Add all the files I think I need to the .apk, and add zlib, so I can attempt to access them using minizip.
git-svn-id: https://www.unprompted.com/svn/projects/tildefriends/trunk@4205 ed5197a5-7fde-0310-b194-c3ffbd925b24
This commit is contained in:
209
deps/zlib/doc/algorithm.txt
vendored
Normal file
209
deps/zlib/doc/algorithm.txt
vendored
Normal file
@ -0,0 +1,209 @@
|
||||
1. Compression algorithm (deflate)
|
||||
|
||||
The deflation algorithm used by gzip (also zip and zlib) is a variation of
|
||||
LZ77 (Lempel-Ziv 1977, see reference below). It finds duplicated strings in
|
||||
the input data. The second occurrence of a string is replaced by a
|
||||
pointer to the previous string, in the form of a pair (distance,
|
||||
length). Distances are limited to 32K bytes, and lengths are limited
|
||||
to 258 bytes. When a string does not occur anywhere in the previous
|
||||
32K bytes, it is emitted as a sequence of literal bytes. (In this
|
||||
description, `string' must be taken as an arbitrary sequence of bytes,
|
||||
and is not restricted to printable characters.)
|
||||
|
||||
Literals or match lengths are compressed with one Huffman tree, and
|
||||
match distances are compressed with another tree. The trees are stored
|
||||
in a compact form at the start of each block. The blocks can have any
|
||||
size (except that the compressed data for one block must fit in
|
||||
available memory). A block is terminated when deflate() determines that
|
||||
it would be useful to start another block with fresh trees. (This is
|
||||
somewhat similar to the behavior of LZW-based _compress_.)
|
||||
|
||||
Duplicated strings are found using a hash table. All input strings of
|
||||
length 3 are inserted in the hash table. A hash index is computed for
|
||||
the next 3 bytes. If the hash chain for this index is not empty, all
|
||||
strings in the chain are compared with the current input string, and
|
||||
the longest match is selected.
|
||||
|
||||
The hash chains are searched starting with the most recent strings, to
|
||||
favor small distances and thus take advantage of the Huffman encoding.
|
||||
The hash chains are singly linked. There are no deletions from the
|
||||
hash chains, the algorithm simply discards matches that are too old.
|
||||
|
||||
To avoid a worst-case situation, very long hash chains are arbitrarily
|
||||
truncated at a certain length, determined by a runtime option (level
|
||||
parameter of deflateInit). So deflate() does not always find the longest
|
||||
possible match but generally finds a match which is long enough.
|
||||
|
||||
deflate() also defers the selection of matches with a lazy evaluation
|
||||
mechanism. After a match of length N has been found, deflate() searches for
|
||||
a longer match at the next input byte. If a longer match is found, the
|
||||
previous match is truncated to a length of one (thus producing a single
|
||||
literal byte) and the process of lazy evaluation begins again. Otherwise,
|
||||
the original match is kept, and the next match search is attempted only N
|
||||
steps later.
|
||||
|
||||
The lazy match evaluation is also subject to a runtime parameter. If
|
||||
the current match is long enough, deflate() reduces the search for a longer
|
||||
match, thus speeding up the whole process. If compression ratio is more
|
||||
important than speed, deflate() attempts a complete second search even if
|
||||
the first match is already long enough.
|
||||
|
||||
The lazy match evaluation is not performed for the fastest compression
|
||||
modes (level parameter 1 to 3). For these fast modes, new strings
|
||||
are inserted in the hash table only when no match was found, or
|
||||
when the match is not too long. This degrades the compression ratio
|
||||
but saves time since there are both fewer insertions and fewer searches.
|
||||
|
||||
|
||||
2. Decompression algorithm (inflate)
|
||||
|
||||
2.1 Introduction
|
||||
|
||||
The key question is how to represent a Huffman code (or any prefix code) so
|
||||
that you can decode fast. The most important characteristic is that shorter
|
||||
codes are much more common than longer codes, so pay attention to decoding the
|
||||
short codes fast, and let the long codes take longer to decode.
|
||||
|
||||
inflate() sets up a first level table that covers some number of bits of
|
||||
input less than the length of longest code. It gets that many bits from the
|
||||
stream, and looks it up in the table. The table will tell if the next
|
||||
code is that many bits or less and how many, and if it is, it will tell
|
||||
the value, else it will point to the next level table for which inflate()
|
||||
grabs more bits and tries to decode a longer code.
|
||||
|
||||
How many bits to make the first lookup is a tradeoff between the time it
|
||||
takes to decode and the time it takes to build the table. If building the
|
||||
table took no time (and if you had infinite memory), then there would only
|
||||
be a first level table to cover all the way to the longest code. However,
|
||||
building the table ends up taking a lot longer for more bits since short
|
||||
codes are replicated many times in such a table. What inflate() does is
|
||||
simply to make the number of bits in the first table a variable, and then
|
||||
to set that variable for the maximum speed.
|
||||
|
||||
For inflate, which has 286 possible codes for the literal/length tree, the size
|
||||
of the first table is nine bits. Also the distance trees have 30 possible
|
||||
values, and the size of the first table is six bits. Note that for each of
|
||||
those cases, the table ended up one bit longer than the ``average'' code
|
||||
length, i.e. the code length of an approximately flat code which would be a
|
||||
little more than eight bits for 286 symbols and a little less than five bits
|
||||
for 30 symbols.
|
||||
|
||||
|
||||
2.2 More details on the inflate table lookup
|
||||
|
||||
Ok, you want to know what this cleverly obfuscated inflate tree actually
|
||||
looks like. You are correct that it's not a Huffman tree. It is simply a
|
||||
lookup table for the first, let's say, nine bits of a Huffman symbol. The
|
||||
symbol could be as short as one bit or as long as 15 bits. If a particular
|
||||
symbol is shorter than nine bits, then that symbol's translation is duplicated
|
||||
in all those entries that start with that symbol's bits. For example, if the
|
||||
symbol is four bits, then it's duplicated 32 times in a nine-bit table. If a
|
||||
symbol is nine bits long, it appears in the table once.
|
||||
|
||||
If the symbol is longer than nine bits, then that entry in the table points
|
||||
to another similar table for the remaining bits. Again, there are duplicated
|
||||
entries as needed. The idea is that most of the time the symbol will be short
|
||||
and there will only be one table look up. (That's whole idea behind data
|
||||
compression in the first place.) For the less frequent long symbols, there
|
||||
will be two lookups. If you had a compression method with really long
|
||||
symbols, you could have as many levels of lookups as is efficient. For
|
||||
inflate, two is enough.
|
||||
|
||||
So a table entry either points to another table (in which case nine bits in
|
||||
the above example are gobbled), or it contains the translation for the symbol
|
||||
and the number of bits to gobble. Then you start again with the next
|
||||
ungobbled bit.
|
||||
|
||||
You may wonder: why not just have one lookup table for how ever many bits the
|
||||
longest symbol is? The reason is that if you do that, you end up spending
|
||||
more time filling in duplicate symbol entries than you do actually decoding.
|
||||
At least for deflate's output that generates new trees every several 10's of
|
||||
kbytes. You can imagine that filling in a 2^15 entry table for a 15-bit code
|
||||
would take too long if you're only decoding several thousand symbols. At the
|
||||
other extreme, you could make a new table for every bit in the code. In fact,
|
||||
that's essentially a Huffman tree. But then you spend too much time
|
||||
traversing the tree while decoding, even for short symbols.
|
||||
|
||||
So the number of bits for the first lookup table is a trade of the time to
|
||||
fill out the table vs. the time spent looking at the second level and above of
|
||||
the table.
|
||||
|
||||
Here is an example, scaled down:
|
||||
|
||||
The code being decoded, with 10 symbols, from 1 to 6 bits long:
|
||||
|
||||
A: 0
|
||||
B: 10
|
||||
C: 1100
|
||||
D: 11010
|
||||
E: 11011
|
||||
F: 11100
|
||||
G: 11101
|
||||
H: 11110
|
||||
I: 111110
|
||||
J: 111111
|
||||
|
||||
Let's make the first table three bits long (eight entries):
|
||||
|
||||
000: A,1
|
||||
001: A,1
|
||||
010: A,1
|
||||
011: A,1
|
||||
100: B,2
|
||||
101: B,2
|
||||
110: -> table X (gobble 3 bits)
|
||||
111: -> table Y (gobble 3 bits)
|
||||
|
||||
Each entry is what the bits decode as and how many bits that is, i.e. how
|
||||
many bits to gobble. Or the entry points to another table, with the number of
|
||||
bits to gobble implicit in the size of the table.
|
||||
|
||||
Table X is two bits long since the longest code starting with 110 is five bits
|
||||
long:
|
||||
|
||||
00: C,1
|
||||
01: C,1
|
||||
10: D,2
|
||||
11: E,2
|
||||
|
||||
Table Y is three bits long since the longest code starting with 111 is six
|
||||
bits long:
|
||||
|
||||
000: F,2
|
||||
001: F,2
|
||||
010: G,2
|
||||
011: G,2
|
||||
100: H,2
|
||||
101: H,2
|
||||
110: I,3
|
||||
111: J,3
|
||||
|
||||
So what we have here are three tables with a total of 20 entries that had to
|
||||
be constructed. That's compared to 64 entries for a single table. Or
|
||||
compared to 16 entries for a Huffman tree (six two entry tables and one four
|
||||
entry table). Assuming that the code ideally represents the probability of
|
||||
the symbols, it takes on the average 1.25 lookups per symbol. That's compared
|
||||
to one lookup for the single table, or 1.66 lookups per symbol for the
|
||||
Huffman tree.
|
||||
|
||||
There, I think that gives you a picture of what's going on. For inflate, the
|
||||
meaning of a particular symbol is often more than just a letter. It can be a
|
||||
byte (a "literal"), or it can be either a length or a distance which
|
||||
indicates a base value and a number of bits to fetch after the code that is
|
||||
added to the base value. Or it might be the special end-of-block code. The
|
||||
data structures created in inftrees.c try to encode all that information
|
||||
compactly in the tables.
|
||||
|
||||
|
||||
Jean-loup Gailly Mark Adler
|
||||
jloup@gzip.org madler@alumni.caltech.edu
|
||||
|
||||
|
||||
References:
|
||||
|
||||
[LZ77] Ziv J., Lempel A., ``A Universal Algorithm for Sequential Data
|
||||
Compression,'' IEEE Transactions on Information Theory, Vol. 23, No. 3,
|
||||
pp. 337-343.
|
||||
|
||||
``DEFLATE Compressed Data Format Specification'' available in
|
||||
http://tools.ietf.org/html/rfc1951
|
BIN
deps/zlib/doc/crc-doc.1.0.pdf
vendored
Normal file
BIN
deps/zlib/doc/crc-doc.1.0.pdf
vendored
Normal file
Binary file not shown.
619
deps/zlib/doc/rfc1950.txt
vendored
Normal file
619
deps/zlib/doc/rfc1950.txt
vendored
Normal file
@ -0,0 +1,619 @@
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
Network Working Group P. Deutsch
|
||||
Request for Comments: 1950 Aladdin Enterprises
|
||||
Category: Informational J-L. Gailly
|
||||
Info-ZIP
|
||||
May 1996
|
||||
|
||||
|
||||
ZLIB Compressed Data Format Specification version 3.3
|
||||
|
||||
Status of This Memo
|
||||
|
||||
This memo provides information for the Internet community. This memo
|
||||
does not specify an Internet standard of any kind. Distribution of
|
||||
this memo is unlimited.
|
||||
|
||||
IESG Note:
|
||||
|
||||
The IESG takes no position on the validity of any Intellectual
|
||||
Property Rights statements contained in this document.
|
||||
|
||||
Notices
|
||||
|
||||
Copyright (c) 1996 L. Peter Deutsch and Jean-Loup Gailly
|
||||
|
||||
Permission is granted to copy and distribute this document for any
|
||||
purpose and without charge, including translations into other
|
||||
languages and incorporation into compilations, provided that the
|
||||
copyright notice and this notice are preserved, and that any
|
||||
substantive changes or deletions from the original are clearly
|
||||
marked.
|
||||
|
||||
A pointer to the latest version of this and related documentation in
|
||||
HTML format can be found at the URL
|
||||
<ftp://ftp.uu.net/graphics/png/documents/zlib/zdoc-index.html>.
|
||||
|
||||
Abstract
|
||||
|
||||
This specification defines a lossless compressed data format. The
|
||||
data can be produced or consumed, even for an arbitrarily long
|
||||
sequentially presented input data stream, using only an a priori
|
||||
bounded amount of intermediate storage. The format presently uses
|
||||
the DEFLATE compression method but can be easily extended to use
|
||||
other compression methods. It can be implemented readily in a manner
|
||||
not covered by patents. This specification also defines the ADLER-32
|
||||
checksum (an extension and improvement of the Fletcher checksum),
|
||||
used for detection of data corruption, and provides an algorithm for
|
||||
computing it.
