tildefriends/deps/libuv/src/unix/linux-core.c

835 lines
20 KiB
C
Raw Normal View History

/* Copyright Joyent, Inc. and other Node contributors. All rights reserved.
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
/* We lean on the fact that POLL{IN,OUT,ERR,HUP} correspond with their
* EPOLL* counterparts. We use the POLL* variants in this file because that
* is what libuv uses elsewhere.
*/
#include "uv.h"
#include "internal.h"
#include <inttypes.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <errno.h>
#include <net/if.h>
#include <sys/epoll.h>
#include <sys/param.h>
#include <sys/prctl.h>
#include <sys/sysinfo.h>
#include <unistd.h>
#include <fcntl.h>
#include <time.h>
#define HAVE_IFADDRS_H 1
# if defined(__ANDROID_API__) && __ANDROID_API__ < 24
# undef HAVE_IFADDRS_H
#endif
#ifdef __UCLIBC__
# if __UCLIBC_MAJOR__ < 0 && __UCLIBC_MINOR__ < 9 && __UCLIBC_SUBLEVEL__ < 32
# undef HAVE_IFADDRS_H
# endif
#endif
#ifdef HAVE_IFADDRS_H
# include <ifaddrs.h>
# include <sys/socket.h>
# include <net/ethernet.h>
# include <netpacket/packet.h>
#endif /* HAVE_IFADDRS_H */
/* Available from 2.6.32 onwards. */
#ifndef CLOCK_MONOTONIC_COARSE
# define CLOCK_MONOTONIC_COARSE 6
#endif
/* This is rather annoying: CLOCK_BOOTTIME lives in <linux/time.h> but we can't
* include that file because it conflicts with <time.h>. We'll just have to
* define it ourselves.
*/
#ifndef CLOCK_BOOTTIME
# define CLOCK_BOOTTIME 7
#endif
static int read_models(unsigned int numcpus, uv_cpu_info_t* ci);
static int read_times(FILE* statfile_fp,
unsigned int numcpus,
uv_cpu_info_t* ci);
static void read_speeds(unsigned int numcpus, uv_cpu_info_t* ci);
static uint64_t read_cpufreq(unsigned int cpunum);
int uv__platform_loop_init(uv_loop_t* loop) {
loop->inotify_fd = -1;
loop->inotify_watchers = NULL;
return uv__epoll_init(loop);
}
int uv__io_fork(uv_loop_t* loop) {
int err;
void* old_watchers;
old_watchers = loop->inotify_watchers;
uv__close(loop->backend_fd);
loop->backend_fd = -1;
uv__platform_loop_delete(loop);
err = uv__platform_loop_init(loop);
if (err)
return err;
return uv__inotify_fork(loop, old_watchers);
}
void uv__platform_loop_delete(uv_loop_t* loop) {
if (loop->inotify_fd == -1) return;
uv__io_stop(loop, &loop->inotify_read_watcher, POLLIN);
uv__close(loop->inotify_fd);
loop->inotify_fd = -1;
}
uint64_t uv__hrtime(uv_clocktype_t type) {
static clock_t fast_clock_id = -1;
struct timespec t;
clock_t clock_id;
/* Prefer CLOCK_MONOTONIC_COARSE if available but only when it has
* millisecond granularity or better. CLOCK_MONOTONIC_COARSE is
* serviced entirely from the vDSO, whereas CLOCK_MONOTONIC may
* decide to make a costly system call.
*/
/* TODO(bnoordhuis) Use CLOCK_MONOTONIC_COARSE for UV_CLOCK_PRECISE
* when it has microsecond granularity or better (unlikely).
