( n ){ case 0: sqlite3_config(SQLITE_CONFIG_SINGLETHREAD); break; case 2: sqlite3_config(SQLITE_CONFIG_MULTITHREAD); break; default: sqlite3_config(SQLITE_CONFIG_SERIALIZED); break; } }else if( cli_strcmp(z,"-vfstrace")==0 ){ vfstrace_register("trace",0,(int(*)(const char*,void*))sqlite3_fputs, stderr,1); bEnableVfstrace = 1; #ifdef SQLITE_ENABLE_MULTIPLEX }else if( cli_strcmp(z,"-multiplex")==0 ){ extern int sqlite3_multiplex_initialize(const char*,int); sqlite3_multiplex_initialize(0, 1); #endif }else if( cli_strcmp(z,"-mmap")==0 ){ sqlite3_int64 sz = integerValue(cmdline_option_value(argc,argv,++i)); verify_uninitialized(); sqlite3_config(SQLITE_CONFIG_MMAP_SIZE, sz, sz); #if defined(SQLITE_ENABLE_SORTER_REFERENCES) }else if( cli_strcmp(z,"-sorterref")==0 ){ sqlite3_int64 sz = integerValue(cmdline_option_value(argc,argv,++i)); verify_uninitialized(); sqlite3_config(SQLITE_CONFIG_SORTERREF_SIZE, (int)sz); #endif }else if( cli_strcmp(z,"-vfs")==0 ){ zVfs = cmdline_option_value(argc, argv, ++i); #ifdef SQLITE_HAVE_ZLIB }else if( cli_strcmp(z,"-zip")==0 ){ data.openMode = SHELL_OPEN_ZIPFILE; #endif }else if( cli_strcmp(z,"-append")==0 ){ data.openMode = SHELL_OPEN_APPENDVFS; #ifndef SQLITE_OMIT_DESERIALIZE }else if( cli_strcmp(z,"-deserialize")==0 ){ data.openMode = SHELL_OPEN_DESERIALIZE; }else if( cli_strcmp(z,"-maxsize")==0 && i+1<argc ){ data.szMax = integerValue(argv[++i]); #endif }else if( cli_strcmp(z,"-readonly")==0 ){ data.openMode = SHELL_OPEN_READONLY; }else if( cli_strcmp(z,"-nofollow")==0 ){ data.openFlags = SQLITE_OPEN_NOFOLLOW; #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(SQLITE_HAVE_ZLIB) }else if( cli_strncmp(z, "-A",2)==0 ){ /* All remaining command-line arguments are passed to the ".archive" ** command, so ignore them */ break; #endif }else if( cli_strcmp(z, "-memtrace")==0 ){ sqlite3MemTraceActivate(stderr); }else if( cli_strcmp(z, "-pcachetrace")==0 ){ sqlite3PcacheTraceActivate(stderr); }else if( cli_strcmp(z,"-bail")==0 ){ bail_on_error = 1; }else if( cli_strcmp(z,"-nonce")==0 ){ free(data.zNonce); data.zNonce = strdup(cmdline_option_value(argc, argv, ++i)); }else if( cli_strcmp(z,"-unsafe-testing")==0 ){ ShellSetFlag(&data,SHFLG_TestingMode); }else if( cli_strcmp(z,"-safe")==0 ){ /* no-op - catch this on the second pass */ } } #ifndef SQLITE_SHELL_FIDDLE if( !bEnableVfstrace ) verify_uninitialized(); #endif #ifdef SQLITE_SHELL_INIT_PROC { /* If the SQLITE_SHELL_INIT_PROC macro is defined, then it is the name ** of a C-function that will perform initialization actions on SQLite that ** occur just before or after sqlite3_initialize(). Use this compile-time ** option to embed this shell program in larger applications. */ extern void SQLITE_SHELL_INIT_PROC(void); SQLITE_SHELL_INIT_PROC(); } #else /* All the sqlite3_config() calls have now been made. So it is safe ** to call sqlite3_initialize() and process any command line -vfs option. */ sqlite3_initialize(); #endif if( zVfs ){ sqlite3_vfs *pVfs = sqlite3_vfs_find(zVfs); if( pVfs ){ sqlite3_vfs_register(pVfs, 1); }else{ sqlite3_fprintf(stderr,"no such VFS: \"%s\"\n", zVfs); exit(1); } } if( data.pAuxDb->zDbFilename==0 ){ #ifndef SQLITE_OMIT_MEMORYDB data.pAuxDb->zDbFilename = ":memory:"; warnInmemoryDb = argc==1; #else sqlite3_fprintf(stderr, "%s: Error: no database filename specified\n", Argv0); return 1; #endif } data.out = stdout; #ifndef SQLITE_SHELL_FIDDLE sqlite3_appendvfs_init(0,0,0); #endif /* Go ahead and open the database file if it already