|
||||
|
||||
|
||||
|
||||
|
||||
Deutsch & Gailly Informational [Page 1]
|
||||
|
||||
RFC 1950 ZLIB Compressed Data Format Specification May 1996
|
||||
|
||||
|
||||
Table of Contents
|
||||
|
||||
1. Introduction ................................................... 2
|
||||
1.1. Purpose ................................................... 2
|
||||
1.2. Intended audience ......................................... 3
|
||||
1.3. Scope ..................................................... 3
|
||||
1.4. Compliance ................................................ 3
|
||||
1.5. Definitions of terms and conventions used ................ 3
|
||||
1.6. Changes from previous versions ............................ 3
|
||||
2. Detailed specification ......................................... 3
|
||||
2.1. Overall conventions ....................................... 3
|
||||
2.2. Data format ............................................... 4
|
||||
2.3. Compliance ................................................ 7
|
||||
3. References ..................................................... 7
|
||||
4. Source code .................................................... 8
|
||||
5. Security Considerations ........................................ 8
|
||||
6. Acknowledgements ............................................... 8
|
||||
7. Authors' Addresses ............................................. 8
|
||||
8. Appendix: Rationale ............................................ 9
|
||||
9. Appendix: Sample code ..........................................10
|
||||
|
||||
1. Introduction
|
||||
|
||||
1.1. Purpose
|
||||
|
||||
The purpose of this specification is to define a lossless
|
||||
compressed data format that:
|
||||
|
||||
* Is independent of CPU type, operating system, file system,
|
||||
and character set, and hence can be used for interchange;
|
||||
|
||||
* Can be produced or consumed, even for an arbitrarily long
|
||||
sequentially presented input data stream, using only an a
|
||||
priori bounded amount of intermediate storage, and hence can
|
||||
be used in data communications or similar structures such as
|
||||
Unix filters;
|
||||
|
||||
* Can use a number of different compression methods;
|
||||
|
||||
* Can be implemented readily in a manner not covered by
|
||||
patents, and hence can be practiced freely.
|
||||
|
||||
The data format defined by this specification does not attempt to
|
||||
allow random access to compressed data.
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
Deutsch & Gailly Informational [Page 2]
|
||||
|
||||
RFC 1950 ZLIB Compressed Data Format Specification May 1996
|
||||
|
||||
|
||||
1.2. Intended audience
|
||||
|
||||
This specification is intended for use by implementors of software
|
||||
to compress data into zlib format and/or decompress data from zlib
|
||||
format.
|
||||
|
||||
The text of the specification assumes a basic background in
|
||||
programming at the level of bits and other primitive data
|
||||
representations.
|
||||
|
||||
1.3. Scope
|
||||
|
||||
The specification specifies a compressed data format that can be
|
||||
used for in-memory compression of a sequence of arbitrary bytes.
|
||||
|
||||
1.4. Compliance
|
||||
|
||||
Unless otherwise indicated below, a compliant decompressor must be
|
||||
able to accept and decompress any data set that conforms to all
|
||||
the specifications presented here; a compliant compressor must
|
||||
produce data sets that conform to all the specifications presented
|
||||
here.
|
||||
|
||||
1.5. Definitions of terms and conventions used
|
||||
|
||||
byte: 8 bits stored or transmitted as a unit (same as an octet).
|
||||
(For this specification, a byte is exactly 8 bits, even on
|
||||
machines which store a character on a number of bits different
|
||||
from 8.) See below, for the numbering of bits within a byte.
|
||||
|
||||
1.6. Changes from previous versions
|
||||
|
||||
Version 3.1 was the first public release of this specification.
|
||||
In version 3.2, some terminology was changed and the Adler-32
|
||||
sample code was rewritten for clarity. In version 3.3, the
|
||||
support for a preset dictionary was introduced, and the
|
||||
specification was converted to RFC style.
|
||||
|
||||
2. Detailed specification
|
||||
|
||||
2.1. Overall conventions
|
||||
|
||||
In the diagrams below, a box like this:
|
||||
|
||||
+---+
|
||||
| | <-- the vertical bars might be missing
|
||||
+---+
|
||||
|
||||
|
||||
|
||||
|
||||
Deutsch & Gailly Informational [Page 3]
|
||||
|
||||
RFC 1950 ZLIB Compressed Data Format Specification May 1996
|
||||
|
||||
|
||||
represents one byte; a box like this:
|
||||
|
||||
+==============+
|
||||
| |
|
||||
+==============+
|
||||
|
||||
represents a variable number of bytes.
|
||||
|
||||
Bytes stored within a computer do not have a "bit order", since
|
||||
they are always treated as a unit. However, a byte considered as
|
||||
an integer between 0 and 255 does have a most- and least-
|
||||
significant bit, and since we write numbers with the most-
|
||||
significant digit on the left, we also write bytes with the most-
|
||||
significant bit on the left. In the diagrams below, we number the
|
||||
bits of a byte so that bit 0 is the least-significant bit, i.e.,
|
||||
the bits are numbered:
|
||||
|
||||
+--------+
|
||||
|76543210|
|
||||
+--------+
|
||||
|
||||
Within a computer, a number may occupy multiple bytes. All
|
||||
multi-byte numbers in the format described here are stored with
|
||||
the MOST-significant byte first (at the lower memory address).
|
||||
For example, the decimal number 520 is stored as:
|
||||
|
||||
0 1
|
||||
+--------+--------+
|
||||
|00000010|00001000|
|
||||
+--------+--------+
|
||||
^ ^
|
||||
| |
|
||||
| + less significant byte = 8
|
||||
+ more significant byte = 2 x 256
|
||||
|
||||
2.2. Data format
|
||||
|
||||
A zlib stream has the following structure:
|
||||
|
||||
0 1
|
||||
+---+---+
|
||||
|CMF|FLG| (more-->)
|
||||
+---+---+
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
Deutsch & Gailly Informational [Page 4]
|
||||
|
||||
RFC 1950 ZLIB Compressed Data Format Specification May 1996
|
||||
|
||||
|
||||
(if FLG.FDICT set)
|
||||
|
||||
0 1 2 3
|
||||
+---+---+---+---+
|
||||
| DICTID | (more-->)
|
||||
+---+---+---+---+
|
||||
|
||||
+=====================+---+---+---+---+
|
||||
|...compressed data...| ADLER32 |
|
||||
+=====================+---+---+---+---+
|
||||
|
||||
Any data which may appear after ADLER32 are not part of the zlib
|
||||
stream.
|
||||
|
||||
CMF (Compression Method and flags)
|
||||
This byte is divided into a 4-bit compression method and a 4-
|
||||
bit information field depending on the compression method.
|
||||
|
||||
bits 0 to 3 CM Compression method
|
||||
bits 4 to 7 CINFO Compression info
|
||||
|
||||
CM (Compression method)
|
||||
This identifies the compression method used in the file. CM = 8
|
||||
denotes the "deflate" compression method with a window size up
|
||||
to 32K. This is the method used by gzip and PNG (see
|
||||
references [1] and [2] in Chapter 3, below, for the reference
|
||||
documents). CM = 15 is reserved. It might be used in a future
|
||||
version of this specification to indicate the presence of an
|
||||
extra field before the compressed data.
|
||||
|
||||
CINFO (Compression info)
|
||||
For CM = 8, CINFO is the base-2 logarithm of the LZ77 window
|
||||
size, minus eight (CINFO=7 indicates a 32K window size). Values
|
||||
of CINFO above 7 are not allowed in this version of the
|
||||
specification. CINFO is not defined in this specification for
|
||||
CM not equal to 8.
|
||||
|
||||
FLG (FLaGs)
|
||||
This flag byte is divided as follows:
|
||||
|
||||
bits 0 to 4 FCHECK (check bits for CMF and FLG)
|
||||
bit 5 FDICT (preset dictionary)
|
||||
bits 6 to 7 FLEVEL (compression level)
|
||||
|
||||
The FCHECK value must be such that CMF and FLG, when viewed as
|
||||
a 16-bit unsigned integer stored in MSB order (CMF*256 + FLG),
|
||||
is a multiple of 31.
|
||||
|
||||
|
||||
|
||||
|
||||
Deutsch & Gailly Informational [Page 5]
|
||||
|
||||
RFC 1950 ZLIB Compressed Data Format Specification May 1996
|
||||
|
||||
|
||||
FDICT (Preset dictionary)
|
||||
If FDICT is set, a DICT dictionary identifier is present
|
||||
immediately after the FLG byte. The dictionary is a sequence of
|
||||
bytes which are initially fed to the compressor without
|
||||
producing any compressed output. DICT is the Adler-32 checksum
|
||||
of this sequence of bytes (see the definition of ADLER32
|
||||
below). The decompressor can use this identifier to determine
|
||||
which dictionary has been used by the compressor.
|
||||
|
||||
FLEVEL (Compression level)
|
||||
These flags are available for use by specific compression
|
||||
methods. The "deflate" method (CM = 8) sets these flags as
|
||||
follows:
|
||||
|
||||
0 - compressor used fastest algorithm
|
||||
1 - compressor used fast algorithm
|
||||
2 - compressor used default algorithm
|
||||
3 - compressor used maximum compression, slowest algorithm
|
||||
|
||||
The information in FLEVEL is not needed for decompression; it
|
||||
is there to indicate if recompression might be worthwhile.
|
||||
|
||||
compressed data
|
||||
For compression method 8, the compressed data is stored in the
|
||||
deflate compressed data format as described in the document
|
||||
"DEFLATE Compressed Data Format Specification" by L. Peter
|
||||
Deutsch. (See reference [3] in Chapter 3, below)
|
||||
|
||||
Other compressed data formats are not specified in this version
|
||||
of the zlib specification.
|
||||
|
||||
ADLER32 (Adler-32 checksum)
|
||||
This contains a checksum value of the uncompressed data
|
||||
(excluding any dictionary data) computed according to Adler-32
|
||||
algorithm. This algorithm is a 32-bit extension and improvement
|
||||
of the Fletcher algorithm, used in the ITU-T X.224 / ISO 8073
|
||||
standard. See references [4] and [5] in Chapter 3, below)
|
||||
|
||||
Adler-32 is composed of two sums accumulated per byte: s1 is
|
||||
the sum of all bytes, s2 is the sum of all s1 values. Both sums
|
||||
are done modulo 65521. s1 is initialized to 1, s2 to zero. The
|
||||
Adler-32 checksum is stored as s2*65536 + s1 in most-
|
||||
significant-byte first (network) order.
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
Deutsch & Gailly Informational [Page 6]
|
||||
|
||||
RFC 1950 ZLIB Compressed Data Format Specification May 1996
|
||||
|
||||
|
||||
2.3. Compliance
|
||||
|
||||
A compliant compressor must produce streams with correct CMF, FLG
|
||||
and ADLER32, but need not support preset dictionaries. When the
|
||||
zlib data format is used as part of another standard data format,
|
||||
the compressor may use only preset dictionaries that are specified
|
||||
by this other data format. If this other format does not use the
|
||||
preset dictionary feature, the compressor must not set the FDICT
|
||||
flag.
|
||||
|
||||
A compliant decompressor must check CMF, FLG, and ADLER32, and
|
||||
provide an error indication if any of these have incorrect values.
|
||||
A compliant decompressor must give an error indication if CM is
|
||||
not one of the values defined in this specification (only the
|
||||
value 8 is permitted in this version), since another value could
|
||||
indicate the presence of new features that would cause subsequent
|
||||
data to be interpreted incorrectly. A compliant decompressor must
|
||||
give an error indication if FDICT is set and DICTID is not the
|
||||
identifier of a known preset dictionary. A decompressor may
|
||||
ignore FLEVEL and still be compliant. When the zlib data format
|
||||
is being used as a part of another standard format, a compliant
|
||||
decompressor must support all the preset dictionaries specified by
|
||||
the other format. When the other format does not use the preset
|
||||
dictionary feature, a compliant decompressor must reject any
|
||||
stream in which the FDICT flag is set.
|
||||
|
||||
3. References
|
||||
|
||||
[1] Deutsch, L.P.,"GZIP Compressed Data Format Specification",
|
||||
available in ftp://ftp.uu.net/pub/archiving/zip/doc/
|
||||
|
||||
[2] Thomas Boutell, "PNG (Portable Network Graphics) specification",
|
||||
available in ftp://ftp.uu.net/graphics/png/documents/
|
||||
|
||||
[3] Deutsch, L.P.,"DEFLATE Compressed Data Format Specification",
|
||||
available in ftp://ftp.uu.net/pub/archiving/zip/doc/
|
||||
|
||||
[4] Fletcher, J. G., "An Arithmetic Checksum for Serial
|
||||
Transmissions," IEEE Transactions on Communications, Vol. COM-30,
|
||||
No. 1, January 1982, pp. 247-252.
|
||||
|
||||
[5] ITU-T Recommendation X.224, Annex D, "Checksum Algorithms,"
|
||||
November, 1993, pp. 144, 145. (Available from
|
||||
gopher://info.itu.ch). ITU-T X.244 is also the same as ISO 8073.