*/
clock_id = CLOCK_MONOTONIC;
if (type != UV_CLOCK_FAST)
goto done;
clock_id = uv__load_relaxed(&fast_clock_id);
if (clock_id != -1)
goto done;
clock_id = CLOCK_MONOTONIC;
if (0 == clock_getres(CLOCK_MONOTONIC_COARSE, &t))
if (t.tv_nsec <= 1 * 1000 * 1000)
clock_id = CLOCK_MONOTONIC_COARSE;
uv__store_relaxed(&fast_clock_id, clock_id);
done:
if (clock_gettime(clock_id, &t))
return 0; /* Not really possible. */
return t.tv_sec * (uint64_t) 1e9 + t.tv_nsec;
}
int uv_resident_set_memory(size_t* rss) {
char buf[1024];
const char* s;
ssize_t n;
long val;
int fd;
int i;
do
fd = open("/proc/self/stat", O_RDONLY);
while (fd == -1 && errno == EINTR);
if (fd == -1)
return UV__ERR(errno);
do
n = read(fd, buf, sizeof(buf) - 1);
while (n == -1 && errno == EINTR);
uv__close(fd);
if (n == -1)
return UV__ERR(errno);
buf[n] = '\0';
s = strchr(buf, ' ');
if (s == NULL)
goto err;
s += 1;
if (*s != '(')
goto err;
s = strchr(s, ')');
if (s == NULL)
goto err;
for (i = 1; i <= 22; i++) {
s = strchr(s + 1, ' ');
if (s == NULL)
goto err;
}
errno = 0;
val = strtol(s, NULL, 10);
if (errno != 0)
goto err;
if (val < 0)
goto err;
*rss = val * getpagesize();
return 0;
err:
return UV_EINVAL;
}
int uv_uptime(double* uptime) {
static volatile int no_clock_boottime;
char buf[128];
struct timespec now;
int r;
/* Try /proc/uptime first, then fallback to clock_gettime(). */
if (0 == uv__slurp("/proc/uptime", buf, sizeof(buf)))
if (1 == sscanf(buf, "%lf", uptime))
return 0;
/* Try CLOCK_BOOTTIME first, fall back to CLOCK_MONOTONIC if not available
* (pre-2.6.39 kernels). CLOCK_MONOTONIC doesn't increase when the system
* is suspended.
*/
if (no_clock_boottime) {
retry_clock_gettime: r = clock_gettime(CLOCK_MONOTONIC, &now);
}
else if ((r = clock_gettime(CLOCK_BOOTTIME, &now)) && errno == EINVAL) {
no_clock_boottime = 1;
goto retry_clock_gettime;
}
if (r)
return UV__ERR(errno);
*uptime = now.tv_sec;
return 0;
}
static int uv__cpu_num(FILE* statfile_fp, unsigned int* numcpus) {
unsigned int num;
char buf[1024];
if (!fgets(buf, sizeof(buf), statfile_fp))
return UV_EIO;
num = 0;
while (fgets(buf, sizeof(buf), statfile_fp)) {
if (strncmp(buf, "cpu", 3))
break;
num++;
}
if (num == 0)
return UV_EIO;
*numcpus = num;
return 0;
}
int uv_cpu_info(uv_cpu_info_t** cpu_infos, int* count) {
unsigned int numcpus;
uv_cpu_info_t* ci;
int err;
FILE* statfile_fp;
*cpu_infos = NULL;
*count = 0;
statfile_fp = uv__open_file("/proc/stat");
if (statfile_fp == NULL)
return UV__ERR(errno);
err = uv__cpu_num(statfile_fp, &numcpus);
if (err < 0)
goto out;
err = UV_ENOMEM;
ci = uv__calloc(numcpus, sizeof(*ci));
if (ci == NULL)
goto out;
err = read_models(numcpus, ci);
if (err == 0)
err = read_times(statfile_fp, numcpus, ci);
if (err) {
uv_free_cpu_info(ci, numcpus);
goto out;
}
/* read_models() on x86 also reads the CPU speed from /proc/cpuinfo.
* We don't check for errors here. Worst case, the field is left zero.