exists. If the ** file does not exist, delay opening it. This prevents empty database ** files from being created if a user mistypes the database name argument ** to the sqlite command-line tool. */ if( access(data.pAuxDb->zDbFilename, 0)==0 ){ open_db(&data, 0); } /* Process the initialization file if there is one. If no -init option ** is given on the command line, look for a file named ~/.sqliterc and ** try to process it. */ process_sqliterc(&data,zInitFile); /* Make a second pass through the command-line argument and set ** options. This second pass is delayed until after the initialization ** file is processed so that the command-line arguments will override ** settings in the initialization file. */ for(i=1; i<argc; i++){ char *z = argv[i]; if( z[0]!='-' || i>=nOptsEnd ) continue; if( z[1]=='-' ){ z++; } if( cli_strcmp(z,"-init")==0 ){ i++; }else if( cli_strcmp(z,"-html")==0 ){ data.mode = MODE_Html; }else if( cli_strcmp(z,"-list")==0 ){ data.mode = MODE_List; }else if( cli_strcmp(z,"-quote")==0 ){ data.mode = MODE_Quote; sqlite3_snprintf(sizeof(data.colSeparator), data.colSeparator, SEP_Comma); sqlite3_snprintf(sizeof(data.rowSeparator), data.rowSeparator, SEP_Row); }else if( cli_strcmp(z,"-line")==0 ){ data.mode = MODE_Line; }else if( cli_strcmp(z,"-column")==0 ){ data.mode = MODE_Column; }else if( cli_strcmp(z,"-json")==0 ){ data.mode = MODE_Json; }else if( cli_strcmp(z,"-markdown")==0 ){ data.mode = MODE_Markdown; }else if( cli_strcmp(z,"-table")==0 ){ data.mode = MODE_Table; }else if( cli_strcmp(z,"-box")==0 ){ data.mode = MODE_Box; }else if( cli_strcmp(z,"-csv")==0 ){ data.mode = MODE_Csv; memcpy(data.colSeparator,",",2); #ifdef SQLITE_HAVE_ZLIB }else if( cli_strcmp(z,"-zip")==0 ){ data.openMode = SHELL_OPEN_ZIPFILE; #endif }else if( cli_strcmp(z,"-append")==0 ){ data.openMode = SHELL_OPEN_APPENDVFS; #ifndef SQLITE_OMIT_DESERIALIZE }else if( cli_strcmp(z,"-deserialize")==0 ){ data.openMode = SHELL_OPEN_DESERIALIZE; }else if( cli_strcmp(z,"-maxsize")==0 && i+1<argc ){ data.szMax = integerValue(argv[++i]); #endif }else if( cli_strcmp(z,"-readonly")==0 ){ data.openMode = SHELL_OPEN_READONLY; }else if( cli_strcmp(z,"-nofollow")==0 ){ data.openFlags |= SQLITE_OPEN_NOFOLLOW; }else if( cli_strcmp(z,"-ascii")==0 ){ data.mode = MODE_Ascii; sqlite3_snprintf(sizeof(data.colSeparator), data.colSeparator,SEP_Unit); sqlite3_snprintf(sizeof(data.rowSeparator), data.rowSeparator,SEP_Record); }else if( cli_strcmp(z,"-tabs")==0 ){ data.mode = MODE_List; sqlite3_snprintf(sizeof(data.colSeparator), data.colSeparator,SEP_Tab); sqlite3_snprintf(sizeof(data.rowSeparator), data.rowSeparator,SEP_Row); }else if( cli_strcmp(z,"-separator")==0 ){ sqlite3_snprintf(sizeof(data.colSeparator), data.colSeparator, "%s",cmdline_option_value(argc,argv,++i)); }else if( cli_strcmp(z,"-newline")==0 ){ sqlite3_snprintf(sizeof(data.rowSeparator), data.rowSeparator, "%s",cmdline_option_value(argc,argv,++i)); }else if( cli_strcmp(z,"-nullvalue")==0 ){ sqlite3_snprintf(sizeof(data.nullValue), data.nullValue, "%s",cmdline_option_value(argc,argv,++i)); }else if( cli_strcmp(z,"-header")==0 ){ data.showHeader = 1; ShellSetFlag(&data, SHFLG_HeaderSet); }else if( cli_strcmp(z,"-noheader")==0 ){ data.showHeader = 0; ShellSetFlag(&data, SHFLG_HeaderSet); }else if( cli_strcmp(z,"-echo")==0 ){ ShellSetFlag(&data, SHFLG_Echo); }else if( cli_strcmp(z,"-eqp")==0 ){ data.autoEQP = AUTOEQP_on; }else if( cli_strcmp(z,"-eqpfull")==0 ){ data.autoEQP = AUTOEQP_full; }else