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
Deutsch & Gailly Informational [Page 7]
|
||||
|
||||
RFC 1950 ZLIB Compressed Data Format Specification May 1996
|
||||
|
||||
|
||||
4. Source code
|
||||
|
||||
Source code for a C language implementation of a "zlib" compliant
|
||||
library is available at ftp://ftp.uu.net/pub/archiving/zip/zlib/.
|
||||
|
||||
5. Security Considerations
|
||||
|
||||
A decoder that fails to check the ADLER32 checksum value may be
|
||||
subject to undetected data corruption.
|
||||
|
||||
6. Acknowledgements
|
||||
|
||||
Trademarks cited in this document are the property of their
|
||||
respective owners.
|
||||
|
||||
Jean-Loup Gailly and Mark Adler designed the zlib format and wrote
|
||||
the related software described in this specification. Glenn
|
||||
Randers-Pehrson converted this document to RFC and HTML format.
|
||||
|
||||
7. Authors' Addresses
|
||||
|
||||
L. Peter Deutsch
|
||||
Aladdin Enterprises
|
||||
203 Santa Margarita Ave.
|
||||
Menlo Park, CA 94025
|
||||
|
||||
Phone: (415) 322-0103 (AM only)
|
||||
FAX: (415) 322-1734
|
||||
EMail: <ghost@aladdin.com>
|
||||
|
||||
|
||||
Jean-Loup Gailly
|
||||
|
||||
EMail: <gzip@prep.ai.mit.edu>
|
||||
|
||||
Questions about the technical content of this specification can be
|
||||
sent by email to
|
||||
|
||||
Jean-Loup Gailly <gzip@prep.ai.mit.edu> and
|
||||
Mark Adler <madler@alumni.caltech.edu>
|
||||
|
||||
Editorial comments on this specification can be sent by email to
|
||||
|
||||
L. Peter Deutsch <ghost@aladdin.com> and
|
||||
Glenn Randers-Pehrson <randeg@alumni.rpi.edu>
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
Deutsch & Gailly Informational [Page 8]
|
||||
|
||||
RFC 1950 ZLIB Compressed Data Format Specification May 1996
|
||||
|
||||
|
||||
8. Appendix: Rationale
|
||||
|
||||
8.1. Preset dictionaries
|
||||
|
||||
A preset dictionary is specially useful to compress short input
|
||||
sequences. The compressor can take advantage of the dictionary
|
||||
context to encode the input in a more compact manner. The
|
||||
decompressor can be initialized with the appropriate context by
|
||||
virtually decompressing a compressed version of the dictionary
|
||||
without producing any output. However for certain compression
|
||||
algorithms such as the deflate algorithm this operation can be
|
||||
achieved without actually performing any decompression.
|
||||
|
||||
The compressor and the decompressor must use exactly the same
|
||||
dictionary. The dictionary may be fixed or may be chosen among a
|
||||
certain number of predefined dictionaries, according to the kind
|
||||
of input data. The decompressor can determine which dictionary has
|
||||
been chosen by the compressor by checking the dictionary
|
||||
identifier. This document does not specify the contents of
|
||||
predefined dictionaries, since the optimal dictionaries are
|
||||
application specific. Standard data formats using this feature of
|
||||
the zlib specification must precisely define the allowed
|
||||
dictionaries.
|
||||
|
||||
8.2. The Adler-32 algorithm
|
||||
|
||||
The Adler-32 algorithm is much faster than the CRC32 algorithm yet
|
||||
still provides an extremely low probability of undetected errors.
|
||||
|
||||
The modulo on unsigned long accumulators can be delayed for 5552
|
||||
bytes, so the modulo operation time is negligible. If the bytes
|
||||
are a, b, c, the second sum is 3a + 2b + c + 3, and so is position
|
||||
and order sensitive, unlike the first sum, which is just a
|
||||
checksum. That 65521 is prime is important to avoid a possible
|
||||
large class of two-byte errors that leave the check unchanged.
|
||||
(The Fletcher checksum uses 255, which is not prime and which also
|
||||
makes the Fletcher check insensitive to single byte changes 0 <->
|
||||
255.)
|
||||
|
||||
The sum s1 is initialized to 1 instead of zero to make the length
|
||||
of the sequence part of s2, so that the length does not have to be
|
||||
checked separately. (Any sequence of zeroes has a Fletcher
|
||||
checksum of zero.)
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
Deutsch & Gailly Informational [Page 9]
|
||||
|
||||
RFC 1950 ZLIB Compressed Data Format Specification May 1996
|
||||
|
||||
|
||||
9. Appendix: Sample code
|
||||
|
||||
The following C code computes the Adler-32 checksum of a data buffer.
|
||||
It is written for clarity, not for speed. The sample code is in the
|
||||
ANSI C programming language. Non C users may find it easier to read
|
||||
with these hints:
|
||||
|
||||
& Bitwise AND operator.
|
||||
>> Bitwise right shift operator. When applied to an
|
||||
unsigned quantity, as here, right shift inserts zero bit(s)
|
||||
at the left.
|
||||
<< Bitwise left shift operator. Left shift inserts zero
|
||||
bit(s) at the right.
|
||||
++ "n++" increments the variable n.
|
||||
% modulo operator: a % b is the remainder of a divided by b.
|
||||
|
||||
#define BASE 65521 /* largest prime smaller than 65536 */
|
||||
|
||||
/*
|
||||
Update a running Adler-32 checksum with the bytes buf[0..len-1]
|
||||
and return the updated checksum. The Adler-32 checksum should be
|
||||
initialized to 1.
|
||||
|
||||
Usage example:
|
||||
|
||||
unsigned long adler = 1L;
|
||||
|
||||
while (read_buffer(buffer, length) != EOF) {
|
||||
adler = update_adler32(adler, buffer, length);
|
||||
}
|
||||
if (adler != original_adler) error();
|
||||
*/
|
||||
unsigned long update_adler32(unsigned long adler,
|
||||
unsigned char *buf, int len)
|
||||
{
|
||||
unsigned long s1 = adler & 0xffff;
|
||||
unsigned long s2 = (adler >> 16) & 0xffff;
|
||||
int n;
|
||||
|
||||
for (n = 0; n < len; n++) {
|
||||
s1 = (s1 + buf[n]) % BASE;
|
||||
s2 = (s2 + s1) % BASE;
|
||||
}
|
||||
return (s2 << 16) + s1;
|
||||
}
|
||||
|
||||
/* Return the adler32 of the bytes buf[0..len-1] */
|
||||
|
||||
|
||||
|
||||
|
||||
Deutsch & Gailly Informational [Page 10]
|
||||
|
||||
RFC 1950 ZLIB Compressed Data Format Specification May 1996
|
||||
|
||||
|
||||
unsigned long adler32(unsigned char *buf, int len)
|
||||
{
|
||||
return update_adler32(1L, buf, len);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
Deutsch & Gailly Informational [Page 11]
|
||||
|
955
deps/zlib/doc/rfc1951.txt
vendored
Normal file
955
deps/zlib/doc/rfc1951.txt
vendored
Normal file
@ -0,0 +1,955 @@
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
Network Working Group P. Deutsch
|
||||
Request for Comments: 1951 Aladdin Enterprises
|
||||
Category: Informational May 1996
|
||||
|
||||
|
||||
DEFLATE Compressed Data Format Specification version 1.3
|
||||
|
||||
Status of This Memo
|
||||
|
||||
This memo provides information for the Internet community. This memo
|
||||
does not specify an Internet standard of any kind. Distribution of
|
||||
this memo is unlimited.
|
||||
|
||||
IESG Note:
|
||||
|
||||
The IESG takes no position on the validity of any Intellectual
|
||||
Property Rights statements contained in this document.
|
||||
|
||||
Notices
|
||||
|
||||
Copyright (c) 1996 L. Peter Deutsch
|
||||
|
||||
Permission is granted to copy and distribute this document for any
|
||||
purpose and without charge, including translations into other
|
||||
languages and incorporation into compilations, provided that the
|
||||
copyright notice and this notice are preserved, and that any
|
||||
substantive changes or deletions from the original are clearly
|
||||
marked.
|
||||
|
||||
A pointer to the latest version of this and related documentation in
|
||||
HTML format can be found at the URL
|
||||
<ftp://ftp.uu.net/graphics/png/documents/zlib/zdoc-index.html>.
|
||||
|
||||
Abstract
|
||||
|
||||
This specification defines a lossless compressed data format that
|
||||
compresses data using a combination of the LZ77 algorithm and Huffman
|
||||
coding, with efficiency comparable to the best currently available
|
||||
general-purpose compression methods. The data can be produced or
|
||||
consumed, even for an arbitrarily long sequentially presented input
|
||||
data stream, using only an a priori bounded amount of intermediate
|
||||
storage. The format can be implemented readily in a manner not
|
||||
covered by patents.
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
Deutsch Informational [Page 1]
|
||||
|
||||
RFC 1951 DEFLATE Compressed Data Format Specification May 1996
|
||||
|
||||
|
||||
Table of Contents
|
||||
|
||||
1. Introduction ................................................... 2
|
||||
1.1. Purpose ................................................... 2
|
||||
1.2. Intended audience ......................................... 3
|
||||
1.3. Scope ..................................................... 3
|
||||
1.4. Compliance ................................................ 3
|
||||
1.5. Definitions of terms and conventions used ................ 3
|
||||
1.6. Changes from previous versions ............................ 4
|
||||
2. Compressed representation overview ............................. 4
|
||||
3. Detailed specification ......................................... 5
|
||||
3.1. Overall conventions ....................................... 5
|
||||
3.1.1. Packing into bytes .................................. 5
|
||||
3.2. Compressed block format ................................... 6
|
||||
3.2.1. Synopsis of prefix and Huffman coding ............... 6
|
||||
3.2.2. Use of Huffman coding in the "deflate" format ....... 7
|
||||
3.2.3. Details of block format ............................. 9
|
||||
3.2.4. Non-compressed blocks (BTYPE=00) ................... 11
|
||||
3.2.5. Compressed blocks (length and distance codes) ...... 11
|
||||
3.2.6. Compression with fixed Huffman codes (BTYPE=01) .... 12
|
||||
3.2.7. Compression with dynamic Huffman codes (BTYPE=10) .. 13
|
||||
3.3. Compliance ............................................... 14
|
||||
4. Compression algorithm details ................................. 14
|
||||
5. References .................................................... 16
|
||||
6. Security Considerations ....................................... 16
|
||||
7. Source code ................................................... 16
|
||||
8. Acknowledgements .............................................. 16
|
||||
9. Author's Address .............................................. 17
|
||||
|
||||
1. Introduction
|
||||
|
||||
1.1. Purpose
|
||||
|
||||
The purpose of this specification is to define a lossless
|
||||
compressed data format that:
|
||||
* Is independent of CPU type, operating system, file system,
|
||||
and character set, and hence can be used for interchange;
|
||||
* Can be produced or consumed, even for an arbitrarily long
|
||||
sequentially presented input data stream, using only an a
|
||||
priori bounded amount of intermediate storage, and hence
|
||||
can be used in data communications or similar structures
|
||||
such as Unix filters;
|
||||
* Compresses data with efficiency comparable to the best
|
||||
currently available general-purpose compression methods,
|
||||
and in particular considerably better than the "compress"
|
||||
program;
|
||||
* Can be implemented readily in a manner not covered by
|
||||
patents, and hence can be practiced freely;
|
||||
|
||||
|
||||
|
||||
Deutsch Informational [Page 2]
|
||||
|
||||
RFC 1951 DEFLATE Compressed Data Format Specification May 1996
|
||||
|
||||
|
||||
* Is compatible with the file format produced by the current
|
||||
widely used gzip utility, in that conforming decompressors
|
||||
will be able to read data produced by the existing gzip
|
||||
compressor.
|
||||
|
||||
The data format defined by this specification does not attempt to:
|
||||
|
||||
* Allow random access to compressed data;
|
||||
* Compress specialized data (e.g., raster graphics) as well
|
||||
as the best currently available specialized algorithms.
|
||||
|
||||
A simple counting argument shows that no lossless compression
|
||||
algorithm can compress every possible input data set. For the
|
||||
format defined here, the worst case expansion is 5 bytes per 32K-
|
||||
byte block, i.e., a size increase of 0.015% for large data sets.