*/
if (ci[0].speed == 0)
read_speeds(numcpus, ci);
*cpu_infos = ci;
*count = numcpus;
err = 0;
out:
if (fclose(statfile_fp))
if (errno != EINTR && errno != EINPROGRESS)
abort();
return err;
}
static void read_speeds(unsigned int numcpus, uv_cpu_info_t* ci) {
unsigned int num;
for (num = 0; num < numcpus; num++)
ci[num].speed = read_cpufreq(num) / 1000;
}
/* Also reads the CPU frequency on ppc and x86. The other architectures only
* have a BogoMIPS field, which may not be very accurate.
*
* Note: Simply returns on error, uv_cpu_info() takes care of the cleanup.
*/
static int read_models(unsigned int numcpus, uv_cpu_info_t* ci) {
#if defined(__PPC__)
static const char model_marker[] = "cpu\t\t: ";
static const char speed_marker[] = "clock\t\t: ";
#else
static const char model_marker[] = "model name\t: ";
static const char speed_marker[] = "cpu MHz\t\t: ";
#endif
const char* inferred_model;
unsigned int model_idx;
unsigned int speed_idx;
unsigned int part_idx;
char buf[1024];
char* model;
FILE* fp;
int model_id;
/* Most are unused on non-ARM, non-MIPS and non-x86 architectures. */
(void) &model_marker;
(void) &speed_marker;
(void) &speed_idx;
(void) &part_idx;
(void) &model;
(void) &buf;
(void) &fp;
(void) &model_id;
model_idx = 0;
speed_idx = 0;
part_idx = 0;
#if defined(__arm__) || \
defined(__i386__) || \
defined(__mips__) || \
defined(__aarch64__) || \
defined(__PPC__) || \
defined(__x86_64__)
fp = uv__open_file("/proc/cpuinfo");
if (fp == NULL)
return UV__ERR(errno);
while (fgets(buf, sizeof(buf), fp)) {
if (model_idx < numcpus) {
if (strncmp(buf, model_marker, sizeof(model_marker) - 1) == 0) {
model = buf + sizeof(model_marker) - 1;
model = uv__strndup(model, strlen(model) - 1); /* Strip newline. */
if (model == NULL) {
fclose(fp);
return UV_ENOMEM;
}
ci[model_idx++].model = model;
continue;
}
}
#if defined(__arm__) || defined(__mips__) || defined(__aarch64__)
if (model_idx < numcpus) {
#if defined(__arm__)
/* Fallback for pre-3.8 kernels. */
static const char model_marker[] = "Processor\t: ";
#elif defined(__aarch64__)
static const char part_marker[] = "CPU part\t: ";
/* Adapted from: https://github.com/karelzak/util-linux */
struct vendor_part {
const int id;
const char* name;
};
static const struct vendor_part arm_chips[] = {
{ 0x811, "ARM810" },
{ 0x920, "ARM920" },
{ 0x922, "ARM922" },
{ 0x926, "ARM926" },
{ 0x940, "ARM940" },
{ 0x946, "ARM946" },
{ 0x966, "ARM966" },
{ 0xa20, "ARM1020" },
{ 0xa22, "ARM1022" },
{ 0xa26, "ARM1026" },
{ 0xb02, "ARM11 MPCore" },
{ 0xb36, "ARM1136" },
{ 0xb56, "ARM1156" },
{ 0xb76, "ARM1176" },
{ 0xc05, "Cortex-A5" },
{ 0xc07, "Cortex-A7" },
{ 0xc08, "Cortex-A8" },
{ 0xc09, "Cortex-A9" },
{ 0xc0d, "Cortex-A17" }, /* Originally A12 */
{ 0xc0f, "Cortex-A15" },
{ 0xc0e, "Cortex-A17" },
{ 0xc14, "Cortex-R4" },
{ 0xc15, "Cortex-R5" },
{ 0xc17, "Cortex-R7" },
{ 0xc18, "Cortex-R8" },
{ 0xc20, "Cortex-M0" },
{ 0xc21, "Cortex-M1" },
{ 0xc23, "Cortex-M3" },
{ 0xc24, "Cortex-M4" },
{ 0xc27, "Cortex-M7" },
{ 0xc60, "Cortex-M0+" },
{ 0xd01, "Cortex-A32" },
{ 0xd03, "Cortex-A53" },