if( cli_strcmp(z,"-stats")==0 ){ data.statsOn = 1; }else if( cli_strcmp(z,"-scanstats")==0 ){ data.scanstatsOn = 1; }else if( cli_strcmp(z,"-backslash")==0 ){ /* Undocumented command-line option: -backslash ** Causes C-style backslash escapes to be evaluated in SQL statements ** prior to sending the SQL into SQLite. Useful for injecting ** crazy bytes in the middle of SQL statements for testing and debugging. */ ShellSetFlag(&data, SHFLG_Backslash); }else if( cli_strcmp(z,"-bail")==0 ){ /* No-op. The bail_on_error flag should already be set. */ }else if( cli_strcmp(z,"-version")==0 ){ sqlite3_fprintf(stdout, "%s %s (%d-bit)\n", sqlite3_libversion(), sqlite3_sourceid(), 8*(int)sizeof(char*)); return 0; }else if( cli_strcmp(z,"-interactive")==0 ){ /* Need to check for interactive override here to so that it can ** affect console setup (for Windows only) and testing thereof. */ stdin_is_interactive = 1; }else if( cli_strcmp(z,"-batch")==0 ){ /* already handled */ }else if( cli_strcmp(z,"-utf8")==0 ){ /* already handled */ }else if( cli_strcmp(z,"-no-utf8")==0 ){ /* already handled */ }else if( cli_strcmp(z,"-no-rowid-in-view")==0 ){ /* already handled */ }else if( cli_strcmp(z,"-heap")==0 ){ i++; }else if( cli_strcmp(z,"-pagecache")==0 ){ i+=2; }else if( cli_strcmp(z,"-lookaside")==0 ){ i+=2; }else if( cli_strcmp(z,"-threadsafe")==0 ){ i+=2; }else if( cli_strcmp(z,"-nonce")==0 ){ i += 2; }else if( cli_strcmp(z,"-mmap")==0 ){ i++; }else if( cli_strcmp(z,"-memtrace")==0 ){ i++; }else if( cli_strcmp(z,"-pcachetrace")==0 ){ i++; #ifdef SQLITE_ENABLE_SORTER_REFERENCES }else if( cli_strcmp(z,"-sorterref")==0 ){ i++; #endif }else if( cli_strcmp(z,"-vfs")==0 ){ i++; }else if( cli_strcmp(z,"-vfstrace")==0 ){ i++; #ifdef SQLITE_ENABLE_MULTIPLEX }else if( cli_strcmp(z,"-multiplex")==0 ){ i++; #endif }else if( cli_strcmp(z,"-help")==0 ){ usage(1); }else if( cli_strcmp(z,"-cmd")==0 ){ /* Run commands that follow -cmd first and separately from commands ** that simply appear on the command-line. This seems goofy. It would ** be better if all commands ran in the order that they appear. But ** we retain the goofy behavior for historical compatibility. */ if( i==argc-1 ) break; z = cmdline_option_value(argc,argv,++i); if( z[0]=='.' ){ rc = do_meta_command(z, &data); if( rc && bail_on_error ) return rc==2 ? 0 : rc; }else{ open_db(&data, 0); rc = shell_exec(&data, z, &zErrMsg); if( zErrMsg!=0 ){ shellEmitError(zErrMsg); if( bail_on_error ) return rc!=0 ? rc : 1; }else if( rc!=0 ){ sqlite3_fprintf(stderr,"Error: unable to process SQL \"%s\"\n", z); if( bail_on_error ) return rc; } } #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(SQLITE_HAVE_ZLIB) }else if( cli_strncmp(z, "-A", 2)==0 ){ if( nCmd>0 ){ sqlite3_fprintf(stderr,"Error: cannot mix regular SQL or dot-commands" " with \"%s\"\n", z); return 1; } open_db(&data, OPEN_DB_ZIPFILE); if( z[2] ){ argv[i] = &z[2]; arDotCommand(&data, 1, argv+(i-1), argc-(i-1)); }else{ arDotCommand(&data, 1, argv+i, argc-i); } readStdin = 0; break; #endif }else if( cli_strcmp(z,"-safe")==0 ){ data.bSafeMode = data.bSafeModePersist = 1; }else if( cli_strcmp(z,"-unsafe-testing")==0 ){ /* Acted upon in first pass. */ }else{ sqlite3_fprintf(stderr,"%s: Error: unknown option: %s\n", Argv0, z); eputz("Use -help for a list of options.