|
||||
English text usually compresses by a factor of 2.5 to 3;
|
||||
executable files usually compress somewhat less; graphical data
|
||||
such as raster images may compress much more.
|
||||
|
||||
1.2. Intended audience
|
||||
|
||||
This specification is intended for use by implementors of software
|
||||
to compress data into "deflate" format and/or decompress data from
|
||||
"deflate" format.
|
||||
|
||||
The text of the specification assumes a basic background in
|
||||
programming at the level of bits and other primitive data
|
||||
representations. Familiarity with the technique of Huffman coding
|
||||
is helpful but not required.
|
||||
|
||||
1.3. Scope
|
||||
|
||||
The specification specifies a method for representing a sequence
|
||||
of bytes as a (usually shorter) sequence of bits, and a method for
|
||||
packing the latter bit sequence into bytes.
|
||||
|
||||
1.4. Compliance
|
||||
|
||||
Unless otherwise indicated below, a compliant decompressor must be
|
||||
able to accept and decompress any data set that conforms to all
|
||||
the specifications presented here; a compliant compressor must
|
||||
produce data sets that conform to all the specifications presented
|
||||
here.
|
||||
|
||||
1.5. Definitions of terms and conventions used
|
||||
|
||||
Byte: 8 bits stored or transmitted as a unit (same as an octet).
|
||||
For this specification, a byte is exactly 8 bits, even on machines
|
||||
|
||||
|
||||
|
||||
Deutsch Informational [Page 3]
|
||||
|
||||
RFC 1951 DEFLATE Compressed Data Format Specification May 1996
|
||||
|
||||
|
||||
which store a character on a number of bits different from eight.
|
||||
See below, for the numbering of bits within a byte.
|
||||
|
||||
String: a sequence of arbitrary bytes.
|
||||
|
||||
1.6. Changes from previous versions
|
||||
|
||||
There have been no technical changes to the deflate format since
|
||||
version 1.1 of this specification. In version 1.2, some
|
||||
terminology was changed. Version 1.3 is a conversion of the
|
||||
specification to RFC style.
|
||||
|
||||
2. Compressed representation overview
|
||||
|
||||
A compressed data set consists of a series of blocks, corresponding
|
||||
to successive blocks of input data. The block sizes are arbitrary,
|
||||
except that non-compressible blocks are limited to 65,535 bytes.
|
||||
|
||||
Each block is compressed using a combination of the LZ77 algorithm
|
||||
and Huffman coding. The Huffman trees for each block are independent
|
||||
of those for previous or subsequent blocks; the LZ77 algorithm may
|
||||
use a reference to a duplicated string occurring in a previous block,
|
||||
up to 32K input bytes before.
|
||||
|
||||
Each block consists of two parts: a pair of Huffman code trees that
|
||||
describe the representation of the compressed data part, and a
|
||||
compressed data part. (The Huffman trees themselves are compressed
|
||||
using Huffman encoding.) The compressed data consists of a series of
|
||||
elements of two types: literal bytes (of strings that have not been
|
||||
detected as duplicated within the previous 32K input bytes), and
|
||||
pointers to duplicated strings, where a pointer is represented as a
|
||||
pair <length, backward distance>. The representation used in the
|
||||
"deflate" format limits distances to 32K bytes and lengths to 258
|
||||
bytes, but does not limit the size of a block, except for
|
||||
uncompressible blocks, which are limited as noted above.
|
||||
|
||||
Each type of value (literals, distances, and lengths) in the
|
||||
compressed data is represented using a Huffman code, using one code
|
||||
tree for literals and lengths and a separate code tree for distances.
|
||||
The code trees for each block appear in a compact form just before
|
||||
the compressed data for that block.
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
Deutsch Informational [Page 4]
|
||||
|
||||
RFC 1951 DEFLATE Compressed Data Format Specification May 1996
|
||||
|
||||
|
||||
3. Detailed specification
|
||||
|
||||
3.1. Overall conventions In the diagrams below, a box like this:
|
||||
|
||||
+---+
|
||||
| | <-- the vertical bars might be missing
|
||||
+---+
|
||||
|
||||
represents one byte; a box like this:
|
||||
|
||||
+==============+
|
||||
| |
|
||||
+==============+
|
||||
|
||||
represents a variable number of bytes.
|
||||
|
||||
Bytes stored within a computer do not have a "bit order", since
|
||||
they are always treated as a unit. However, a byte considered as
|
||||
an integer between 0 and 255 does have a most- and least-
|
||||
significant bit, and since we write numbers with the most-
|
||||
significant digit on the left, we also write bytes with the most-
|
||||
significant bit on the left. In the diagrams below, we number the
|
||||
bits of a byte so that bit 0 is the least-significant bit, i.e.,
|
||||
the bits are numbered:
|
||||
|
||||
+--------+
|
||||
|76543210|
|
||||
+--------+
|
||||
|
||||
Within a computer, a number may occupy multiple bytes. All
|
||||
multi-byte numbers in the format described here are stored with
|
||||
the least-significant byte first (at the lower memory address).
|
||||
For example, the decimal number 520 is stored as:
|
||||
|
||||
0 1
|
||||
+--------+--------+
|
||||
|00001000|00000010|
|
||||
+--------+--------+
|
||||
^ ^
|
||||
| |
|
||||
| + more significant byte = 2 x 256
|
||||
+ less significant byte = 8
|
||||
|
||||
3.1.1. Packing into bytes
|
||||
|
||||
This document does not address the issue of the order in which
|
||||
bits of a byte are transmitted on a bit-sequential medium,
|
||||
since the final data format described here is byte- rather than
|
||||
|
||||
|
||||
|
||||
Deutsch Informational [Page 5]
|
||||
|
||||
RFC 1951 DEFLATE Compressed Data Format Specification May 1996
|
||||
|
||||
|
||||
bit-oriented. However, we describe the compressed block format
|
||||
in below, as a sequence of data elements of various bit
|
||||
lengths, not a sequence of bytes. We must therefore specify
|
||||
how to pack these data elements into bytes to form the final
|
||||
compressed byte sequence:
|
||||
|
||||
* Data elements are packed into bytes in order of
|
||||
increasing bit number within the byte, i.e., starting
|
||||
with the least-significant bit of the byte.
|
||||
* Data elements other than Huffman codes are packed
|
||||
starting with the least-significant bit of the data
|
||||
element.
|
||||
* Huffman codes are packed starting with the most-
|
||||
significant bit of the code.
|
||||
|
||||
In other words, if one were to print out the compressed data as
|
||||
a sequence of bytes, starting with the first byte at the
|
||||
*right* margin and proceeding to the *left*, with the most-
|
||||
significant bit of each byte on the left as usual, one would be
|
||||
able to parse the result from right to left, with fixed-width
|
||||
elements in the correct MSB-to-LSB order and Huffman codes in
|
||||
bit-reversed order (i.e., with the first bit of the code in the
|
||||
relative LSB position).
|
||||
|
||||
3.2. Compressed block format
|
||||
|
||||
3.2.1. Synopsis of prefix and Huffman coding
|
||||
|
||||
Prefix coding represents symbols from an a priori known
|
||||
alphabet by bit sequences (codes), one code for each symbol, in
|
||||
a manner such that different symbols may be represented by bit
|
||||
sequences of different lengths, but a parser can always parse
|
||||
an encoded string unambiguously symbol-by-symbol.
|
||||
|
||||
We define a prefix code in terms of a binary tree in which the
|
||||
two edges descending from each non-leaf node are labeled 0 and
|
||||
1 and in which the leaf nodes correspond one-for-one with (are
|
||||
labeled with) the symbols of the alphabet; then the code for a
|
||||
symbol is the sequence of 0's and 1's on the edges leading from
|
||||
the root to the leaf labeled with that symbol. For example:
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
Deutsch Informational [Page 6]
|
||||
|
||||
RFC 1951 DEFLATE Compressed Data Format Specification May 1996
|
||||
|
||||
|
||||
/\ Symbol Code
|
||||
0 1 ------ ----
|
||||
/ \ A 00
|
||||
/\ B B 1
|
||||
0 1 C 011
|
||||
/ \ D 010
|
||||
A /\
|
||||
0 1
|
||||
/ \
|
||||
D C
|
||||
|
||||
A parser can decode the next symbol from an encoded input
|
||||
stream by walking down the tree from the root, at each step
|
||||
choosing the edge corresponding to the next input bit.
|
||||
|
||||
Given an alphabet with known symbol frequencies, the Huffman
|
||||
algorithm allows the construction of an optimal prefix code
|
||||
(one which represents strings with those symbol frequencies
|
||||
using the fewest bits of any possible prefix codes for that
|
||||
alphabet). Such a code is called a Huffman code. (See
|
||||
reference [1] in Chapter 5, references for additional
|
||||
information on Huffman codes.)
|
||||
|
||||
Note that in the "deflate" format, the Huffman codes for the
|
||||
various alphabets must not exceed certain maximum code lengths.
|
||||
This constraint complicates the algorithm for computing code
|
||||
lengths from symbol frequencies. Again, see Chapter 5,
|
||||
references for details.
|
||||
|
||||
3.2.2. Use of Huffman coding in the "deflate" format
|
||||
|
||||
The Huffman codes used for each alphabet in the "deflate"
|
||||
format have two additional rules:
|
||||
|
||||
* All codes of a given bit length have lexicographically
|
||||
consecutive values, in the same order as the symbols
|
||||
they represent;
|
||||
|
||||
* Shorter codes lexicographically precede longer codes.
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
Deutsch Informational [Page 7]
|
||||
|
||||
RFC 1951 DEFLATE Compressed Data Format Specification May 1996
|
||||
|
||||
|
||||
We could recode the example above to follow this rule as
|
||||
follows, assuming that the order of the alphabet is ABCD:
|
||||
|
||||
Symbol Code
|
||||
------ ----
|
||||
A 10
|
||||
B 0
|
||||
C 110
|
||||
D 111
|
||||
|
||||
I.e., 0 precedes 10 which precedes 11x, and 110 and 111 are
|
||||
lexicographically consecutive.
|
||||
|
||||
Given this rule, we can define the Huffman code for an alphabet
|
||||
just by giving the bit lengths of the codes for each symbol of
|
||||
the alphabet in order; this is sufficient to determine the
|
||||
actual codes. In our example, the code is completely defined
|
||||
by the sequence of bit lengths (2, 1, 3, 3). The following
|
||||
algorithm generates the codes as integers, intended to be read
|
||||
from most- to least-significant bit. The code lengths are
|
||||
initially in tree[I].Len; the codes are produced in
|
||||
tree[I].Code.
|
||||
|
||||
1) Count the number of codes for each code length. Let
|
||||
bl_count[N] be the number of codes of length N, N >= 1.
|
||||
|
||||
2) Find the numerical value of the smallest code for each
|
||||
code length:
|
||||
|
||||
code = 0;
|
||||
bl_count[0] = 0;
|
||||
for (bits = 1; bits <= MAX_BITS; bits++) {
|
||||
code = (code + bl_count[bits-1]) << 1;
|
||||
next_code[bits] = code;
|
||||
}
|
||||
|
||||
3) Assign numerical values to all codes, using consecutive
|
||||
values for all codes of the same length with the base
|
||||
values determined at step 2. Codes that are never used
|
||||
(which have a bit length of zero) must not be assigned a
|
||||
value.
|
||||
|
||||
for (n = 0; n <= max_code; n++) {
|
||||
len = tree[n].Len;
|
||||
if (len != 0) {
|
||||
tree[n].Code = next_code[len];
|
||||
next_code[len]++;
|
||||
}
|
||||
|
||||
|
||||
|
||||
Deutsch Informational [Page 8]
|
||||
|
||||
RFC 1951 DEFLATE Compressed Data Format Specification May 1996
|
||||
|
||||
|
||||
}
|
||||
|
||||
Example:
|
||||
|
||||
Consider the alphabet ABCDEFGH, with bit lengths (3, 3, 3, 3,
|
||||
3, 2, 4, 4). After step 1, we have:
|
||||
|
||||
N bl_count[N]
|
||||
- -----------
|
||||
2 1
|
||||
3 5
|
||||
4 2
|
||||
|
||||
Step 2 computes the following next_code values:
|
||||
|
||||
N next_code[N]
|
||||
- ------------
|
||||
1 0
|
||||
2 0
|
||||
3 2
|
||||
4 14
|
||||
|
||||
Step 3 produces the following code values:
|
||||
|
||||
Symbol Length Code
|
||||
------ ------ ----
|
||||
A 3 010
|
||||
B 3 011
|
||||
C 3 100
|
||||
D 3 101
|
||||
E 3 110
|
||||
F 2 00
|
||||
G 4 1110
|
||||
H 4 1111
|
||||
|
||||
3.2.3. Details of block format
|
||||
|
||||
Each block of compressed data begins with 3 header bits
|
||||
containing the following data:
|
||||
|
||||
first bit BFINAL
|
||||
next 2 bits BTYPE
|
||||
|
||||
Note that the header bits do not necessarily begin on a byte
|
||||
boundary, since a block does not necessarily occupy an integral
|
||||
number of bytes.