{ 0xd04, "Cortex-A35" },
{ 0xd05, "Cortex-A55" },
{ 0xd06, "Cortex-A65" },
{ 0xd07, "Cortex-A57" },
{ 0xd08, "Cortex-A72" },
{ 0xd09, "Cortex-A73" },
{ 0xd0a, "Cortex-A75" },
{ 0xd0b, "Cortex-A76" },
{ 0xd0c, "Neoverse-N1" },
{ 0xd0d, "Cortex-A77" },
{ 0xd0e, "Cortex-A76AE" },
{ 0xd13, "Cortex-R52" },
{ 0xd20, "Cortex-M23" },
{ 0xd21, "Cortex-M33" },
{ 0xd41, "Cortex-A78" },
{ 0xd42, "Cortex-A78AE" },
{ 0xd4a, "Neoverse-E1" },
{ 0xd4b, "Cortex-A78C" },
};
if (strncmp(buf, part_marker, sizeof(part_marker) - 1) == 0) {
model = buf + sizeof(part_marker) - 1;
errno = 0;
model_id = strtol(model, NULL, 16);
if ((errno != 0) || model_id < 0) {
fclose(fp);
return UV_EINVAL;
}
for (part_idx = 0; part_idx < ARRAY_SIZE(arm_chips); part_idx++) {
if (model_id == arm_chips[part_idx].id) {
model = uv__strdup(arm_chips[part_idx].name);
if (model == NULL) {
fclose(fp);
return UV_ENOMEM;
}
ci[model_idx++].model = model;
break;
}
}
}
#else /* defined(__mips__) */
static const char model_marker[] = "cpu model\t\t: ";
#endif
if (strncmp(buf, model_marker, sizeof(model_marker) - 1) == 0) {
model = buf + sizeof(model_marker) - 1;
model = uv__strndup(model, strlen(model) - 1); /* Strip newline. */
if (model == NULL) {
fclose(fp);
return UV_ENOMEM;
}
ci[model_idx++].model = model;
continue;
}
}
#else /* !__arm__ && !__mips__ && !__aarch64__ */
if (speed_idx < numcpus) {
if (strncmp(buf, speed_marker, sizeof(speed_marker) - 1) == 0) {
ci[speed_idx++].speed = atoi(buf + sizeof(speed_marker) - 1);
continue;
}
}
#endif /* __arm__ || __mips__ || __aarch64__ */
}
fclose(fp);
#endif /* __arm__ || __i386__ || __mips__ || __PPC__ || __x86_64__ || __aarch__ */
/* Now we want to make sure that all the models contain *something* because
* it's not safe to leave them as null. Copy the last entry unless there
* isn't one, in that case we simply put "unknown" into everything.
*/
inferred_model = "unknown";
if (model_idx > 0)
inferred_model = ci[model_idx - 1].model;
while (model_idx < numcpus) {
model = uv__strndup(inferred_model, strlen(inferred_model));
if (model == NULL)
return UV_ENOMEM;
ci[model_idx++].model = model;
}
return 0;
}
static int read_times(FILE* statfile_fp,
unsigned int numcpus,
uv_cpu_info_t* ci) {
struct uv_cpu_times_s ts;
unsigned int ticks;
unsigned int multiplier;
uint64_t user;
uint64_t nice;
uint64_t sys;
uint64_t idle;
uint64_t dummy;
uint64_t irq;
uint64_t num;
uint64_t len;
char buf[1024];
ticks = (unsigned int)sysconf(_SC_CLK_TCK);
assert(ticks != (unsigned int) -1);
assert(ticks != 0);
multiplier = ((uint64_t)1000L / ticks);
rewind(statfile_fp);
if (!fgets(buf, sizeof(buf), statfile_fp))
abort();
num = 0;
while (fgets(buf, sizeof(buf), statfile_fp)) {
if (num >= numcpus)
break;
if (strncmp(buf, "cpu", 3))
break;
/* skip "cpu<num> " marker */
{
unsigned int n;
int r = sscanf(buf, "cpu%u ", &n);
assert(r == 1);
(void) r; /* silence build warning */
for (len = sizeof("cpu0"); n /= 10; len++);
}
/* Line contains user, nice, system, idle, iowait, irq, softirq, steal,
* guest, guest_nice but we're only interested in the first four + irq.