\n"); return 1; } data.cMode = data.mode; } if( !readStdin ){ /* Run all arguments that do not begin with '-' as if they were separate ** command-line inputs, except for the argToSkip argument which contains ** the database filename. */ for(i=0; i<nCmd; i++){ if( azCmd[i][0]=='.' ){ rc = do_meta_command(azCmd[i], &data); if( rc ){ if( rc==2 ) rc = 0; goto shell_main_exit; } }else{ open_db(&data, 0); echo_group_input(&data, azCmd[i]); rc = shell_exec(&data, azCmd[i], &zErrMsg); if( zErrMsg || rc ){ if( zErrMsg!=0 ){ shellEmitError(zErrMsg); }else{ sqlite3_fprintf(stderr, "Error: unable to process SQL: %s\n", azCmd[i]); } sqlite3_free(zErrMsg); if( rc==0 ) rc = 1; goto shell_main_exit; } } } }else{ /* Run commands received from standard input */ if( stdin_is_interactive ){ char *zHome; char *zHistory; int nHistory; #if CIO_WIN_WC_XLATE # define SHELL_CIO_CHAR_SET (stdout_is_console? " (UTF-16 console I/O)" : "") #else # define SHELL_CIO_CHAR_SET "" #endif sqlite3_fprintf(stdout, "SQLite version %s %.19s%s\n" /*extra-version-info*/ "Enter \".help\" for usage hints.\n", sqlite3_libversion(), sqlite3_sourceid(), SHELL_CIO_CHAR_SET); if( warnInmemoryDb ){ sputz(stdout, "Connected to a "); printBold("transient in-memory database"); sputz(stdout, ".\nUse \".open FILENAME\" to reopen on a" " persistent database.\n"); } zHistory = getenv("SQLITE_HISTORY"); if( zHistory ){ zHistory = strdup(zHistory); }else if( (zHome = find_home_dir(0))!=0 ){ nHistory = strlen30(zHome) + 20; if( (zHistory = malloc(nHistory))!=0 ){ sqlite3_snprintf(nHistory, zHistory,"%s/.sqlite_history", zHome); } } if( zHistory ){ shell_read_history(zHistory); } #if HAVE_READLINE || HAVE_EDITLINE rl_attempted_completion_function = readline_completion; #elif HAVE_LINENOISE linenoiseSetCompletionCallback(linenoise_completion, NULL); #endif data.in = 0; rc = process_input(&data); if( zHistory ){ shell_stifle_history(2000); shell_write_history(zHistory); free(zHistory); } }else{ data.in = stdin; rc = process_input(&data); } } #ifndef SQLITE_SHELL_FIDDLE /* In WASM mode we have to leave the db state in place so that ** client code can "push" SQL into it after this call returns. */ #ifndef SQLITE_OMIT_VIRTUALTABLE if( data.expert.pExpert ){ expertFinish(&data, 1, 0); } #endif shell_main_exit: free(azCmd); set_table_name(&data, 0); if( data.db ){ session_close_all(&data, -1); close_db(data.db); } for(i=0; i<ArraySize(data.aAuxDb); i++){ sqlite3_free(data.aAuxDb[i].zFreeOnClose); if( data.aAuxDb[i].db ){ session_close_all(&data, i); close_db(data.aAuxDb[i].db); } } find_home_dir(1); output_reset(&data); data.doXdgOpen = 0; clearTempFile(&data); #if !SQLITE_SHELL_IS_UTF8 for(i=0; i<argcToFree; i++) free(argvToFree[i]); free(argvToFree); #endif free(data.colWidth); free(data.zNonce); /* Clear the global data structure so that valgrind will detect memory ** leaks */ memset(&data, 0, sizeof(data)); if( bEnableVfstrace ){ vfstrace_unregister("trace"); } #ifdef SQLITE_DEBUG if( sqlite3_memory_used()>mem_main_enter ){ sqlite3_fprintf(stderr,"Memory leaked: %u bytes\n", (unsigned int)(sqlite3_memory_used()-mem_main_enter)); } #endif #else /* SQLITE_SHELL_FIDDLE... */ shell_main_exit: #endif return rc; } #ifdef SQLITE_SHELL_FIDDLE /* Only for emcc experimentation purposes. */ int fiddle_experiment(int a,int b){ return a + b; } /* ** Returns a pointer to the current DB handle. */ sqlite3 * fiddle_db_handle(){ return globalDb; } /* ** Returns a pointer to the given DB name's VFS. If zDbName is 0 then ** "main" is assumed. Returns 0 if no db with the given name is ** open. */ sqlite3_vfs * fiddle_db_vfs(const char *zDbName){ sqlite3_vfs * pVfs = 0; if(globalDb){ sqlite3_file_control(globalDb, zDbName ? zDbName : "main", SQLITE_FCNTL_VFS_POINTER, &pVfs); } return pVfs; } /* Only for emcc experimentation purposes. */ sqlite3 * fiddle_db_arg(sqlite3 *arg){ sqlite3_fprintf(stdout, "fiddle_db_arg(%p)\n", (const void*)arg); return arg; } /* ** Intended to be called via a SharedWorker() while a separate ** SharedWorker() (which manages the wasm module) is performing work ** which should be interrupted. Unfortunately, SharedWorker is not ** portable enough to make real use of. */ void fiddle_interrupt(void){ if( globalDb ) sqlite3_interrupt(globalDb); } /* ** Returns the filename of the given db name, assuming "main" if ** zDbName is NULL. Returns NULL if globalDb is not opened. */ const char * fiddle_db_filename(const char * zDbName){ return globalDb ? sqlite3_db_filename(globalDb, zDbName ? zDbName : "main") : NULL; } /* ** Completely wipes out the contents of the currently-opened database ** but leaves its storage intact for reuse. If any transactions are ** active, they are forcibly rolled back. */ void fiddle_reset_db(void){ if( globalDb ){ int rc; while( sqlite3_txn_state(globalDb,0)>0 ){ /* ** Resolve problem reported in ** https://sqlite.org/forum/forumpost/0b41a25d65 */ sqlite3_fputs("Rolling back in-progress transaction.\n", stdout); sqlite3_exec(globalDb,"ROLLBACK", 0, 0, 0); } rc = sqlite3_db_config(globalDb, SQLITE_DBCONFIG_RESET_DATABASE, 1, 0); if( 0==rc ) sqlite3_exec(globalDb, "VACUUM", 0, 0, 0); sqlite3_db_config(globalDb, SQLITE_DBCONFIG_RESET_DATABASE, 0, 0); } } /* ** Uses the current database's VFS xRead to stream the db file's ** contents out to the given callback. The callback gets a single ** chunk of size n (its 2nd argument) on each call and must return 0 ** on success, non-0 on error. This function returns 0 on success, ** SQLITE_NOTFOUND if no db is open, or propagates any other non-0 ** code from the callback. Note that this is not thread-friendly: it ** expects that it will be the only thread reading the db file and ** takes no measures to ensure that is the case. */ int fiddle_export_db( int (*xCallback)(unsigned const char *zOut, int n) ){ sqlite3_int64 nSize = 0; sqlite3_int64 nPos = 0; sqlite3_file * pFile = 0; unsigned char buf[1024 * 8]; int nBuf = (int)sizeof(buf); int rc = shellState.db ? sqlite3_file_control(shellState.db, "main", SQLITE_FCNTL_FILE_POINTER, &pFile) : SQLITE_NOTFOUND; if( rc ) return rc; rc = pFile->pMethods->xFileSize(pFile, &nSize); if( rc ) return rc; if(nSize % nBuf){ /* DB size is not an even multiple of the buffer size. Reduce ** buffer size so that we do not unduly inflate the db size when ** exporting. */ if(0 == nSize % 4096) nBuf = 4096; else if(0 == nSize % 2048) nBuf = 2048; else if(0 == nSize % 1024) nBuf = 1024; else nBuf = 512; } for( ; 0==rc && nPos<nSize; nPos += nBuf ){ rc = pFile->pMethods->xRead(pFile, buf, nBuf, nPos); if(SQLITE_IOERR_SHORT_READ == rc){ rc = (nPos + nBuf) < nSize ? rc : 0/*assume EOF*/; } if( 0==rc ) rc = xCallback(buf, nBuf); } return rc; } /* ** Trivial exportable function for emscripten. It processes zSql as if ** it were input to the sqlite3 shell and redirects all output to the ** wasm binding. fiddle_main() must have been called before this ** is called, or results are undefined. */ void fiddle_exec(const char * zSql){ if(zSql && *zSql){ if('.'==*zSql) puts(zSql); shellState.wasm.zInput = zSql; shellState.wasm.zPos = zSql; process_input(&shellState); shellState.wasm.zInput = shellState.wasm.zPos = 0; } } #endif /* SQLITE_SHELL_FIDDLE */