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
Deutsch Informational [Page 9]
|
||||
|
||||
RFC 1951 DEFLATE Compressed Data Format Specification May 1996
|
||||
|
||||
|
||||
BFINAL is set if and only if this is the last block of the data
|
||||
set.
|
||||
|
||||
BTYPE specifies how the data are compressed, as follows:
|
||||
|
||||
00 - no compression
|
||||
01 - compressed with fixed Huffman codes
|
||||
10 - compressed with dynamic Huffman codes
|
||||
11 - reserved (error)
|
||||
|
||||
The only difference between the two compressed cases is how the
|
||||
Huffman codes for the literal/length and distance alphabets are
|
||||
defined.
|
||||
|
||||
In all cases, the decoding algorithm for the actual data is as
|
||||
follows:
|
||||
|
||||
do
|
||||
read block header from input stream.
|
||||
if stored with no compression
|
||||
skip any remaining bits in current partially
|
||||
processed byte
|
||||
read LEN and NLEN (see next section)
|
||||
copy LEN bytes of data to output
|
||||
otherwise
|
||||
if compressed with dynamic Huffman codes
|
||||
read representation of code trees (see
|
||||
subsection below)
|
||||
loop (until end of block code recognized)
|
||||
decode literal/length value from input stream
|
||||
if value < 256
|
||||
copy value (literal byte) to output stream
|
||||
otherwise
|
||||
if value = end of block (256)
|
||||
break from loop
|
||||
otherwise (value = 257..285)
|
||||
decode distance from input stream
|
||||
|
||||
move backwards distance bytes in the output
|
||||
stream, and copy length bytes from this
|
||||
position to the output stream.
|
||||
end loop
|
||||
while not last block
|
||||
|
||||
Note that a duplicated string reference may refer to a string
|
||||
in a previous block; i.e., the backward distance may cross one
|
||||
or more block boundaries. However a distance cannot refer past
|
||||
the beginning of the output stream. (An application using a
|
||||
|
||||
|
||||
|
||||
Deutsch Informational [Page 10]
|
||||
|
||||
RFC 1951 DEFLATE Compressed Data Format Specification May 1996
|
||||
|
||||
|
||||
preset dictionary might discard part of the output stream; a
|
||||
distance can refer to that part of the output stream anyway)
|
||||
Note also that the referenced string may overlap the current
|
||||
position; for example, if the last 2 bytes decoded have values
|
||||
X and Y, a string reference with <length = 5, distance = 2>
|
||||
adds X,Y,X,Y,X to the output stream.
|
||||
|
||||
We now specify each compression method in turn.
|
||||
|
||||
3.2.4. Non-compressed blocks (BTYPE=00)
|
||||
|
||||
Any bits of input up to the next byte boundary are ignored.
|
||||
The rest of the block consists of the following information:
|
||||
|
||||
0 1 2 3 4...
|
||||
+---+---+---+---+================================+
|
||||
| LEN | NLEN |... LEN bytes of literal data...|
|
||||
+---+---+---+---+================================+
|
||||
|
||||
LEN is the number of data bytes in the block. NLEN is the
|
||||
one's complement of LEN.
|
||||
|
||||
3.2.5. Compressed blocks (length and distance codes)
|
||||
|
||||
As noted above, encoded data blocks in the "deflate" format
|
||||
consist of sequences of symbols drawn from three conceptually
|
||||
distinct alphabets: either literal bytes, from the alphabet of
|
||||
byte values (0..255), or <length, backward distance> pairs,
|
||||
where the length is drawn from (3..258) and the distance is
|
||||
drawn from (1..32,768). In fact, the literal and length
|
||||
alphabets are merged into a single alphabet (0..285), where
|
||||
values 0..255 represent literal bytes, the value 256 indicates
|
||||
end-of-block, and values 257..285 represent length codes
|
||||
(possibly in conjunction with extra bits following the symbol
|
||||
code) as follows:
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
Deutsch Informational [Page 11]
|
||||
|
||||
RFC 1951 DEFLATE Compressed Data Format Specification May 1996
|
||||
|
||||
|
||||
Extra Extra Extra
|
||||
Code Bits Length(s) Code Bits Lengths Code Bits Length(s)
|
||||
---- ---- ------ ---- ---- ------- ---- ---- -------
|
||||
257 0 3 267 1 15,16 277 4 67-82
|
||||
258 0 4 268 1 17,18 278 4 83-98
|
||||
259 0 5 269 2 19-22 279 4 99-114
|
||||
260 0 6 270 2 23-26 280 4 115-130
|
||||
261 0 7 271 2 27-30 281 5 131-162
|
||||
262 0 8 272 2 31-34 282 5 163-194
|
||||
263 0 9 273 3 35-42 283 5 195-226
|
||||
264 0 10 274 3 43-50 284 5 227-257
|
||||
265 1 11,12 275 3 51-58 285 0 258
|
||||
266 1 13,14 276 3 59-66
|
||||
|
||||
The extra bits should be interpreted as a machine integer
|
||||
stored with the most-significant bit first, e.g., bits 1110
|
||||
represent the value 14.
|
||||
|
||||
Extra Extra Extra
|
||||
Code Bits Dist Code Bits Dist Code Bits Distance
|
||||
---- ---- ---- ---- ---- ------ ---- ---- --------
|
||||
0 0 1 10 4 33-48 20 9 1025-1536
|
||||
1 0 2 11 4 49-64 21 9 1537-2048
|
||||
2 0 3 12 5 65-96 22 10 2049-3072
|
||||
3 0 4 13 5 97-128 23 10 3073-4096
|
||||
4 1 5,6 14 6 129-192 24 11 4097-6144
|
||||
5 1 7,8 15 6 193-256 25 11 6145-8192
|
||||
6 2 9-12 16 7 257-384 26 12 8193-12288
|
||||
7 2 13-16 17 7 385-512 27 12 12289-16384
|
||||
8 3 17-24 18 8 513-768 28 13 16385-24576
|
||||
9 3 25-32 19 8 769-1024 29 13 24577-32768
|
||||
|
||||
3.2.6. Compression with fixed Huffman codes (BTYPE=01)
|
||||
|
||||
The Huffman codes for the two alphabets are fixed, and are not
|
||||
represented explicitly in the data. The Huffman code lengths
|
||||
for the literal/length alphabet are:
|
||||
|
||||
Lit Value Bits Codes
|
||||
--------- ---- -----
|
||||
0 - 143 8 00110000 through
|
||||
10111111
|
||||
144 - 255 9 110010000 through
|
||||
111111111
|
||||
256 - 279 7 0000000 through
|
||||
0010111
|
||||
280 - 287 8 11000000 through
|
||||
11000111
|
||||
|
||||
|
||||
|
||||
Deutsch Informational [Page 12]
|
||||
|
||||
RFC 1951 DEFLATE Compressed Data Format Specification May 1996
|
||||
|
||||
|
||||
The code lengths are sufficient to generate the actual codes,
|
||||
as described above; we show the codes in the table for added
|
||||
clarity. Literal/length values 286-287 will never actually
|
||||
occur in the compressed data, but participate in the code
|
||||
construction.
|
||||
|
||||
Distance codes 0-31 are represented by (fixed-length) 5-bit
|
||||
codes, with possible additional bits as shown in the table
|
||||
shown in Paragraph 3.2.5, above. Note that distance codes 30-
|
||||
31 will never actually occur in the compressed data.
|
||||
|
||||
3.2.7. Compression with dynamic Huffman codes (BTYPE=10)
|
||||
|
||||
The Huffman codes for the two alphabets appear in the block
|
||||
immediately after the header bits and before the actual
|
||||
compressed data, first the literal/length code and then the
|
||||
distance code. Each code is defined by a sequence of code
|
||||
lengths, as discussed in Paragraph 3.2.2, above. For even
|
||||
greater compactness, the code length sequences themselves are
|
||||
compressed using a Huffman code. The alphabet for code lengths
|
||||
is as follows:
|
||||
|
||||
0 - 15: Represent code lengths of 0 - 15
|
||||
16: Copy the previous code length 3 - 6 times.
|
||||
The next 2 bits indicate repeat length
|
||||
(0 = 3, ... , 3 = 6)
|
||||
Example: Codes 8, 16 (+2 bits 11),
|
||||
16 (+2 bits 10) will expand to
|
||||
12 code lengths of 8 (1 + 6 + 5)
|
||||
17: Repeat a code length of 0 for 3 - 10 times.
|
||||
(3 bits of length)
|
||||
18: Repeat a code length of 0 for 11 - 138 times
|
||||
(7 bits of length)
|
||||
|
||||
A code length of 0 indicates that the corresponding symbol in
|
||||
the literal/length or distance alphabet will not occur in the
|
||||
block, and should not participate in the Huffman code
|
||||
construction algorithm given earlier. If only one distance
|
||||
code is used, it is encoded using one bit, not zero bits; in
|
||||
this case there is a single code length of one, with one unused
|
||||
code. One distance code of zero bits means that there are no
|
||||
distance codes used at all (the data is all literals).
|
||||
|
||||
We can now define the format of the block:
|
||||
|
||||
5 Bits: HLIT, # of Literal/Length codes - 257 (257 - 286)
|
||||
5 Bits: HDIST, # of Distance codes - 1 (1 - 32)
|
||||
4 Bits: HCLEN, # of Code Length codes - 4 (4 - 19)
|
||||
|
||||
|
||||
|
||||
Deutsch Informational [Page 13]
|
||||
|
||||
RFC 1951 DEFLATE Compressed Data Format Specification May 1996
|
||||
|
||||
|
||||
(HCLEN + 4) x 3 bits: code lengths for the code length
|
||||
alphabet given just above, in the order: 16, 17, 18,
|
||||
0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15
|
||||
|
||||
These code lengths are interpreted as 3-bit integers
|
||||
(0-7); as above, a code length of 0 means the
|
||||
corresponding symbol (literal/length or distance code
|
||||
length) is not used.
|
||||
|
||||
HLIT + 257 code lengths for the literal/length alphabet,
|
||||
encoded using the code length Huffman code
|
||||
|
||||
HDIST + 1 code lengths for the distance alphabet,
|
||||
encoded using the code length Huffman code
|
||||
|
||||
The actual compressed data of the block,
|
||||
encoded using the literal/length and distance Huffman
|
||||
codes
|
||||
|
||||
The literal/length symbol 256 (end of data),
|
||||
encoded using the literal/length Huffman code
|
||||
|
||||
The code length repeat codes can cross from HLIT + 257 to the
|
||||
HDIST + 1 code lengths. In other words, all code lengths form
|
||||
a single sequence of HLIT + HDIST + 258 values.
|
||||
|
||||
3.3. Compliance
|
||||
|
||||
A compressor may limit further the ranges of values specified in
|
||||
the previous section and still be compliant; for example, it may
|
||||
limit the range of backward pointers to some value smaller than
|
||||
32K. Similarly, a compressor may limit the size of blocks so that
|
||||
a compressible block fits in memory.
|
||||
|
||||
A compliant decompressor must accept the full range of possible
|
||||
values defined in the previous section, and must accept blocks of
|
||||
arbitrary size.
|
||||
|
||||
4. Compression algorithm details
|
||||
|
||||
While it is the intent of this document to define the "deflate"
|
||||
compressed data format without reference to any particular
|
||||
compression algorithm, the format is related to the compressed
|
||||
formats produced by LZ77 (Lempel-Ziv 1977, see reference [2] below);
|
||||
since many variations of LZ77 are patented, it is strongly
|
||||
recommended that the implementor of a compressor follow the general
|
||||
algorithm presented here, which is known not to be patented per se.
|
||||
The material in this section is not part of the definition of the
|
||||
|
||||
|
||||
|
||||
Deutsch Informational [Page 14]
|
||||
|
||||
RFC 1951 DEFLATE Compressed Data Format Specification May 1996
|
||||
|
||||
|
||||
specification per se, and a compressor need not follow it in order to
|
||||
be compliant.
|
||||
|
||||
The compressor terminates a block when it determines that starting a
|
||||
new block with fresh trees would be useful, or when the block size
|
||||
fills up the compressor's block buffer.