*
* Don't use %*s to skip fields or %ll to read straight into the uint64_t
* fields, they're not allowed in C89 mode.
*/
if (6 != sscanf(buf + len,
"%" PRIu64 " %" PRIu64 " %" PRIu64
"%" PRIu64 " %" PRIu64 " %" PRIu64,
&user,
&nice,
&sys,
&idle,
&dummy,
&irq))
abort();
ts.user = user * multiplier;
ts.nice = nice * multiplier;
ts.sys = sys * multiplier;
ts.idle = idle * multiplier;
ts.irq = irq * multiplier;
ci[num++].cpu_times = ts;
}
assert(num == numcpus);
return 0;
}
static uint64_t read_cpufreq(unsigned int cpunum) {
uint64_t val;
char buf[1024];
FILE* fp;
snprintf(buf,
sizeof(buf),
"/sys/devices/system/cpu/cpu%u/cpufreq/scaling_cur_freq",
cpunum);
fp = uv__open_file(buf);
if (fp == NULL)
return 0;
if (fscanf(fp, "%" PRIu64, &val) != 1)
val = 0;
fclose(fp);
return val;
}
#ifdef HAVE_IFADDRS_H
static int uv__ifaddr_exclude(struct ifaddrs *ent, int exclude_type) {
if (!((ent->ifa_flags & IFF_UP) && (ent->ifa_flags & IFF_RUNNING)))
return 1;
if (ent->ifa_addr == NULL)
return 1;
/*
* On Linux getifaddrs returns information related to the raw underlying
* devices. We're not interested in this information yet.
*/
if (ent->ifa_addr->sa_family == PF_PACKET)
return exclude_type;
return !exclude_type;
}
#endif
int uv_interface_addresses(uv_interface_address_t** addresses, int* count) {
#ifndef HAVE_IFADDRS_H
*count = 0;
*addresses = NULL;
return UV_ENOSYS;
#else
struct ifaddrs *addrs, *ent;
uv_interface_address_t* address;
int i;
struct sockaddr_ll *sll;
*count = 0;
*addresses = NULL;
if (getifaddrs(&addrs))
return UV__ERR(errno);
/* Count the number of interfaces */
for (ent = addrs; ent != NULL; ent = ent->ifa_next) {
if (uv__ifaddr_exclude(ent, UV__EXCLUDE_IFADDR))
continue;
(*count)++;
}
if (*count == 0) {
freeifaddrs(addrs);
return 0;
}
/* Make sure the memory is initiallized to zero using calloc() */
*addresses = uv__calloc(*count, sizeof(**addresses));
if (!(*addresses)) {
freeifaddrs(addrs);
return UV_ENOMEM;
}
address = *addresses;
for (ent = addrs; ent != NULL; ent = ent->ifa_next) {
if (uv__ifaddr_exclude(ent, UV__EXCLUDE_IFADDR))
continue;
address->name = uv__strdup(ent->ifa_name);
if (ent->ifa_addr->sa_family == AF_INET6) {
address->address.address6 = *((struct sockaddr_in6*) ent->ifa_addr);
} else {
address->address.address4 = *((struct sockaddr_in*) ent->ifa_addr);
}
if (ent->ifa_netmask->sa_family == AF_INET6) {
address->netmask.netmask6 = *((struct sockaddr_in6*) ent->ifa_netmask);
} else {
address->netmask.netmask4 = *((struct sockaddr_in*) ent->ifa_netmask);
}
address->is_internal = !!(ent->ifa_flags & IFF_LOOPBACK);
address++;
}
/* Fill in physical addresses for each interface */
for (ent = addrs; ent != NULL; ent = ent->ifa_next) {