|
||||
|
||||
The compressor uses a chained hash table to find duplicated strings,
|
||||
using a hash function that operates on 3-byte sequences. At any
|
||||
given point during compression, let XYZ be the next 3 input bytes to
|
||||
be examined (not necessarily all different, of course). First, the
|
||||
compressor examines the hash chain for XYZ. If the chain is empty,
|
||||
the compressor simply writes out X as a literal byte and advances one
|
||||
byte in the input. If the hash chain is not empty, indicating that
|
||||
the sequence XYZ (or, if we are unlucky, some other 3 bytes with the
|
||||
same hash function value) has occurred recently, the compressor
|
||||
compares all strings on the XYZ hash chain with the actual input data
|
||||
sequence starting at the current point, and selects the longest
|
||||
match.
|
||||
|
||||
The compressor searches the hash chains starting with the most recent
|
||||
strings, to favor small distances and thus take advantage of the
|
||||
Huffman encoding. The hash chains are singly linked. There are no
|
||||
deletions from the hash chains; the algorithm simply discards matches
|
||||
that are too old. To avoid a worst-case situation, very long hash
|
||||
chains are arbitrarily truncated at a certain length, determined by a
|
||||
run-time parameter.
|
||||
|
||||
To improve overall compression, the compressor optionally defers the
|
||||
selection of matches ("lazy matching"): after a match of length N has
|
||||
been found, the compressor searches for a longer match starting at
|
||||
the next input byte. If it finds a longer match, it truncates the
|
||||
previous match to a length of one (thus producing a single literal
|
||||
byte) and then emits the longer match. Otherwise, it emits the
|
||||
original match, and, as described above, advances N bytes before
|
||||
continuing.
|
||||
|
||||
Run-time parameters also control this "lazy match" procedure. If
|
||||
compression ratio is most important, the compressor attempts a
|
||||
complete second search regardless of the length of the first match.
|
||||
In the normal case, if the current match is "long enough", the
|
||||
compressor reduces the search for a longer match, thus speeding up
|
||||
the process. If speed is most important, the compressor inserts new
|
||||
strings in the hash table only when no match was found, or when the
|
||||
match is not "too long". This degrades the compression ratio but
|
||||
saves time since there are both fewer insertions and fewer searches.
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
Deutsch Informational [Page 15]
|
||||
|
||||
RFC 1951 DEFLATE Compressed Data Format Specification May 1996
|
||||
|
||||
|
||||
5. References
|
||||
|
||||
[1] Huffman, D. A., "A Method for the Construction of Minimum
|
||||
Redundancy Codes", Proceedings of the Institute of Radio
|
||||
Engineers, September 1952, Volume 40, Number 9, pp. 1098-1101.
|
||||
|
||||
[2] Ziv J., Lempel A., "A Universal Algorithm for Sequential Data
|
||||
Compression", IEEE Transactions on Information Theory, Vol. 23,
|
||||
No. 3, pp. 337-343.
|
||||
|
||||
[3] Gailly, J.-L., and Adler, M., ZLIB documentation and sources,
|
||||
available in ftp://ftp.uu.net/pub/archiving/zip/doc/
|
||||
|
||||
[4] Gailly, J.-L., and Adler, M., GZIP documentation and sources,
|
||||
available as gzip-*.tar in ftp://prep.ai.mit.edu/pub/gnu/
|
||||
|
||||
[5] Schwartz, E. S., and Kallick, B. "Generating a canonical prefix
|
||||
encoding." Comm. ACM, 7,3 (Mar. 1964), pp. 166-169.
|
||||
|
||||
[6] Hirschberg and Lelewer, "Efficient decoding of prefix codes,"
|
||||
Comm. ACM, 33,4, April 1990, pp. 449-459.
|
||||
|
||||
6. Security Considerations
|
||||
|
||||
Any data compression method involves the reduction of redundancy in
|
||||
the data. Consequently, any corruption of the data is likely to have
|
||||
severe effects and be difficult to correct. Uncompressed text, on
|
||||
the other hand, will probably still be readable despite the presence
|
||||
of some corrupted bytes.
|
||||
|
||||
It is recommended that systems using this data format provide some
|
||||
means of validating the integrity of the compressed data. See
|
||||
reference [3], for example.
|
||||
|
||||
7. Source code
|
||||
|
||||
Source code for a C language implementation of a "deflate" compliant
|
||||
compressor and decompressor is available within the zlib package at
|
||||
ftp://ftp.uu.net/pub/archiving/zip/zlib/.
|
||||
|
||||
8. Acknowledgements
|
||||
|
||||
Trademarks cited in this document are the property of their
|
||||
respective owners.
|
||||
|
||||
Phil Katz designed the deflate format. Jean-Loup Gailly and Mark
|
||||
Adler wrote the related software described in this specification.
|
||||
Glenn Randers-Pehrson converted this document to RFC and HTML format.
|
||||
|
||||
|
||||
|
||||
Deutsch Informational [Page 16]
|
||||
|
||||
RFC 1951 DEFLATE Compressed Data Format Specification May 1996
|
||||
|
||||
|
||||
9. Author's Address
|
||||
|
||||
L. Peter Deutsch
|
||||
Aladdin Enterprises
|
||||
203 Santa Margarita Ave.
|
||||
Menlo Park, CA 94025
|
||||
|
||||
Phone: (415) 322-0103 (AM only)
|
||||
FAX: (415) 322-1734
|
||||
EMail: <ghost@aladdin.com>
|
||||
|
||||
Questions about the technical content of this specification can be
|
||||
sent by email to:
|
||||
|
||||
Jean-Loup Gailly <gzip@prep.ai.mit.edu> and
|
||||
Mark Adler <madler@alumni.caltech.edu>
|
||||
|
||||
Editorial comments on this specification can be sent by email to:
|
||||
|
||||
L. Peter Deutsch <ghost@aladdin.com> and
|
||||
Glenn Randers-Pehrson <randeg@alumni.rpi.edu>
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
Deutsch Informational [Page 17]
|
||||
|
675
deps/zlib/doc/rfc1952.txt
vendored
Normal file
675
deps/zlib/doc/rfc1952.txt
vendored
Normal file
@ -0,0 +1,675 @@
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
Network Working Group P. Deutsch
|
||||
Request for Comments: 1952 Aladdin Enterprises
|
||||
Category: Informational May 1996
|
||||
|
||||
|
||||
GZIP file format specification version 4.3
|
||||
|
||||
Status of This Memo
|
||||
|
||||
This memo provides information for the Internet community. This memo
|
||||
does not specify an Internet standard of any kind. Distribution of
|
||||
this memo is unlimited.
|
||||
|
||||
IESG Note:
|
||||
|
||||
The IESG takes no position on the validity of any Intellectual
|
||||
Property Rights statements contained in this document.
|
||||
|
||||
Notices
|
||||
|
||||
Copyright (c) 1996 L. Peter Deutsch
|
||||
|
||||
Permission is granted to copy and distribute this document for any
|
||||
purpose and without charge, including translations into other
|
||||
languages and incorporation into compilations, provided that the
|
||||
copyright notice and this notice are preserved, and that any
|
||||
substantive changes or deletions from the original are clearly
|
||||
marked.
|
||||
|
||||
A pointer to the latest version of this and related documentation in
|
||||
HTML format can be found at the URL
|
||||
<ftp://ftp.uu.net/graphics/png/documents/zlib/zdoc-index.html>.
|
||||
|
||||
Abstract
|
||||
|
||||
This specification defines a lossless compressed data format that is
|
||||
compatible with the widely used GZIP utility. The format includes a
|
||||
cyclic redundancy check value for detecting data corruption. The
|
||||
format presently uses the DEFLATE method of compression but can be
|
||||
easily extended to use other compression methods. The format can be
|
||||
implemented readily in a manner not covered by patents.
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
Deutsch Informational [Page 1]
|
||||
|
||||
RFC 1952 GZIP File Format Specification May 1996
|
||||
|
||||
|
||||
Table of Contents
|
||||
|
||||
1. Introduction ................................................... 2
|
||||
1.1. Purpose ................................................... 2
|
||||
1.2. Intended audience ......................................... 3
|
||||
1.3. Scope ..................................................... 3
|
||||
1.4. Compliance ................................................ 3
|
||||
1.5. Definitions of terms and conventions used ................. 3
|
||||
1.6. Changes from previous versions ............................ 3
|
||||
2. Detailed specification ......................................... 4
|
||||
2.1. Overall conventions ....................................... 4
|
||||
2.2. File format ............................................... 5
|
||||
2.3. Member format ............................................. 5
|
||||
2.3.1. Member header and trailer ........................... 6
|
||||
2.3.1.1. Extra field ................................... 8
|
||||
2.3.1.2. Compliance .................................... 9
|
||||
3. References .................................................. 9
|
||||
4. Security Considerations .................................... 10
|
||||
5. Acknowledgements ........................................... 10
|
||||
6. Author's Address ........................................... 10
|
||||
7. Appendix: Jean-Loup Gailly's gzip utility .................. 11
|
||||
8. Appendix: Sample CRC Code .................................. 11
|
||||
|
||||
1. Introduction
|
||||
|
||||
1.1. Purpose
|
||||
|
||||
The purpose of this specification is to define a lossless
|
||||
compressed data format that:
|
||||
|
||||
* Is independent of CPU type, operating system, file system,
|
||||
and character set, and hence can be used for interchange;
|
||||
* Can compress or decompress a data stream (as opposed to a
|
||||
randomly accessible file) to produce another data stream,
|
||||
using only an a priori bounded amount of intermediate
|
||||
storage, and hence can be used in data communications or
|
||||
similar structures such as Unix filters;
|
||||
* Compresses data with efficiency comparable to the best
|
||||
currently available general-purpose compression methods,
|
||||
and in particular considerably better than the "compress"
|
||||
program;
|
||||
* Can be implemented readily in a manner not covered by
|
||||
patents, and hence can be practiced freely;
|
||||
* Is compatible with the file format produced by the current
|
||||
widely used gzip utility, in that conforming decompressors
|
||||
will be able to read data produced by the existing gzip
|
||||
compressor.
|
||||
|
||||
|
||||
|
||||
|
||||
Deutsch Informational [Page 2]
|
||||
|
||||
RFC 1952 GZIP File Format Specification May 1996
|
||||
|
||||
|
||||
The data format defined by this specification does not attempt to:
|
||||
|
||||
* Provide random access to compressed data;
|
||||
* Compress specialized data (e.g., raster graphics) as well as
|
||||
the best currently available specialized algorithms.
|
||||
|
||||
1.2. Intended audience
|
||||
|
||||
This specification is intended for use by implementors of software
|
||||
to compress data into gzip format and/or decompress data from gzip
|
||||
format.
|
||||
|
||||
The text of the specification assumes a basic background in
|
||||
programming at the level of bits and other primitive data
|
||||
representations.
|
||||
|
||||
1.3. Scope
|
||||
|
||||
The specification specifies a compression method and a file format
|
||||
(the latter assuming only that a file can store a sequence of
|
||||
arbitrary bytes). It does not specify any particular interface to
|
||||
a file system or anything about character sets or encodings
|
||||
(except for file names and comments, which are optional).
|
||||
|
||||
1.4. Compliance
|
||||
|
||||
Unless otherwise indicated below, a compliant decompressor must be
|
||||
able to accept and decompress any file that conforms to all the
|
||||
specifications presented here; a compliant compressor must produce
|
||||
files that conform to all the specifications presented here. The
|
||||
material in the appendices is not part of the specification per se
|
||||
and is not relevant to compliance.
|
||||
|
||||
1.5. Definitions of terms and conventions used
|
||||
|
||||
byte: 8 bits stored or transmitted as a unit (same as an octet).
|
||||
(For this specification, a byte is exactly 8 bits, even on
|
||||
machines which store a character on a number of bits different
|
||||
from 8.) See below for the numbering of bits within a byte.
|
||||
|
||||
1.6. Changes from previous versions
|
||||
|
||||
There have been no technical changes to the gzip format since
|
||||
version 4.1 of this specification. In version 4.2, some
|
||||
terminology was changed, and the sample CRC code was rewritten for
|
||||
clarity and to eliminate the requirement for the caller to do pre-
|
||||
and post-conditioning. Version 4.3 is a conversion of the
|
||||
specification to RFC style.
|
||||
|
||||
|
||||
|
||||
Deutsch Informational [Page 3]
|
||||
|
||||
RFC 1952 GZIP File Format Specification May 1996
|
||||
|
||||
|
||||
2. Detailed specification
|
||||
|
||||
2.1. Overall conventions
|
||||
|
||||
In the diagrams below, a box like this:
|
||||
|
||||
+---+
|
||||
| | <-- the vertical bars might be missing
|
||||
+---+
|
||||
|
||||
represents one byte; a box like this:
|
||||
|
||||
+==============+
|
||||
| |
|
||||
+==============+
|
||||
|
||||
represents a variable number of bytes.
|
||||
|
||||
Bytes stored within a computer do not have a "bit order", since
|
||||
they are always treated as a unit. However, a byte considered as
|
||||
an integer between 0 and 255 does have a most- and least-
|
||||
significant bit, and since we write numbers with the most-
|
||||
significant digit on the left, we also write bytes with the most-
|
||||
significant bit on the left. In the diagrams below, we number the
|
||||
bits of a byte so that bit 0 is the least-significant bit, i.e.,
|
||||
the bits are numbered:
|
||||
|
||||
+--------+
|
||||
|76543210|
|
||||
+--------+
|
||||
|
||||
This document does not address the issue of the order in which
|
||||
bits of a byte are transmitted on a bit-sequential medium, since
|
||||
the data format described here is byte- rather than bit-oriented.
|
||||
|
||||
Within a computer, a number may occupy multiple bytes. All
|
||||
multi-byte numbers in the format described here are stored with
|
||||
the least-significant byte first (at the lower memory address).
|
||||
For example, the decimal number 520 is stored as:
|
||||
|
||||
0 1
|
||||
+--------+--------+
|
||||
|00001000|00000010|
|
||||
+--------+--------+
|
||||
^ ^
|
||||
| |
|
||||
| + more significant byte = 2 x 256
|
||||
+ less significant byte = 8
|
||||
|
||||
|
||||
|
||||
Deutsch Informational [Page 4]
|
||||
|
||||
RFC 1952 GZIP File Format Specification May 1996
|
||||
|
||||
|
||||
2.2. File format
|
||||
|
||||
A gzip file consists of a series of "members" (compressed data
|
||||
sets). The format of each member is specified in the following
|
||||
section. The members simply appear one after another in the file,
|
||||
with no additional information before, between, or after them.
|
||||
|
||||
2.3. Member format
|
||||
|
||||
Each member has the following structure:
|
||||
|
||||
+---+---+---+---+---+---+---+---+---+---+
|
||||
|ID1|ID2|CM |FLG| MTIME |XFL|OS | (more-->)
|
||||
+---+---+---+---+---+---+---+---+---+---+
|
||||
|
||||
(if FLG.FEXTRA set)
|
||||
|
||||
+---+---+=================================+
|
||||
| XLEN |...XLEN bytes of "extra field"...| (more-->)
|
||||
+---+---+=================================+
|
||||
|
||||
(if FLG.FNAME set)
|
||||
|
||||
+=========================================+
|
||||
|...original file name, zero-terminated...| (more-->)
|
||||
+=========================================+
|
||||
|
||||
(if FLG.FCOMMENT set)
|
||||
|
||||
+===================================+
|
||||
|...file comment, zero-terminated...| (more-->)
|
||||
+===================================+
|
||||
|
||||
(if FLG.FHCRC set)
|
||||
|
||||
+---+---+
|
||||
| CRC16 |
|
||||
+---+---+
|
||||
|
||||
+=======================+
|
||||
|...compressed blocks...| (more-->)
|
||||
+=======================+
|
||||
|
||||
0 1 2 3 4 5 6 7
|
||||
+---+---+---+---+---+---+---+---+
|
||||
| CRC32 | ISIZE |
|
||||
+---+---+---+---+---+---+---+---+
|
||||
|
||||
|
||||
|
||||
|
||||
Deutsch Informational [Page 5]
|
||||
|
||||
RFC 1952 GZIP File Format Specification May 1996
|
||||
|
||||
|
||||
2.3.1. Member header and trailer
|
||||
|
||||
ID1 (IDentification 1)
|
||||
ID2 (IDentification 2)
|
||||
These have the fixed values ID1 = 31 (0x1f, \037), ID2 = 139
|
||||
(0x8b, \213), to identify the file as being in gzip format.
|
||||
|
||||
CM (Compression Method)
|
||||
This identifies the compression method used in the file. CM
|
||||
= 0-7 are reserved. CM = 8 denotes the "deflate"
|
||||
compression method, which is the one customarily used by
|
||||
gzip and which is documented elsewhere.
|
||||
|
||||
FLG (FLaGs)
|
||||
This flag byte is divided into individual bits as follows:
|
||||
|
||||
bit 0 FTEXT
|
||||
bit 1 FHCRC
|
||||
bit 2 FEXTRA
|
||||
bit 3 FNAME
|
||||
bit 4 FCOMMENT
|
||||
bit 5 reserved
|
||||
bit 6 reserved
|
||||
bit 7 reserved
|
||||
|
||||
If FTEXT is set, the file is probably ASCII text. This is
|
||||
an optional indication, which the compressor may set by
|
||||
checking a small amount of the input data to see whether any
|
||||
non-ASCII characters are present. In case of doubt, FTEXT
|
||||
is cleared, indicating binary data. For systems which have
|
||||
different file formats for ascii text and binary data, the
|
||||
decompressor can use FTEXT to choose the appropriate format.
|
||||
We deliberately do not specify the algorithm used to set
|
||||
this bit, since a compressor always has the option of
|
||||
leaving it cleared and a decompressor always has the option
|
||||
of ignoring it and letting some other program handle issues
|
||||
of data conversion.
|
||||
|
||||
If FHCRC is set, a CRC16 for the gzip header is present,
|
||||
immediately before the compressed data. The CRC16 consists
|
||||
of the two least significant bytes of the CRC32 for all
|
||||
bytes of the gzip header up to and not including the CRC16.
|
||||
[The FHCRC bit was never set by versions of gzip up to
|
||||
1.2.4, even though it was documented with a different
|
||||
meaning in gzip 1.2.4.]
|
||||
|
||||
If FEXTRA is set, optional extra fields are present, as
|
||||
described in a following section.
|
||||
|
||||
|
||||
|
||||
Deutsch Informational [Page 6]
|
||||
|
||||
RFC 1952 GZIP File Format Specification May 1996
|
||||
|
||||
|
||||
If FNAME is set, an original file name is present,
|
||||
terminated by a zero byte. The name must consist of ISO
|
||||
8859-1 (LATIN-1) characters; on operating systems using
|
||||
EBCDIC or any other character set for file names, the name
|
||||
must be translated to the ISO LATIN-1 character set. This
|
||||
is the original name of the file being compressed, with any
|
||||
directory components removed, and, if the file being
|
||||
compressed is on a file system with case insensitive names,
|
||||
forced to lower case. There is no original file name if the
|
||||
data was compressed from a source other than a named file;
|
||||
for example, if the source was stdin on a Unix system, there
|
||||
is no file name.
|
||||
|
||||
If FCOMMENT is set, a zero-terminated file comment is
|
||||
present. This comment is not interpreted; it is only
|
||||
intended for human consumption. The comment must consist of
|
||||
ISO 8859-1 (LATIN-1) characters. Line breaks should be
|
||||
denoted by a single line feed character (10 decimal).
|
||||
|
||||
Reserved FLG bits must be zero.
|
||||
|
||||
MTIME (Modification TIME)
|
||||
This gives the most recent modification time of the original
|
||||
file being compressed. The time is in Unix format, i.e.,
|
||||
seconds since 00:00:00 GMT, Jan. 1, 1970. (Note that this
|
||||
may cause problems for MS-DOS and other systems that use
|
||||
local rather than Universal time.) If the compressed data
|
||||
did not come from a file, MTIME is set to the time at which
|
||||
compression started. MTIME = 0 means no time stamp is
|
||||
available.
|
||||
|
||||
XFL (eXtra FLags)
|
||||
These flags are available for use by specific compression
|
||||
methods. The "deflate" method (CM = 8) sets these flags as
|
||||
follows:
|
||||
|
||||
XFL = 2 - compressor used maximum compression,
|
||||
slowest algorithm
|
||||
XFL = 4 - compressor used fastest algorithm
|
||||
|
||||
OS (Operating System)
|
||||
This identifies the type of file system on which compression
|
||||
took place. This may be useful in determining end-of-line
|
||||
convention for text files. The currently defined values are
|
||||
as follows:
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
Deutsch Informational [Page 7]
|
||||
|
||||
RFC 1952 GZIP File Format Specification May 1996
|
||||
|
||||
|
||||
0 - FAT filesystem (MS-DOS, OS/2, NT/Win32)
|
||||
1 - Amiga
|
||||
2 - VMS (or OpenVMS)
|
||||
3 - Unix
|
||||
4 - VM/CMS
|
||||
5 - Atari TOS
|
||||
6 - HPFS filesystem (OS/2, NT)
|
||||
7 - Macintosh
|
||||
8 - Z-System
|
||||
9 - CP/M
|
||||
10 - TOPS-20
|
||||
11 - NTFS filesystem (NT)
|
||||
12 - QDOS
|
||||
13 - Acorn RISCOS
|
||||
255 - unknown
|
||||
|
||||
XLEN (eXtra LENgth)
|
||||
If FLG.FEXTRA is set, this gives the length of the optional
|
||||
extra field. See below for details.
|
||||
|
||||
CRC32 (CRC-32)
|
||||
This contains a Cyclic Redundancy Check value of the
|
||||
uncompressed data computed according to CRC-32 algorithm
|
||||
used in the ISO 3309 standard and in section 8.1.1.6.2 of
|
||||
ITU-T recommendation V.42. (See http://www.iso.ch for
|
||||
ordering ISO documents. See gopher://info.itu.ch for an
|
||||
online version of ITU-T V.42.)
|
||||
|
||||
ISIZE (Input SIZE)
|
||||
This contains the size of the original (uncompressed) input
|
||||
data modulo 2^32.
|
||||
|
||||
2.3.1.1. Extra field
|
||||
|
||||
If the FLG.FEXTRA bit is set, an "extra field" is present in
|
||||
the header, with total length XLEN bytes. It consists of a
|
||||
series of subfields, each of the form:
|
||||
|
||||
+---+---+---+---+==================================+
|
||||
|SI1|SI2| LEN |... LEN bytes of subfield data ...|
|
||||
+---+---+---+---+==================================+
|
||||
|
||||
SI1 and SI2 provide a subfield ID, typically two ASCII letters
|
||||
with some mnemonic value. Jean-Loup Gailly
|
||||
<gzip@prep.ai.mit.edu> is maintaining a registry of subfield
|
||||
IDs; please send him any subfield ID you wish to use. Subfield
|
||||
IDs with SI2 = 0 are reserved for future use. The following
|
||||
IDs are currently defined:
|
||||
|
||||
|
||||
|
||||
Deutsch Informational [Page 8]
|
||||
|
||||
RFC 1952 GZIP File Format Specification May 1996
|
||||
|
||||
|
||||
SI1 SI2 Data
|
||||
---------- ---------- ----
|
||||
0x41 ('A') 0x70 ('P') Apollo file type information
|
||||
|
||||
LEN gives the length of the subfield data, excluding the 4
|
||||
initial bytes.
|
||||
|
||||
2.3.1.2. Compliance
|
||||
|
||||
A compliant compressor must produce files with correct ID1,
|
||||
ID2, CM, CRC32, and ISIZE, but may set all the other fields in
|
||||
the fixed-length part of the header to default values (255 for
|
||||
OS, 0 for all others). The compressor must set all reserved
|
||||
bits to zero.
|
||||
|
||||
A compliant decompressor must check ID1, ID2, and CM, and
|
||||
provide an error indication if any of these have incorrect
|
||||
values. It must examine FEXTRA/XLEN, FNAME, FCOMMENT and FHCRC
|
||||
at least so it can skip over the optional fields if they are
|
||||
present. It need not examine any other part of the header or
|
||||
trailer; in particular, a decompressor may ignore FTEXT and OS
|
||||
and always produce binary output, and still be compliant. A
|
||||
compliant decompressor must give an error indication if any
|
||||
reserved bit is non-zero, since such a bit could indicate the
|
||||
presence of a new field that would cause subsequent data to be
|
||||
interpreted incorrectly.
|
||||
|
||||
3. References
|
||||
|
||||
[1] "Information Processing - 8-bit single-byte coded graphic
|
||||
character sets - Part 1: Latin alphabet No.1" (ISO 8859-1:1987).
|
||||
The ISO 8859-1 (Latin-1) character set is a superset of 7-bit
|
||||
ASCII. Files defining this character set are available as
|
||||
iso_8859-1.* in ftp://ftp.uu.net/graphics/png/documents/
|
||||
|
||||
[2] ISO 3309
|
||||
|
||||
[3] ITU-T recommendation V.42
|
||||
|
||||
[4] Deutsch, L.P.,"DEFLATE Compressed Data Format Specification",
|
||||
available in ftp://ftp.uu.net/pub/archiving/zip/doc/
|
||||
|
||||
[5] Gailly, J.-L., GZIP documentation, available as gzip-*.tar in
|
||||
ftp://prep.ai.mit.edu/pub/gnu/
|
||||
|
||||
[6] Sarwate, D.V., "Computation of Cyclic Redundancy Checks via Table
|
||||
Look-Up", Communications of the ACM, 31(8), pp.1008-1013.