if (uv__ifaddr_exclude(ent, UV__EXCLUDE_IFPHYS))
continue;
address = *addresses;
for (i = 0; i < (*count); i++) {
size_t namelen = strlen(ent->ifa_name);
/* Alias interface share the same physical address */
if (strncmp(address->name, ent->ifa_name, namelen) == 0 &&
(address->name[namelen] == 0 || address->name[namelen] == ':')) {
sll = (struct sockaddr_ll*)ent->ifa_addr;
memcpy(address->phys_addr, sll->sll_addr, sizeof(address->phys_addr));
}
address++;
}
}
freeifaddrs(addrs);
return 0;
#endif
}
void uv_free_interface_addresses(uv_interface_address_t* addresses,
int count) {
int i;
for (i = 0; i < count; i++) {
uv__free(addresses[i].name);
}
uv__free(addresses);
}
void uv__set_process_title(const char* title) {
#if defined(PR_SET_NAME)
prctl(PR_SET_NAME, title); /* Only copies first 16 characters. */
#endif
}
static uint64_t uv__read_proc_meminfo(const char* what) {
uint64_t rc;
char* p;
char buf[4096]; /* Large enough to hold all of /proc/meminfo. */
if (uv__slurp("/proc/meminfo", buf, sizeof(buf)))
return 0;
p = strstr(buf, what);
if (p == NULL)
return 0;
p += strlen(what);
rc = 0;
sscanf(p, "%" PRIu64 " kB", &rc);
return rc * 1024;
}
uint64_t uv_get_free_memory(void) {
struct sysinfo info;
uint64_t rc;
rc = uv__read_proc_meminfo("MemAvailable:");
if (rc != 0)
return rc;
if (0 == sysinfo(&info))
return (uint64_t) info.freeram * info.mem_unit;
return 0;
}
uint64_t uv_get_total_memory(void) {
struct sysinfo info;
uint64_t rc;
rc = uv__read_proc_meminfo("MemTotal:");
if (rc != 0)
return rc;
if (0 == sysinfo(&info))
return (uint64_t) info.totalram * info.mem_unit;
return 0;
}
static uint64_t uv__read_cgroups_uint64(const char* cgroup, const char* param) {
char filename[256];
char buf[32]; /* Large enough to hold an encoded uint64_t. */
uint64_t rc;
rc = 0;
snprintf(filename, sizeof(filename), "/sys/fs/cgroup/%s/%s", cgroup, param);
if (0 == uv__slurp(filename, buf, sizeof(buf)))
sscanf(buf, "%" PRIu64, &rc);
return rc;
}
uint64_t uv_get_constrained_memory(void) {
/*
* This might return 0 if there was a problem getting the memory limit from
* cgroups. This is OK because a return value of 0 signifies that the memory
* limit is unknown.
*/
return uv__read_cgroups_uint64("memory", "memory.limit_in_bytes");
}
void uv_loadavg(double avg[3]) {
struct sysinfo info;
char buf[128]; /* Large enough to hold all of /proc/loadavg. */
if (0 == uv__slurp("/proc/loadavg", buf, sizeof(buf)))
if (3 == sscanf(buf, "%lf %lf %lf", &avg[0], &avg[1], &avg[2]))
return;
if (sysinfo(&info) < 0)
return;
avg[0] = (double) info.loads[0] / 65536.0;
avg[1] = (double) info.loads[1] / 65536.0;
avg[2] = (double) info.loads[2] / 65536.0;
}