|
||||
|
||||
|
||||
|
||||
|
||||
Deutsch Informational [Page 9]
|
||||
|
||||
RFC 1952 GZIP File Format Specification May 1996
|
||||
|
||||
|
||||
[7] Schwaderer, W.D., "CRC Calculation", April 85 PC Tech Journal,
|
||||
pp.118-133.
|
||||
|
||||
[8] ftp://ftp.adelaide.edu.au/pub/rocksoft/papers/crc_v3.txt,
|
||||
describing the CRC concept.
|
||||
|
||||
4. Security Considerations
|
||||
|
||||
Any data compression method involves the reduction of redundancy in
|
||||
the data. Consequently, any corruption of the data is likely to have
|
||||
severe effects and be difficult to correct. Uncompressed text, on
|
||||
the other hand, will probably still be readable despite the presence
|
||||
of some corrupted bytes.
|
||||
|
||||
It is recommended that systems using this data format provide some
|
||||
means of validating the integrity of the compressed data, such as by
|
||||
setting and checking the CRC-32 check value.
|
||||
|
||||
5. Acknowledgements
|
||||
|
||||
Trademarks cited in this document are the property of their
|
||||
respective owners.
|
||||
|
||||
Jean-Loup Gailly designed the gzip format and wrote, with Mark Adler,
|
||||
the related software described in this specification. Glenn
|
||||
Randers-Pehrson converted this document to RFC and HTML format.
|
||||
|
||||
6. Author's Address
|
||||
|
||||
L. Peter Deutsch
|
||||
Aladdin Enterprises
|
||||
203 Santa Margarita Ave.
|
||||
Menlo Park, CA 94025
|
||||
|
||||
Phone: (415) 322-0103 (AM only)
|
||||
FAX: (415) 322-1734
|
||||
EMail: <ghost@aladdin.com>
|
||||
|
||||
Questions about the technical content of this specification can be
|
||||
sent by email to:
|
||||
|
||||
Jean-Loup Gailly <gzip@prep.ai.mit.edu> and
|
||||
Mark Adler <madler@alumni.caltech.edu>
|
||||
|
||||
Editorial comments on this specification can be sent by email to:
|
||||
|
||||
L. Peter Deutsch <ghost@aladdin.com> and
|
||||
Glenn Randers-Pehrson <randeg@alumni.rpi.edu>
|
||||
|
||||
|
||||
|
||||
Deutsch Informational [Page 10]
|
||||
|
||||
RFC 1952 GZIP File Format Specification May 1996
|
||||
|
||||
|
||||
7. Appendix: Jean-Loup Gailly's gzip utility
|
||||
|
||||
The most widely used implementation of gzip compression, and the
|
||||
original documentation on which this specification is based, were
|
||||
created by Jean-Loup Gailly <gzip@prep.ai.mit.edu>. Since this
|
||||
implementation is a de facto standard, we mention some more of its
|
||||
features here. Again, the material in this section is not part of
|
||||
the specification per se, and implementations need not follow it to
|
||||
be compliant.
|
||||
|
||||
When compressing or decompressing a file, gzip preserves the
|
||||
protection, ownership, and modification time attributes on the local
|
||||
file system, since there is no provision for representing protection
|
||||
attributes in the gzip file format itself. Since the file format
|
||||
includes a modification time, the gzip decompressor provides a
|
||||
command line switch that assigns the modification time from the file,
|
||||
rather than the local modification time of the compressed input, to
|
||||
the decompressed output.
|
||||
|
||||
8. Appendix: Sample CRC Code
|
||||
|
||||
The following sample code represents a practical implementation of
|
||||
the CRC (Cyclic Redundancy Check). (See also ISO 3309 and ITU-T V.42
|
||||
for a formal specification.)
|
||||
|
||||
The sample code is in the ANSI C programming language. Non C users
|
||||
may find it easier to read with these hints:
|
||||
|
||||
& Bitwise AND operator.
|
||||
^ Bitwise exclusive-OR operator.
|
||||
>> Bitwise right shift operator. When applied to an
|
||||
unsigned quantity, as here, right shift inserts zero
|
||||
bit(s) at the left.
|
||||
! Logical NOT operator.
|
||||
++ "n++" increments the variable n.
|
||||
0xNNN 0x introduces a hexadecimal (base 16) constant.
|
||||
Suffix L indicates a long value (at least 32 bits).
|
||||
|
||||
/* Table of CRCs of all 8-bit messages. */
|
||||
unsigned long crc_table[256];
|
||||
|
||||
/* Flag: has the table been computed? Initially false. */
|
||||
int crc_table_computed = 0;
|
||||
|
||||
/* Make the table for a fast CRC. */
|
||||
void make_crc_table(void)
|
||||
{
|
||||
unsigned long c;
|
||||
|
||||
|
||||
|
||||
Deutsch Informational [Page 11]
|
||||
|
||||
RFC 1952 GZIP File Format Specification May 1996
|
||||
|
||||
|
||||
int n, k;
|
||||
for (n = 0; n < 256; n++) {
|
||||
c = (unsigned long) n;
|
||||
for (k = 0; k < 8; k++) {
|
||||
if (c & 1) {
|
||||
c = 0xedb88320L ^ (c >> 1);
|
||||
} else {
|
||||
c = c >> 1;
|
||||
}
|
||||
}
|
||||
crc_table[n] = c;
|
||||
}
|
||||
crc_table_computed = 1;
|
||||
}
|
||||
|
||||
/*
|
||||
Update a running crc with the bytes buf[0..len-1] and return
|
||||
the updated crc. The crc should be initialized to zero. Pre- and
|
||||
post-conditioning (one's complement) is performed within this
|
||||
function so it shouldn't be done by the caller. Usage example:
|
||||
|
||||
unsigned long crc = 0L;
|
||||
|
||||
while (read_buffer(buffer, length) != EOF) {
|
||||
crc = update_crc(crc, buffer, length);
|
||||
}
|
||||
if (crc != original_crc) error();
|
||||
*/
|
||||
unsigned long update_crc(unsigned long crc,
|
||||
unsigned char *buf, int len)
|
||||
{
|
||||
unsigned long c = crc ^ 0xffffffffL;
|
||||
int n;
|
||||
|
||||
if (!crc_table_computed)
|
||||
make_crc_table();
|
||||
for (n = 0; n < len; n++) {
|
||||
c = crc_table[(c ^ buf[n]) & 0xff] ^ (c >> 8);
|
||||
}
|
||||
return c ^ 0xffffffffL;
|
||||
}
|
||||
|
||||
/* Return the CRC of the bytes buf[0..len-1]. */
|
||||
unsigned long crc(unsigned char *buf, int len)
|
||||
{
|
||||
return update_crc(0L, buf, len);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
Deutsch Informational [Page 12]
|
||||
|
107
deps/zlib/doc/txtvsbin.txt
vendored
Normal file
107
deps/zlib/doc/txtvsbin.txt
vendored
Normal file
@ -0,0 +1,107 @@
|
||||
A Fast Method for Identifying Plain Text Files
|
||||
==============================================
|
||||
|
||||
|
||||
Introduction
|
||||
------------
|
||||
|
||||
Given a file coming from an unknown source, it is sometimes desirable
|
||||
to find out whether the format of that file is plain text. Although
|
||||
this may appear like a simple task, a fully accurate detection of the
|
||||
file type requires heavy-duty semantic analysis on the file contents.
|
||||
It is, however, possible to obtain satisfactory results by employing
|
||||
various heuristics.
|
||||
|
||||
Previous versions of PKZip and other zip-compatible compression tools
|
||||
were using a crude detection scheme: if more than 80% (4/5) of the bytes
|
||||
found in a certain buffer are within the range [7..127], the file is
|
||||
labeled as plain text, otherwise it is labeled as binary. A prominent
|
||||
limitation of this scheme is the restriction to Latin-based alphabets.
|
||||
Other alphabets, like Greek, Cyrillic or Asian, make extensive use of
|
||||
the bytes within the range [128..255], and texts using these alphabets
|
||||
are most often misidentified by this scheme; in other words, the rate
|
||||
of false negatives is sometimes too high, which means that the recall
|
||||
is low. Another weakness of this scheme is a reduced precision, due to
|
||||
the false positives that may occur when binary files containing large
|
||||
amounts of textual characters are misidentified as plain text.
|
||||
|
||||
In this article we propose a new, simple detection scheme that features
|
||||
a much increased precision and a near-100% recall. This scheme is
|
||||
designed to work on ASCII, Unicode and other ASCII-derived alphabets,
|
||||
and it handles single-byte encodings (ISO-8859, MacRoman, KOI8, etc.)
|
||||
and variable-sized encodings (ISO-2022, UTF-8, etc.). Wider encodings
|
||||
(UCS-2/UTF-16 and UCS-4/UTF-32) are not handled, however.
|
||||
|
||||
|
||||
The Algorithm
|
||||
-------------
|
||||
|
||||
The algorithm works by dividing the set of bytecodes [0..255] into three
|
||||
categories:
|
||||
- The allow list of textual bytecodes:
|
||||
9 (TAB), 10 (LF), 13 (CR), 32 (SPACE) to 255.
|
||||
- The gray list of tolerated bytecodes:
|
||||
7 (BEL), 8 (BS), 11 (VT), 12 (FF), 26 (SUB), 27 (ESC).
|
||||
- The block list of undesired, non-textual bytecodes:
|
||||
0 (NUL) to 6, 14 to 31.
|
||||
|
||||
If a file contains at least one byte that belongs to the allow list and
|
||||
no byte that belongs to the block list, then the file is categorized as
|
||||
plain text; otherwise, it is categorized as binary. (The boundary case,
|
||||
when the file is empty, automatically falls into the latter category.)
|
||||
|
||||
|
||||
Rationale
|
||||
---------
|
||||
|
||||
The idea behind this algorithm relies on two observations.
|
||||
|
||||
The first observation is that, although the full range of 7-bit codes
|
||||
[0..127] is properly specified by the ASCII standard, most control
|
||||
characters in the range [0..31] are not used in practice. The only
|
||||
widely-used, almost universally-portable control codes are 9 (TAB),
|
||||
10 (LF) and 13 (CR). There are a few more control codes that are
|
||||
recognized on a reduced range of platforms and text viewers/editors:
|
||||
7 (BEL), 8 (BS), 11 (VT), 12 (FF), 26 (SUB) and 27 (ESC); but these
|
||||
codes are rarely (if ever) used alone, without being accompanied by
|
||||
some printable text. Even the newer, portable text formats such as
|
||||
XML avoid using control characters outside the list mentioned here.
|
||||
|
||||
The second observation is that most of the binary files tend to contain
|
||||
control characters, especially 0 (NUL). Even though the older text
|
||||
detection schemes observe the presence of non-ASCII codes from the range
|
||||
[128..255], the precision rarely has to suffer if this upper range is
|
||||
labeled as textual, because the files that are genuinely binary tend to
|
||||
contain both control characters and codes from the upper range. On the
|
||||
other hand, the upper range needs to be labeled as textual, because it
|
||||
is used by virtually all ASCII extensions. In particular, this range is
|
||||
used for encoding non-Latin scripts.
|
||||
|
||||
Since there is no counting involved, other than simply observing the
|
||||
presence or the absence of some byte values, the algorithm produces
|
||||
consistent results, regardless what alphabet encoding is being used.
|
||||
(If counting were involved, it could be possible to obtain different
|
||||
results on a text encoded, say, using ISO-8859-16 versus UTF-8.)
|
||||
|
||||
There is an extra category of plain text files that are "polluted" with
|
||||
one or more block-listed codes, either by mistake or by peculiar design
|
||||
considerations. In such cases, a scheme that tolerates a small fraction
|
||||
of block-listed codes would provide an increased recall (i.e. more true
|
||||
positives). This, however, incurs a reduced precision overall, since
|
||||
false positives are more likely to appear in binary files that contain
|
||||
large chunks of textual data. Furthermore, "polluted" plain text should
|
||||
be regarded as binary by general-purpose text detection schemes, because
|
||||
general-purpose text processing algorithms might not be applicable.
|
||||
Under this premise, it is safe to say that our detection method provides
|
||||
a near-100% recall.
|
||||
|
||||
Experiments have been run on many files coming from various platforms
|
||||
and applications. We tried plain text files, system logs, source code,
|
||||
formatted office documents, compiled object code, etc. The results
|
||||
confirm the optimistic assumptions about the capabilities of this
|
||||
algorithm.
|
||||
|
||||
|
||||
--
|
||||
Cosmin Truta
|
||||
Last updated: 2006-May-28
|
Reference in New Issue
Block a user